forked from OSchip/llvm-project
1530 lines
61 KiB
C++
1530 lines
61 KiB
C++
//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the AArch64 implementation of TargetFrameLowering class.
|
|
//
|
|
// On AArch64, stack frames are structured as follows:
|
|
//
|
|
// The stack grows downward.
|
|
//
|
|
// All of the individual frame areas on the frame below are optional, i.e. it's
|
|
// possible to create a function so that the particular area isn't present
|
|
// in the frame.
|
|
//
|
|
// At function entry, the "frame" looks as follows:
|
|
//
|
|
// | | Higher address
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | arguments passed on the stack |
|
|
// | |
|
|
// |-----------------------------------| <- sp
|
|
// | | Lower address
|
|
//
|
|
//
|
|
// After the prologue has run, the frame has the following general structure.
|
|
// Note that this doesn't depict the case where a red-zone is used. Also,
|
|
// technically the last frame area (VLAs) doesn't get created until in the
|
|
// main function body, after the prologue is run. However, it's depicted here
|
|
// for completeness.
|
|
//
|
|
// | | Higher address
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | arguments passed on the stack |
|
|
// | |
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | (Win64 only) varargs from reg |
|
|
// | |
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | prev_fp, prev_lr |
|
|
// | (a.k.a. "frame record") |
|
|
// |-----------------------------------| <- fp(=x29)
|
|
// | |
|
|
// | other callee-saved registers |
|
|
// | |
|
|
// |-----------------------------------|
|
|
// |.empty.space.to.make.part.below....|
|
|
// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
|
|
// |.the.standard.16-byte.alignment....| compile time; if present)
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | local variables of fixed size |
|
|
// | including spill slots |
|
|
// |-----------------------------------| <- bp(not defined by ABI,
|
|
// |.variable-sized.local.variables....| LLVM chooses X19)
|
|
// |.(VLAs)............................| (size of this area is unknown at
|
|
// |...................................| compile time)
|
|
// |-----------------------------------| <- sp
|
|
// | | Lower address
|
|
//
|
|
//
|
|
// To access the data in a frame, at-compile time, a constant offset must be
|
|
// computable from one of the pointers (fp, bp, sp) to access it. The size
|
|
// of the areas with a dotted background cannot be computed at compile-time
|
|
// if they are present, making it required to have all three of fp, bp and
|
|
// sp to be set up to be able to access all contents in the frame areas,
|
|
// assuming all of the frame areas are non-empty.
|
|
//
|
|
// For most functions, some of the frame areas are empty. For those functions,
|
|
// it may not be necessary to set up fp or bp:
|
|
// * A base pointer is definitely needed when there are both VLAs and local
|
|
// variables with more-than-default alignment requirements.
|
|
// * A frame pointer is definitely needed when there are local variables with
|
|
// more-than-default alignment requirements.
|
|
//
|
|
// In some cases when a base pointer is not strictly needed, it is generated
|
|
// anyway when offsets from the frame pointer to access local variables become
|
|
// so large that the offset can't be encoded in the immediate fields of loads
|
|
// or stores.
|
|
//
|
|
// FIXME: also explain the redzone concept.
|
|
// FIXME: also explain the concept of reserved call frames.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64FrameLowering.h"
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64RegisterInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "frame-info"
|
|
|
|
static cl::opt<bool> EnableRedZone("aarch64-redzone",
|
|
cl::desc("enable use of redzone on AArch64"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
ReverseCSRRestoreSeq("reverse-csr-restore-seq",
|
|
cl::desc("reverse the CSR restore sequence"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
|
|
|
|
/// This is the biggest offset to the stack pointer we can encode in aarch64
|
|
/// instructions (without using a separate calculation and a temp register).
|
|
/// Note that the exception here are vector stores/loads which cannot encode any
|
|
/// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
|
|
static const unsigned DefaultSafeSPDisplacement = 255;
|
|
|
|
/// Look at each instruction that references stack frames and return the stack
|
|
/// size limit beyond which some of these instructions will require a scratch
|
|
/// register during their expansion later.
|
|
static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
|
|
// FIXME: For now, just conservatively guestimate based on unscaled indexing
|
|
// range. We'll end up allocating an unnecessary spill slot a lot, but
|
|
// realistically that's not a big deal at this stage of the game.
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.isDebugInstr() || MI.isPseudo() ||
|
|
MI.getOpcode() == AArch64::ADDXri ||
|
|
MI.getOpcode() == AArch64::ADDSXri)
|
|
continue;
|
|
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isFI())
|
|
continue;
|
|
|
|
int Offset = 0;
|
|
if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
|
|
AArch64FrameOffsetCannotUpdate)
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return DefaultSafeSPDisplacement;
|
|
}
|
|
|
|
bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
|
|
if (!EnableRedZone)
|
|
return false;
|
|
// Don't use the red zone if the function explicitly asks us not to.
|
|
// This is typically used for kernel code.
|
|
if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
|
|
return false;
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
unsigned NumBytes = AFI->getLocalStackSize();
|
|
|
|
return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128);
|
|
}
|
|
|
|
/// hasFP - Return true if the specified function should have a dedicated frame
|
|
/// pointer register.
|
|
bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
|
|
// Retain behavior of always omitting the FP for leaf functions when possible.
|
|
if (MFI.hasCalls() && MF.getTarget().Options.DisableFramePointerElim(MF))
|
|
return true;
|
|
if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
|
|
MFI.hasStackMap() || MFI.hasPatchPoint() ||
|
|
RegInfo->needsStackRealignment(MF))
|
|
return true;
|
|
// With large callframes around we may need to use FP to access the scavenging
|
|
// emergency spillslot.
|
|
//
|
|
// Unfortunately some calls to hasFP() like machine verifier ->
|
|
// getReservedReg() -> hasFP in the middle of global isel are too early
|
|
// to know the max call frame size. Hopefully conservatively returning "true"
|
|
// in those cases is fine.
|
|
// DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
|
|
if (!MFI.isMaxCallFrameSizeComputed() ||
|
|
MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
|
|
/// not required, we reserve argument space for call sites in the function
|
|
/// immediately on entry to the current function. This eliminates the need for
|
|
/// add/sub sp brackets around call sites. Returns true if the call frame is
|
|
/// included as part of the stack frame.
|
|
bool
|
|
AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
|
|
return !MF.getFrameInfo().hasVarSizedObjects();
|
|
}
|
|
|
|
MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) const {
|
|
const AArch64InstrInfo *TII =
|
|
static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
DebugLoc DL = I->getDebugLoc();
|
|
unsigned Opc = I->getOpcode();
|
|
bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
|
|
uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
|
|
|
|
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
|
|
if (!TFI->hasReservedCallFrame(MF)) {
|
|
unsigned Align = getStackAlignment();
|
|
|
|
int64_t Amount = I->getOperand(0).getImm();
|
|
Amount = alignTo(Amount, Align);
|
|
if (!IsDestroy)
|
|
Amount = -Amount;
|
|
|
|
// N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
|
|
// doesn't have to pop anything), then the first operand will be zero too so
|
|
// this adjustment is a no-op.
