forked from OSchip/llvm-project
363 lines
12 KiB
C++
363 lines
12 KiB
C++
//===- SymbolTable.cpp ----------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Symbol table is a bag of all known symbols. We put all symbols of
|
|
// all input files to the symbol table. The symbol table is basically
|
|
// a hash table with the logic to resolve symbol name conflicts using
|
|
// the symbol types.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SymbolTable.h"
|
|
#include "Config.h"
|
|
#include "Error.h"
|
|
#include "Symbols.h"
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/Linker/Linker.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
template <class ELFT> static bool isCompatible(InputFile *FileP) {
|
|
auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
|
|
if (!F)
|
|
return true;
|
|
if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
|
|
return true;
|
|
StringRef A = F->getName();
|
|
StringRef B = Config->Emulation;
|
|
if (B.empty())
|
|
B = Config->FirstElf->getName();
|
|
error(A + " is incompatible with " + B);
|
|
return false;
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
|
|
InputFile *FileP = File.get();
|
|
if (!isCompatible<ELFT>(FileP))
|
|
return;
|
|
|
|
// .a file
|
|
if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
|
|
ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
|
|
F->parse();
|
|
for (Lazy &Sym : F->getLazySymbols())
|
|
addLazy(&Sym);
|
|
return;
|
|
}
|
|
|
|
// .so file
|
|
if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
|
|
// DSOs are uniquified not by filename but by soname.
|
|
F->parseSoName();
|
|
if (!SoNames.insert(F->getSoName()).second)
|
|
return;
|
|
|
|
SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
|
|
F->parseRest();
|
|
for (SharedSymbol<ELFT> &B : F->getSharedSymbols())
|
|
resolve(&B);
|
|
return;
|
|
}
|
|
|
|
// LLVM bitcode file.
|
|
if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
|
|
BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
|
|
F->parse(ComdatGroups);
|
|
for (SymbolBody *B : F->getSymbols())
|
|
resolve(B);
|
|
return;
|
|
}
|
|
|
|
// .o file
|
|
auto *F = cast<ObjectFile<ELFT>>(FileP);
|
|
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
|
|
F->parse(ComdatGroups);
|
|
for (SymbolBody *B : F->getSymbols())
|
|
resolve(B);
|
|
}
|
|
|
|
// Codegen the module M and returns the resulting InputFile.
|
|
template <class ELFT>
|
|
std::unique_ptr<InputFile> SymbolTable<ELFT>::codegen(Module &M) {
|
|
StringRef TripleStr = M.getTargetTriple();
|
|
Triple TheTriple(TripleStr);
|
|
|
|
// FIXME: Should we have a default triple? The gold plugin uses
|
|
// sys::getDefaultTargetTriple(), but that is probably wrong given that this
|
|
// might be a cross linker.
|
|
|
|
std::string ErrMsg;
|
|
const Target *TheTarget = TargetRegistry::lookupTarget(TripleStr, ErrMsg);
|
|
if (!TheTarget)
|
|
fatal("Target not found: " + ErrMsg);
|
|
|
|
TargetOptions Options;
|
|
Reloc::Model R = Config->Shared ? Reloc::PIC_ : Reloc::Static;
|
|
std::unique_ptr<TargetMachine> TM(
|
|
TheTarget->createTargetMachine(TripleStr, "", "", Options, R));
|
|
|
|
raw_svector_ostream OS(OwningLTOData);
|
|
legacy::PassManager CodeGenPasses;
|
|
if (TM->addPassesToEmitFile(CodeGenPasses, OS,
|
|
TargetMachine::CGFT_ObjectFile))
|
|
fatal("Failed to setup codegen");
|
|
CodeGenPasses.run(M);
|
|
LtoBuffer = MemoryBuffer::getMemBuffer(OwningLTOData, "", false);
|
|
return createObjectFile(*LtoBuffer);
|
|
}
|
|
|
|
// Merge all the bitcode files we have seen, codegen the result and return
|
|
// the resulting ObjectFile.
