llvm-project/llvm/lib/Target/AVR/MCTargetDesc/AVRAsmBackend.cpp

474 lines
14 KiB
C++

//===-- AVRAsmBackend.cpp - AVR Asm Backend ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AVRAsmBackend class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/AVRAsmBackend.h"
#include "MCTargetDesc/AVRFixupKinds.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
// FIXME: we should be doing checks to make sure asm operands
// are not out of bounds.
namespace adjust {
using namespace llvm;
void signed_width(unsigned Width, uint64_t Value, std::string Description,
const MCFixup &Fixup, MCContext *Ctx = nullptr) {
if (!isIntN(Width, Value)) {
std::string Diagnostic = "out of range " + Description;
int64_t Min = minIntN(Width);
int64_t Max = maxIntN(Width);
Diagnostic += " (expected an integer in the range " + std::to_string(Min) +
" to " + std::to_string(Max) + ")";
if (Ctx) {
Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
} else {
llvm_unreachable(Diagnostic.c_str());
}
}
}
void unsigned_width(unsigned Width, uint64_t Value, std::string Description,
const MCFixup &Fixup, MCContext *Ctx = nullptr) {
if (!isUIntN(Width, Value)) {
std::string Diagnostic = "out of range " + Description;
int64_t Max = maxUIntN(Width);
Diagnostic += " (expected an integer in the range 0 to " +
std::to_string(Max) + ")";
if (Ctx) {
Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
} else {
llvm_unreachable(Diagnostic.c_str());
}
}
}
/// Adjusts the value of a branch target before fixup application.
void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
// We have one extra bit of precision because the value is rightshifted by
// one.
unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
// Rightshifts the value by one.
AVR::fixups::adjustBranchTarget(Value);
}
/// Adjusts the value of a relative branch target before fixup application.
void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
// We have one extra bit of precision because the value is rightshifted by
// one.
signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
Value -= 2;
// Rightshifts the value by one.
AVR::fixups::adjustBranchTarget(Value);
}
/// 22-bit absolute fixup.
///
/// Resolves to:
/// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk
///
/// Offset of 0 (so the result is left shifted by 3 bits before application).
void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
adjustBranch(Size, Fixup, Value, Ctx);
auto top = Value & (0xf00000 << 6); // the top four bits
auto middle = Value & (0x1ffff << 5); // the middle 13 bits
auto bottom = Value & 0x1f; // end bottom 5 bits
Value = (top << 6) | (middle << 3) | (bottom << 0);
}
/// 7-bit PC-relative fixup.
///
/// Resolves to:
/// 0000 00kk kkkk k000
/// Offset of 0 (so the result is left shifted by 3 bits before application).
void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
adjustRelativeBranch(Size, Fixup, Value, Ctx);
// Because the value may be negative, we must mask out the sign bits
Value &= 0x7f;
}
/// 12-bit PC-relative fixup.
/// Yes, the fixup is 12 bits even though the name says otherwise.
///
/// Resolves to:
/// 0000 kkkk kkkk kkkk
/// Offset of 0 (so the result isn't left-shifted before application).
void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
adjustRelativeBranch(Size, Fixup, Value, Ctx);
// Because the value may be negative, we must mask out the sign bits
Value &= 0xfff;
}
/// 6-bit fixup for the immediate operand of the ADIW family of
/// instructions.
///
/// Resolves to:
/// 0000 0000 kk00 kkkk
void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
Value = ((Value & 0x30) << 2) | (Value & 0x0f);
}
/// 5-bit port number fixup on the SBIC family of instructions.
///
/// Resolves to:
/// 0000 0000 AAAA A000
void fixup_port5(const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
unsigned_width(5, Value, std::string("port number"), Fixup, Ctx);
Value &= 0x1f;
Value <<= 3;
}
/// 6-bit port number fixup on the `IN` family of instructions.
///
/// Resolves to:
/// 1011 0AAd dddd AAAA
void fixup_port6(const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
unsigned_width(6, Value, std::string("port number"), Fixup, Ctx);
Value = ((Value & 0x30) << 5) | (Value & 0x0f);
}
/// Adjusts a program memory address.