|
|
if (CalleePopAmount == 0) {
|
|
// FIXME: in-function stack adjustment for calls is limited to 24-bits
|
|
// because there's no guaranteed temporary register available.
|
|
//
|
|
// ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
|
|
// 1) For offset <= 12-bit, we use LSL #0
|
|
// 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
|
|
// LSL #0, and the other uses LSL #12.
|
|
//
|
|
// Most call frames will be allocated at the start of a function so
|
|
// this is OK, but it is a limitation that needs dealing with.
|
|
assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
|
|
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII);
|
|
}
|
|
} else if (CalleePopAmount != 0) {
|
|
// If the calling convention demands that the callee pops arguments from the
|
|
// stack, we want to add it back if we have a reserved call frame.
|
|
assert(CalleePopAmount < 0xffffff && "call frame too large");
|
|
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount,
|
|
TII);
|
|
}
|
|
return MBB.erase(I);
|
|
}
|
|
|
|
void AArch64FrameLowering::emitCalleeSavedFrameMoves(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
const MCRegisterInfo *MRI = STI.getRegisterInfo();
|
|
const TargetInstrInfo *TII = STI.getInstrInfo();
|
|
DebugLoc DL = MBB.findDebugLoc(MBBI);
|
|
|
|
// Add callee saved registers to move list.
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
if (CSI.empty())
|
|
return;
|
|
|
|
for (const auto &Info : CSI) {
|
|
unsigned Reg = Info.getReg();
|
|
int64_t Offset =
|
|
MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
|
|
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
|
|
// Find a scratch register that we can use at the start of the prologue to
|
|
// re-align the stack pointer. We avoid using callee-save registers since they
|
|
// may appear to be free when this is called from canUseAsPrologue (during
|
|
// shrink wrapping), but then no longer be free when this is called from
|
|
// emitPrologue.
|
|
//
|
|
// FIXME: This is a bit conservative, since in the above case we could use one
|
|
// of the callee-save registers as a scratch temp to re-align the stack pointer,
|
|
// but we would then have to make sure that we were in fact saving at least one
|
|
// callee-save register in the prologue, which is additional complexity that
|
|
// doesn't seem worth the benefit.
|
|
static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
|
|
MachineFunction *MF = MBB->getParent();
|
|
|
|
// If MBB is an entry block, use X9 as the scratch register
|
|
if (&MF->front() == MBB)
|
|
return AArch64::X9;
|
|
|
|
const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
|
|
LivePhysRegs LiveRegs(TRI);
|
|
LiveRegs.addLiveIns(*MBB);
|
|
|
|
// Mark callee saved registers as used so we will not choose them.
|
|
const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(MF);
|
|
for (unsigned i = 0; CSRegs[i]; ++i)
|
|
LiveRegs.addReg(CSRegs[i]);
|
|
|
|
// Prefer X9 since it was historically used for the prologue scratch reg.
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
if (LiveRegs.available(MRI, AArch64::X9))
|
|
return AArch64::X9;
|
|
|
|
for (unsigned Reg : AArch64::GPR64RegClass) {
|
|
if (LiveRegs.available(MRI, Reg))
|
|
return Reg;
|
|
}
|
|
return AArch64::NoRegister;
|
|
}
|
|
|
|
bool AArch64FrameLowering::canUseAsPrologue(
|
|
const MachineBasicBlock &MBB) const {
|
|
const MachineFunction *MF = MBB.getParent();
|
|
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
|
|
const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
// Don't need a scratch register if we're not going to re-align the stack.
|
|
if (!RegInfo->needsStackRealignment(*MF))
|
|
return true;
|
|
// Otherwise, we can use any block as long as it has a scratch register
|
|
// available.
|
|
return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
|
|
}
|
|
|
|
static bool windowsRequiresStackProbe(MachineFunction &MF,
|
|
unsigned StackSizeInBytes) {
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
if (!Subtarget.isTargetWindows())
|
|
return false;
|
|
const Function &F = MF.getFunction();
|
|
// TODO: When implementing stack protectors, take that into account
|
|
// for the probe threshold.
|
|
unsigned StackProbeSize = 4096;
|
|
if (F.hasFnAttribute("stack-probe-size"))
|
|
F.getFnAttribute("stack-probe-size")
|
|
.getValueAsString()
|
|
.getAsInteger(0, StackProbeSize);
|
|
return (StackSizeInBytes >= StackProbeSize) &&
|
|
!F.hasFnAttribute("no-stack-arg-probe");
|
|
}
|
|
|
|
bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
|
|
MachineFunction &MF, unsigned StackBumpBytes) const {
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
if (AFI->getLocalStackSize() == 0)
|
|
return false;
|
|
|
|
// 512 is the maximum immediate for stp/ldp that will be used for
|
|
// callee-save save/restores
|
|
if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
|
|
return false;
|
|
|
|
if (MFI.hasVarSizedObjects())
|
|
return false;
|
|
|
|
if (RegInfo->needsStackRealignment(MF))
|
|
return false;
|
|
|
|
// This isn't strictly necessary, but it simplifies things a bit since the
|
|
// current RedZone handling code assumes the SP is adjusted by the
|
|
// callee-save save/restore code.
|
|
if (canUseRedZone(MF))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Convert callee-save register save/restore instruction to do stack pointer
|
|
// decrement/increment to allocate/deallocate the callee-save stack area by
|
|
// converting store/load to use pre/post increment version.
|
|
static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc) {
|
|
// Ignore instructions that do not operate on SP, i.e. shadow call stack
|
|
// instructions.
|
|
while (MBBI->getOpcode() == AArch64::STRXpost ||
|
|
MBBI->getOpcode() == AArch64::LDRXpre) {
|
|
assert(MBBI->getOperand(0).getReg() != AArch64::SP);
|
|
++MBBI;
|
|
}
|
|
|
|
unsigned NewOpc;
|
|
bool NewIsUnscaled = false;
|
|
switch (MBBI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected callee-save save/restore opcode!");
|
|
case AArch64::STPXi:
|
|
NewOpc = AArch64::STPXpre;
|
|
break;
|
|
case AArch64::STPDi:
|
|
NewOpc = AArch64::STPDpre;
|
|
break;
|
|
case AArch64::STRXui:
|
|
NewOpc = AArch64::STRXpre;
|
|
NewIsUnscaled = true;
|
|
break;
|
|
case AArch64::STRDui:
|
|
NewOpc = AArch64::STRDpre;
|
|
NewIsUnscaled = true;
|
|
break;
|
|
case AArch64::LDPXi:
|
|
NewOpc = AArch64::LDPXpost;
|
|
break;
|
|
case AArch64::LDPDi:
|
|
NewOpc = AArch64::LDPDpost;
|
|
break;
|
|
case AArch64::LDRXui:
|
|
NewOpc = AArch64::LDRXpost;
|
|
NewIsUnscaled = true;
|
|
break;
|
|
case AArch64::LDRDui:
|
|
NewOpc = AArch64::LDRDpost;
|
|
NewIsUnscaled = true;
|
|
break;
|
|
}
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
|
|
MIB.addReg(AArch64::SP, RegState::Define);
|
|
|
|
// Copy all operands other than the immediate offset.