|
|
template <class ELFT>
|
|
ObjectFile<ELFT> *SymbolTable<ELFT>::createCombinedLtoObject() {
|
|
LLVMContext Context;
|
|
Module Combined("ld-temp.o", Context);
|
|
Linker L(Combined);
|
|
for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles) {
|
|
std::unique_ptr<MemoryBuffer> Buffer =
|
|
MemoryBuffer::getMemBuffer(F->MB, false);
|
|
std::unique_ptr<Module> M =
|
|
fatal(getLazyBitcodeModule(std::move(Buffer), Context,
|
|
/*ShouldLazyLoadMetadata*/ true));
|
|
L.linkInModule(std::move(M));
|
|
}
|
|
std::unique_ptr<InputFile> F = codegen(Combined);
|
|
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(F.release()));
|
|
return &*ObjectFiles.back();
|
|
}
|
|
|
|
template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
|
|
if (BitcodeFiles.empty())
|
|
return;
|
|
ObjectFile<ELFT> *Obj = createCombinedLtoObject();
|
|
llvm::DenseSet<StringRef> DummyGroups;
|
|
Obj->parse(DummyGroups);
|
|
for (SymbolBody *Body : Obj->getSymbols()) {
|
|
Symbol *Sym = insert(Body);
|
|
if (!Sym->Body->isUndefined() && Body->isUndefined())
|
|
continue;
|
|
Sym->Body = Body;
|
|
}
|
|
}
|
|
|
|
// Add an undefined symbol.
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addUndefined(StringRef Name) {
|
|
auto *Sym = new (Alloc) Undefined(Name, false, STV_DEFAULT, false);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
// Add an undefined symbol. Unlike addUndefined, that symbol
|
|
// doesn't have to be resolved, thus "opt" (optional).
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addUndefinedOpt(StringRef Name) {
|
|
auto *Sym = new (Alloc) Undefined(Name, false, STV_HIDDEN, true);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addAbsolute(StringRef Name, Elf_Sym &ESym) {
|
|
// Pass nullptr because absolute symbols have no corresponding input sections.
|
|
auto *Sym = new (Alloc) DefinedRegular<ELFT>(Name, ESym, nullptr);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addSynthetic(StringRef Name,
|
|
OutputSectionBase<ELFT> &Sec,
|
|
uintX_t Val, uint8_t Visibility) {
|
|
auto *Sym = new (Alloc) DefinedSynthetic<ELFT>(Name, Val, Sec, Visibility);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
// Add Name as an "ignored" symbol. An ignored symbol is a regular
|
|
// linker-synthesized defined symbol, but it is not recorded to the output
|
|
// file's symbol table. Such symbols are useful for some linker-defined symbols.
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addIgnored(StringRef Name) {
|
|
return addAbsolute(Name, ElfSym<ELFT>::Ignored);
|
|
}
|
|
|
|
// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
|
|
// Used to implement --wrap.
|
|
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
|
|
if (Symtab.count(Name) == 0)
|
|
return;
|
|
StringSaver Saver(Alloc);
|
|
Symbol *Sym = addUndefined(Name)->getSymbol();
|
|
Symbol *Real = addUndefined(Saver.save("__real_" + Name))->getSymbol();
|
|
Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name))->getSymbol();
|
|
Real->Body = Sym->Body;
|
|
Sym->Body = Wrap->Body;
|
|
}
|
|
|
|
// Returns a file from which symbol B was created.
|
|
// If B does not belong to any file, returns a nullptr.
|
|
template <class ELFT> InputFile *SymbolTable<ELFT>::findFile(SymbolBody *B) {
|
|
for (const std::unique_ptr<ObjectFile<ELFT>> &F : ObjectFiles) {
|
|
ArrayRef<SymbolBody *> Syms = F->getSymbols();
|
|
if (std::find(Syms.begin(), Syms.end(), B) != Syms.end())
|
|
return F.get();
|
|
}
|
|
for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles) {
|
|
ArrayRef<SymbolBody *> Syms = F->getSymbols();
|
|
if (std::find(Syms.begin(), Syms.end(), B) != Syms.end())
|
|
return F.get();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns "(internal)", "foo.a(bar.o)" or "baz.o".
|
|
static std::string getFilename(InputFile *F) {
|
|
if (!F)
|
|
return "(internal)";
|
|
if (!F->ArchiveName.empty())
|
|
return (F->ArchiveName + "(" + F->getName() + ")").str();
|
|
return F->getName();
|
|
}
|
|
|
|
// Construct a string in the form of "Sym in File1 and File2".
|
|
// Used to construct an error message.
|
|
template <class ELFT>
|
|
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Old, SymbolBody *New) {
|
|
InputFile *F1 = findFile(Old);
|
|
InputFile *F2 = findFile(New);
|
|
StringRef Sym = Old->getName();
|
|
return demangle(Sym) + " in " + getFilename(F1) + " and " + getFilename(F2);
|
|
}
|
|
|
|
// This function resolves conflicts if there's an existing symbol with
|
|
// the same name. Decisions are made based on symbol type.
