llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp

483 lines
17 KiB
C++

//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "PPCTargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "ppctti"
static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
// This is currently only used for the data prefetch pass which is only enabled
// for BG/Q by default.
static cl::opt<unsigned>
CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
cl::desc("The loop prefetch cache line size"));
//===----------------------------------------------------------------------===//
//
// PPC cost model.
//
//===----------------------------------------------------------------------===//
TargetTransformInfo::PopcntSupportKind
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
return TTI::PSK_Software;
}
int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
if (DisablePPCConstHoist)
return BaseT::getIntImmCost(Imm, Ty);
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
if (Imm == 0)
return TTI::TCC_Free;
if (Imm.getBitWidth() <= 64) {
if (isInt<16>(Imm.getSExtValue()))
return TTI::TCC_Basic;
if (isInt<32>(Imm.getSExtValue())) {
// A constant that can be materialized using lis.
if ((Imm.getZExtValue() & 0xFFFF) == 0)
return TTI::TCC_Basic;
return 2 * TTI::TCC_Basic;
}
}
return 4 * TTI::TCC_Basic;
}
int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) {
if (DisablePPCConstHoist)
return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
switch (IID) {
default:
return TTI::TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
}
return PPCTTIImpl::getIntImmCost(Imm, Ty);
}
int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) {
if (DisablePPCConstHoist)
return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
unsigned ImmIdx = ~0U;
bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
ZeroFree = false;
switch (Opcode) {
default:
return TTI::TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr. This prevents the
// creation of new constants for every base constant that gets constant
// folded with the offset.
if (Idx == 0)
return 2 * TTI::TCC_Basic;
return TTI::TCC_Free;
case Instruction::And:
RunFree = true; // (for the rotate-and-mask instructions)
LLVM_FALLTHROUGH;
case Instruction::Add:
case Instruction::Or:
case Instruction::Xor:
ShiftedFree = true;
LLVM_FALLTHROUGH;
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
ImmIdx = 1;
break;
case Instruction::ICmp:
UnsignedFree = true;
ImmIdx = 1;
// Zero comparisons can use record-form instructions.
LLVM_FALLTHROUGH;
case Instruction::Select:
ZeroFree = true;
break;
case Instruction::PHI:
case Instruction::Call:
case Instruction::Ret:
case Instruction::Load:
case Instruction::Store:
break;
}
if (ZeroFree && Imm == 0)
return TTI::TCC_Free;
if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
if (isInt<16>(Imm.getSExtValue()))
return TTI::TCC_Free;
if (RunFree) {
if (Imm.getBitWidth() <= 32 &&
(isShiftedMask_32(Imm.getZExtValue()) ||
isShiftedMask_32(~Imm.getZExtValue())))
return TTI::TCC_Free;
if (ST->isPPC64() &&
(isShiftedMask_64(Imm.getZExtValue()) ||
isShiftedMask_64(~Imm.getZExtValue())))
return TTI::TCC_Free;
}
if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
return TTI::TCC_Free;
if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
return TTI::TCC_Free;
}
return PPCTTIImpl::getIntImmCost(Imm, Ty);
}
unsigned PPCTTIImpl::getUserCost(const User *U,
ArrayRef<const Value *> Operands) {
if (U->getType()->isVectorTy()) {
// Instructions that need to be split should cost more.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
return LT.first * BaseT::getUserCost(U, Operands);
}
return BaseT::getUserCost(U, Operands);
}
void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
if (ST->getDarwinDirective() == PPC::DIR_A2) {
// The A2 is in-order with a deep pipeline, and concatenation unrolling
// helps expose latency-hiding opportunities to the instruction scheduler.
UP.Partial = UP.Runtime = true;
// We unroll a lot on the A2 (hundreds of instructions), and the benefits
// often outweigh the cost of a division to compute the trip count.
UP.AllowExpensiveTripCount = true;
}
BaseT::getUnrollingPreferences(L, SE, UP);
}
bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
// On the A2, always unroll aggressively. For QPX unaligned loads, we depend
// on combining the loads generated for consecutive accesses, and failure to
// do so is particularly expensive. This makes it much more likely (compared
// to only using concatenation unrolling).
if (ST->getDarwinDirective() == PPC::DIR_A2)
return true;
return LoopHasReductions;
}
const PPCTTIImpl::TTI::MemCmpExpansionOptions *
PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const {
static const auto Options = []() {
TTI::MemCmpExpansionOptions Options;
Options.LoadSizes.push_back(8);
Options.LoadSizes.push_back(4);
Options.LoadSizes.push_back(2);
Options.LoadSizes.push_back(1);
return Options;
}();
return &Options;
}
bool PPCTTIImpl::enableInterleavedAccessVectorization() {
return true;
}
unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
if (Vector && !ST->hasAltivec() && !ST->hasQPX())
return 0;
return ST->hasVSX() ? 64 : 32;
}
unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
if (Vector) {
if (ST->hasQPX()) return 256;
if (ST->hasAltivec()) return 128;
return 0;
}
if (ST->isPPC64())
return 64;
return 32;
}
unsigned PPCTTIImpl::getCacheLineSize() {
// Check first if the user specified a custom line size.
if (CacheLineSize.getNumOccurrences() > 0)
return CacheLineSize;
// On P7, P8 or P9 we have a cache line size of 128.