|
|
unsigned OpndIdx = 0;
|
|
for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
|
|
++OpndIdx)
|
|
MIB.add(MBBI->getOperand(OpndIdx));
|
|
|
|
assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
|
|
"Unexpected immediate offset in first/last callee-save save/restore "
|
|
"instruction!");
|
|
assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
|
|
"Unexpected base register in callee-save save/restore instruction!");
|
|
// Last operand is immediate offset that needs fixing.
|
|
assert(CSStackSizeInc % 8 == 0);
|
|
int64_t CSStackSizeIncImm = CSStackSizeInc;
|
|
if (!NewIsUnscaled)
|
|
CSStackSizeIncImm /= 8;
|
|
MIB.addImm(CSStackSizeIncImm);
|
|
|
|
MIB.setMIFlags(MBBI->getFlags());
|
|
MIB.setMemRefs(MBBI->memoperands_begin(), MBBI->memoperands_end());
|
|
|
|
return std::prev(MBB.erase(MBBI));
|
|
}
|
|
|
|
// Fixup callee-save register save/restore instructions to take into account
|
|
// combined SP bump by adding the local stack size to the stack offsets.
|
|
static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
|
|
unsigned LocalStackSize) {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
// Ignore instructions that do not operate on SP, i.e. shadow call stack
|
|
// instructions.
|
|
if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre) {
|
|
assert(MI.getOperand(0).getReg() != AArch64::SP);
|
|
return;
|
|
}
|
|
|
|
(void)Opc;
|
|
assert((Opc == AArch64::STPXi || Opc == AArch64::STPDi ||
|
|
Opc == AArch64::STRXui || Opc == AArch64::STRDui ||
|
|
Opc == AArch64::LDPXi || Opc == AArch64::LDPDi ||
|
|
Opc == AArch64::LDRXui || Opc == AArch64::LDRDui) &&
|
|
"Unexpected callee-save save/restore opcode!");
|
|
|
|
unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
|
|
assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
|
|
"Unexpected base register in callee-save save/restore instruction!");
|
|
// Last operand is immediate offset that needs fixing.
|
|
MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
|
|
// All generated opcodes have scaled offsets.
|
|
assert(LocalStackSize % 8 == 0);
|
|
OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / 8);
|
|
}
|
|
|
|
static void adaptForLdStOpt(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator FirstSPPopI,
|
|
MachineBasicBlock::iterator LastPopI) {
|
|
// Sometimes (when we restore in the same order as we save), we can end up
|
|
// with code like this:
|
|
//
|
|
// ldp x26, x25, [sp]
|
|
// ldp x24, x23, [sp, #16]
|
|
// ldp x22, x21, [sp, #32]
|
|
// ldp x20, x19, [sp, #48]
|
|
// add sp, sp, #64
|
|
//
|
|
// In this case, it is always better to put the first ldp at the end, so
|
|
// that the load-store optimizer can run and merge the ldp and the add into
|
|
// a post-index ldp.
|
|
// If we managed to grab the first pop instruction, move it to the end.
|
|
if (ReverseCSRRestoreSeq)
|
|
MBB.splice(FirstSPPopI, &MBB, LastPopI);
|
|
// We should end up with something like this now:
|
|
//
|
|
// ldp x24, x23, [sp, #16]
|
|
// ldp x22, x21, [sp, #32]
|
|
// ldp x20, x19, [sp, #48]
|
|
// ldp x26, x25, [sp]
|
|
// add sp, sp, #64
|
|
//
|
|
// and the load-store optimizer can merge the last two instructions into:
|
|
//
|
|
// ldp x26, x25, [sp], #64
|
|
//
|
|
}
|
|
|
|
void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const Function &F = MF.getFunction();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
bool needsFrameMoves = MMI.hasDebugInfo() || F.needsUnwindTableEntry();
|
|
bool HasFP = hasFP(MF);
|
|
|
|
// At this point, we're going to decide whether or not the function uses a
|
|
// redzone. In most cases, the function doesn't have a redzone so let's
|
|
// assume that's false and set it to true in the case that there's a redzone.
|
|
AFI->setHasRedZone(false);
|
|
|
|
// Debug location must be unknown since the first debug location is used
|
|
// to determine the end of the prologue.
|
|
DebugLoc DL;
|
|
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
int NumBytes = (int)MFI.getStackSize();
|
|
if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
|
|
assert(!HasFP && "unexpected function without stack frame but with FP");
|
|
|
|
// All of the stack allocation is for locals.
|
|
AFI->setLocalStackSize(NumBytes);
|
|
|
|
if (!NumBytes)
|
|
return;
|
|
// REDZONE: If the stack size is less than 128 bytes, we don't need
|
|
// to actually allocate.
|
|
if (canUseRedZone(MF)) {
|
|
AFI->setHasRedZone(true);
|
|
++NumRedZoneFunctions;
|
|
} else {
|
|
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
|
|
MachineInstr::FrameSetup);
|
|
|
|
// Label used to tie together the PROLOG_LABEL and the MachineMoves.
|
|
MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
|
|
// Encode the stack size of the leaf function.
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool IsWin64 =
|
|
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
|
|
|
|
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
|
|
// All of the remaining stack allocations are for locals.
|
|
AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
|
|
|
|
bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
|
|
if (CombineSPBump) {
|
|
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
|
|
MachineInstr::FrameSetup);
|
|
NumBytes = 0;
|
|
} else if (PrologueSaveSize != 0) {
|
|
MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(MBB, MBBI, DL, TII,
|
|
-PrologueSaveSize);
|
|
NumBytes -= PrologueSaveSize;
|
|
}
|
|
assert(NumBytes >= 0 && "Negative stack allocation size!?");
|
|
|
|
// Move past the saves of the callee-saved registers, fixing up the offsets
|
|
// and pre-inc if we decided to combine the callee-save and local stack
|
|
// pointer bump above.
|
|
MachineBasicBlock::iterator End = MBB.end();
|
|
while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup)) {
|
|
if (CombineSPBump)
|
|
fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize());
|
|
++MBBI;
|
|
}
|
|
if (HasFP) {
|
|
// Only set up FP if we actually need to. Frame pointer is fp =
|
|
// sp - fixedobject - 16.
