forked from OSchip/llvm-project
3944 lines
140 KiB
C++
3944 lines
140 KiB
C++
//===- Lexer.cpp - C Language Family Lexer --------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Lexer and Token interfaces.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "UnicodeCharSets.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TokenKinds.h"
|
|
#include "clang/Lex/LexDiagnostic.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Lex/MultipleIncludeOpt.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/PreprocessorOptions.h"
|
|
#include "clang/Lex/Token.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/TokenKinds.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/NativeFormatting.h"
|
|
#include "llvm/Support/UnicodeCharRanges.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Token Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
|
|
bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
|
|
if (isAnnotation())
|
|
return false;
|
|
if (IdentifierInfo *II = getIdentifierInfo())
|
|
return II->getObjCKeywordID() == objcKey;
|
|
return false;
|
|
}
|
|
|
|
/// getObjCKeywordID - Return the ObjC keyword kind.
|
|
tok::ObjCKeywordKind Token::getObjCKeywordID() const {
|
|
if (isAnnotation())
|
|
return tok::objc_not_keyword;
|
|
IdentifierInfo *specId = getIdentifierInfo();
|
|
return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lexer Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Lexer::anchor() {}
|
|
|
|
void Lexer::InitLexer(const char *BufStart, const char *BufPtr,
|
|
const char *BufEnd) {
|
|
BufferStart = BufStart;
|
|
BufferPtr = BufPtr;
|
|
BufferEnd = BufEnd;
|
|
|
|
assert(BufEnd[0] == 0 &&
|
|
"We assume that the input buffer has a null character at the end"
|
|
" to simplify lexing!");
|
|
|
|
// Check whether we have a BOM in the beginning of the buffer. If yes - act
|
|
// accordingly. Right now we support only UTF-8 with and without BOM, so, just
|
|
// skip the UTF-8 BOM if it's present.
|
|
if (BufferStart == BufferPtr) {
|
|
// Determine the size of the BOM.
|
|
StringRef Buf(BufferStart, BufferEnd - BufferStart);
|
|
size_t BOMLength = llvm::StringSwitch<size_t>(Buf)
|
|
.StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM
|
|
.Default(0);
|
|
|
|
// Skip the BOM.
|
|
BufferPtr += BOMLength;
|
|
}
|
|
|
|
Is_PragmaLexer = false;
|
|
CurrentConflictMarkerState = CMK_None;
|
|
|
|
// Start of the file is a start of line.
|
|
IsAtStartOfLine = true;
|
|
IsAtPhysicalStartOfLine = true;
|
|
|
|
HasLeadingSpace = false;
|
|
HasLeadingEmptyMacro = false;
|
|
|
|
// We are not after parsing a #.
|
|
ParsingPreprocessorDirective = false;
|
|
|
|
// We are not after parsing #include.
|
|
ParsingFilename = false;
|
|
|
|
// We are not in raw mode. Raw mode disables diagnostics and interpretation
|
|
// of tokens (e.g. identifiers, thus disabling macro expansion). It is used
|
|
// to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
|
|
// or otherwise skipping over tokens.
|
|
LexingRawMode = false;
|
|
|
|
// Default to not keeping comments.
|
|
ExtendedTokenMode = 0;
|
|
}
|
|
|
|
/// Lexer constructor - Create a new lexer object for the specified buffer
|
|
/// with the specified preprocessor managing the lexing process. This lexer
|
|
/// assumes that the associated file buffer and Preprocessor objects will
|
|
/// outlive it, so it doesn't take ownership of either of them.
|
|
Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *InputFile, Preprocessor &PP)
|
|
: PreprocessorLexer(&PP, FID),
|
|
FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)),
|
|
LangOpts(PP.getLangOpts()) {
|
|
InitLexer(InputFile->getBufferStart(), InputFile->getBufferStart(),
|
|
InputFile->getBufferEnd());
|
|
|
|
resetExtendedTokenMode();
|
|
}
|
|
|
|
/// Lexer constructor - Create a new raw lexer object. This object is only
|
|
/// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
|
|
/// range will outlive it, so it doesn't take ownership of it.
|
|
Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts,
|
|
const char *BufStart, const char *BufPtr, const char *BufEnd)
|
|
: FileLoc(fileloc), LangOpts(langOpts) {
|
|
InitLexer(BufStart, BufPtr, BufEnd);
|
|
|
|
// We *are* in raw mode.
|
|
LexingRawMode = true;
|
|
}
|
|
|
|
/// Lexer constructor - Create a new raw lexer object. This object is only
|
|
/// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
|
|
/// range will outlive it, so it doesn't take ownership of it.
|
|
Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *FromFile,
|
|
const SourceManager &SM, const LangOptions &langOpts)
|
|
: Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile->getBufferStart(),
|
|
FromFile->getBufferStart(), FromFile->getBufferEnd()) {}
|
|
|
|
void Lexer::resetExtendedTokenMode() {
|
|
assert(PP && "Cannot reset token mode without a preprocessor");
|
|
if (LangOpts.TraditionalCPP)
|
|
SetKeepWhitespaceMode(true);
|
|
else
|
|
SetCommentRetentionState(PP->getCommentRetentionState());
|
|
}
|
|
|
|
/// Create_PragmaLexer: Lexer constructor - Create a new lexer object for
|
|
/// _Pragma expansion. This has a variety of magic semantics that this method
|
|
/// sets up. It returns a new'd Lexer that must be delete'd when done.
|
|
///
|
|
/// On entrance to this routine, TokStartLoc is a macro location which has a
|
|
/// spelling loc that indicates the bytes to be lexed for the token and an
|
|
/// expansion location that indicates where all lexed tokens should be
|
|
/// "expanded from".
|
|
///
|
|
/// TODO: It would really be nice to make _Pragma just be a wrapper around a
|
|
/// normal lexer that remaps tokens as they fly by. This would require making
|
|
/// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer
|
|
/// interface that could handle this stuff. This would pull GetMappedTokenLoc
|
|
/// out of the critical path of the lexer!
|
|
///
|
|
Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc,
|
|
SourceLocation ExpansionLocStart,
|
|
SourceLocation ExpansionLocEnd,
|
|
unsigned TokLen, Preprocessor &PP) {
|
|
SourceManager &SM = PP.getSourceManager();
|
|
|
|
// Create the lexer as if we were going to lex the file normally.
|
|
FileID SpellingFID = SM.getFileID(SpellingLoc);
|
|
const llvm::MemoryBuffer *InputFile = SM.getBuffer(SpellingFID);
|
|
Lexer *L = new Lexer(SpellingFID, InputFile, PP);
|
|
|
|
// Now that the lexer is created, change the start/end locations so that we
|
|
// just lex the subsection of the file that we want. This is lexing from a
|
|
// scratch buffer.
|
|
const char *StrData = SM.getCharacterData(SpellingLoc);
|
|
|
|
L->BufferPtr = StrData;
|
|
L->BufferEnd = StrData+TokLen;
|
|
assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!");
|
|
|
|
// Set the SourceLocation with the remapping information. This ensures that
|
|
// GetMappedTokenLoc will remap the tokens as they are lexed.
|
|
L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID),
|
|
ExpansionLocStart,
|
|
ExpansionLocEnd, TokLen);
|
|
|
|
// Ensure that the lexer thinks it is inside a directive, so that end \n will
|
|
// return an EOD token.
|
|
L->ParsingPreprocessorDirective = true;
|
|
|
|
// This lexer really is for _Pragma.
|
|
L->Is_PragmaLexer = true;
|
|
return L;
|
|
}
|
|
|
|
template <typename T> static void StringifyImpl(T &Str, char Quote) {
|
|
typename T::size_type i = 0, e = Str.size();
|
|
while (i < e) {
|
|
if (Str[i] == '\\' || Str[i] == Quote) {
|
|
Str.insert(Str.begin() + i, '\\');
|
|
i += 2;
|
|
++e;
|
|
} else if (Str[i] == '\n' || Str[i] == '\r') {
|
|
// Replace '\r\n' and '\n\r' to '\\' followed by 'n'.
|
|
if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') &&
|
|
Str[i] != Str[i + 1]) {
|
|
Str[i] = '\\';
|
|
Str[i + 1] = 'n';
|
|
} else {
|
|
// Replace '\n' and '\r' to '\\' followed by 'n'.
|
|
Str[i] = '\\';
|
|
Str.insert(Str.begin() + i + 1, 'n');
|
|
++e;
|
|
}
|
|
i += 2;
|
|
} else
|
|
++i;
|
|
}
|
|
}
|
|
|
|
std::string Lexer::Stringify(StringRef Str, bool Charify) {
|
|
std::string Result = Str;
|
|
char Quote = Charify ? '\'' : '"';
|
|
StringifyImpl(Result, Quote);
|
|
return Result;
|
|
}
|
|
|
|
void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Token Spelling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Slow case of getSpelling. Extract the characters comprising the
|
|
/// spelling of this token from the provided input buffer.
|
|
static size_t getSpellingSlow(const Token &Tok, const char *BufPtr,
|
|
const LangOptions &LangOpts, char *Spelling) {
|
|
assert(Tok.needsCleaning() && "getSpellingSlow called on simple token");
|
|
|
|
size_t Length = 0;
|
|
const char *BufEnd = BufPtr + Tok.getLength();
|
|
|
|
if (tok::isStringLiteral(Tok.getKind())) {
|
|
// Munch the encoding-prefix and opening double-quote.
|
|
while (BufPtr < BufEnd) {
|
|
unsigned Size;
|
|
Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
|
|
BufPtr += Size;
|
|
|
|
if (Spelling[Length - 1] == '"')
|
|
break;
|
|
}
|
|
|
|
// Raw string literals need special handling; trigraph expansion and line
|
|
// splicing do not occur within their d-char-sequence nor within their
|
|
// r-char-sequence.
|
|
if (Length >= 2 &&
|
|
Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') {
|
|
// Search backwards from the end of the token to find the matching closing
|
|
// quote.
|
|
const char *RawEnd = BufEnd;
|
|
do --RawEnd; while (*RawEnd != '"');
|
|
size_t RawLength = RawEnd - BufPtr + 1;
|
|
|
|
// Everything between the quotes is included verbatim in the spelling.
|
|
memcpy(Spelling + Length, BufPtr, RawLength);
|
|
Length += RawLength;
|
|
BufPtr += RawLength;
|
|
|
|
// The rest of the token is lexed normally.
|
|
}
|
|
}
|
|
|
|
while (BufPtr < BufEnd) {
|
|
unsigned Size;
|
|
Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
|
|
BufPtr += Size;
|
|
}
|
|
|
|
assert(Length < Tok.getLength() &&
|
|
"NeedsCleaning flag set on token that didn't need cleaning!");
|
|
return Length;
|
|
}
|
|
|
|
/// getSpelling() - Return the 'spelling' of this token. The spelling of a
|
|
/// token are the characters used to represent the token in the source file
|
|
/// after trigraph expansion and escaped-newline folding. In particular, this
|
|
/// wants to get the true, uncanonicalized, spelling of things like digraphs
|
|
/// UCNs, etc.
|
|
StringRef Lexer::getSpelling(SourceLocation loc,
|
|
SmallVectorImpl<char> &buffer,
|
|
const SourceManager &SM,
|
|
const LangOptions &options,
|
|
bool *invalid) {
|
|
// Break down the source location.
|
|
std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
|
|
|
|
// Try to the load the file buffer.
|
|
bool invalidTemp = false;
|
|
StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
|
|
if (invalidTemp) {
|
|
if (invalid) *invalid = true;
|
|
return {};
|
|
}
|
|
|
|
const char *tokenBegin = file.data() + locInfo.second;
|
|
|
|
// Lex from the start of the given location.
|
|
Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options,
|
|
file.begin(), tokenBegin, file.end());
|
|
Token token;
|
|
lexer.LexFromRawLexer(token);
|
|
|
|
unsigned length = token.getLength();
|
|
|
|
// Common case: no need for cleaning.
|
|
if (!token.needsCleaning())
|
|
return StringRef(tokenBegin, length);
|
|
|
|
// Hard case, we need to relex the characters into the string.
|
|
buffer.resize(length);
|
|
buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data()));
|
|
return StringRef(buffer.data(), buffer.size());
|
|
}
|
|
|
|
/// getSpelling() - Return the 'spelling' of this token. The spelling of a
|
|
/// token are the characters used to represent the token in the source file
|
|
/// after trigraph expansion and escaped-newline folding. In particular, this
|
|
/// wants to get the true, uncanonicalized, spelling of things like digraphs
|
|
/// UCNs, etc.
|
|
std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr,
|
|
const LangOptions &LangOpts, bool *Invalid) {
|
|
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
|
|
|
|
bool CharDataInvalid = false;
|
|
const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(),
|
|
&CharDataInvalid);
|
|
if (Invalid)
|
|
*Invalid = CharDataInvalid;
|
|
if (CharDataInvalid)
|
|
return {};
|
|
|
|
// If this token contains nothing interesting, return it directly.
|
|
if (!Tok.needsCleaning())
|
|
return std::string(TokStart, TokStart + Tok.getLength());
|
|
|
|
std::string Result;
|
|
Result.resize(Tok.getLength());
|
|
Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin()));
|
|
return Result;
|
|
}
|
|
|
|
/// getSpelling - This method is used to get the spelling of a token into a
|
|
/// preallocated buffer, instead of as an std::string. The caller is required
|
|
/// to allocate enough space for the token, which is guaranteed to be at least
|
|
/// Tok.getLength() bytes long. The actual length of the token is returned.
|
|
///
|
|
/// Note that this method may do two possible things: it may either fill in
|
|
/// the buffer specified with characters, or it may *change the input pointer*
|
|
/// to point to a constant buffer with the data already in it (avoiding a
|
|
/// copy). The caller is not allowed to modify the returned buffer pointer
|
|
/// if an internal buffer is returned.
|
|
unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer,
|
|
const SourceManager &SourceMgr,
|
|
const LangOptions &LangOpts, bool *Invalid) {
|
|
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
|
|
|
|
const char *TokStart = nullptr;
|
|
// NOTE: this has to be checked *before* testing for an IdentifierInfo.
|
|
if (Tok.is(tok::raw_identifier))
|
|
TokStart = Tok.getRawIdentifier().data();
|
|
else if (!Tok.hasUCN()) {
|
|
if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
|
|
// Just return the string from the identifier table, which is very quick.
|
|
Buffer = II->getNameStart();
|
|
return II->getLength();
|
|
}
|
|
}
|
|
|
|
// NOTE: this can be checked even after testing for an IdentifierInfo.
|
|
if (Tok.isLiteral())
|
|
TokStart = Tok.getLiteralData();
|
|
|
|
if (!TokStart) {
|
|
// Compute the start of the token in the input lexer buffer.
|
|
bool CharDataInvalid = false;
|
|
TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid);
|
|
if (Invalid)
|
|
*Invalid = CharDataInvalid;
|
|
if (CharDataInvalid) {
|
|
Buffer = "";
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// If this token contains nothing interesting, return it directly.
|
|
if (!Tok.needsCleaning()) {
|
|
Buffer = TokStart;
|
|
return Tok.getLength();
|
|
}
|
|
|
|
// Otherwise, hard case, relex the characters into the string.
|
|
return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer));
|
|
}
|
|
|
|
/// MeasureTokenLength - Relex the token at the specified location and return
|
|
/// its length in bytes in the input file. If the token needs cleaning (e.g.
|
|
/// includes a trigraph or an escaped newline) then this count includes bytes
|
|
/// that are part of that.
|
|
unsigned Lexer::MeasureTokenLength(SourceLocation Loc,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
Token TheTok;
|
|
if (getRawToken(Loc, TheTok, SM, LangOpts))
|
|
return 0;
|
|
return TheTok.getLength();
|
|
}
|
|
|
|
/// Relex the token at the specified location.
|
|
/// \returns true if there was a failure, false on success.
|
|
bool Lexer::getRawToken(SourceLocation Loc, Token &Result,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts,
|
|
bool IgnoreWhiteSpace) {
|
|
// TODO: this could be special cased for common tokens like identifiers, ')',
|
|
// etc to make this faster, if it mattered. Just look at StrData[0] to handle
|
|
// all obviously single-char tokens. This could use
|
|
// Lexer::isObviouslySimpleCharacter for example to handle identifiers or
|
|
// something.
|
|
|
|
// If this comes from a macro expansion, we really do want the macro name, not
|
|
// the token this macro expanded to.