unsigned Directive = ST->getDarwinDirective();
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
Directive == PPC::DIR_PWR9)
return 128;
// On other processors return a default of 64 bytes.
return 64;
}
unsigned PPCTTIImpl::getPrefetchDistance() {
// This seems like a reasonable default for the BG/Q (this pass is enabled, by
// default, only on the BG/Q).
return 300;
}
unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
unsigned Directive = ST->getDarwinDirective();
// The 440 has no SIMD support, but floating-point instructions
// have a 5-cycle latency, so unroll by 5x for latency hiding.
if (Directive == PPC::DIR_440)
return 5;
// The A2 has no SIMD support, but floating-point instructions
// have a 6-cycle latency, so unroll by 6x for latency hiding.
if (Directive == PPC::DIR_A2)
return 6;
// FIXME: For lack of any better information, do no harm...
if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
return 1;
// For P7 and P8, floating-point instructions have a 6-cycle latency and
// there are two execution units, so unroll by 12x for latency hiding.
// FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
Directive == PPC::DIR_PWR9)
return 12;
// For most things, modern systems have two execution units (and
// out-of-order execution).
return 2;
}
int PPCTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
// Fallback to the default implementation.
return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
Opd1PropInfo, Opd2PropInfo);
}
int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) {
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
// PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
// (at least in the sense that there need only be one non-loop-invariant
// instruction). We need one such shuffle instruction for each actual
// register (this is not true for arbitrary shuffles, but is true for the
// structured types of shuffles covered by TTI::ShuffleKind).
return LT.first;
}
int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
const Instruction *I) {
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
return BaseT::getCastInstrCost(Opcode, Dst, Src);
}
int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
const Instruction *I) {
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}
int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
assert(Val->isVectorTy() && "This must be a vector type");
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
// Double-precision scalars are already located in index #0.
if (Index == 0)
return 0;
return BaseT::getVectorInstrCost(Opcode, Val, Index);
} else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
// Floating point scalars are already located in index #0.
if (Index == 0)
return 0;
return BaseT::getVectorInstrCost(Opcode, Val, Index);
}
// Estimated cost of a load-hit-store delay. This was obtained
// experimentally as a minimum needed to prevent unprofitable
// vectorization for the paq8p benchmark. It may need to be
// raised further if other unprofitable cases remain.
unsigned LHSPenalty = 2;
if (ISD == ISD::INSERT_VECTOR_ELT)
LHSPenalty += 7;
// Vector element insert/extract with Altivec is very expensive,
// because they require store and reload with the attendant
// processor stall for load-hit-store. Until VSX is available,
// these need to be estimated as very costly.
if (ISD == ISD::EXTRACT_VECTOR_ELT ||
ISD == ISD::INSERT_VECTOR_ELT)
return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
return BaseT::getVectorInstrCost(Opcode, Val, Index);
}
int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace, const Instruction *I) {
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
"Invalid Opcode");
int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
bool IsAltivecType = ST->hasAltivec() &&
(LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
bool IsVSXType = ST->hasVSX() &&
(LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
bool IsQPXType = ST->hasQPX() &&
(LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
// VSX has 32b/64b load instructions. Legalization can handle loading of
// 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
// PPCTargetLowering can't compute the cost appropriately. So here we
// explicitly check this case.
unsigned MemBytes = Src->getPrimitiveSizeInBits();
if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
(MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
return 1;
// Aligned loads and stores are easy.
unsigned SrcBytes = LT.second.getStoreSize();
if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
return Cost;
// If we can use the permutation-based load sequence, then this is also
// relatively cheap (not counting loop-invariant instructions): one load plus
// one permute (the last load in a series has extra cost, but we're
// neglecting that here). Note that on the P7, we could do unaligned loads
// for Altivec types using the VSX instructions, but that's more expensive
// than using the permutation-based load sequence. On the P8, that's no
// longer true.
if (Opcode == Instruction::Load &&
((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
Alignment >= LT.second.getScalarType().getStoreSize())
return Cost + LT.first; // Add the cost of the permutations.
// For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
// P7, unaligned vector loads are more expensive than the permutation-based
// load sequence, so that might be used instead, but regardless, the net cost
// is about the same (not counting loop-invariant instructions).
if (IsVSXType || (ST->hasVSX() && IsAltivecType))
return Cost;
// Newer PPC supports unaligned memory access.
if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
return Cost;
// PPC in general does not support unaligned loads and stores. They'll need
// to be decomposed based on the alignment factor.
// Add the cost of each scalar load or store.
Cost += LT.first*(SrcBytes/Alignment-1);
// For a vector type, there is also scalarization overhead (only for
// stores, loads are expanded using the vector-load + permutation sequence,
// which is much less expensive).
if (Src->isVectorTy() && Opcode == Instruction::Store)
for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
return Cost;
}
int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
unsigned Factor,
ArrayRef<unsigned> Indices,
unsigned Alignment,
unsigned AddressSpace) {
assert(isa<VectorType>(VecTy) &&
"Expect a vector type for interleaved memory op");
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
// Firstly, the cost of load/store operation.
int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
// PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
// (at least in the sense that there need only be one non-loop-invariant
// instruction). For each result vector, we need one shuffle per incoming
// vector (except that the first shuffle can take two incoming vectors
// because it does not need to take itself).
Cost += Factor*(LT.first-1);
return Cost;
}