|
|
int FPOffset = AFI->getCalleeSavedStackSize() - 16;
|
|
if (CombineSPBump)
|
|
FPOffset += AFI->getLocalStackSize();
|
|
|
|
// Issue sub fp, sp, FPOffset or
|
|
// mov fp,sp when FPOffset is zero.
|
|
// Note: All stores of callee-saved registers are marked as "FrameSetup".
|
|
// This code marks the instruction(s) that set the FP also.
|
|
emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII,
|
|
MachineInstr::FrameSetup);
|
|
}
|
|
|
|
if (windowsRequiresStackProbe(MF, NumBytes)) {
|
|
uint32_t NumWords = NumBytes >> 4;
|
|
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
|
|
.addImm(NumWords)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
|
|
switch (MF.getTarget().getCodeModel()) {
|
|
case CodeModel::Small:
|
|
case CodeModel::Medium:
|
|
case CodeModel::Kernel:
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
|
|
.addExternalSymbol("__chkstk")
|
|
.addReg(AArch64::X15, RegState::Implicit)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
break;
|
|
case CodeModel::Large:
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
|
|
.addReg(AArch64::X16, RegState::Define)
|
|
.addExternalSymbol("__chkstk")
|
|
.addExternalSymbol("__chkstk")
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
|
|
.addReg(AArch64::X16, RegState::Kill)
|
|
.addReg(AArch64::X15, RegState::Implicit | RegState::Define)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
break;
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
|
|
.addReg(AArch64::SP, RegState::Kill)
|
|
.addReg(AArch64::X15, RegState::Kill)
|
|
.addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
NumBytes = 0;
|
|
}
|
|
|
|
// Allocate space for the rest of the frame.
|
|
if (NumBytes) {
|
|
const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
|
|
unsigned scratchSPReg = AArch64::SP;
|
|
|
|
if (NeedsRealignment) {
|
|
scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
|
|
assert(scratchSPReg != AArch64::NoRegister);
|
|
}
|
|
|
|
// If we're a leaf function, try using the red zone.
|
|
if (!canUseRedZone(MF))
|
|
// FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
|
|
// the correct value here, as NumBytes also includes padding bytes,
|
|
// which shouldn't be counted here.
|
|
emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, -NumBytes, TII,
|
|
MachineInstr::FrameSetup);
|
|
|
|
if (NeedsRealignment) {
|
|
const unsigned Alignment = MFI.getMaxAlignment();
|
|
const unsigned NrBitsToZero = countTrailingZeros(Alignment);
|
|
assert(NrBitsToZero > 1);
|
|
assert(scratchSPReg != AArch64::SP);
|
|
|
|
// SUB X9, SP, NumBytes
|
|
// -- X9 is temporary register, so shouldn't contain any live data here,
|
|
// -- free to use. This is already produced by emitFrameOffset above.
|
|
// AND SP, X9, 0b11111...0000
|
|
// The logical immediates have a non-trivial encoding. The following
|
|
// formula computes the encoded immediate with all ones but
|
|
// NrBitsToZero zero bits as least significant bits.
|
|
uint32_t andMaskEncoded = (1 << 12) // = N
|
|
| ((64 - NrBitsToZero) << 6) // immr
|
|
| ((64 - NrBitsToZero - 1) << 0); // imms
|
|
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
|
|
.addReg(scratchSPReg, RegState::Kill)
|
|
.addImm(andMaskEncoded);
|
|
AFI->setStackRealigned(true);
|
|
}
|
|
}
|
|
|
|
// If we need a base pointer, set it up here. It's whatever the value of the
|
|
// stack pointer is at this point. Any variable size objects will be allocated
|
|
// after this, so we can still use the base pointer to reference locals.
|
|
//
|
|
// FIXME: Clarify FrameSetup flags here.
|
|
// Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
|
|
// needed.
|
|
if (RegInfo->hasBasePointer(MF)) {
|
|
TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
|
|
false);
|
|
}
|
|
|
|
if (needsFrameMoves) {
|
|
const DataLayout &TD = MF.getDataLayout();
|
|
const int StackGrowth = -TD.getPointerSize(0);
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
// An example of the prologue:
|
|
//
|
|
// .globl __foo
|
|
// .align 2
|
|
// __foo:
|
|
// Ltmp0:
|
|
// .cfi_startproc
|
|
// .cfi_personality 155, ___gxx_personality_v0
|
|
// Leh_func_begin:
|
|
// .cfi_lsda 16, Lexception33
|
|
//
|
|
// stp xa,bx, [sp, -#offset]!
|
|
// ...
|
|
// stp x28, x27, [sp, #offset-32]
|
|
// stp fp, lr, [sp, #offset-16]
|
|
// add fp, sp, #offset - 16
|
|
// sub sp, sp, #1360
|
|
//
|
|
// The Stack:
|
|
// +-------------------------------------------+
|
|
// 10000 | ........ | ........ | ........ | ........ |
|
|
// 10004 | ........ | ........ | ........ | ........ |
|
|
// +-------------------------------------------+
|
|
// 10008 | ........ | ........ | ........ | ........ |
|
|
// 1000c | ........ | ........ | ........ | ........ |
|
|
// +===========================================+
|
|
// 10010 | X28 Register |
|
|
// 10014 | X28 Register |
|
|
// +-------------------------------------------+
|
|
// 10018 | X27 Register |
|
|
// 1001c | X27 Register |
|
|
// +===========================================+
|
|
// 10020 | Frame Pointer |
|
|
// 10024 | Frame Pointer |
|
|
// +-------------------------------------------+
|
|
// 10028 | Link Register |
|
|
// 1002c | Link Register |
|
|
// +===========================================+
|
|
// 10030 | ........ | ........ | ........ | ........ |
|
|
// 10034 | ........ | ........ | ........ | ........ |
|
|
// +-------------------------------------------+
|
|
// 10038 | ........ | ........ | ........ | ........ |
|
|
// 1003c | ........ | ........ | ........ | ........ |
|
|
// +-------------------------------------------+
|
|
//
|
|
// [sp] = 10030 :: >>initial value<<
|
|
// sp = 10020 :: stp fp, lr, [sp, #-16]!
|
|
// fp = sp == 10020 :: mov fp, sp
|
|
// [sp] == 10020 :: stp x28, x27, [sp, #-16]!
|
|
// sp == 10010 :: >>final value<<
|
|
//
|
|
// The frame pointer (w29) points to address 10020. If we use an offset of
|
|
// '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
|
|
// for w27, and -32 for w28:
|
|
//
|
|
// Ltmp1:
|
|
// .cfi_def_cfa w29, 16
|
|
// Ltmp2:
|
|
// .cfi_offset w30, -8
|
|
// Ltmp3:
|
|
// .cfi_offset w29, -16
|
|
// Ltmp4:
|
|
// .cfi_offset w27, -24
|
|
// Ltmp5:
|
|
// .cfi_offset w28, -32
|
|
|
|
if (HasFP) {
|
|
// Define the current CFA rule to use the provided FP.
|
|
unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
|
|
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
|
|
nullptr, Reg, 2 * StackGrowth - FixedObject));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
} else {
|
|
// Encode the stack size of the leaf function.