/// This is a simple right-shift.
void pm(uint64_t &Value) {
Value >>= 1;
}
/// Fixups relating to the LDI instruction.
namespace ldi {
/// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction.
///
/// Resolves to:
/// 0000 KKKK 0000 KKKK
/// Offset of 0 (so the result isn't left-shifted before application).
void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
uint64_t upper = Value & 0xf0;
uint64_t lower = Value & 0x0f;
Value = (upper << 4) | lower;
}
void neg(uint64_t &Value) { Value *= -1; }
void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value &= 0xff;
ldi::fixup(Size, Fixup, Value, Ctx);
}
void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value = (Value & 0xff00) >> 8;
ldi::fixup(Size, Fixup, Value, Ctx);
}
void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value = (Value & 0xff0000) >> 16;
ldi::fixup(Size, Fixup, Value, Ctx);
}
void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value = (Value & 0xff000000) >> 24;
ldi::fixup(Size, Fixup, Value, Ctx);
}
} // end of ldi namespace
} // end of adjust namespace
namespace llvm {
// Prepare value for the target space for it
void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup,
const MCValue &Target,
uint64_t &Value,
MCContext *Ctx) const {
// The size of the fixup in bits.
uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize;
unsigned Kind = Fixup.getKind();
// Parsed LLVM-generated temporary labels are already
// adjusted for instruction size, but normal labels aren't.
//
// To handle both cases, we simply un-adjust the temporary label
// case so it acts like all other labels.
if (const MCSymbolRefExpr *A = Target.getSymA()) {
if (A->getSymbol().isTemporary())
Value += 2;
}
switch (Kind) {
default:
llvm_unreachable("unhandled fixup");
case AVR::fixup_7_pcrel:
adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_13_pcrel:
adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_call:
adjust::fixup_call(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_ldi:
adjust::ldi::fixup(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_lo8_ldi:
case AVR::fixup_lo8_ldi_pm:
if (Kind == AVR::fixup_lo8_ldi_pm) adjust::pm(Value);
adjust::ldi::lo8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hi8_ldi:
case AVR::fixup_hi8_ldi_pm:
if (Kind == AVR::fixup_hi8_ldi_pm) adjust::pm(Value);
adjust::ldi::hi8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hh8_ldi:
case AVR::fixup_hh8_ldi_pm:
if (Kind == AVR::fixup_hh8_ldi_pm) adjust::pm(Value);
adjust::ldi::hh8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_ms8_ldi:
adjust::ldi::ms8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_lo8_ldi_neg:
case AVR::fixup_lo8_ldi_pm_neg:
if (Kind == AVR::fixup_lo8_ldi_pm_neg) adjust::pm(Value);
adjust::ldi::neg(Value);
adjust::ldi::lo8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hi8_ldi_neg:
case AVR::fixup_hi8_ldi_pm_neg:
if (Kind == AVR::fixup_hi8_ldi_pm_neg) adjust::pm(Value);
adjust::ldi::neg(Value);
adjust::ldi::hi8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hh8_ldi_neg:
case AVR::fixup_hh8_ldi_pm_neg:
if (Kind == AVR::fixup_hh8_ldi_pm_neg) adjust::pm(Value);
adjust::ldi::neg(Value);
adjust::ldi::hh8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_ms8_ldi_neg:
adjust::ldi::neg(Value);
adjust::ldi::ms8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_16:
adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
Value &= 0xffff;
break;
case AVR::fixup_6_adiw:
adjust::fixup_6_adiw(Fixup, Value, Ctx);
break;
case AVR::fixup_port5:
adjust::fixup_port5(Fixup, Value, Ctx);
break;
case AVR::fixup_port6:
adjust::fixup_port6(Fixup, Value, Ctx);
break;
// Fixups which do not require adjustments.