|
|
Loc = SM.getExpansionLoc(Loc);
|
|
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
|
|
bool Invalid = false;
|
|
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
|
|
if (Invalid)
|
|
return true;
|
|
|
|
const char *StrData = Buffer.data()+LocInfo.second;
|
|
|
|
if (!IgnoreWhiteSpace && isWhitespace(StrData[0]))
|
|
return true;
|
|
|
|
// Create a lexer starting at the beginning of this token.
|
|
Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
|
|
Buffer.begin(), StrData, Buffer.end());
|
|
TheLexer.SetCommentRetentionState(true);
|
|
TheLexer.LexFromRawLexer(Result);
|
|
return false;
|
|
}
|
|
|
|
/// Returns the pointer that points to the beginning of line that contains
|
|
/// the given offset, or null if the offset if invalid.
|
|
static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) {
|
|
const char *BufStart = Buffer.data();
|
|
if (Offset >= Buffer.size())
|
|
return nullptr;
|
|
|
|
const char *LexStart = BufStart + Offset;
|
|
for (; LexStart != BufStart; --LexStart) {
|
|
if (isVerticalWhitespace(LexStart[0]) &&
|
|
!Lexer::isNewLineEscaped(BufStart, LexStart)) {
|
|
// LexStart should point at first character of logical line.
|
|
++LexStart;
|
|
break;
|
|
}
|
|
}
|
|
return LexStart;
|
|
}
|
|
|
|
static SourceLocation getBeginningOfFileToken(SourceLocation Loc,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
assert(Loc.isFileID());
|
|
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
|
|
if (LocInfo.first.isInvalid())
|
|
return Loc;
|
|
|
|
bool Invalid = false;
|
|
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
|
|
if (Invalid)
|
|
return Loc;
|
|
|
|
// Back up from the current location until we hit the beginning of a line
|
|
// (or the buffer). We'll relex from that point.
|
|
const char *StrData = Buffer.data() + LocInfo.second;
|
|
const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second);
|
|
if (!LexStart || LexStart == StrData)
|
|
return Loc;
|
|
|
|
// Create a lexer starting at the beginning of this token.
|
|
SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second);
|
|
Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart,
|
|
Buffer.end());
|
|
TheLexer.SetCommentRetentionState(true);
|
|
|
|
// Lex tokens until we find the token that contains the source location.
|
|
Token TheTok;
|
|
do {
|
|
TheLexer.LexFromRawLexer(TheTok);
|
|
|
|
if (TheLexer.getBufferLocation() > StrData) {
|
|
// Lexing this token has taken the lexer past the source location we're
|
|
// looking for. If the current token encompasses our source location,
|
|
// return the beginning of that token.
|
|
if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData)
|
|
return TheTok.getLocation();
|
|
|
|
// We ended up skipping over the source location entirely, which means
|
|
// that it points into whitespace. We're done here.
|
|
break;
|
|
}
|
|
} while (TheTok.getKind() != tok::eof);
|
|
|
|
// We've passed our source location; just return the original source location.
|
|
return Loc;
|
|
}
|
|
|
|
SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
if (Loc.isFileID())
|
|
return getBeginningOfFileToken(Loc, SM, LangOpts);
|
|
|
|
if (!SM.isMacroArgExpansion(Loc))
|
|
return Loc;
|
|
|
|
SourceLocation FileLoc = SM.getSpellingLoc(Loc);
|
|
SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts);
|
|
std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc);
|
|
std::pair<FileID, unsigned> BeginFileLocInfo =
|
|
SM.getDecomposedLoc(BeginFileLoc);
|
|
assert(FileLocInfo.first == BeginFileLocInfo.first &&
|
|
FileLocInfo.second >= BeginFileLocInfo.second);
|
|
return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second);
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum PreambleDirectiveKind {
|
|
PDK_Skipped,
|
|
PDK_Unknown
|
|
};
|
|
|
|
} // namespace
|
|
|
|
PreambleBounds Lexer::ComputePreamble(StringRef Buffer,
|
|
const LangOptions &LangOpts,
|
|
unsigned MaxLines) {
|
|
// Create a lexer starting at the beginning of the file. Note that we use a
|
|
// "fake" file source location at offset 1 so that the lexer will track our
|
|
// position within the file.
|
|
const unsigned StartOffset = 1;
|
|
SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset);
|
|
Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(),
|
|
Buffer.end());
|
|
TheLexer.SetCommentRetentionState(true);
|
|
|
|
bool InPreprocessorDirective = false;
|
|
Token TheTok;
|
|
SourceLocation ActiveCommentLoc;
|
|
|
|
unsigned MaxLineOffset = 0;
|
|
if (MaxLines) {
|
|
const char *CurPtr = Buffer.begin();
|
|
unsigned CurLine = 0;
|
|
while (CurPtr != Buffer.end()) {
|
|
char ch = *CurPtr++;
|
|
if (ch == '\n') {
|
|
++CurLine;
|
|
if (CurLine == MaxLines)
|
|
break;
|
|
}
|
|
}
|
|
if (CurPtr != Buffer.end())
|
|
MaxLineOffset = CurPtr - Buffer.begin();
|
|
}
|
|
|
|
do {
|
|
TheLexer.LexFromRawLexer(TheTok);
|
|
|
|
if (InPreprocessorDirective) {
|
|
// If we've hit the end of the file, we're done.
|
|
if (TheTok.getKind() == tok::eof) {
|
|
break;
|
|
}
|
|
|
|
// If we haven't hit the end of the preprocessor directive, skip this
|
|
// token.
|
|
if (!TheTok.isAtStartOfLine())
|
|
continue;
|
|
|
|
// We've passed the end of the preprocessor directive, and will look
|
|
// at this token again below.
|
|
InPreprocessorDirective = false;
|
|
}
|
|
|
|
// Keep track of the # of lines in the preamble.
|
|
if (TheTok.isAtStartOfLine()) {
|
|
unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset;
|
|
|
|
// If we were asked to limit the number of lines in the preamble,
|
|
// and we're about to exceed that limit, we're done.
|
|
if (MaxLineOffset && TokOffset >= MaxLineOffset)
|
|
break;
|
|
}
|
|
|
|
// Comments are okay; skip over them.
|
|
if (TheTok.getKind() == tok::comment) {
|
|
if (ActiveCommentLoc.isInvalid())
|
|
ActiveCommentLoc = TheTok.getLocation();
|
|
continue;
|
|
}
|
|
|
|
if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) {
|
|
// This is the start of a preprocessor directive.
|
|
Token HashTok = TheTok;
|
|
InPreprocessorDirective = true;
|
|
ActiveCommentLoc = SourceLocation();
|
|
|
|
// Figure out which directive this is. Since we're lexing raw tokens,
|
|
// we don't have an identifier table available. Instead, just look at
|
|
// the raw identifier to recognize and categorize preprocessor directives.
|
|
TheLexer.LexFromRawLexer(TheTok);
|
|
if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) {
|
|
StringRef Keyword = TheTok.getRawIdentifier();
|
|
PreambleDirectiveKind PDK
|
|
= llvm::StringSwitch<PreambleDirectiveKind>(Keyword)
|
|
.Case("include", PDK_Skipped)
|
|
.Case("__include_macros", PDK_Skipped)
|
|
.Case("define", PDK_Skipped)
|
|
.Case("undef", PDK_Skipped)
|
|
.Case("line", PDK_Skipped)
|
|
.Case("error", PDK_Skipped)
|
|
.Case("pragma", PDK_Skipped)
|
|
.Case("import", PDK_Skipped)
|
|
.Case("include_next", PDK_Skipped)
|
|
.Case("warning", PDK_Skipped)
|
|
.Case("ident", PDK_Skipped)
|
|
.Case("sccs", PDK_Skipped)
|
|
.Case("assert", PDK_Skipped)
|
|
.Case("unassert", PDK_Skipped)
|
|
.Case("if", PDK_Skipped)
|
|
.Case("ifdef", PDK_Skipped)
|
|
.Case("ifndef", PDK_Skipped)
|
|
.Case("elif", PDK_Skipped)
|
|
.Case("else", PDK_Skipped)
|
|
.Case("endif", PDK_Skipped)
|
|
.Default(PDK_Unknown);
|
|
|
|
switch (PDK) {
|
|
case PDK_Skipped:
|
|
continue;
|
|
|
|
case PDK_Unknown:
|
|
// We don't know what this directive is; stop at the '#'.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We only end up here if we didn't recognize the preprocessor
|
|
// directive or it was one that can't occur in the preamble at this
|
|
// point. Roll back the current token to the location of the '#'.
|
|
InPreprocessorDirective = false;
|
|
TheTok = HashTok;
|
|
}
|
|
|
|
// We hit a token that we don't recognize as being in the
|
|
// "preprocessing only" part of the file, so we're no longer in
|
|
// the preamble.
|
|
break;
|
|
} while (true);
|
|
|
|
SourceLocation End;
|
|
if (ActiveCommentLoc.isValid())
|
|
End = ActiveCommentLoc; // don't truncate a decl comment.
|
|
else
|
|
End = TheTok.getLocation();
|
|
|
|
return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(),
|
|
TheTok.isAtStartOfLine());
|
|
}
|
|
|
|
unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
// Figure out how many physical characters away the specified expansion
|
|
// character is. This needs to take into consideration newlines and
|
|
// trigraphs.
|
|
bool Invalid = false;
|
|
const char *TokPtr = SM.getCharacterData(TokStart, &Invalid);
|
|
|
|
// If they request the first char of the token, we're trivially done.
|
|
if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr)))
|
|
return 0;
|
|
|
|
unsigned PhysOffset = 0;
|
|
|
|
// The usual case is that tokens don't contain anything interesting. Skip
|
|
// over the uninteresting characters. If a token only consists of simple
|
|
// chars, this method is extremely fast.
|
|
while (Lexer::isObviouslySimpleCharacter(*TokPtr)) {
|
|
if (CharNo == 0)
|
|
return PhysOffset;
|
|
++TokPtr;
|
|
--CharNo;
|
|
++PhysOffset;
|
|
}
|
|
|
|
// If we have a character that may be a trigraph or escaped newline, use a
|
|
// lexer to parse it correctly.
|
|
for (; CharNo; --CharNo) {
|
|
unsigned Size;
|
|
Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts);
|
|
TokPtr += Size;
|
|
PhysOffset += Size;
|
|
}
|
|
|
|
// Final detail: if we end up on an escaped newline, we want to return the
|
|
// location of the actual byte of the token. For example foo\<newline>bar
|
|
// advanced by 3 should return the location of b, not of \\. One compounding
|
|
// detail of this is that the escape may be made by a trigraph.
|
|
if (!Lexer::isObviouslySimpleCharacter(*TokPtr))
|
|
PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr;
|
|
|
|
return PhysOffset;
|
|
}
|
|
|
|
/// Computes the source location just past the end of the
|
|
/// token at this source location.
|
|
///
|
|
/// This routine can be used to produce a source location that
|
|
/// points just past the end of the token referenced by \p Loc, and
|
|
/// is generally used when a diagnostic needs to point just after a
|
|
/// token where it expected something different that it received. If
|
|
/// the returned source location would not be meaningful (e.g., if
|
|
/// it points into a macro), this routine returns an invalid
|
|
/// source location.
|
|
///
|
|
/// \param Offset an offset from the end of the token, where the source
|
|
/// location should refer to. The default offset (0) produces a source
|
|
/// location pointing just past the end of the token; an offset of 1 produces
|
|
/// a source location pointing to the last character in the token, etc.
|
|
SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
if (Loc.isInvalid())
|
|
return {};
|
|
|
|
if (Loc.isMacroID()) {
|
|
if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
|
|
return {}; // Points inside the macro expansion.
|
|
}
|
|
|
|
unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
|
|
if (Len > Offset)
|
|
Len = Len - Offset;
|
|
else
|
|
return Loc;
|
|
|
|
return Loc.getLocWithOffset(Len);
|
|
}
|
|
|
|
/// Returns true if the given MacroID location points at the first
|
|
/// token of the macro expansion.
|
|
bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts,
|
|
SourceLocation *MacroBegin) {
|
|
assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
|
|
|
|
SourceLocation expansionLoc;
|
|
if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc))
|
|
return false;
|
|
|
|
if (expansionLoc.isFileID()) {
|
|
// No other macro expansions, this is the first.
|
|
if (MacroBegin)
|
|
*MacroBegin = expansionLoc;
|
|
return true;
|
|
}
|
|
|
|
return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin);
|
|
}
|
|
|
|
/// Returns true if the given MacroID location points at the last
|
|
/// token of the macro expansion.
|
|
bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts,
|
|
SourceLocation *MacroEnd) {
|
|
assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
|
|
|
|
SourceLocation spellLoc = SM.getSpellingLoc(loc);
|
|
unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts);
|
|
if (tokLen == 0)
|
|
return false;
|
|
|
|
SourceLocation afterLoc = loc.getLocWithOffset(tokLen);
|
|
SourceLocation expansionLoc;
|
|
if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc))
|
|
return false;
|
|
|
|
if (expansionLoc.isFileID()) {
|
|
// No other macro expansions.
|
|
if (MacroEnd)
|
|
*MacroEnd = expansionLoc;
|
|
return true;
|
|
}
|
|
|
|
return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd);
|
|
}
|
|
|
|
static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
SourceLocation Begin = Range.getBegin();
|
|
SourceLocation End = Range.getEnd();
|
|
assert(Begin.isFileID() && End.isFileID());
|
|
if (Range.isTokenRange()) {
|
|
End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts);
|
|
if (End.isInvalid())
|
|
return {};
|
|
}
|
|
|
|
// Break down the source locations.
|
|
FileID FID;
|
|
unsigned BeginOffs;
|
|
std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin);
|
|
if (FID.isInvalid())
|
|
return {};
|
|
|
|
unsigned EndOffs;
|
|
if (!SM.isInFileID(End, FID, &EndOffs) ||
|
|
BeginOffs > EndOffs)
|
|
return {};
|
|
|
|
return CharSourceRange::getCharRange(Begin, End);
|
|
}
|
|
|
|
CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
SourceLocation Begin = Range.getBegin();
|
|
SourceLocation End = Range.getEnd();
|
|
if (Begin.isInvalid() || End.isInvalid())
|
|
return {};
|
|
|
|
if (Begin.isFileID() && End.isFileID())
|
|
return makeRangeFromFileLocs(Range, SM, LangOpts);
|
|
|
|
if (Begin.isMacroID() && End.isFileID()) {
|
|
if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin))
|
|
return {};
|
|
Range.setBegin(Begin);
|
|
return makeRangeFromFileLocs(Range, SM, LangOpts);
|
|
}
|
|
|
|
if (Begin.isFileID() && End.isMacroID()) {
|
|
if ((Range.isTokenRange() && !isAtEndOfMacroExpansion(End, SM, LangOpts,
|
|
&End)) ||
|
|
(Range.isCharRange() && !isAtStartOfMacroExpansion(End, SM, LangOpts,
|
|
&End)))
|
|
return {};
|
|
Range.setEnd(End);
|
|
return makeRangeFromFileLocs(Range, SM, LangOpts);
|
|
}
|
|
|
|
assert(Begin.isMacroID() && End.isMacroID());
|
|
SourceLocation MacroBegin, MacroEnd;
|
|
if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) &&
|
|
((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts,
|
|
&MacroEnd)) ||
|
|
(Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts,
|
|
&MacroEnd)))) {
|
|
Range.setBegin(MacroBegin);
|
|
Range.setEnd(MacroEnd);
|
|
return makeRangeFromFileLocs(Range, SM, LangOpts);
|
|
}
|
|
|
|
bool Invalid = false;
|
|
const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin),
|
|
&Invalid);
|
|
if (Invalid)
|
|
return {};
|
|
|
|
if (BeginEntry.getExpansion().isMacroArgExpansion()) {
|
|
const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End),
|
|
&Invalid);
|
|
if (Invalid)
|
|
return {};
|
|
|
|
if (EndEntry.getExpansion().isMacroArgExpansion() &&
|
|
BeginEntry.getExpansion().getExpansionLocStart() ==
|
|
EndEntry.getExpansion().getExpansionLocStart()) {
|
|
Range.setBegin(SM.getImmediateSpellingLoc(Begin));
|
|
Range.setEnd(SM.getImmediateSpellingLoc(End));
|
|
return makeFileCharRange(Range, SM, LangOpts);
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
StringRef Lexer::getSourceText(CharSourceRange Range,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts,
|
|
bool *Invalid) {
|
|
Range = makeFileCharRange(Range, SM, LangOpts);
|
|
if (Range.isInvalid()) {
|
|
if (Invalid) *Invalid = true;
|
|
return {};
|
|
}
|
|
|
|
// Break down the source location.