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
// Now emit the moves for whatever callee saved regs we have (including FP,
|
|
// LR if those are saved).
|
|
emitCalleeSavedFrameMoves(MBB, MBBI);
|
|
}
|
|
}
|
|
|
|
void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL;
|
|
bool IsTailCallReturn = false;
|
|
if (MBB.end() != MBBI) {
|
|
DL = MBBI->getDebugLoc();
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
|
|
RetOpcode == AArch64::TCRETURNri;
|
|
}
|
|
int NumBytes = MFI.getStackSize();
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
// Initial and residual are named for consistency with the prologue. Note that
|
|
// in the epilogue, the residual adjustment is executed first.
|
|
uint64_t ArgumentPopSize = 0;
|
|
if (IsTailCallReturn) {
|
|
MachineOperand &StackAdjust = MBBI->getOperand(1);
|
|
|
|
// For a tail-call in a callee-pops-arguments environment, some or all of
|
|
// the stack may actually be in use for the call's arguments, this is
|
|
// calculated during LowerCall and consumed here...
|
|
ArgumentPopSize = StackAdjust.getImm();
|
|
} else {
|
|
// ... otherwise the amount to pop is *all* of the argument space,
|
|
// conveniently stored in the MachineFunctionInfo by
|
|
// LowerFormalArguments. This will, of course, be zero for the C calling
|
|
// convention.
|
|
ArgumentPopSize = AFI->getArgumentStackToRestore();
|
|
}
|
|
|
|
// The stack frame should be like below,
|
|
//
|
|
// ---------------------- ---
|
|
// | | |
|
|
// | BytesInStackArgArea| CalleeArgStackSize
|
|
// | (NumReusableBytes) | (of tail call)
|
|
// | | ---
|
|
// | | |
|
|
// ---------------------| --- |
|
|
// | | | |
|
|
// | CalleeSavedReg | | |
|
|
// | (CalleeSavedStackSize)| | |
|
|
// | | | |
|
|
// ---------------------| | NumBytes
|
|
// | | StackSize (StackAdjustUp)
|
|
// | LocalStackSize | | |
|
|
// | (covering callee | | |
|
|
// | args) | | |
|
|
// | | | |
|
|
// ---------------------- --- ---
|
|
//
|
|
// So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
|
|
// = StackSize + ArgumentPopSize
|
|
//
|
|
// AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
|
|
// it as the 2nd argument of AArch64ISD::TC_RETURN.
|
|
|
|
bool IsWin64 =
|
|
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
|
|
|
|
uint64_t AfterCSRPopSize = ArgumentPopSize;
|
|
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
|
|
bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
|
|
// Assume we can't combine the last pop with the sp restore.
|
|
|
|
if (!CombineSPBump && PrologueSaveSize != 0) {
|
|
MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
|
|
// Converting the last ldp to a post-index ldp is valid only if the last
|
|
// ldp's offset is 0.
|
|
const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
|
|
// If the offset is 0, convert it to a post-index ldp.
|
|
if (OffsetOp.getImm() == 0) {
|
|
convertCalleeSaveRestoreToSPPrePostIncDec(MBB, Pop, DL, TII,
|
|
PrologueSaveSize);
|
|
} else {
|
|
// If not, make sure to emit an add after the last ldp.
|
|
// We're doing this by transfering the size to be restored from the
|
|
// adjustment *before* the CSR pops to the adjustment *after* the CSR
|
|
// pops.
|
|
AfterCSRPopSize += PrologueSaveSize;
|
|
}
|
|
}
|
|
|
|
// Move past the restores of the callee-saved registers.
|
|
// If we plan on combining the sp bump of the local stack size and the callee
|
|
// save stack size, we might need to adjust the CSR save and restore offsets.
|
|
MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
|
|
MachineBasicBlock::iterator Begin = MBB.begin();
|
|
while (LastPopI != Begin) {
|
|
--LastPopI;
|
|
if (!LastPopI->getFlag(MachineInstr::FrameDestroy)) {
|
|
++LastPopI;
|
|
break;
|
|
} else if (CombineSPBump)
|
|
fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize());
|
|
}
|
|
|
|
// If there is a single SP update, insert it before the ret and we're done.
|
|
if (CombineSPBump) {
|
|
emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
|
|
NumBytes + AfterCSRPopSize, TII,
|
|
MachineInstr::FrameDestroy);
|
|
return;
|
|
}
|
|
|
|
NumBytes -= PrologueSaveSize;
|
|
assert(NumBytes >= 0 && "Negative stack allocation size!?");
|
|
|
|
if (!hasFP(MF)) {
|
|
bool RedZone = canUseRedZone(MF);
|
|
// If this was a redzone leaf function, we don't need to restore the
|
|
// stack pointer (but we may need to pop stack args for fastcc).
|
|
if (RedZone && AfterCSRPopSize == 0)
|
|
return;
|
|
|
|
bool NoCalleeSaveRestore = PrologueSaveSize == 0;
|
|
int StackRestoreBytes = RedZone ? 0 : NumBytes;
|
|
if (NoCalleeSaveRestore)
|
|
StackRestoreBytes += AfterCSRPopSize;
|
|
|
|
// If we were able to combine the local stack pop with the argument pop,
|
|
// then we're done.
|
|
bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
|
|
|
|
// If we're done after this, make sure to help the load store optimizer.
|
|
if (Done)
|
|
adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
|
|
|
|
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
|
|
StackRestoreBytes, TII, MachineInstr::FrameDestroy);
|
|
if (Done)
|
|
return;
|
|
|
|
NumBytes = 0;
|
|
}
|
|
|
|
// Restore the original stack pointer.
|
|
// FIXME: Rather than doing the math here, we should instead just use
|
|
// non-post-indexed loads for the restores if we aren't actually going to
|
|
// be able to save any instructions.
|
|
if (MFI.hasVarSizedObjects() || AFI->isStackRealigned())
|
|
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
|
|
-AFI->getCalleeSavedStackSize() + 16, TII,
|
|
MachineInstr::FrameDestroy);
|
|
else if (NumBytes)
|
|
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes, TII,
|
|
MachineInstr::FrameDestroy);
|
|
|
|
// This must be placed after the callee-save restore code because that code
|
|
// assumes the SP is at the same location as it was after the callee-save save
|
|
// code in the prologue.
|
|
if (AfterCSRPopSize) {
|
|
// Find an insertion point for the first ldp so that it goes before the
|
|
// shadow call stack epilog instruction. This ensures that the restore of
|
|
// lr from x18 is placed after the restore from sp.