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
break;
case FK_GPRel_4:
llvm_unreachable("don't know how to adjust this fixup");
break;
}
}
std::unique_ptr<MCObjectWriter>
AVRAsmBackend::createObjectWriter(raw_pwrite_stream &OS) const {
return createAVRELFObjectWriter(OS,
MCELFObjectTargetWriter::getOSABI(OSType));
}
void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target, MutableArrayRef<char> Data,
uint64_t Value, bool IsPCRel) const {
adjustFixupValue(Fixup, Target, Value, &Asm.getContext());
if (Value == 0)
return; // Doesn't change encoding.
MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
// The number of bits in the fixup mask
auto NumBits = Info.TargetSize + Info.TargetOffset;
auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned Offset = Fixup.getOffset();
assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
for (unsigned i = 0; i < NumBytes; ++i) {
uint8_t mask = (((Value >> (i * 8)) & 0xff));
Data[Offset + i] |= mask;
}
}
MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
// NOTE: Many AVR fixups work on sets of non-contignous bits. We work around
// this by saying that the fixup is the size of the entire instruction.
const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = {
// This table *must* be in same the order of fixup_* kinds in
// AVRFixupKinds.h.
//
// name offset bits flags
{"fixup_32", 0, 32, 0},
{"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_16", 0, 16, 0},
{"fixup_16_pm", 0, 16, 0},
{"fixup_ldi", 0, 8, 0},
{"fixup_lo8_ldi", 0, 8, 0},
{"fixup_hi8_ldi", 0, 8, 0},
{"fixup_hh8_ldi", 0, 8, 0},
{"fixup_ms8_ldi", 0, 8, 0},
{"fixup_lo8_ldi_neg", 0, 8, 0},
{"fixup_hi8_ldi_neg", 0, 8, 0},
{"fixup_hh8_ldi_neg", 0, 8, 0},
{"fixup_ms8_ldi_neg", 0, 8, 0},
{"fixup_lo8_ldi_pm", 0, 8, 0},
{"fixup_hi8_ldi_pm", 0, 8, 0},
{"fixup_hh8_ldi_pm", 0, 8, 0},
{"fixup_lo8_ldi_pm_neg", 0, 8, 0},
{"fixup_hi8_ldi_pm_neg", 0, 8, 0},
{"fixup_hh8_ldi_pm_neg", 0, 8, 0},
{"fixup_call", 0, 22, 0},
{"fixup_6", 0, 16, 0}, // non-contiguous
{"fixup_6_adiw", 0, 6, 0},
{"fixup_lo8_ldi_gs", 0, 8, 0},
{"fixup_hi8_ldi_gs", 0, 8, 0},
{"fixup_8", 0, 8, 0},
{"fixup_8_lo8", 0, 8, 0},
{"fixup_8_hi8", 0, 8, 0},
{"fixup_8_hlo8", 0, 8, 0},
{"fixup_sym_diff", 0, 32, 0},
{"fixup_16_ldst", 0, 16, 0},
{"fixup_lds_sts_16", 0, 16, 0},
{"fixup_port6", 0, 16, 0}, // non-contiguous
{"fixup_port5", 3, 5, 0},
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
bool AVRAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
// If the count is not 2-byte aligned, we must be writing data into the text
// section (otherwise we have unaligned instructions, and thus have far
// bigger problems), so just write zeros instead.
assert((Count % 2) == 0 && "NOP instructions must be 2 bytes");
OW->WriteZeros(Count);
return true;
}
bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
const MCFixup &Fixup,
const MCValue &Target) {
switch ((unsigned) Fixup.getKind()) {
default: return false;
// Fixups which should always be recorded as relocations.
case AVR::fixup_7_pcrel:
case AVR::fixup_13_pcrel:
case AVR::fixup_call:
return true;
}
}
MCAsmBackend *createAVRAsmBackend(const Target &T, const MCRegisterInfo &MRI,
const Triple &TT, StringRef CPU,
const llvm::MCTargetOptions &TO) {
return new AVRAsmBackend(TT.getOS());
}
} // end of namespace llvm