|
|
std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin());
|
|
if (beginInfo.first.isInvalid()) {
|
|
if (Invalid) *Invalid = true;
|
|
return {};
|
|
}
|
|
|
|
unsigned EndOffs;
|
|
if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) ||
|
|
beginInfo.second > EndOffs) {
|
|
if (Invalid) *Invalid = true;
|
|
return {};
|
|
}
|
|
|
|
// Try to the load the file buffer.
|
|
bool invalidTemp = false;
|
|
StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp);
|
|
if (invalidTemp) {
|
|
if (Invalid) *Invalid = true;
|
|
return {};
|
|
}
|
|
|
|
if (Invalid) *Invalid = false;
|
|
return file.substr(beginInfo.second, EndOffs - beginInfo.second);
|
|
}
|
|
|
|
StringRef Lexer::getImmediateMacroName(SourceLocation Loc,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
assert(Loc.isMacroID() && "Only reasonable to call this on macros");
|
|
|
|
// Find the location of the immediate macro expansion.
|
|
while (true) {
|
|
FileID FID = SM.getFileID(Loc);
|
|
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID);
|
|
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
|
|
Loc = Expansion.getExpansionLocStart();
|
|
if (!Expansion.isMacroArgExpansion())
|
|
break;
|
|
|
|
// For macro arguments we need to check that the argument did not come
|
|
// from an inner macro, e.g: "MAC1( MAC2(foo) )"
|
|
|
|
// Loc points to the argument id of the macro definition, move to the
|
|
// macro expansion.
|
|
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
|
|
SourceLocation SpellLoc = Expansion.getSpellingLoc();
|
|
if (SpellLoc.isFileID())
|
|
break; // No inner macro.
|
|
|
|
// If spelling location resides in the same FileID as macro expansion
|
|
// location, it means there is no inner macro.
|
|
FileID MacroFID = SM.getFileID(Loc);
|
|
if (SM.isInFileID(SpellLoc, MacroFID))
|
|
break;
|
|
|
|
// Argument came from inner macro.
|
|
Loc = SpellLoc;
|
|
}
|
|
|
|
// Find the spelling location of the start of the non-argument expansion
|
|
// range. This is where the macro name was spelled in order to begin
|
|
// expanding this macro.
|
|
Loc = SM.getSpellingLoc(Loc);
|
|
|
|
// Dig out the buffer where the macro name was spelled and the extents of the
|
|
// name so that we can render it into the expansion note.
|
|
std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
|
|
unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
|
|
StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
|
|
return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
|
|
}
|
|
|
|
StringRef Lexer::getImmediateMacroNameForDiagnostics(
|
|
SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) {
|
|
assert(Loc.isMacroID() && "Only reasonable to call this on macros");
|
|
// Walk past macro argument expansions.
|
|
while (SM.isMacroArgExpansion(Loc))
|
|
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
|
|
|
|
// If the macro's spelling has no FileID, then it's actually a token paste
|
|
// or stringization (or similar) and not a macro at all.
|
|
if (!SM.getFileEntryForID(SM.getFileID(SM.getSpellingLoc(Loc))))
|
|
return {};
|
|
|
|
// Find the spelling location of the start of the non-argument expansion
|
|
// range. This is where the macro name was spelled in order to begin
|
|
// expanding this macro.
|
|
Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin());
|
|
|
|
// Dig out the buffer where the macro name was spelled and the extents of the
|
|
// name so that we can render it into the expansion note.
|
|
std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
|
|
unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
|
|
StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
|
|
return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
|
|
}
|
|
|
|
bool Lexer::isIdentifierBodyChar(char c, const LangOptions &LangOpts) {
|
|
return isIdentifierBody(c, LangOpts.DollarIdents);
|
|
}
|
|
|
|
bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) {
|
|
assert(isVerticalWhitespace(Str[0]));
|
|
if (Str - 1 < BufferStart)
|
|
return false;
|
|
|
|
if ((Str[0] == '\n' && Str[-1] == '\r') ||
|
|
(Str[0] == '\r' && Str[-1] == '\n')) {
|
|
if (Str - 2 < BufferStart)
|
|
return false;
|
|
--Str;
|
|
}
|
|
--Str;
|
|
|
|
// Rewind to first non-space character:
|
|
while (Str > BufferStart && isHorizontalWhitespace(*Str))
|
|
--Str;
|
|
|
|
return *Str == '\\';
|
|
}
|
|
|
|
StringRef Lexer::getIndentationForLine(SourceLocation Loc,
|
|
const SourceManager &SM) {
|
|
if (Loc.isInvalid() || Loc.isMacroID())
|
|
return {};
|
|
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
|
|
if (LocInfo.first.isInvalid())
|
|
return {};
|
|
bool Invalid = false;
|
|
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
|
|
if (Invalid)
|
|
return {};
|
|
const char *Line = findBeginningOfLine(Buffer, LocInfo.second);
|
|
if (!Line)
|
|
return {};
|
|
StringRef Rest = Buffer.substr(Line - Buffer.data());
|
|
size_t NumWhitespaceChars = Rest.find_first_not_of(" \t");
|
|
return NumWhitespaceChars == StringRef::npos
|
|
? ""
|
|
: Rest.take_front(NumWhitespaceChars);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnostics forwarding code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the
|
|
/// lexer buffer was all expanded at a single point, perform the mapping.
|
|
/// This is currently only used for _Pragma implementation, so it is the slow
|
|
/// path of the hot getSourceLocation method. Do not allow it to be inlined.
|
|
static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc(
|
|
Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen);
|
|
static SourceLocation GetMappedTokenLoc(Preprocessor &PP,
|
|
SourceLocation FileLoc,
|
|
unsigned CharNo, unsigned TokLen) {
|
|
assert(FileLoc.isMacroID() && "Must be a macro expansion");
|
|
|
|
// Otherwise, we're lexing "mapped tokens". This is used for things like
|
|
// _Pragma handling. Combine the expansion location of FileLoc with the
|
|
// spelling location.
|
|
SourceManager &SM = PP.getSourceManager();
|
|
|
|
// Create a new SLoc which is expanded from Expansion(FileLoc) but whose
|
|
// characters come from spelling(FileLoc)+Offset.
|
|
SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc);
|
|
SpellingLoc = SpellingLoc.getLocWithOffset(CharNo);
|
|
|
|
// Figure out the expansion loc range, which is the range covered by the
|
|
// original _Pragma(...) sequence.
|
|
CharSourceRange II = SM.getImmediateExpansionRange(FileLoc);
|
|
|
|
return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen);
|
|
}
|
|
|
|
/// getSourceLocation - Return a source location identifier for the specified
|
|
/// offset in the current file.
|
|
SourceLocation Lexer::getSourceLocation(const char *Loc,
|
|
unsigned TokLen) const {
|
|
assert(Loc >= BufferStart && Loc <= BufferEnd &&
|
|
"Location out of range for this buffer!");
|
|
|
|
// In the normal case, we're just lexing from a simple file buffer, return
|
|
// the file id from FileLoc with the offset specified.
|
|
unsigned CharNo = Loc-BufferStart;
|
|
if (FileLoc.isFileID())
|
|
return FileLoc.getLocWithOffset(CharNo);
|
|
|
|
// Otherwise, this is the _Pragma lexer case, which pretends that all of the
|
|
// tokens are lexed from where the _Pragma was defined.
|
|
assert(PP && "This doesn't work on raw lexers");
|
|
return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen);
|
|
}
|
|
|
|
/// Diag - Forwarding function for diagnostics. This translate a source
|
|
/// position in the current buffer into a SourceLocation object for rendering.
|
|
DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const {
|
|
return PP->Diag(getSourceLocation(Loc), DiagID);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Trigraph and Escaped Newline Handling Code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
|
|
/// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
|
|
static char GetTrigraphCharForLetter(char Letter) {
|
|
switch (Letter) {
|
|
default: return 0;
|
|
case '=': return '#';
|
|
case ')': return ']';
|
|
case '(': return '[';
|
|
case '!': return '|';
|
|
case '\'': return '^';
|
|
case '>': return '}';
|
|
case '/': return '\\';
|
|
case '<': return '{';
|
|
case '-': return '~';
|
|
}
|
|
}
|
|
|
|
/// DecodeTrigraphChar - If the specified character is a legal trigraph when
|
|
/// prefixed with ??, emit a trigraph warning. If trigraphs are enabled,
|
|
/// return the result character. Finally, emit a warning about trigraph use
|
|
/// whether trigraphs are enabled or not.
|
|
static char DecodeTrigraphChar(const char *CP, Lexer *L) {
|
|
char Res = GetTrigraphCharForLetter(*CP);
|
|
if (!Res || !L) return Res;
|
|
|
|
if (!L->getLangOpts().Trigraphs) {
|
|
if (!L->isLexingRawMode())
|
|
L->Diag(CP-2, diag::trigraph_ignored);
|
|
return 0;
|
|
}
|
|
|
|
if (!L->isLexingRawMode())
|
|
L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1);
|
|
return Res;
|
|
}
|
|
|
|
/// getEscapedNewLineSize - Return the size of the specified escaped newline,
|
|
/// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a
|
|
/// trigraph equivalent on entry to this function.
|
|
unsigned Lexer::getEscapedNewLineSize(const char *Ptr) {
|
|
unsigned Size = 0;
|
|
while (isWhitespace(Ptr[Size])) {
|
|
++Size;
|
|
|
|
if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r')
|
|
continue;
|
|
|
|
// If this is a \r\n or \n\r, skip the other half.
|
|
if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') &&
|
|
Ptr[Size-1] != Ptr[Size])
|
|
++Size;
|
|
|
|
return Size;
|
|
}
|
|
|
|
// Not an escaped newline, must be a \t or something else.
|
|
return 0;
|
|
}
|
|
|
|
/// SkipEscapedNewLines - If P points to an escaped newline (or a series of
|
|
/// them), skip over them and return the first non-escaped-newline found,
|
|
/// otherwise return P.
|
|
const char *Lexer::SkipEscapedNewLines(const char *P) {
|
|
while (true) {
|
|
const char *AfterEscape;
|
|
if (*P == '\\') {
|
|
AfterEscape = P+1;
|
|
} else if (*P == '?') {
|
|
// If not a trigraph for escape, bail out.
|
|
if (P[1] != '?' || P[2] != '/')
|
|
return P;
|
|
// FIXME: Take LangOpts into account; the language might not
|
|
// support trigraphs.
|
|
AfterEscape = P+3;
|
|
} else {
|
|
return P;
|
|
}
|
|
|
|
unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape);
|
|
if (NewLineSize == 0) return P;
|
|
P = AfterEscape+NewLineSize;
|
|
}
|
|
}
|
|
|
|
Optional<Token> Lexer::findNextToken(SourceLocation Loc,
|
|
const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
if (Loc.isMacroID()) {
|
|
if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
|
|
return None;
|
|
}
|
|
Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts);
|
|
|
|
// Break down the source location.
|
|
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
|
|
|
|
// Try to load the file buffer.
|
|
bool InvalidTemp = false;
|
|
StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
|
|
if (InvalidTemp)
|
|
return None;
|
|
|
|
const char *TokenBegin = File.data() + LocInfo.second;
|
|
|
|
// Lex from the start of the given location.
|
|
Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(),
|
|
TokenBegin, File.end());
|
|
// Find the token.
|
|
Token Tok;
|
|
lexer.LexFromRawLexer(Tok);
|
|
return Tok;
|
|
}
|
|
|
|
/// Checks that the given token is the first token that occurs after the
|
|
/// given location (this excludes comments and whitespace). Returns the location
|
|
/// immediately after the specified token. If the token is not found or the
|
|
/// location is inside a macro, the returned source location will be invalid.
|
|
SourceLocation Lexer::findLocationAfterToken(
|
|
SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM,
|
|
const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) {
|
|
Optional<Token> Tok = findNextToken(Loc, SM, LangOpts);
|
|
if (!Tok || Tok->isNot(TKind))
|
|
return {};
|
|
SourceLocation TokenLoc = Tok->getLocation();
|
|
|
|
// Calculate how much whitespace needs to be skipped if any.
|
|
unsigned NumWhitespaceChars = 0;
|
|
if (SkipTrailingWhitespaceAndNewLine) {
|
|
const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength();
|
|
unsigned char C = *TokenEnd;
|
|
while (isHorizontalWhitespace(C)) {
|
|
C = *(++TokenEnd);
|
|
NumWhitespaceChars++;
|
|
}
|
|
|
|
// Skip \r, \n, \r\n, or \n\r
|
|
if (C == '\n' || C == '\r') {
|
|
char PrevC = C;
|
|
C = *(++TokenEnd);
|
|
NumWhitespaceChars++;
|
|
if ((C == '\n' || C == '\r') && C != PrevC)
|
|
NumWhitespaceChars++;
|
|
}
|
|
}
|
|
|
|
return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars);
|
|
}
|
|
|
|
/// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
|
|
/// get its size, and return it. This is tricky in several cases:
|
|
/// 1. If currently at the start of a trigraph, we warn about the trigraph,
|
|
/// then either return the trigraph (skipping 3 chars) or the '?',
|
|
/// depending on whether trigraphs are enabled or not.
|
|
/// 2. If this is an escaped newline (potentially with whitespace between
|
|
/// the backslash and newline), implicitly skip the newline and return
|
|
/// the char after it.
|
|
///
|
|
/// This handles the slow/uncommon case of the getCharAndSize method. Here we
|
|
/// know that we can accumulate into Size, and that we have already incremented
|
|
/// Ptr by Size bytes.
|
|
///
|
|
/// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
|
|
/// be updated to match.
|
|
char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
|
|
Token *Tok) {
|
|
// If we have a slash, look for an escaped newline.
|
|
if (Ptr[0] == '\\') {
|
|
++Size;
|
|
++Ptr;
|
|
Slash:
|
|
// Common case, backslash-char where the char is not whitespace.
|
|
if (!isWhitespace(Ptr[0])) return '\\';
|
|
|
|
// See if we have optional whitespace characters between the slash and
|
|
// newline.
|
|
if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
|
|
// Remember that this token needs to be cleaned.
|
|
if (Tok) Tok->setFlag(Token::NeedsCleaning);
|
|
|
|
// Warn if there was whitespace between the backslash and newline.
|
|
if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode())
|
|
Diag(Ptr, diag::backslash_newline_space);
|
|
|
|
// Found backslash<whitespace><newline>. Parse the char after it.
|
|
Size += EscapedNewLineSize;
|
|
Ptr += EscapedNewLineSize;
|
|
|
|
// Use slow version to accumulate a correct size field.
|
|
return getCharAndSizeSlow(Ptr, Size, Tok);
|
|
}
|
|
|
|
// Otherwise, this is not an escaped newline, just return the slash.
|
|
return '\\';
|
|
}
|
|
|
|
// If this is a trigraph, process it.
|
|
if (Ptr[0] == '?' && Ptr[1] == '?') {
|
|
// If this is actually a legal trigraph (not something like "??x"), emit
|
|
// a trigraph warning. If so, and if trigraphs are enabled, return it.
|
|
if (char C = DecodeTrigraphChar(Ptr+2, Tok ? this : nullptr)) {
|
|
// Remember that this token needs to be cleaned.
|
|
if (Tok) Tok->setFlag(Token::NeedsCleaning);
|
|
|
|
Ptr += 3;
|
|
Size += 3;
|
|
if (C == '\\') goto Slash;
|
|
return C;
|
|
}
|
|
}
|
|
|
|
// If this is neither, return a single character.
|
|
++Size;
|
|
return *Ptr;
|
|
}
|
|
|
|
/// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
|
|
/// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size,
|
|
/// and that we have already incremented Ptr by Size bytes.
|
|
///
|
|
/// NOTE: When this method is updated, getCharAndSizeSlow (above) should
|
|
/// be updated to match.
|
|
char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
|
|
const LangOptions &LangOpts) {
|
|
// If we have a slash, look for an escaped newline.