|
|
auto FirstSPPopI = MBB.getFirstTerminator();
|
|
while (FirstSPPopI != Begin) {
|
|
auto Prev = std::prev(FirstSPPopI);
|
|
if (Prev->getOpcode() != AArch64::LDRXpre ||
|
|
Prev->getOperand(0).getReg() == AArch64::SP)
|
|
break;
|
|
FirstSPPopI = Prev;
|
|
}
|
|
|
|
adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
|
|
|
|
emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
|
|
AfterCSRPopSize, TII, MachineInstr::FrameDestroy);
|
|
}
|
|
}
|
|
|
|
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
|
|
/// debug info. It's the same as what we use for resolving the code-gen
|
|
/// references for now. FIXME: This can go wrong when references are
|
|
/// SP-relative and simple call frames aren't used.
|
|
int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
|
|
int FI,
|
|
unsigned &FrameReg) const {
|
|
return resolveFrameIndexReference(MF, FI, FrameReg);
|
|
}
|
|
|
|
int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
|
|
int FI, unsigned &FrameReg,
|
|
bool PreferFP) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
bool IsWin64 =
|
|
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
|
|
int FPOffset = MFI.getObjectOffset(FI) + FixedObject + 16;
|
|
int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
|
|
bool isFixed = MFI.isFixedObjectIndex(FI);
|
|
bool isCSR = !isFixed && MFI.getObjectOffset(FI) >=
|
|
-((int)AFI->getCalleeSavedStackSize());
|
|
|
|
// Use frame pointer to reference fixed objects. Use it for locals if
|
|
// there are VLAs or a dynamically realigned SP (and thus the SP isn't
|
|
// reliable as a base). Make sure useFPForScavengingIndex() does the
|
|
// right thing for the emergency spill slot.
|
|
bool UseFP = false;
|
|
if (AFI->hasStackFrame()) {
|
|
// Note: Keeping the following as multiple 'if' statements rather than
|
|
// merging to a single expression for readability.
|
|
//
|
|
// Argument access should always use the FP.
|
|
if (isFixed) {
|
|
UseFP = hasFP(MF);
|
|
} else if (isCSR && RegInfo->needsStackRealignment(MF)) {
|
|
// References to the CSR area must use FP if we're re-aligning the stack
|
|
// since the dynamically-sized alignment padding is between the SP/BP and
|
|
// the CSR area.
|
|
assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
|
|
UseFP = true;
|
|
} else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
|
|
// If the FPOffset is negative, we have to keep in mind that the
|
|
// available offset range for negative offsets is smaller than for
|
|
// positive ones. If an offset is
|
|
// available via the FP and the SP, use whichever is closest.
|
|
bool FPOffsetFits = FPOffset >= -256;
|
|
PreferFP |= Offset > -FPOffset;
|
|
|
|
if (MFI.hasVarSizedObjects()) {
|
|
// If we have variable sized objects, we can use either FP or BP, as the
|
|
// SP offset is unknown. We can use the base pointer if we have one and
|
|
// FP is not preferred. If not, we're stuck with using FP.
|
|
bool CanUseBP = RegInfo->hasBasePointer(MF);
|
|
if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
|
|
UseFP = PreferFP;
|
|
else if (!CanUseBP) // Can't use BP. Forced to use FP.
|
|
UseFP = true;
|
|
// else we can use BP and FP, but the offset from FP won't fit.
|
|
// That will make us scavenge registers which we can probably avoid by
|
|
// using BP. If it won't fit for BP either, we'll scavenge anyway.
|
|
} else if (FPOffset >= 0) {
|
|
// Use SP or FP, whichever gives us the best chance of the offset
|
|
// being in range for direct access. If the FPOffset is positive,
|
|
// that'll always be best, as the SP will be even further away.
|
|
UseFP = true;
|
|
} else {
|
|
// We have the choice between FP and (SP or BP).
|
|
if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
|
|
UseFP = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
|
|
"In the presence of dynamic stack pointer realignment, "
|
|
"non-argument/CSR objects cannot be accessed through the frame pointer");
|
|
|
|
if (UseFP) {
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return FPOffset;
|
|
}
|
|
|
|
// Use the base pointer if we have one.
|
|
if (RegInfo->hasBasePointer(MF))
|
|
FrameReg = RegInfo->getBaseRegister();
|
|
else {
|
|
assert(!MFI.hasVarSizedObjects() &&
|
|
"Can't use SP when we have var sized objects.");
|
|
FrameReg = AArch64::SP;
|
|
// If we're using the red zone for this function, the SP won't actually
|
|
// be adjusted, so the offsets will be negative. They're also all
|
|
// within range of the signed 9-bit immediate instructions.
|
|
if (canUseRedZone(MF))
|
|
Offset -= AFI->getLocalStackSize();
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
|
|
// Do not set a kill flag on values that are also marked as live-in. This
|
|
// happens with the @llvm-returnaddress intrinsic and with arguments passed in
|
|
// callee saved registers.
|
|
// Omitting the kill flags is conservatively correct even if the live-in
|
|
// is not used after all.
|
|
bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
|
|
return getKillRegState(!IsLiveIn);
|
|
}
|
|
|
|
static bool produceCompactUnwindFrame(MachineFunction &MF) {
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
AttributeList Attrs = MF.getFunction().getAttributes();
|
|
return Subtarget.isTargetMachO() &&
|
|
!(Subtarget.getTargetLowering()->supportSwiftError() &&
|
|
Attrs.hasAttrSomewhere(Attribute::SwiftError));
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct RegPairInfo {
|
|
unsigned Reg1 = AArch64::NoRegister;
|
|
unsigned Reg2 = AArch64::NoRegister;
|
|
int FrameIdx;
|
|
int Offset;
|
|
bool IsGPR;
|
|
|
|
RegPairInfo() = default;
|
|
|
|
bool isPaired() const { return Reg2 != AArch64::NoRegister; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static void computeCalleeSaveRegisterPairs(
|
|
MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
|
|
bool &NeedShadowCallStackProlog) {
|
|
|
|
if (CSI.empty())
|
|
return;
|
|
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
CallingConv::ID CC = MF.getFunction().getCallingConv();
|
|
unsigned Count = CSI.size();
|
|
(void)CC;
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// pairs.
|
|
assert((!produceCompactUnwindFrame(MF) ||
|
|
CC == CallingConv::PreserveMost ||
|
|
(Count & 1) == 0) &&
|
|
"Odd number of callee-saved regs to spill!");
|
|
int Offset = AFI->getCalleeSavedStackSize();
|
|
|
|
for (unsigned i = 0; i < Count; ++i) {
|
|
RegPairInfo RPI;
|
|
RPI.Reg1 = CSI[i].getReg();
|
|
|
|
assert(AArch64::GPR64RegClass.contains(RPI.Reg1) ||
|
|
AArch64::FPR64RegClass.contains(RPI.Reg1));
|
|
RPI.IsGPR = AArch64::GPR64RegClass.contains(RPI.Reg1);
|
|
|
|
// Add the next reg to the pair if it is in the same register class.