|
|
template <class ELFT> void SymbolTable<ELFT>::resolve(SymbolBody *New) {
|
|
Symbol *Sym = insert(New);
|
|
if (Sym->Body == New)
|
|
return;
|
|
|
|
SymbolBody *Existing = Sym->Body;
|
|
|
|
if (Lazy *L = dyn_cast<Lazy>(Existing)) {
|
|
if (auto *Undef = dyn_cast<Undefined>(New)) {
|
|
addMemberFile(Undef, L);
|
|
return;
|
|
}
|
|
// Found a definition for something also in an archive.
|
|
// Ignore the archive definition.
|
|
Sym->Body = New;
|
|
return;
|
|
}
|
|
|
|
if (New->IsTls != Existing->IsTls) {
|
|
error("TLS attribute mismatch for symbol: " + conflictMsg(Existing, New));
|
|
return;
|
|
}
|
|
|
|
// compare() returns -1, 0, or 1 if the lhs symbol is less preferable,
|
|
// equivalent (conflicting), or more preferable, respectively.
|
|
int Comp = Existing->compare<ELFT>(New);
|
|
if (Comp == 0) {
|
|
std::string S = "duplicate symbol: " + conflictMsg(Existing, New);
|
|
if (Config->AllowMultipleDefinition)
|
|
warning(S);
|
|
else
|
|
error(S);
|
|
return;
|
|
}
|
|
if (Comp < 0)
|
|
Sym->Body = New;
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one.
|
|
template <class ELFT> Symbol *SymbolTable<ELFT>::insert(SymbolBody *New) {
|
|
StringRef Name = New->getName();
|
|
Symbol *&Sym = Symtab[Name];
|
|
if (!Sym)
|
|
Sym = new (Alloc) Symbol{New};
|
|
New->setBackref(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
|
|
auto It = Symtab.find(Name);
|
|
if (It == Symtab.end())
|
|
return nullptr;
|
|
return It->second->Body;
|
|
}
|
|
|
|
template <class ELFT> void SymbolTable<ELFT>::addLazy(Lazy *L) {
|
|
Symbol *Sym = insert(L);
|
|
if (Sym->Body == L)
|
|
return;
|
|
if (auto *Undef = dyn_cast<Undefined>(Sym->Body)) {
|
|
Sym->Body = L;
|
|
addMemberFile(Undef, L);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addMemberFile(Undefined *Undef, Lazy *L) {
|
|
// Weak undefined symbols should not fetch members from archives.
|
|
// If we were to keep old symbol we would not know that an archive member was
|
|
// available if a strong undefined symbol shows up afterwards in the link.
|
|
// If a strong undefined symbol never shows up, this lazy symbol will
|
|
// get to the end of the link and must be treated as the weak undefined one.
|
|
// We set UsedInRegularObj in a similar way to what is done with shared
|
|
// symbols and copy information to reduce how many special cases are needed.
|
|
if (Undef->isWeak()) {
|
|
L->setUsedInRegularObj();
|
|
L->setWeak();
|
|
|
|
// FIXME: Do we need to copy more?
|
|
L->IsTls = Undef->IsTls;
|
|
return;
|
|
}
|
|
|
|
// Fetch a member file that has the definition for L.
|
|
// getMember returns nullptr if the member was already read from the library.
|
|
if (std::unique_ptr<InputFile> File = L->getMember())
|
|
addFile(std::move(File));
|
|
}
|
|
|
|
// This function takes care of the case in which shared libraries depend on
|
|
// the user program (not the other way, which is usual). Shared libraries
|
|
// may have undefined symbols, expecting that the user program provides
|
|
// the definitions for them. An example is BSD's __progname symbol.
|
|
// We need to put such symbols to the main program's .dynsym so that
|
|
// shared libraries can find them.
|
|
// Except this, we ignore undefined symbols in DSOs.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
|
|
for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
|
|
for (StringRef U : File->getUndefinedSymbols())
|
|
if (SymbolBody *Sym = find(U))
|
|
if (Sym->isDefined())
|
|
Sym->MustBeInDynSym = true;
|
|
}
|
|
|
|
template class elf::SymbolTable<ELF32LE>;
|
|
template class elf::SymbolTable<ELF32BE>;
|
|
template class elf::SymbolTable<ELF64LE>;
|
|
template class elf::SymbolTable<ELF64BE>;
|