|
|
if (Ptr[0] == '\\') {
|
|
++Size;
|
|
++Ptr;
|
|
Slash:
|
|
// Common case, backslash-char where the char is not whitespace.
|
|
if (!isWhitespace(Ptr[0])) return '\\';
|
|
|
|
// See if we have optional whitespace characters followed by a newline.
|
|
if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
|
|
// Found backslash<whitespace><newline>. Parse the char after it.
|
|
Size += EscapedNewLineSize;
|
|
Ptr += EscapedNewLineSize;
|
|
|
|
// Use slow version to accumulate a correct size field.
|
|
return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts);
|
|
}
|
|
|
|
// Otherwise, this is not an escaped newline, just return the slash.
|
|
return '\\';
|
|
}
|
|
|
|
// If this is a trigraph, process it.
|
|
if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
|
|
// If this is actually a legal trigraph (not something like "??x"), return
|
|
// it.
|
|
if (char C = GetTrigraphCharForLetter(Ptr[2])) {
|
|
Ptr += 3;
|
|
Size += 3;
|
|
if (C == '\\') goto Slash;
|
|
return C;
|
|
}
|
|
}
|
|
|
|
// If this is neither, return a single character.
|
|
++Size;
|
|
return *Ptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper methods for lexing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Routine that indiscriminately sets the offset into the source file.
|
|
void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) {
|
|
BufferPtr = BufferStart + Offset;
|
|
if (BufferPtr > BufferEnd)
|
|
BufferPtr = BufferEnd;
|
|
// FIXME: What exactly does the StartOfLine bit mean? There are two
|
|
// possible meanings for the "start" of the line: the first token on the
|
|
// unexpanded line, or the first token on the expanded line.
|
|
IsAtStartOfLine = StartOfLine;
|
|
IsAtPhysicalStartOfLine = StartOfLine;
|
|
}
|
|
|
|
static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts) {
|
|
if (LangOpts.AsmPreprocessor) {
|
|
return false;
|
|
} else if (LangOpts.CPlusPlus11 || LangOpts.C11) {
|
|
static const llvm::sys::UnicodeCharSet C11AllowedIDChars(
|
|
C11AllowedIDCharRanges);
|
|
return C11AllowedIDChars.contains(C);
|
|
} else if (LangOpts.CPlusPlus) {
|
|
static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars(
|
|
CXX03AllowedIDCharRanges);
|
|
return CXX03AllowedIDChars.contains(C);
|
|
} else {
|
|
static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
|
|
C99AllowedIDCharRanges);
|
|
return C99AllowedIDChars.contains(C);
|
|
}
|
|
}
|
|
|
|
static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts) {
|
|
assert(isAllowedIDChar(C, LangOpts));
|
|
if (LangOpts.AsmPreprocessor) {
|
|
return false;
|
|
} else if (LangOpts.CPlusPlus11 || LangOpts.C11) {
|
|
static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars(
|
|
C11DisallowedInitialIDCharRanges);
|
|
return !C11DisallowedInitialIDChars.contains(C);
|
|
} else if (LangOpts.CPlusPlus) {
|
|
return true;
|
|
} else {
|
|
static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
|
|
C99DisallowedInitialIDCharRanges);
|
|
return !C99DisallowedInitialIDChars.contains(C);
|
|
}
|
|
}
|
|
|
|
static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin,
|
|
const char *End) {
|
|
return CharSourceRange::getCharRange(L.getSourceLocation(Begin),
|
|
L.getSourceLocation(End));
|
|
}
|
|
|
|
static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C,
|
|
CharSourceRange Range, bool IsFirst) {
|
|
// Check C99 compatibility.
|
|
if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) {
|
|
enum {
|
|
CannotAppearInIdentifier = 0,
|
|
CannotStartIdentifier
|
|
};
|
|
|
|
static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
|
|
C99AllowedIDCharRanges);
|
|
static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
|
|
C99DisallowedInitialIDCharRanges);
|
|
if (!C99AllowedIDChars.contains(C)) {
|
|
Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
|
|
<< Range
|
|
<< CannotAppearInIdentifier;
|
|
} else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) {
|
|
Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
|
|
<< Range
|
|
<< CannotStartIdentifier;
|
|
}
|
|
}
|
|
|
|
// Check C++98 compatibility.
|
|
if (!Diags.isIgnored(diag::warn_cxx98_compat_unicode_id, Range.getBegin())) {
|
|
static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars(
|
|
CXX03AllowedIDCharRanges);
|
|
if (!CXX03AllowedIDChars.contains(C)) {
|
|
Diags.Report(Range.getBegin(), diag::warn_cxx98_compat_unicode_id)
|
|
<< Range;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// After encountering UTF-8 character C and interpreting it as an identifier
|
|
/// character, check whether it's a homoglyph for a common non-identifier
|
|
/// source character that is unlikely to be an intentional identifier
|
|
/// character and warn if so.
|
|
static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C,
|
|
CharSourceRange Range) {
|
|
// FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes).
|
|
struct HomoglyphPair {
|
|
uint32_t Character;
|
|
char LooksLike;
|
|
bool operator<(HomoglyphPair R) const { return Character < R.Character; }
|
|
};
|
|
static constexpr HomoglyphPair SortedHomoglyphs[] = {
|
|
{U'\u00ad', 0}, // SOFT HYPHEN
|
|
{U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK
|
|
{U'\u037e', ';'}, // GREEK QUESTION MARK
|
|
{U'\u200b', 0}, // ZERO WIDTH SPACE
|
|
{U'\u200c', 0}, // ZERO WIDTH NON-JOINER
|
|
{U'\u200d', 0}, // ZERO WIDTH JOINER
|
|
{U'\u2060', 0}, // WORD JOINER
|
|
{U'\u2061', 0}, // FUNCTION APPLICATION
|
|
{U'\u2062', 0}, // INVISIBLE TIMES
|
|
{U'\u2063', 0}, // INVISIBLE SEPARATOR
|
|
{U'\u2064', 0}, // INVISIBLE PLUS
|
|
{U'\u2212', '-'}, // MINUS SIGN
|
|
{U'\u2215', '/'}, // DIVISION SLASH
|
|
{U'\u2216', '\\'}, // SET MINUS
|
|
{U'\u2217', '*'}, // ASTERISK OPERATOR
|
|
{U'\u2223', '|'}, // DIVIDES
|
|
{U'\u2227', '^'}, // LOGICAL AND
|
|
{U'\u2236', ':'}, // RATIO
|
|
{U'\u223c', '~'}, // TILDE OPERATOR
|
|
{U'\ua789', ':'}, // MODIFIER LETTER COLON
|
|
{U'\ufeff', 0}, // ZERO WIDTH NO-BREAK SPACE
|
|
{U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK
|
|
{U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN
|
|
{U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN
|
|
{U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN
|
|
{U'\uff06', '&'}, // FULLWIDTH AMPERSAND
|
|
{U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS
|
|
{U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS
|
|
{U'\uff0a', '*'}, // FULLWIDTH ASTERISK
|
|
{U'\uff0b', '+'}, // FULLWIDTH ASTERISK
|
|
{U'\uff0c', ','}, // FULLWIDTH COMMA
|
|
{U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS
|
|
{U'\uff0e', '.'}, // FULLWIDTH FULL STOP
|
|
{U'\uff0f', '/'}, // FULLWIDTH SOLIDUS
|
|
{U'\uff1a', ':'}, // FULLWIDTH COLON
|
|
{U'\uff1b', ';'}, // FULLWIDTH SEMICOLON
|
|
{U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN
|
|
{U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN
|
|
{U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN
|
|
{U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK
|
|
{U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT
|
|
{U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET
|
|
{U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS
|
|
{U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET
|
|
{U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT
|
|
{U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET
|
|
{U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE
|
|
{U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET
|
|
{U'\uff5e', '~'}, // FULLWIDTH TILDE
|
|
{0, 0}
|
|
};
|
|
auto Homoglyph =
|
|
std::lower_bound(std::begin(SortedHomoglyphs),
|
|
std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'});
|
|
if (Homoglyph->Character == C) {
|
|
llvm::SmallString<5> CharBuf;
|
|
{
|
|
llvm::raw_svector_ostream CharOS(CharBuf);
|
|
llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4);
|
|
}
|
|
if (Homoglyph->LooksLike) {
|
|
const char LooksLikeStr[] = {Homoglyph->LooksLike, 0};
|
|
Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph)
|
|
<< Range << CharBuf << LooksLikeStr;
|
|
} else {
|
|
Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width)
|
|
<< Range << CharBuf;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size,
|
|
Token &Result) {
|
|
const char *UCNPtr = CurPtr + Size;
|
|
uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr);
|
|
if (CodePoint == 0 || !isAllowedIDChar(CodePoint, LangOpts))
|
|
return false;
|
|
|
|
if (!isLexingRawMode())
|
|
maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
|
|
makeCharRange(*this, CurPtr, UCNPtr),
|
|
/*IsFirst=*/false);
|
|
|
|
Result.setFlag(Token::HasUCN);
|
|
if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') ||
|
|
(UCNPtr - CurPtr == 10 && CurPtr[1] == 'U'))
|
|
CurPtr = UCNPtr;
|
|
else
|
|
while (CurPtr != UCNPtr)
|
|
(void)getAndAdvanceChar(CurPtr, Result);
|
|
return true;
|
|
}
|
|
|
|
bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) {
|
|
const char *UnicodePtr = CurPtr;
|
|
llvm::UTF32 CodePoint;
|
|
llvm::ConversionResult Result =
|
|
llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr,
|
|
(const llvm::UTF8 *)BufferEnd,
|
|
&CodePoint,
|
|
llvm::strictConversion);
|
|
if (Result != llvm::conversionOK ||
|
|
!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts))
|
|
return false;
|
|
|
|
if (!isLexingRawMode()) {
|
|
maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
|
|
makeCharRange(*this, CurPtr, UnicodePtr),
|
|
/*IsFirst=*/false);
|
|
maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint,
|
|
makeCharRange(*this, CurPtr, UnicodePtr));
|
|
}
|
|
|
|
CurPtr = UnicodePtr;
|
|
return true;
|
|
}
|
|
|
|
bool Lexer::LexIdentifier(Token &Result, const char *CurPtr) {
|
|
// Match [_A-Za-z0-9]*, we have already matched [_A-Za-z$]
|
|
unsigned Size;
|
|
unsigned char C = *CurPtr++;
|
|
while (isIdentifierBody(C))
|
|
C = *CurPtr++;
|
|
|
|
--CurPtr; // Back up over the skipped character.
|
|
|
|
// Fast path, no $,\,? in identifier found. '\' might be an escaped newline
|
|
// or UCN, and ? might be a trigraph for '\', an escaped newline or UCN.
|
|
//
|
|
// TODO: Could merge these checks into an InfoTable flag to make the
|
|
// comparison cheaper
|
|
if (isASCII(C) && C != '\\' && C != '?' &&
|
|
(C != '$' || !LangOpts.DollarIdents)) {
|
|
FinishIdentifier:
|
|
const char *IdStart = BufferPtr;
|
|
FormTokenWithChars(Result, CurPtr, tok::raw_identifier);
|
|
Result.setRawIdentifierData(IdStart);
|
|
|
|
// If we are in raw mode, return this identifier raw. There is no need to
|
|
// look up identifier information or attempt to macro expand it.
|
|
if (LexingRawMode)
|
|
return true;
|
|
|
|
// Fill in Result.IdentifierInfo and update the token kind,
|
|
// looking up the identifier in the identifier table.
|
|
IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
|
|
// Note that we have to call PP->LookUpIdentifierInfo() even for code
|
|
// completion, it writes IdentifierInfo into Result, and callers rely on it.
|
|
|
|
// If the completion point is at the end of an identifier, we want to treat
|
|
// the identifier as incomplete even if it resolves to a macro or a keyword.
|
|
// This allows e.g. 'class^' to complete to 'classifier'.
|
|
if (isCodeCompletionPoint(CurPtr)) {
|
|
// Return the code-completion token.
|
|
Result.setKind(tok::code_completion);
|
|
// Skip the code-completion char and all immediate identifier characters.
|
|
// This ensures we get consistent behavior when completing at any point in
|
|
// an identifier (i.e. at the start, in the middle, at the end). Note that
|
|
// only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code
|
|
// simpler.
|
|
assert(*CurPtr == 0 && "Completion character must be 0");
|
|
++CurPtr;
|
|
// Note that code completion token is not added as a separate character
|
|
// when the completion point is at the end of the buffer. Therefore, we need
|
|
// to check if the buffer has ended.
|
|
if (CurPtr < BufferEnd) {
|
|
while (isIdentifierBody(*CurPtr))
|
|
++CurPtr;
|
|
}
|
|
BufferPtr = CurPtr;
|
|
return true;
|
|
}
|
|
|
|
// Finally, now that we know we have an identifier, pass this off to the
|
|
// preprocessor, which may macro expand it or something.
|
|
if (II->isHandleIdentifierCase())
|
|
return PP->HandleIdentifier(Result);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, $,\,? in identifier found. Enter slower path.
|
|
|
|
C = getCharAndSize(CurPtr, Size);
|
|
while (true) {
|
|
if (C == '$') {
|
|
// If we hit a $ and they are not supported in identifiers, we are done.
|
|
if (!LangOpts.DollarIdents) goto FinishIdentifier;
|
|
|
|
// Otherwise, emit a diagnostic and continue.
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr, diag::ext_dollar_in_identifier);
|
|
CurPtr = ConsumeChar(CurPtr, Size, Result);
|
|
C = getCharAndSize(CurPtr, Size);
|
|
continue;
|
|
} else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {
|
|
C = getCharAndSize(CurPtr, Size);
|
|
continue;
|
|
} else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {
|
|
C = getCharAndSize(CurPtr, Size);
|
|
continue;
|
|
} else if (!isIdentifierBody(C)) {
|
|
goto FinishIdentifier;
|
|
}
|
|
|
|
// Otherwise, this character is good, consume it.
|
|
CurPtr = ConsumeChar(CurPtr, Size, Result);
|
|
|
|
C = getCharAndSize(CurPtr, Size);
|
|
while (isIdentifierBody(C)) {
|
|
CurPtr = ConsumeChar(CurPtr, Size, Result);
|
|
C = getCharAndSize(CurPtr, Size);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isHexaLiteral - Return true if Start points to a hex constant.
|
|
/// in microsoft mode (where this is supposed to be several different tokens).
|
|
bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) {
|
|
unsigned Size;
|
|
char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts);
|
|
if (C1 != '0')
|
|
return false;
|
|
char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts);
|
|
return (C2 == 'x' || C2 == 'X');
|
|
}
|
|
|
|
/// LexNumericConstant - Lex the remainder of a integer or floating point
|
|
/// constant. From[-1] is the first character lexed. Return the end of the
|
|
/// constant.
|
|
bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) {
|
|
unsigned Size;
|
|
char C = getCharAndSize(CurPtr, Size);
|
|
char PrevCh = 0;
|
|
while (isPreprocessingNumberBody(C)) {
|
|
CurPtr = ConsumeChar(CurPtr, Size, Result);
|
|
PrevCh = C;
|
|
C = getCharAndSize(CurPtr, Size);
|
|
}
|
|
|
|
// If we fell out, check for a sign, due to 1e+12. If we have one, continue.
|
|
if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) {
|
|
// If we are in Microsoft mode, don't continue if the constant is hex.
|
|
// For example, MSVC will accept the following as 3 tokens: 0x1234567e+1
|
|
if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts))
|
|
return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
|
|
}
|
|
|
|
// If we have a hex FP constant, continue.
|
|
if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) {
|
|
// Outside C99 and C++17, we accept hexadecimal floating point numbers as a
|
|
// not-quite-conforming extension. Only do so if this looks like it's
|
|
// actually meant to be a hexfloat, and not if it has a ud-suffix.
|
|
bool IsHexFloat = true;
|
|
if (!LangOpts.C99) {
|
|
if (!isHexaLiteral(BufferPtr, LangOpts))
|
|
IsHexFloat = false;
|
|
else if (!getLangOpts().CPlusPlus17 &&
|
|
std::find(BufferPtr, CurPtr, '_') != CurPtr)
|
|
IsHexFloat = false;
|
|
}
|
|
if (IsHexFloat)
|
|
return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
|
|
}
|
|
|
|
// If we have a digit separator, continue.