|
|
if (i + 1 < Count) {
|
|
unsigned NextReg = CSI[i + 1].getReg();
|
|
if ((RPI.IsGPR && AArch64::GPR64RegClass.contains(NextReg)) ||
|
|
(!RPI.IsGPR && AArch64::FPR64RegClass.contains(NextReg)))
|
|
RPI.Reg2 = NextReg;
|
|
}
|
|
|
|
// If either of the registers to be saved is the lr register, it means that
|
|
// we also need to save lr in the shadow call stack.
|
|
if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
|
|
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
|
|
if (!MF.getSubtarget<AArch64Subtarget>().isX18Reserved())
|
|
report_fatal_error("Must reserve x18 to use shadow call stack");
|
|
NeedShadowCallStackProlog = true;
|
|
}
|
|
|
|
// GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
|
|
// list to come in sorted by frame index so that we can issue the store
|
|
// pair instructions directly. Assert if we see anything otherwise.
|
|
//
|
|
// The order of the registers in the list is controlled by
|
|
// getCalleeSavedRegs(), so they will always be in-order, as well.
|
|
assert((!RPI.isPaired() ||
|
|
(CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
|
|
"Out of order callee saved regs!");
|
|
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// adjacent register pairs.
|
|
assert((!produceCompactUnwindFrame(MF) ||
|
|
CC == CallingConv::PreserveMost ||
|
|
(RPI.isPaired() &&
|
|
((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
|
|
RPI.Reg1 + 1 == RPI.Reg2))) &&
|
|
"Callee-save registers not saved as adjacent register pair!");
|
|
|
|
RPI.FrameIdx = CSI[i].getFrameIdx();
|
|
|
|
if (Count * 8 != AFI->getCalleeSavedStackSize() && !RPI.isPaired()) {
|
|
// Round up size of non-pair to pair size if we need to pad the
|
|
// callee-save area to ensure 16-byte alignment.
|
|
Offset -= 16;
|
|
assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
|
|
MFI.setObjectAlignment(RPI.FrameIdx, 16);
|
|
AFI->setCalleeSaveStackHasFreeSpace(true);
|
|
} else
|
|
Offset -= RPI.isPaired() ? 16 : 8;
|
|
assert(Offset % 8 == 0);
|
|
RPI.Offset = Offset / 8;
|
|
assert((RPI.Offset >= -64 && RPI.Offset <= 63) &&
|
|
"Offset out of bounds for LDP/STP immediate");
|
|
|
|
RegPairs.push_back(RPI);
|
|
if (RPI.isPaired())
|
|
++i;
|
|
}
|
|
}
|
|
|
|
bool AArch64FrameLowering::spillCalleeSavedRegisters(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
DebugLoc DL;
|
|
SmallVector<RegPairInfo, 8> RegPairs;
|
|
|
|
bool NeedShadowCallStackProlog = false;
|
|
computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
|
|
NeedShadowCallStackProlog);
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
if (NeedShadowCallStackProlog) {
|
|
// Shadow call stack prolog: str x30, [x18], #8
|
|
BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
|
|
.addReg(AArch64::X18, RegState::Define)
|
|
.addReg(AArch64::LR)
|
|
.addReg(AArch64::X18)
|
|
.addImm(8)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
// This instruction also makes x18 live-in to the entry block.
|
|
MBB.addLiveIn(AArch64::X18);
|
|
}
|
|
|
|
for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
|
|
++RPII) {
|
|
RegPairInfo RPI = *RPII;
|
|
unsigned Reg1 = RPI.Reg1;
|
|
unsigned Reg2 = RPI.Reg2;
|
|
unsigned StrOpc;
|
|
|
|
// Issue sequence of spills for cs regs. The first spill may be converted
|
|
// to a pre-decrement store later by emitPrologue if the callee-save stack
|
|
// area allocation can't be combined with the local stack area allocation.
|
|
// For example:
|
|
// stp x22, x21, [sp, #0] // addImm(+0)
|
|
// stp x20, x19, [sp, #16] // addImm(+2)
|
|
// stp fp, lr, [sp, #32] // addImm(+4)
|
|
// Rationale: This sequence saves uop updates compared to a sequence of
|
|
// pre-increment spills like stp xi,xj,[sp,#-16]!
|
|
// Note: Similar rationale and sequence for restores in epilog.
|
|
if (RPI.IsGPR)
|
|
StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
|
|
else
|
|
StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
|
|
DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
|
|
if (RPI.isPaired())
|
|
dbgs() << ", " << printReg(Reg2, TRI);
|
|
dbgs() << ") -> fi#(" << RPI.FrameIdx;
|
|
if (RPI.isPaired())
|
|
dbgs() << ", " << RPI.FrameIdx+1;
|
|
dbgs() << ")\n");
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
|
|
if (!MRI.isReserved(Reg1))
|
|
MBB.addLiveIn(Reg1);
|
|
if (RPI.isPaired()) {
|
|
if (!MRI.isReserved(Reg2))
|
|
MBB.addLiveIn(Reg2);
|
|
MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1),
|
|
MachineMemOperand::MOStore, 8, 8));
|
|
}
|
|
MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
|
|
.addReg(AArch64::SP)
|
|
.addImm(RPI.Offset) // [sp, #offset*8], where factor*8 is implicit
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx),
|
|
MachineMemOperand::MOStore, 8, 8));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AArch64FrameLowering::restoreCalleeSavedRegisters(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
DebugLoc DL;
|
|
SmallVector<RegPairInfo, 8> RegPairs;
|
|
|
|
if (MI != MBB.end())
|
|
DL = MI->getDebugLoc();
|
|
|
|
bool NeedShadowCallStackProlog = false;
|
|
computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
|
|
NeedShadowCallStackProlog);
|
|
|
|
auto EmitMI = [&](const RegPairInfo &RPI) {
|
|
unsigned Reg1 = RPI.Reg1;
|
|
unsigned Reg2 = RPI.Reg2;
|
|
|
|
// Issue sequence of restores for cs regs. The last restore may be converted
|
|
// to a post-increment load later by emitEpilogue if the callee-save stack
|
|
// area allocation can't be combined with the local stack area allocation.