|
|
if (C == '\'' && getLangOpts().CPlusPlus14) {
|
|
unsigned NextSize;
|
|
char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, getLangOpts());
|
|
if (isIdentifierBody(Next)) {
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr, diag::warn_cxx11_compat_digit_separator);
|
|
CurPtr = ConsumeChar(CurPtr, Size, Result);
|
|
CurPtr = ConsumeChar(CurPtr, NextSize, Result);
|
|
return LexNumericConstant(Result, CurPtr);
|
|
}
|
|
}
|
|
|
|
// If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue.
|
|
if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
|
|
return LexNumericConstant(Result, CurPtr);
|
|
if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
|
|
return LexNumericConstant(Result, CurPtr);
|
|
|
|
// Update the location of token as well as BufferPtr.
|
|
const char *TokStart = BufferPtr;
|
|
FormTokenWithChars(Result, CurPtr, tok::numeric_constant);
|
|
Result.setLiteralData(TokStart);
|
|
return true;
|
|
}
|
|
|
|
/// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes
|
|
/// in C++11, or warn on a ud-suffix in C++98.
|
|
const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr,
|
|
bool IsStringLiteral) {
|
|
assert(getLangOpts().CPlusPlus);
|
|
|
|
// Maximally munch an identifier.
|
|
unsigned Size;
|
|
char C = getCharAndSize(CurPtr, Size);
|
|
bool Consumed = false;
|
|
|
|
if (!isIdentifierHead(C)) {
|
|
if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
|
|
Consumed = true;
|
|
else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
|
|
Consumed = true;
|
|
else
|
|
return CurPtr;
|
|
}
|
|
|
|
if (!getLangOpts().CPlusPlus11) {
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr,
|
|
C == '_' ? diag::warn_cxx11_compat_user_defined_literal
|
|
: diag::warn_cxx11_compat_reserved_user_defined_literal)
|
|
<< FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
|
|
return CurPtr;
|
|
}
|
|
|
|
// C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix
|
|
// that does not start with an underscore is ill-formed. As a conforming
|
|
// extension, we treat all such suffixes as if they had whitespace before
|
|
// them. We assume a suffix beginning with a UCN or UTF-8 character is more
|
|
// likely to be a ud-suffix than a macro, however, and accept that.
|
|
if (!Consumed) {
|
|
bool IsUDSuffix = false;
|
|
if (C == '_')
|
|
IsUDSuffix = true;
|
|
else if (IsStringLiteral && getLangOpts().CPlusPlus14) {
|
|
// In C++1y, we need to look ahead a few characters to see if this is a
|
|
// valid suffix for a string literal or a numeric literal (this could be
|
|
// the 'operator""if' defining a numeric literal operator).
|
|
const unsigned MaxStandardSuffixLength = 3;
|
|
char Buffer[MaxStandardSuffixLength] = { C };
|
|
unsigned Consumed = Size;
|
|
unsigned Chars = 1;
|
|
while (true) {
|
|
unsigned NextSize;
|
|
char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize,
|
|
getLangOpts());
|
|
if (!isIdentifierBody(Next)) {
|
|
// End of suffix. Check whether this is on the whitelist.
|
|
const StringRef CompleteSuffix(Buffer, Chars);
|
|
IsUDSuffix = StringLiteralParser::isValidUDSuffix(getLangOpts(),
|
|
CompleteSuffix);
|
|
break;
|
|
}
|
|
|
|
if (Chars == MaxStandardSuffixLength)
|
|
// Too long: can't be a standard suffix.
|
|
break;
|
|
|
|
Buffer[Chars++] = Next;
|
|
Consumed += NextSize;
|
|
}
|
|
}
|
|
|
|
if (!IsUDSuffix) {
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr, getLangOpts().MSVCCompat
|
|
? diag::ext_ms_reserved_user_defined_literal
|
|
: diag::ext_reserved_user_defined_literal)
|
|
<< FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
|
|
return CurPtr;
|
|
}
|
|
|
|
CurPtr = ConsumeChar(CurPtr, Size, Result);
|
|
}
|
|
|
|
Result.setFlag(Token::HasUDSuffix);
|
|
while (true) {
|
|
C = getCharAndSize(CurPtr, Size);
|
|
if (isIdentifierBody(C)) { CurPtr = ConsumeChar(CurPtr, Size, Result); }
|
|
else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {}
|
|
else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {}
|
|
else break;
|
|
}
|
|
|
|
return CurPtr;
|
|
}
|
|
|
|
/// LexStringLiteral - Lex the remainder of a string literal, after having lexed
|
|
/// either " or L" or u8" or u" or U".
|
|
bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr,
|
|
tok::TokenKind Kind) {
|
|
const char *AfterQuote = CurPtr;
|
|
// Does this string contain the \0 character?
|
|
const char *NulCharacter = nullptr;
|
|
|
|
if (!isLexingRawMode() &&
|
|
(Kind == tok::utf8_string_literal ||
|
|
Kind == tok::utf16_string_literal ||
|
|
Kind == tok::utf32_string_literal))
|
|
Diag(BufferPtr, getLangOpts().CPlusPlus
|
|
? diag::warn_cxx98_compat_unicode_literal
|
|
: diag::warn_c99_compat_unicode_literal);
|
|
|
|
char C = getAndAdvanceChar(CurPtr, Result);
|
|
while (C != '"') {
|
|
// Skip escaped characters. Escaped newlines will already be processed by
|
|
// getAndAdvanceChar.
|
|
if (C == '\\')
|
|
C = getAndAdvanceChar(CurPtr, Result);
|
|
|
|
if (C == '\n' || C == '\r' || // Newline.
|
|
(C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
|
|
if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
|
|
Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1;
|
|
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
|
|
return true;
|
|
}
|
|
|
|
if (C == 0) {
|
|
if (isCodeCompletionPoint(CurPtr-1)) {
|
|
if (ParsingFilename)
|
|
codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false);
|
|
else
|
|
PP->CodeCompleteNaturalLanguage();
|
|
FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
|
|
cutOffLexing();
|
|
return true;
|
|
}
|
|
|
|
NulCharacter = CurPtr-1;
|
|
}
|
|
C = getAndAdvanceChar(CurPtr, Result);
|
|
}
|
|
|
|
// If we are in C++11, lex the optional ud-suffix.
|
|
if (getLangOpts().CPlusPlus)
|
|
CurPtr = LexUDSuffix(Result, CurPtr, true);
|
|
|
|
// If a nul character existed in the string, warn about it.
|
|
if (NulCharacter && !isLexingRawMode())
|
|
Diag(NulCharacter, diag::null_in_char_or_string) << 1;
|
|
|
|
// Update the location of the token as well as the BufferPtr instance var.
|
|
const char *TokStart = BufferPtr;
|
|
FormTokenWithChars(Result, CurPtr, Kind);
|
|
Result.setLiteralData(TokStart);
|
|
return true;
|
|
}
|
|
|
|
/// LexRawStringLiteral - Lex the remainder of a raw string literal, after
|
|
/// having lexed R", LR", u8R", uR", or UR".
|
|
bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr,
|
|
tok::TokenKind Kind) {
|
|
// This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3:
|
|
// Between the initial and final double quote characters of the raw string,
|
|
// any transformations performed in phases 1 and 2 (trigraphs,
|
|
// universal-character-names, and line splicing) are reverted.
|
|
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal);
|
|
|
|
unsigned PrefixLen = 0;
|
|
|
|
while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen]))
|
|
++PrefixLen;
|
|
|
|
// If the last character was not a '(', then we didn't lex a valid delimiter.
|
|
if (CurPtr[PrefixLen] != '(') {
|
|
if (!isLexingRawMode()) {
|
|
const char *PrefixEnd = &CurPtr[PrefixLen];
|
|
if (PrefixLen == 16) {
|
|
Diag(PrefixEnd, diag::err_raw_delim_too_long);
|
|
} else {
|
|
Diag(PrefixEnd, diag::err_invalid_char_raw_delim)
|
|
<< StringRef(PrefixEnd, 1);
|
|
}
|
|
}
|
|
|
|
// Search for the next '"' in hopes of salvaging the lexer. Unfortunately,
|
|
// it's possible the '"' was intended to be part of the raw string, but
|
|
// there's not much we can do about that.
|
|
while (true) {
|
|
char C = *CurPtr++;
|
|
|
|
if (C == '"')
|
|
break;
|
|
if (C == 0 && CurPtr-1 == BufferEnd) {
|
|
--CurPtr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
FormTokenWithChars(Result, CurPtr, tok::unknown);
|
|
return true;
|
|
}
|
|
|
|
// Save prefix and move CurPtr past it
|
|
const char *Prefix = CurPtr;
|
|
CurPtr += PrefixLen + 1; // skip over prefix and '('
|
|
|
|
while (true) {
|
|
char C = *CurPtr++;
|
|
|
|
if (C == ')') {
|
|
// Check for prefix match and closing quote.
|
|
if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') {
|
|
CurPtr += PrefixLen + 1; // skip over prefix and '"'
|
|
break;
|
|
}
|
|
} else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file.
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::err_unterminated_raw_string)
|
|
<< StringRef(Prefix, PrefixLen);
|
|
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If we are in C++11, lex the optional ud-suffix.
|
|
if (getLangOpts().CPlusPlus)
|
|
CurPtr = LexUDSuffix(Result, CurPtr, true);
|
|
|
|
// Update the location of token as well as BufferPtr.
|
|
const char *TokStart = BufferPtr;
|
|
FormTokenWithChars(Result, CurPtr, Kind);
|
|
Result.setLiteralData(TokStart);
|
|
return true;
|
|
}
|
|
|
|
/// LexAngledStringLiteral - Lex the remainder of an angled string literal,
|
|
/// after having lexed the '<' character. This is used for #include filenames.
|
|
bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) {
|
|
// Does this string contain the \0 character?
|
|
const char *NulCharacter = nullptr;
|
|
const char *AfterLessPos = CurPtr;
|
|
char C = getAndAdvanceChar(CurPtr, Result);
|
|
while (C != '>') {
|
|
// Skip escaped characters. Escaped newlines will already be processed by
|
|
// getAndAdvanceChar.
|
|
if (C == '\\')
|
|
C = getAndAdvanceChar(CurPtr, Result);
|
|
|
|
if (C == '\n' || C == '\r' || // Newline.
|
|
(C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file.
|
|
// If the filename is unterminated, then it must just be a lone <
|
|
// character. Return this as such.
|
|
FormTokenWithChars(Result, AfterLessPos, tok::less);
|
|
return true;
|
|
}
|
|
|
|
if (C == 0) {
|
|
if (isCodeCompletionPoint(CurPtr - 1)) {
|
|
codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true);
|
|
cutOffLexing();
|
|
FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
|
|
return true;
|
|
}
|
|
NulCharacter = CurPtr-1;
|
|
}
|
|
C = getAndAdvanceChar(CurPtr, Result);
|
|
}
|
|
|
|
// If a nul character existed in the string, warn about it.
|
|
if (NulCharacter && !isLexingRawMode())
|
|
Diag(NulCharacter, diag::null_in_char_or_string) << 1;
|
|
|
|
// Update the location of token as well as BufferPtr.
|
|
const char *TokStart = BufferPtr;
|
|
FormTokenWithChars(Result, CurPtr, tok::header_name);
|
|
Result.setLiteralData(TokStart);
|
|
return true;
|
|
}
|
|
|
|
void Lexer::codeCompleteIncludedFile(const char *PathStart,
|
|
const char *CompletionPoint,
|
|
bool IsAngled) {
|
|
// Completion only applies to the filename, after the last slash.
|
|
StringRef PartialPath(PathStart, CompletionPoint - PathStart);
|
|
auto Slash = PartialPath.find_last_of(LangOpts.MSVCCompat ? "/\\" : "/");
|
|
StringRef Dir =
|
|
(Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash);
|
|
const char *StartOfFilename =
|
|
(Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1;
|
|
// Code completion filter range is the filename only, up to completion point.
|
|
PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get(
|
|
StringRef(StartOfFilename, CompletionPoint - StartOfFilename)));
|
|
// We should replace the characters up to the closing quote, if any.
|
|
while (CompletionPoint < BufferEnd) {
|
|
char Next = *(CompletionPoint + 1);
|
|
if (Next == 0 || Next == '\r' || Next == '\n')
|
|
break;
|
|
++CompletionPoint;
|
|
if (Next == (IsAngled ? '>' : '"'))
|
|
break;
|
|
}
|
|
PP->setCodeCompletionTokenRange(
|
|
FileLoc.getLocWithOffset(StartOfFilename - BufferStart),
|
|
FileLoc.getLocWithOffset(CompletionPoint - BufferStart));
|
|
PP->CodeCompleteIncludedFile(Dir, IsAngled);
|
|
}
|
|
|
|
/// LexCharConstant - Lex the remainder of a character constant, after having
|
|
/// lexed either ' or L' or u8' or u' or U'.
|
|
bool Lexer::LexCharConstant(Token &Result, const char *CurPtr,
|
|
tok::TokenKind Kind) {
|
|
// Does this character contain the \0 character?
|
|
const char *NulCharacter = nullptr;
|
|
|
|
if (!isLexingRawMode()) {
|
|
if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant)
|
|
Diag(BufferPtr, getLangOpts().CPlusPlus
|
|
? diag::warn_cxx98_compat_unicode_literal
|
|
: diag::warn_c99_compat_unicode_literal);
|
|
else if (Kind == tok::utf8_char_constant)
|
|
Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal);
|
|
}
|
|
|
|
char C = getAndAdvanceChar(CurPtr, Result);
|
|
if (C == '\'') {
|
|
if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
|
|
Diag(BufferPtr, diag::ext_empty_character);
|
|
FormTokenWithChars(Result, CurPtr, tok::unknown);
|
|
return true;
|
|
}
|
|
|
|
while (C != '\'') {
|
|
// Skip escaped characters.
|
|
if (C == '\\')
|
|
C = getAndAdvanceChar(CurPtr, Result);
|
|
|
|
if (C == '\n' || C == '\r' || // Newline.
|
|
(C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
|
|
if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
|
|
Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0;
|
|
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
|
|
return true;
|
|
}
|
|
|
|
if (C == 0) {
|
|
if (isCodeCompletionPoint(CurPtr-1)) {
|
|
PP->CodeCompleteNaturalLanguage();
|
|
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
|
|
cutOffLexing();
|
|
return true;
|
|
}
|
|
|
|
NulCharacter = CurPtr-1;
|
|
}
|
|
C = getAndAdvanceChar(CurPtr, Result);
|
|
}
|
|
|
|
// If we are in C++11, lex the optional ud-suffix.
|
|
if (getLangOpts().CPlusPlus)
|
|
CurPtr = LexUDSuffix(Result, CurPtr, false);
|
|
|
|
// If a nul character existed in the character, warn about it.
|
|
if (NulCharacter && !isLexingRawMode())
|
|
Diag(NulCharacter, diag::null_in_char_or_string) << 0;
|
|
|
|
// Update the location of token as well as BufferPtr.
|
|
const char *TokStart = BufferPtr;
|
|
FormTokenWithChars(Result, CurPtr, Kind);
|
|
Result.setLiteralData(TokStart);
|
|
return true;
|
|
}
|
|
|
|
/// SkipWhitespace - Efficiently skip over a series of whitespace characters.
|
|
/// Update BufferPtr to point to the next non-whitespace character and return.
|
|
///
|
|
/// This method forms a token and returns true if KeepWhitespaceMode is enabled.
|
|
bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr,
|
|
bool &TokAtPhysicalStartOfLine) {
|
|
// Whitespace - Skip it, then return the token after the whitespace.
|
|
bool SawNewline = isVerticalWhitespace(CurPtr[-1]);
|
|
|
|
unsigned char Char = *CurPtr;
|
|
|
|
// Skip consecutive spaces efficiently.
|
|
while (true) {
|
|
// Skip horizontal whitespace very aggressively.
|
|
while (isHorizontalWhitespace(Char))
|
|
Char = *++CurPtr;
|
|
|
|
// Otherwise if we have something other than whitespace, we're done.
|
|
if (!isVerticalWhitespace(Char))
|
|
break;
|
|
|
|
if (ParsingPreprocessorDirective) {
|
|
// End of preprocessor directive line, let LexTokenInternal handle this.
|
|
BufferPtr = CurPtr;
|
|
return false;
|
|
}
|
|
|
|
// OK, but handle newline.
|
|
SawNewline = true;
|
|
Char = *++CurPtr;
|
|
}
|
|
|
|
// If the client wants us to return whitespace, return it now.
|
|
if (isKeepWhitespaceMode()) {
|
|
FormTokenWithChars(Result, CurPtr, tok::unknown);
|
|
if (SawNewline) {
|
|
IsAtStartOfLine = true;
|
|
IsAtPhysicalStartOfLine = true;
|
|
}
|
|
// FIXME: The next token will not have LeadingSpace set.
|
|
return true;
|
|
}
|
|
|
|
// If this isn't immediately after a newline, there is leading space.
|
|
char PrevChar = CurPtr[-1];
|
|
bool HasLeadingSpace = !isVerticalWhitespace(PrevChar);
|
|
|
|
Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
|
|
if (SawNewline) {
|
|
Result.setFlag(Token::StartOfLine);
|
|
TokAtPhysicalStartOfLine = true;
|
|
}
|
|
|
|
BufferPtr = CurPtr;
|
|
return false;
|
|
}
|
|
|
|
/// We have just read the // characters from input. Skip until we find the
|
|
/// newline character that terminates the comment. Then update BufferPtr and
|
|
/// return.
|
|
///
|
|
/// If we're in KeepCommentMode or any CommentHandler has inserted
|
|
/// some tokens, this will store the first token and return true.
|
|
bool Lexer::SkipLineComment(Token &Result, const char *CurPtr,
|
|
bool &TokAtPhysicalStartOfLine) {
|
|
// If Line comments aren't explicitly enabled for this language, emit an
|
|
// extension warning.
|
|
if (!LangOpts.LineComment && !isLexingRawMode()) {
|
|
Diag(BufferPtr, diag::ext_line_comment);
|
|
|
|
// Mark them enabled so we only emit one warning for this translation
|
|
// unit.
|
|
LangOpts.LineComment = true;
|
|
}
|
|
|
|
// Scan over the body of the comment. The common case, when scanning, is that
|
|
// the comment contains normal ascii characters with nothing interesting in
|
|
// them. As such, optimize for this case with the inner loop.
|
|
//
|
|
// This loop terminates with CurPtr pointing at the newline (or end of buffer)
|
|
// character that ends the line comment.
|
|
char C;
|
|
while (true) {
|
|
C = *CurPtr;
|
|
// Skip over characters in the fast loop.
|
|
while (C != 0 && // Potentially EOF.
|
|
C != '\n' && C != '\r') // Newline or DOS-style newline.
|
|
C = *++CurPtr;
|
|
|
|
const char *NextLine = CurPtr;
|
|
if (C != 0) {
|
|
// We found a newline, see if it's escaped.
|
|
const char *EscapePtr = CurPtr-1;
|
|
bool HasSpace = false;
|
|
while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace.
|
|
--EscapePtr;
|
|
HasSpace = true;
|
|
}
|
|
|
|
if (*EscapePtr == '\\')
|
|
// Escaped newline.
|
|
CurPtr = EscapePtr;
|
|
else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' &&
|
|
EscapePtr[-2] == '?' && LangOpts.Trigraphs)
|
|
// Trigraph-escaped newline.
|
|
CurPtr = EscapePtr-2;
|
|
else
|
|
break; // This is a newline, we're done.
|
|
|
|
// If there was space between the backslash and newline, warn about it.
|
|
if (HasSpace && !isLexingRawMode())
|
|
Diag(EscapePtr, diag::backslash_newline_space);
|
|
}
|
|
|
|
// Otherwise, this is a hard case. Fall back on getAndAdvanceChar to
|
|
// properly decode the character. Read it in raw mode to avoid emitting
|
|
// diagnostics about things like trigraphs. If we see an escaped newline,
|
|
// we'll handle it below.
|
|
const char *OldPtr = CurPtr;
|
|
bool OldRawMode = isLexingRawMode();
|
|
LexingRawMode = true;
|
|
C = getAndAdvanceChar(CurPtr, Result);
|
|
LexingRawMode = OldRawMode;
|
|
|
|
// If we only read only one character, then no special handling is needed.
|
|
// We're done and can skip forward to the newline.
|
|
if (C != 0 && CurPtr == OldPtr+1) {
|
|
CurPtr = NextLine;
|
|
break;
|
|
}
|
|
|
|
// If we read multiple characters, and one of those characters was a \r or
|
|
// \n, then we had an escaped newline within the comment. Emit diagnostic
|
|
// unless the next line is also a // comment.
|
|
if (CurPtr != OldPtr + 1 && C != '/' &&
|
|
(CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) {
|
|
for (; OldPtr != CurPtr; ++OldPtr)
|
|
if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
|
|
// Okay, we found a // comment that ends in a newline, if the next
|
|
// line is also a // comment, but has spaces, don't emit a diagnostic.
|
|
if (isWhitespace(C)) {
|
|
const char *ForwardPtr = CurPtr;
|
|
while (isWhitespace(*ForwardPtr)) // Skip whitespace.
|
|
++ForwardPtr;
|
|
if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
|
|
break;
|
|
}
|
|
|
|
if (!isLexingRawMode())
|
|
Diag(OldPtr-1, diag::ext_multi_line_line_comment);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) {
|
|
--CurPtr;
|
|
break;
|
|
}
|
|
|
|
if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
|
|
PP->CodeCompleteNaturalLanguage();
|
|
cutOffLexing();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Found but did not consume the newline. Notify comment handlers about the
|
|
// comment unless we're in a #if 0 block.
|
|
if (PP && !isLexingRawMode() &&
|
|
PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
|
|
getSourceLocation(CurPtr)))) {
|
|
BufferPtr = CurPtr;
|
|
return true; // A token has to be returned.
|
|
}
|
|
|
|
// If we are returning comments as tokens, return this comment as a token.
|
|
if (inKeepCommentMode())
|
|
return SaveLineComment(Result, CurPtr);
|
|
|
|
// If we are inside a preprocessor directive and we see the end of line,
|
|
// return immediately, so that the lexer can return this as an EOD token.
|
|
if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
|
|
BufferPtr = CurPtr;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, eat the \n character. We don't care if this is a \n\r or
|
|
// \r\n sequence. This is an efficiency hack (because we know the \n can't
|
|
// contribute to another token), it isn't needed for correctness. Note that
|
|
// this is ok even in KeepWhitespaceMode, because we would have returned the
|
|
/// comment above in that mode.
|
|
++CurPtr;
|
|
|
|
// The next returned token is at the start of the line.
|
|
Result.setFlag(Token::StartOfLine);
|
|
TokAtPhysicalStartOfLine = true;
|
|
// No leading whitespace seen so far.
|
|
Result.clearFlag(Token::LeadingSpace);
|
|
BufferPtr = CurPtr;
|
|
return false;
|
|
}
|
|
|
|
/// If in save-comment mode, package up this Line comment in an appropriate
|
|
/// way and return it.
|
|
bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) {
|
|
// If we're not in a preprocessor directive, just return the // comment
|
|
// directly.
|
|
FormTokenWithChars(Result, CurPtr, tok::comment);
|
|
|
|
if (!ParsingPreprocessorDirective || LexingRawMode)
|
|
return true;
|
|
|
|
// If this Line-style comment is in a macro definition, transmogrify it into
|
|
// a C-style block comment.
|
|
bool Invalid = false;
|
|
std::string Spelling = PP->getSpelling(Result, &Invalid);
|
|
if (Invalid)
|
|
return true;
|
|
|
|
assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?");
|
|
Spelling[1] = '*'; // Change prefix to "/*".
|
|
Spelling += "*/"; // add suffix.
|
|
|
|
Result.setKind(tok::comment);
|
|
PP->CreateString(Spelling, Result,
|
|
Result.getLocation(), Result.getLocation());
|
|
return true;
|
|
}
|
|
|
|
/// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
|
|
/// character (either \\n or \\r) is part of an escaped newline sequence. Issue
|
|
/// a diagnostic if so. We know that the newline is inside of a block comment.
|
|
static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr,
|
|
Lexer *L) {
|
|
assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
|
|
|
|
// Back up off the newline.
|
|
--CurPtr;
|
|
|
|
// If this is a two-character newline sequence, skip the other character.
|
|
if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
|
|
// \n\n or \r\r -> not escaped newline.
|
|
if (CurPtr[0] == CurPtr[1])
|
|
return false;
|
|
// \n\r or \r\n -> skip the newline.
|
|
--CurPtr;
|
|
}
|
|
|
|
// If we have horizontal whitespace, skip over it. We allow whitespace
|
|
// between the slash and newline.
|
|
bool HasSpace = false;
|
|
while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
|
|
--CurPtr;
|
|
HasSpace = true;
|
|
}
|
|
|
|
// If we have a slash, we know this is an escaped newline.
|
|
if (*CurPtr == '\\') {
|
|
if (CurPtr[-1] != '*') return false;
|
|
} else {
|
|
// It isn't a slash, is it the ?? / trigraph?
|
|
if (CurPtr[0] != '/' || CurPtr[-1] != '?' || CurPtr[-2] != '?' ||
|
|
CurPtr[-3] != '*')
|
|
return false;
|
|
|
|
// This is the trigraph ending the comment. Emit a stern warning!
|
|
CurPtr -= 2;
|
|
|
|
// If no trigraphs are enabled, warn that we ignored this trigraph and
|
|
// ignore this * character.
|
|
if (!L->getLangOpts().Trigraphs) {
|
|
if (!L->isLexingRawMode())
|
|
L->Diag(CurPtr, diag::trigraph_ignored_block_comment);
|
|
return false;
|
|
}
|
|
if (!L->isLexingRawMode())
|
|
L->Diag(CurPtr, diag::trigraph_ends_block_comment);
|
|
}
|
|
|
|
// Warn about having an escaped newline between the */ characters.
|
|
if (!L->isLexingRawMode())
|
|
L->Diag(CurPtr, diag::escaped_newline_block_comment_end);
|
|
|
|
// If there was space between the backslash and newline, warn about it.
|
|
if (HasSpace && !L->isLexingRawMode())
|
|
L->Diag(CurPtr, diag::backslash_newline_space);
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
#include <emmintrin.h>
|
|
#elif __ALTIVEC__
|
|
#include <altivec.h>
|
|
#undef bool
|
|
#endif
|
|
|
|
/// We have just read from input the / and * characters that started a comment.
|
|
/// Read until we find the * and / characters that terminate the comment.
|
|
/// Note that we don't bother decoding trigraphs or escaped newlines in block
|
|
/// comments, because they cannot cause the comment to end. The only thing
|
|
/// that can happen is the comment could end with an escaped newline between
|
|
/// the terminating * and /.
|
|
///
|
|
/// If we're in KeepCommentMode or any CommentHandler has inserted
|
|
/// some tokens, this will store the first token and return true.
|
|
bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr,
|
|
bool &TokAtPhysicalStartOfLine) {
|
|
// Scan one character past where we should, looking for a '/' character. Once
|
|
// we find it, check to see if it was preceded by a *. This common
|
|
// optimization helps people who like to put a lot of * characters in their
|
|
// comments.
|
|
|
|
// The first character we get with newlines and trigraphs skipped to handle
|
|
// the degenerate /*/ case below correctly if the * has an escaped newline
|
|
// after it.
|
|
unsigned CharSize;
|
|
unsigned char C = getCharAndSize(CurPtr, CharSize);
|
|
CurPtr += CharSize;
|
|
if (C == 0 && CurPtr == BufferEnd+1) {
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::err_unterminated_block_comment);
|
|
--CurPtr;
|
|
|
|
// KeepWhitespaceMode should return this broken comment as a token. Since
|
|
// it isn't a well formed comment, just return it as an 'unknown' token.
|
|
if (isKeepWhitespaceMode()) {
|
|
FormTokenWithChars(Result, CurPtr, tok::unknown);
|
|
return true;
|
|
}
|
|
|
|
BufferPtr = CurPtr;
|
|
return false;
|
|
}
|
|
|
|
// Check to see if the first character after the '/*' is another /. If so,
|
|
// then this slash does not end the block comment, it is part of it.
|
|
if (C == '/')
|
|
C = *CurPtr++;
|
|
|
|
while (true) {
|
|
// Skip over all non-interesting characters until we find end of buffer or a
|
|
// (probably ending) '/' character.
|
|
if (CurPtr + 24 < BufferEnd &&
|
|
// If there is a code-completion point avoid the fast scan because it
|
|
// doesn't check for '\0'.
|
|
!(PP && PP->getCodeCompletionFileLoc() == FileLoc)) {
|
|
// While not aligned to a 16-byte boundary.
|
|
while (C != '/' && ((intptr_t)CurPtr & 0x0F) != 0)
|
|
C = *CurPtr++;
|
|
|
|
if (C == '/') goto FoundSlash;
|
|
|
|
#ifdef __SSE2__
|
|
__m128i Slashes = _mm_set1_epi8('/');
|
|
while (CurPtr+16 <= BufferEnd) {
|
|
int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr,
|
|
Slashes));
|
|
if (cmp != 0) {
|
|
// Adjust the pointer to point directly after the first slash. It's
|
|
// not necessary to set C here, it will be overwritten at the end of
|
|
// the outer loop.
|
|
CurPtr += llvm::countTrailingZeros<unsigned>(cmp) + 1;
|
|
goto FoundSlash;
|
|
}
|
|
CurPtr += 16;
|
|
}
|
|
#elif __ALTIVEC__
|
|
__vector unsigned char Slashes = {
|
|
'/', '/', '/', '/', '/', '/', '/', '/',
|
|
'/', '/', '/', '/', '/', '/', '/', '/'
|
|
};
|
|
while (CurPtr+16 <= BufferEnd &&
|
|
!vec_any_eq(*(const vector unsigned char*)CurPtr, Slashes))
|
|
CurPtr += 16;
|
|
#else
|
|
// Scan for '/' quickly. Many block comments are very large.
|
|
while (CurPtr[0] != '/' &&
|
|
CurPtr[1] != '/' &&
|
|
CurPtr[2] != '/' &&
|
|
CurPtr[3] != '/' &&
|
|
CurPtr+4 < BufferEnd) {
|
|
CurPtr += 4;
|
|
}
|
|
#endif
|
|
|
|
// It has to be one of the bytes scanned, increment to it and read one.
|
|
C = *CurPtr++;
|
|
}
|
|
|
|
// Loop to scan the remainder.
|
|
while (C != '/' && C != '\0')
|
|
C = *CurPtr++;
|
|
|
|
if (C == '/') {
|
|
FoundSlash:
|
|
if (CurPtr[-2] == '*') // We found the final */. We're done!
|
|
break;
|
|
|
|
if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
|
|
if (isEndOfBlockCommentWithEscapedNewLine(CurPtr-2, this)) {
|
|
// We found the final */, though it had an escaped newline between the
|
|
// * and /. We're done!
|
|
break;
|
|
}
|
|
}
|
|
if (CurPtr[0] == '*' && CurPtr[1] != '/') {
|
|
// If this is a /* inside of the comment, emit a warning. Don't do this
|
|
// if this is a /*/, which will end the comment. This misses cases with
|
|
// embedded escaped newlines, but oh well.