|
|
// For example:
|
|
// ldp fp, lr, [sp, #32] // addImm(+4)
|
|
// ldp x20, x19, [sp, #16] // addImm(+2)
|
|
// ldp x22, x21, [sp, #0] // addImm(+0)
|
|
// Note: see comment in spillCalleeSavedRegisters()
|
|
unsigned LdrOpc;
|
|
if (RPI.IsGPR)
|
|
LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
|
|
else
|
|
LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
|
|
DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
|
|
if (RPI.isPaired())
|
|
dbgs() << ", " << printReg(Reg2, TRI);
|
|
dbgs() << ") -> fi#(" << RPI.FrameIdx;
|
|
if (RPI.isPaired())
|
|
dbgs() << ", " << RPI.FrameIdx+1;
|
|
dbgs() << ")\n");
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
|
|
if (RPI.isPaired()) {
|
|
MIB.addReg(Reg2, getDefRegState(true));
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1),
|
|
MachineMemOperand::MOLoad, 8, 8));
|
|
}
|
|
MIB.addReg(Reg1, getDefRegState(true))
|
|
.addReg(AArch64::SP)
|
|
.addImm(RPI.Offset) // [sp, #offset*8] where the factor*8 is implicit
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx),
|
|
MachineMemOperand::MOLoad, 8, 8));
|
|
};
|
|
|
|
if (ReverseCSRRestoreSeq)
|
|
for (const RegPairInfo &RPI : reverse(RegPairs))
|
|
EmitMI(RPI);
|
|
else
|
|
for (const RegPairInfo &RPI : RegPairs)
|
|
EmitMI(RPI);
|
|
|
|
if (NeedShadowCallStackProlog) {
|
|
// Shadow call stack epilog: ldr x30, [x18, #-8]!
|
|
BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
|
|
.addReg(AArch64::X18, RegState::Define)
|
|
.addReg(AArch64::LR, RegState::Define)
|
|
.addReg(AArch64::X18)
|
|
.addImm(-8)
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
BitVector &SavedRegs,
|
|
RegScavenger *RS) const {
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
unsigned UnspilledCSGPR = AArch64::NoRegister;
|
|
unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
|
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
|
|
|
|
unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
|
|
? RegInfo->getBaseRegister()
|
|
: (unsigned)AArch64::NoRegister;
|
|
|
|
unsigned SpillEstimate = SavedRegs.count();
|
|
for (unsigned i = 0; CSRegs[i]; ++i) {
|
|
unsigned Reg = CSRegs[i];
|
|
unsigned PairedReg = CSRegs[i ^ 1];
|
|
if (Reg == BasePointerReg)
|
|
SpillEstimate++;
|
|
if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg))
|
|
SpillEstimate++;
|
|
}
|
|
SpillEstimate += 2; // Conservatively include FP+LR in the estimate
|
|
unsigned StackEstimate = MFI.estimateStackSize(MF) + 8 * SpillEstimate;
|
|
|
|
// The frame record needs to be created by saving the appropriate registers
|
|
if (hasFP(MF) || windowsRequiresStackProbe(MF, StackEstimate)) {
|
|
SavedRegs.set(AArch64::FP);
|
|
SavedRegs.set(AArch64::LR);
|
|
}
|
|
|
|
unsigned ExtraCSSpill = 0;
|
|
// Figure out which callee-saved registers to save/restore.
|
|
for (unsigned i = 0; CSRegs[i]; ++i) {
|
|
const unsigned Reg = CSRegs[i];
|
|
|
|
// Add the base pointer register to SavedRegs if it is callee-save.
|
|
if (Reg == BasePointerReg)
|
|
SavedRegs.set(Reg);
|
|
|
|
bool RegUsed = SavedRegs.test(Reg);
|
|
unsigned PairedReg = CSRegs[i ^ 1];
|
|
if (!RegUsed) {
|
|
if (AArch64::GPR64RegClass.contains(Reg) &&
|
|
!RegInfo->isReservedReg(MF, Reg)) {
|
|
UnspilledCSGPR = Reg;
|
|
UnspilledCSGPRPaired = PairedReg;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// pairs.
|
|
// FIXME: the usual format is actually better if unwinding isn't needed.
|
|
if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg)) {
|
|
SavedRegs.set(PairedReg);
|
|
if (AArch64::GPR64RegClass.contains(PairedReg) &&
|
|
!RegInfo->isReservedReg(MF, PairedReg))
|
|
ExtraCSSpill = PairedReg;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "*** determineCalleeSaves\nUsed CSRs:";
|
|
for (unsigned Reg : SavedRegs.set_bits())
|
|
dbgs() << ' ' << printReg(Reg, RegInfo);
|
|
dbgs() << "\n";);
|
|
|
|
// If any callee-saved registers are used, the frame cannot be eliminated.
|
|
unsigned NumRegsSpilled = SavedRegs.count();
|
|
bool CanEliminateFrame = NumRegsSpilled == 0;
|
|
|
|
// The CSR spill slots have not been allocated yet, so estimateStackSize
|
|
// won't include them.
|
|
unsigned CFSize = MFI.estimateStackSize(MF) + 8 * NumRegsSpilled;
|
|
DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
|
|
unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
|
|
bool BigStack = (CFSize > EstimatedStackSizeLimit);
|
|
if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
|
|
AFI->setHasStackFrame(true);
|
|
|
|
// Estimate if we might need to scavenge a register at some point in order
|
|
// to materialize a stack offset. If so, either spill one additional
|
|
// callee-saved register or reserve a special spill slot to facilitate
|
|
// register scavenging. If we already spilled an extra callee-saved register
|
|
// above to keep the number of spills even, we don't need to do anything else
|
|
// here.
|
|
if (BigStack) {
|
|
if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
|
|
DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
|
|
<< " to get a scratch register.\n");
|
|
SavedRegs.set(UnspilledCSGPR);
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// pairs, so if we need to spill one extra for BigStack, then we need to
|
|
// store the pair.
|
|
if (produceCompactUnwindFrame(MF))
|
|
SavedRegs.set(UnspilledCSGPRPaired);
|
|
ExtraCSSpill = UnspilledCSGPRPaired;
|
|
NumRegsSpilled = SavedRegs.count();
|
|
}
|
|
|
|
// If we didn't find an extra callee-saved register to spill, create
|
|
// an emergency spill slot.
|
|
if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass &RC = AArch64::GPR64RegClass;
|
|
unsigned Size = TRI->getSpillSize(RC);
|
|
unsigned Align = TRI->getSpillAlignment(RC);
|
|
int FI = MFI.CreateStackObject(Size, Align, false);
|
|
RS->addScavengingFrameIndex(FI);
|
|
DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
|
|
<< " as the emergency spill slot.\n");
|
|
}
|
|
}
|
|
|
|
// Round up to register pair alignment to avoid additional SP adjustment
|
|
// instructions.
|
|
AFI->setCalleeSavedStackSize(alignTo(8 * NumRegsSpilled, 16));
|
|
}
|
|
|
|
bool AArch64FrameLowering::enableStackSlotScavenging(
|
|
const MachineFunction &MF) const {
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
return AFI->hasCalleeSaveStackFreeSpace();
|
|
}
|