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr-1, diag::warn_nested_block_comment);
|
|
}
|
|
} else if (C == 0 && CurPtr == BufferEnd+1) {
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::err_unterminated_block_comment);
|
|
// Note: the user probably forgot a */. We could continue immediately
|
|
// after the /*, but this would involve lexing a lot of what really is the
|
|
// comment, which surely would confuse the parser.
|
|
--CurPtr;
|
|
|
|
// KeepWhitespaceMode should return this broken comment as a token. Since
|
|
// it isn't a well formed comment, just return it as an 'unknown' token.
|
|
if (isKeepWhitespaceMode()) {
|
|
FormTokenWithChars(Result, CurPtr, tok::unknown);
|
|
return true;
|
|
}
|
|
|
|
BufferPtr = CurPtr;
|
|
return false;
|
|
} else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
|
|
PP->CodeCompleteNaturalLanguage();
|
|
cutOffLexing();
|
|
return false;
|
|
}
|
|
|
|
C = *CurPtr++;
|
|
}
|
|
|
|
// Notify comment handlers about the comment unless we're in a #if 0 block.
|
|
if (PP && !isLexingRawMode() &&
|
|
PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
|
|
getSourceLocation(CurPtr)))) {
|
|
BufferPtr = CurPtr;
|
|
return true; // A token has to be returned.
|
|
}
|
|
|
|
// If we are returning comments as tokens, return this comment as a token.
|
|
if (inKeepCommentMode()) {
|
|
FormTokenWithChars(Result, CurPtr, tok::comment);
|
|
return true;
|
|
}
|
|
|
|
// It is common for the tokens immediately after a /**/ comment to be
|
|
// whitespace. Instead of going through the big switch, handle it
|
|
// efficiently now. This is safe even in KeepWhitespaceMode because we would
|
|
// have already returned above with the comment as a token.
|
|
if (isHorizontalWhitespace(*CurPtr)) {
|
|
SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine);
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, just return so that the next character will be lexed as a token.
|
|
BufferPtr = CurPtr;
|
|
Result.setFlag(Token::LeadingSpace);
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primary Lexing Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReadToEndOfLine - Read the rest of the current preprocessor line as an
|
|
/// uninterpreted string. This switches the lexer out of directive mode.
|
|
void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) {
|
|
assert(ParsingPreprocessorDirective && ParsingFilename == false &&
|
|
"Must be in a preprocessing directive!");
|
|
Token Tmp;
|
|
|
|
// CurPtr - Cache BufferPtr in an automatic variable.
|
|
const char *CurPtr = BufferPtr;
|
|
while (true) {
|
|
char Char = getAndAdvanceChar(CurPtr, Tmp);
|
|
switch (Char) {
|
|
default:
|
|
if (Result)
|
|
Result->push_back(Char);
|
|
break;
|
|
case 0: // Null.
|
|
// Found end of file?
|
|
if (CurPtr-1 != BufferEnd) {
|
|
if (isCodeCompletionPoint(CurPtr-1)) {
|
|
PP->CodeCompleteNaturalLanguage();
|
|
cutOffLexing();
|
|
return;
|
|
}
|
|
|
|
// Nope, normal character, continue.
|
|
if (Result)
|
|
Result->push_back(Char);
|
|
break;
|
|
}
|
|
// FALL THROUGH.
|
|
LLVM_FALLTHROUGH;
|
|
case '\r':
|
|
case '\n':
|
|
// Okay, we found the end of the line. First, back up past the \0, \r, \n.
|
|
assert(CurPtr[-1] == Char && "Trigraphs for newline?");
|
|
BufferPtr = CurPtr-1;
|
|
|
|
// Next, lex the character, which should handle the EOD transition.
|
|
Lex(Tmp);
|
|
if (Tmp.is(tok::code_completion)) {
|
|
if (PP)
|
|
PP->CodeCompleteNaturalLanguage();
|
|
Lex(Tmp);
|
|
}
|
|
assert(Tmp.is(tok::eod) && "Unexpected token!");
|
|
|
|
// Finally, we're done;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// LexEndOfFile - CurPtr points to the end of this file. Handle this
|
|
/// condition, reporting diagnostics and handling other edge cases as required.
|
|
/// This returns true if Result contains a token, false if PP.Lex should be
|
|
/// called again.
|
|
bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) {
|
|
// If we hit the end of the file while parsing a preprocessor directive,
|
|
// end the preprocessor directive first. The next token returned will
|
|
// then be the end of file.
|
|
if (ParsingPreprocessorDirective) {
|
|
// Done parsing the "line".
|
|
ParsingPreprocessorDirective = false;
|
|
// Update the location of token as well as BufferPtr.
|
|
FormTokenWithChars(Result, CurPtr, tok::eod);
|
|
|
|
// Restore comment saving mode, in case it was disabled for directive.
|
|
if (PP)
|
|
resetExtendedTokenMode();
|
|
return true; // Have a token.
|
|
}
|
|
|
|
// If we are in raw mode, return this event as an EOF token. Let the caller
|
|
// that put us in raw mode handle the event.
|
|
if (isLexingRawMode()) {
|
|
Result.startToken();
|
|
BufferPtr = BufferEnd;
|
|
FormTokenWithChars(Result, BufferEnd, tok::eof);
|
|
return true;
|
|
}
|
|
|
|
if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) {
|
|
PP->setRecordedPreambleConditionalStack(ConditionalStack);
|
|
ConditionalStack.clear();
|
|
}
|
|
|
|
// Issue diagnostics for unterminated #if and missing newline.
|
|
|
|
// If we are in a #if directive, emit an error.
|
|
while (!ConditionalStack.empty()) {
|
|
if (PP->getCodeCompletionFileLoc() != FileLoc)
|
|
PP->Diag(ConditionalStack.back().IfLoc,
|
|
diag::err_pp_unterminated_conditional);
|
|
ConditionalStack.pop_back();
|
|
}
|
|
|
|
// C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue
|
|
// a pedwarn.
|
|
if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) {
|
|
DiagnosticsEngine &Diags = PP->getDiagnostics();
|
|
SourceLocation EndLoc = getSourceLocation(BufferEnd);
|
|
unsigned DiagID;
|
|
|
|
if (LangOpts.CPlusPlus11) {
|
|
// C++11 [lex.phases] 2.2 p2
|
|
// Prefer the C++98 pedantic compatibility warning over the generic,
|
|
// non-extension, user-requested "missing newline at EOF" warning.
|
|
if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) {
|
|
DiagID = diag::warn_cxx98_compat_no_newline_eof;
|
|
} else {
|
|
DiagID = diag::warn_no_newline_eof;
|
|
}
|
|
} else {
|
|
DiagID = diag::ext_no_newline_eof;
|
|
}
|
|
|
|
Diag(BufferEnd, DiagID)
|
|
<< FixItHint::CreateInsertion(EndLoc, "\n");
|
|
}
|
|
|
|
BufferPtr = CurPtr;
|
|
|
|
// Finally, let the preprocessor handle this.
|
|
return PP->HandleEndOfFile(Result, isPragmaLexer());
|
|
}
|
|
|
|
/// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
|
|
/// the specified lexer will return a tok::l_paren token, 0 if it is something
|
|
/// else and 2 if there are no more tokens in the buffer controlled by the
|
|
/// lexer.
|
|
unsigned Lexer::isNextPPTokenLParen() {
|
|
assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
|
|
|
|
// Switch to 'skipping' mode. This will ensure that we can lex a token
|
|
// without emitting diagnostics, disables macro expansion, and will cause EOF
|
|
// to return an EOF token instead of popping the include stack.
|
|
LexingRawMode = true;
|
|
|
|
// Save state that can be changed while lexing so that we can restore it.
|
|
const char *TmpBufferPtr = BufferPtr;
|
|
bool inPPDirectiveMode = ParsingPreprocessorDirective;
|
|
bool atStartOfLine = IsAtStartOfLine;
|
|
bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
|
|
bool leadingSpace = HasLeadingSpace;
|
|
|
|
Token Tok;
|
|
Lex(Tok);
|
|
|
|
// Restore state that may have changed.
|
|
BufferPtr = TmpBufferPtr;
|
|
ParsingPreprocessorDirective = inPPDirectiveMode;
|
|
HasLeadingSpace = leadingSpace;
|
|
IsAtStartOfLine = atStartOfLine;
|
|
IsAtPhysicalStartOfLine = atPhysicalStartOfLine;
|
|
|
|
// Restore the lexer back to non-skipping mode.
|
|
LexingRawMode = false;
|
|
|
|
if (Tok.is(tok::eof))
|
|
return 2;
|
|
return Tok.is(tok::l_paren);
|
|
}
|
|
|
|
/// Find the end of a version control conflict marker.
|
|
static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd,
|
|
ConflictMarkerKind CMK) {
|
|
const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>";
|
|
size_t TermLen = CMK == CMK_Perforce ? 5 : 7;
|
|
auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen);
|
|
size_t Pos = RestOfBuffer.find(Terminator);
|
|
while (Pos != StringRef::npos) {
|
|
// Must occur at start of line.
|
|
if (Pos == 0 ||
|
|
(RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) {
|
|
RestOfBuffer = RestOfBuffer.substr(Pos+TermLen);
|
|
Pos = RestOfBuffer.find(Terminator);
|
|
continue;
|
|
}
|
|
return RestOfBuffer.data()+Pos;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// IsStartOfConflictMarker - If the specified pointer is the start of a version
|
|
/// control conflict marker like '<<<<<<<', recognize it as such, emit an error
|
|
/// and recover nicely. This returns true if it is a conflict marker and false
|
|
/// if not.
|
|
bool Lexer::IsStartOfConflictMarker(const char *CurPtr) {
|
|
// Only a conflict marker if it starts at the beginning of a line.
|
|
if (CurPtr != BufferStart &&
|
|
CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
|
|
return false;
|
|
|
|
// Check to see if we have <<<<<<< or >>>>.
|
|
if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") &&
|
|
!StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> "))
|
|
return false;
|
|
|
|
// If we have a situation where we don't care about conflict markers, ignore
|
|
// it.
|
|
if (CurrentConflictMarkerState || isLexingRawMode())
|
|
return false;
|
|
|
|
ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce;
|
|
|
|
// Check to see if there is an ending marker somewhere in the buffer at the
|
|
// start of a line to terminate this conflict marker.
|
|
if (FindConflictEnd(CurPtr, BufferEnd, Kind)) {
|
|
// We found a match. We are really in a conflict marker.
|
|
// Diagnose this, and ignore to the end of line.
|
|
Diag(CurPtr, diag::err_conflict_marker);
|
|
CurrentConflictMarkerState = Kind;
|
|
|
|
// Skip ahead to the end of line. We know this exists because the
|
|
// end-of-conflict marker starts with \r or \n.
|
|
while (*CurPtr != '\r' && *CurPtr != '\n') {
|
|
assert(CurPtr != BufferEnd && "Didn't find end of line");
|
|
++CurPtr;
|
|
}
|
|
BufferPtr = CurPtr;
|
|
return true;
|
|
}
|
|
|
|
// No end of conflict marker found.
|
|
return false;
|
|
}
|
|
|
|
/// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if
|
|
/// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it
|
|
/// is the end of a conflict marker. Handle it by ignoring up until the end of
|
|
/// the line. This returns true if it is a conflict marker and false if not.
|
|
bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) {
|
|
// Only a conflict marker if it starts at the beginning of a line.
|
|
if (CurPtr != BufferStart &&
|
|
CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
|
|
return false;
|
|
|
|
// If we have a situation where we don't care about conflict markers, ignore
|
|
// it.
|
|
if (!CurrentConflictMarkerState || isLexingRawMode())
|
|
return false;
|
|
|
|
// Check to see if we have the marker (4 characters in a row).
|
|
for (unsigned i = 1; i != 4; ++i)
|
|
if (CurPtr[i] != CurPtr[0])
|
|
return false;
|
|
|
|
// If we do have it, search for the end of the conflict marker. This could
|
|
// fail if it got skipped with a '#if 0' or something. Note that CurPtr might
|
|
// be the end of conflict marker.
|
|
if (const char *End = FindConflictEnd(CurPtr, BufferEnd,
|
|
CurrentConflictMarkerState)) {
|
|
CurPtr = End;
|
|
|
|
// Skip ahead to the end of line.
|
|
while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n')
|
|
++CurPtr;
|
|
|
|
BufferPtr = CurPtr;
|
|
|
|
// No longer in the conflict marker.
|
|
CurrentConflictMarkerState = CMK_None;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const char *findPlaceholderEnd(const char *CurPtr,
|
|
const char *BufferEnd) {
|
|
if (CurPtr == BufferEnd)
|
|
return nullptr;
|
|
BufferEnd -= 1; // Scan until the second last character.
|
|
for (; CurPtr != BufferEnd; ++CurPtr) {
|
|
if (CurPtr[0] == '#' && CurPtr[1] == '>')
|
|
return CurPtr + 2;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) {
|
|
assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!");
|
|
if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode)
|
|
return false;
|
|
const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd);
|
|
if (!End)
|
|
return false;
|
|
const char *Start = CurPtr - 1;
|
|
if (!LangOpts.AllowEditorPlaceholders)
|
|
Diag(Start, diag::err_placeholder_in_source);
|
|
Result.startToken();
|
|
FormTokenWithChars(Result, End, tok::raw_identifier);
|
|
Result.setRawIdentifierData(Start);
|
|
PP->LookUpIdentifierInfo(Result);
|
|
Result.setFlag(Token::IsEditorPlaceholder);
|
|
BufferPtr = End;
|
|
return true;
|
|
}
|
|
|
|
bool Lexer::isCodeCompletionPoint(const char *CurPtr) const {
|
|
if (PP && PP->isCodeCompletionEnabled()) {
|
|
SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart);
|
|
return Loc == PP->getCodeCompletionLoc();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc,
|
|
Token *Result) {
|
|
unsigned CharSize;
|
|
char Kind = getCharAndSize(StartPtr, CharSize);
|
|
|
|
unsigned NumHexDigits;
|
|
if (Kind == 'u')
|
|
NumHexDigits = 4;
|
|
else if (Kind == 'U')
|
|
NumHexDigits = 8;
|
|
else
|
|
return 0;
|
|
|
|
if (!LangOpts.CPlusPlus && !LangOpts.C99) {
|
|
if (Result && !isLexingRawMode())
|
|
Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89);
|
|
return 0;
|
|
}
|
|
|
|
const char *CurPtr = StartPtr + CharSize;
|
|
const char *KindLoc = &CurPtr[-1];
|
|
|
|
uint32_t CodePoint = 0;
|
|
for (unsigned i = 0; i < NumHexDigits; ++i) {
|
|
char C = getCharAndSize(CurPtr, CharSize);
|
|
|
|
unsigned Value = llvm::hexDigitValue(C);
|
|
if (Value == -1U) {
|
|
if (Result && !isLexingRawMode()) {
|
|
if (i == 0) {
|
|
Diag(BufferPtr, diag::warn_ucn_escape_no_digits)
|
|
<< StringRef(KindLoc, 1);
|
|
} else {
|
|
Diag(BufferPtr, diag::warn_ucn_escape_incomplete);
|
|
|
|
// If the user wrote \U1234, suggest a fixit to \u.
|
|
if (i == 4 && NumHexDigits == 8) {
|
|
CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1);
|
|
Diag(KindLoc, diag::note_ucn_four_not_eight)
|
|
<< FixItHint::CreateReplacement(URange, "u");
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
CodePoint <<= 4;
|
|
CodePoint += Value;
|
|
|
|
CurPtr += CharSize;
|
|
}
|
|
|
|
if (Result) {
|
|
Result->setFlag(Token::HasUCN);
|
|
if (CurPtr - StartPtr == (ptrdiff_t)NumHexDigits + 2)
|
|
StartPtr = CurPtr;
|
|
else
|
|
while (StartPtr != CurPtr)
|
|
(void)getAndAdvanceChar(StartPtr, *Result);
|
|
} else {
|
|
StartPtr = CurPtr;
|
|
}
|
|
|
|
// Don't apply C family restrictions to UCNs in assembly mode
|
|
if (LangOpts.AsmPreprocessor)
|
|
return CodePoint;
|
|
|
|
// C99 6.4.3p2: A universal character name shall not specify a character whose
|
|
// short identifier is less than 00A0 other than 0024 ($), 0040 (@), or
|
|
// 0060 (`), nor one in the range D800 through DFFF inclusive.)
|
|
// C++11 [lex.charset]p2: If the hexadecimal value for a
|
|
// universal-character-name corresponds to a surrogate code point (in the
|
|
// range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally,
|
|
// if the hexadecimal value for a universal-character-name outside the
|
|
// c-char-sequence, s-char-sequence, or r-char-sequence of a character or
|
|
// string literal corresponds to a control character (in either of the
|
|
// ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the
|
|
// basic source character set, the program is ill-formed.
|
|
if (CodePoint < 0xA0) {
|
|
if (CodePoint == 0x24 || CodePoint == 0x40 || CodePoint == 0x60)
|
|
return CodePoint;
|
|
|
|
// We don't use isLexingRawMode() here because we need to warn about bad
|
|
// UCNs even when skipping preprocessing tokens in a #if block.
|
|
if (Result && PP) {
|
|
if (CodePoint < 0x20 || CodePoint >= 0x7F)
|
|
Diag(BufferPtr, diag::err_ucn_control_character);
|
|
else {
|
|
char C = static_cast<char>(CodePoint);
|
|
Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
} else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) {
|
|
// C++03 allows UCNs representing surrogate characters. C99 and C++11 don't.
|
|
// We don't use isLexingRawMode() here because we need to diagnose bad
|
|
// UCNs even when skipping preprocessing tokens in a #if block.
|
|
if (Result && PP) {
|
|
if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11)
|
|
Diag(BufferPtr, diag::warn_ucn_escape_surrogate);
|
|
else
|
|
Diag(BufferPtr, diag::err_ucn_escape_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return CodePoint;
|
|
}
|
|
|
|
bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C,
|
|
const char *CurPtr) {
|
|
static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars(
|
|
UnicodeWhitespaceCharRanges);
|
|
if (!isLexingRawMode() && !PP->isPreprocessedOutput() &&
|
|
UnicodeWhitespaceChars.contains(C)) {
|
|
Diag(BufferPtr, diag::ext_unicode_whitespace)
|
|
<< makeCharRange(*this, BufferPtr, CurPtr);
|
|
|
|
Result.setFlag(Token::LeadingSpace);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Lexer::LexUnicode(Token &Result, uint32_t C, const char *CurPtr) {
|
|
if (isAllowedIDChar(C, LangOpts) && isAllowedInitiallyIDChar(C, LangOpts)) {
|
|
if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
|
|
!PP->isPreprocessedOutput()) {
|
|
maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C,
|
|
makeCharRange(*this, BufferPtr, CurPtr),
|
|
/*IsFirst=*/true);
|
|
maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C,
|
|
makeCharRange(*this, BufferPtr, CurPtr));
|
|
}
|
|
|
|
MIOpt.ReadToken();
|
|
return LexIdentifier(Result, CurPtr);
|
|
}
|
|
|
|
if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
|
|
!PP->isPreprocessedOutput() &&
|
|
!isASCII(*BufferPtr) && !isAllowedIDChar(C, LangOpts)) {
|
|
// Non-ASCII characters tend to creep into source code unintentionally.
|
|
// Instead of letting the parser complain about the unknown token,
|
|
// just drop the character.
|
|
// Note that we can /only/ do this when the non-ASCII character is actually
|
|
// spelled as Unicode, not written as a UCN. The standard requires that
|
|
// we not throw away any possible preprocessor tokens, but there's a
|
|
// loophole in the mapping of Unicode characters to basic character set
|
|
// characters that allows us to map these particular characters to, say,
|
|
// whitespace.
|
|
Diag(BufferPtr, diag::err_non_ascii)
|
|
<< FixItHint::CreateRemoval(makeCharRange(*this, BufferPtr, CurPtr));
|
|
|
|
BufferPtr = CurPtr;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we have an explicit UCN or a character that's unlikely to show
|
|
// up by accident.
|
|
MIOpt.ReadToken();
|
|
FormTokenWithChars(Result, CurPtr, tok::unknown);
|
|
return true;
|
|
}
|
|
|
|
void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
|
|
IsAtStartOfLine = Result.isAtStartOfLine();
|
|
HasLeadingSpace = Result.hasLeadingSpace();
|
|
HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro();
|
|
// Note that this doesn't affect IsAtPhysicalStartOfLine.
|
|
}
|
|
|
|
bool Lexer::Lex(Token &Result) {
|
|
// Start a new token.
|
|
Result.startToken();
|
|
|
|
// Set up misc whitespace flags for LexTokenInternal.
|
|
if (IsAtStartOfLine) {
|
|
Result.setFlag(Token::StartOfLine);
|
|
IsAtStartOfLine = false;
|
|
}
|
|
|
|
if (HasLeadingSpace) {
|
|
Result.setFlag(Token::LeadingSpace);
|
|
HasLeadingSpace = false;
|
|
}
|
|
|
|
if (HasLeadingEmptyMacro) {
|
|
Result.setFlag(Token::LeadingEmptyMacro);
|
|
HasLeadingEmptyMacro = false;
|
|
}
|
|
|
|
bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
|
|
IsAtPhysicalStartOfLine = false;
|
|
bool isRawLex = isLexingRawMode();
|
|
(void) isRawLex;
|
|
bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine);
|
|
// (After the LexTokenInternal call, the lexer might be destroyed.)
|
|
assert((returnedToken || !isRawLex) && "Raw lex must succeed");
|
|
return returnedToken;
|
|
}
|
|
|
|
/// LexTokenInternal - This implements a simple C family lexer. It is an
|
|
/// extremely performance critical piece of code. This assumes that the buffer
|
|
/// has a null character at the end of the file. This returns a preprocessing
|
|
/// token, not a normal token, as such, it is an internal interface. It assumes
|
|
/// that the Flags of result have been cleared before calling this.
|
|
bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) {
|
|
LexNextToken:
|
|
// New token, can't need cleaning yet.
|
|
Result.clearFlag(Token::NeedsCleaning);
|
|
Result.setIdentifierInfo(nullptr);
|
|
|
|
// CurPtr - Cache BufferPtr in an automatic variable.
|
|
const char *CurPtr = BufferPtr;
|
|
|
|
// Small amounts of horizontal whitespace is very common between tokens.
|
|
if ((*CurPtr == ' ') || (*CurPtr == '\t')) {
|
|
++CurPtr;
|
|
while ((*CurPtr == ' ') || (*CurPtr == '\t'))
|
|
++CurPtr;
|
|
|
|
// If we are keeping whitespace and other tokens, just return what we just
|
|
// skipped. The next lexer invocation will return the token after the
|
|
// whitespace.
|
|
if (isKeepWhitespaceMode()) {
|
|
FormTokenWithChars(Result, CurPtr, tok::unknown);
|
|
// FIXME: The next token will not have LeadingSpace set.
|
|
return true;
|
|
}
|
|
|
|
BufferPtr = CurPtr;
|
|
Result.setFlag(Token::LeadingSpace);
|
|
}
|
|
|
|
unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below.
|
|
|
|
// Read a character, advancing over it.
|
|
char Char = getAndAdvanceChar(CurPtr, Result);
|
|
tok::TokenKind Kind;
|
|
|
|
switch (Char) {
|
|
case 0: // Null.
|
|
// Found end of file?
|
|
if (CurPtr-1 == BufferEnd)
|
|
return LexEndOfFile(Result, CurPtr-1);
|
|
|
|
// Check if we are performing code completion.
|
|
if (isCodeCompletionPoint(CurPtr-1)) {
|
|
// Return the code-completion token.
|
|
Result.startToken();
|
|
FormTokenWithChars(Result, CurPtr, tok::code_completion);
|
|
return true;
|
|
}
|
|
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr-1, diag::null_in_file);
|
|
Result.setFlag(Token::LeadingSpace);
|
|
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
|
|
return true; // KeepWhitespaceMode
|
|
|
|
// We know the lexer hasn't changed, so just try again with this lexer.
|
|
// (We manually eliminate the tail call to avoid recursion.)
|
|
goto LexNextToken;
|
|
|
|
case 26: // DOS & CP/M EOF: "^Z".
|
|
// If we're in Microsoft extensions mode, treat this as end of file.
|
|
if (LangOpts.MicrosoftExt) {
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft);
|
|
return LexEndOfFile(Result, CurPtr-1);
|
|
}
|
|
|
|
// If Microsoft extensions are disabled, this is just random garbage.
|
|
Kind = tok::unknown;
|
|
break;
|
|
|
|
case '\r':
|
|
if (CurPtr[0] == '\n')
|
|
Char = getAndAdvanceChar(CurPtr, Result);
|
|
LLVM_FALLTHROUGH;
|
|
case '\n':
|
|
// If we are inside a preprocessor directive and we see the end of line,
|
|
// we know we are done with the directive, so return an EOD token.
|
|
if (ParsingPreprocessorDirective) {
|
|
// Done parsing the "line".
|
|
ParsingPreprocessorDirective = false;
|
|
|
|
// Restore comment saving mode, in case it was disabled for directive.
|
|
if (PP)
|
|
resetExtendedTokenMode();
|
|
|
|
// Since we consumed a newline, we are back at the start of a line.
|
|
IsAtStartOfLine = true;
|
|
IsAtPhysicalStartOfLine = true;
|
|
|
|
Kind = tok::eod;
|
|
break;
|
|
}
|
|
|
|
// No leading whitespace seen so far.
|
|
Result.clearFlag(Token::LeadingSpace);
|
|
|
|
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
|
|
return true; // KeepWhitespaceMode
|
|
|
|
// We only saw whitespace, so just try again with this lexer.
|
|
// (We manually eliminate the tail call to avoid recursion.)
|
|
goto LexNextToken;
|
|
case ' ':
|
|
case '\t':
|
|
case '\f':
|
|
case '\v':
|
|
SkipHorizontalWhitespace:
|
|
Result.setFlag(Token::LeadingSpace);
|
|
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
|
|
return true; // KeepWhitespaceMode
|
|
|
|
SkipIgnoredUnits:
|
|
CurPtr = BufferPtr;
|
|
|
|
// If the next token is obviously a // or /* */ comment, skip it efficiently
|
|
// too (without going through the big switch stmt).
|
|
if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() &&
|
|
LangOpts.LineComment &&
|
|
(LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) {
|
|
if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
|
|
return true; // There is a token to return.
|
|
goto SkipIgnoredUnits;
|
|
} else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) {
|
|
if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
|
|
return true; // There is a token to return.
|
|
goto SkipIgnoredUnits;
|
|
} else if (isHorizontalWhitespace(*CurPtr)) {
|
|
goto SkipHorizontalWhitespace;
|
|
}
|
|
// We only saw whitespace, so just try again with this lexer.
|
|
// (We manually eliminate the tail call to avoid recursion.)
|
|
goto LexNextToken;
|
|
|
|
// C99 6.4.4.1: Integer Constants.
|
|
// C99 6.4.4.2: Floating Constants.
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
return LexNumericConstant(Result, CurPtr);
|
|
|
|
case 'u': // Identifier (uber) or C11/C++11 UTF-8 or UTF-16 string literal
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
|
|
if (LangOpts.CPlusPlus11 || LangOpts.C11) {
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
|
|
// UTF-16 string literal
|
|
if (Char == '"')
|
|
return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
tok::utf16_string_literal);
|
|
|
|
// UTF-16 character constant
|
|
if (Char == '\'')
|
|
return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
tok::utf16_char_constant);
|
|
|
|
// UTF-16 raw string literal
|
|
if (Char == 'R' && LangOpts.CPlusPlus11 &&
|
|
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
|
|
return LexRawStringLiteral(Result,
|
|
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result),
|
|
tok::utf16_string_literal);
|
|
|
|
if (Char == '8') {
|
|
char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2);
|
|
|
|
// UTF-8 string literal
|
|
if (Char2 == '"')
|
|
return LexStringLiteral(Result,
|
|
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result),
|
|
tok::utf8_string_literal);
|
|
if (Char2 == '\'' && LangOpts.CPlusPlus17)
|
|
return LexCharConstant(
|
|
Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result),
|
|
tok::utf8_char_constant);
|
|
|
|
if (Char2 == 'R' && LangOpts.CPlusPlus11) {
|
|
unsigned SizeTmp3;
|
|
char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
|
|
// UTF-8 raw string literal
|
|
if (Char3 == '"') {
|
|
return LexRawStringLiteral(Result,
|
|
ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result),
|
|
SizeTmp3, Result),
|
|
tok::utf8_string_literal);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// treat u like the start of an identifier.
|
|
return LexIdentifier(Result, CurPtr);
|
|
|
|
case 'U': // Identifier (Uber) or C11/C++11 UTF-32 string literal
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
|
|
if (LangOpts.CPlusPlus11 || LangOpts.C11) {
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
|
|
// UTF-32 string literal
|
|
if (Char == '"')
|
|
return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
tok::utf32_string_literal);
|
|
|
|
// UTF-32 character constant
|
|
if (Char == '\'')
|
|
return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
tok::utf32_char_constant);
|
|
|
|
// UTF-32 raw string literal
|
|
if (Char == 'R' && LangOpts.CPlusPlus11 &&
|
|
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
|
|
return LexRawStringLiteral(Result,
|
|
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result),
|
|
tok::utf32_string_literal);
|
|
}
|
|
|
|
// treat U like the start of an identifier.
|
|
return LexIdentifier(Result, CurPtr);
|
|
|
|
case 'R': // Identifier or C++0x raw string literal
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
|
|
if (LangOpts.CPlusPlus11) {
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
|
|
if (Char == '"')
|
|
return LexRawStringLiteral(Result,
|
|
ConsumeChar(CurPtr, SizeTmp, Result),
|
|
tok::string_literal);
|
|
}
|
|
|
|
// treat R like the start of an identifier.
|
|
return LexIdentifier(Result, CurPtr);
|
|
|
|
case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz").
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
|
|
// Wide string literal.
|
|
if (Char == '"')
|
|
return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
tok::wide_string_literal);
|
|
|
|
// Wide raw string literal.
|
|
if (LangOpts.CPlusPlus11 && Char == 'R' &&
|
|
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
|
|
return LexRawStringLiteral(Result,
|
|
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result),
|
|
tok::wide_string_literal);
|
|
|
|
// Wide character constant.
|
|
if (Char == '\'')
|
|
return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
tok::wide_char_constant);
|
|
// FALL THROUGH, treating L like the start of an identifier.
|
|
LLVM_FALLTHROUGH;
|
|
|
|
// C99 6.4.2: Identifiers.
|
|
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
|
|
case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N':
|
|
case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/
|
|
case 'V': case 'W': case 'X': case 'Y': case 'Z':
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
|
|
case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
|
|
case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/
|
|
case 'v': case 'w': case 'x': case 'y': case 'z':
|
|
case '_':
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
return LexIdentifier(Result, CurPtr);
|
|
|
|
case '$': // $ in identifiers.
|
|
if (LangOpts.DollarIdents) {
|
|
if (!isLexingRawMode())
|
|
Diag(CurPtr-1, diag::ext_dollar_in_identifier);
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
return LexIdentifier(Result, CurPtr);
|
|
}
|
|
|
|
Kind = tok::unknown;
|
|
break;
|
|
|
|
// C99 6.4.4: Character Constants.
|
|
case '\'':
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
return LexCharConstant(Result, CurPtr, tok::char_constant);
|
|
|
|
// C99 6.4.5: String Literals.
|
|
case '"':
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
return LexStringLiteral(Result, CurPtr,
|
|
ParsingFilename ? tok::header_name
|
|
: tok::string_literal);
|
|
|
|
// C99 6.4.6: Punctuators.
|
|
case '?':
|
|
Kind = tok::question;
|
|
break;
|
|
case '[':
|
|
Kind = tok::l_square;
|
|
break;
|
|
case ']':
|
|
Kind = tok::r_square;
|
|
break;
|
|
case '(':
|
|
Kind = tok::l_paren;
|
|
break;
|
|
case ')':
|
|
Kind = tok::r_paren;
|
|
break;
|
|
case '{':
|
|
Kind = tok::l_brace;
|
|
break;
|
|
case '}':
|
|
Kind = tok::r_brace;
|
|
break;
|
|
case '.':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char >= '0' && Char <= '9') {
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
|
|
return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
|
|
} else if (LangOpts.CPlusPlus && Char == '*') {
|
|
Kind = tok::periodstar;
|
|
CurPtr += SizeTmp;
|
|
} else if (Char == '.' &&
|
|
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
|
|
Kind = tok::ellipsis;
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
} else {
|
|
Kind = tok::period;
|
|
}
|
|
break;
|
|
case '&':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '&') {
|
|
Kind = tok::ampamp;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else if (Char == '=') {
|
|
Kind = tok::ampequal;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else {
|
|
Kind = tok::amp;
|
|
}
|
|
break;
|
|
case '*':
|
|
if (getCharAndSize(CurPtr, SizeTmp) == '=') {
|
|
Kind = tok::starequal;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else {
|
|
Kind = tok::star;
|
|
}
|
|
break;
|
|
case '+':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '+') {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::plusplus;
|
|
} else if (Char == '=') {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::plusequal;
|
|
} else {
|
|
Kind = tok::plus;
|
|
}
|
|
break;
|
|
case '-':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '-') { // --
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::minusminus;
|
|
} else if (Char == '>' && LangOpts.CPlusPlus &&
|
|
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->*
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
Kind = tok::arrowstar;
|
|
} else if (Char == '>') { // ->
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::arrow;
|
|
} else if (Char == '=') { // -=
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::minusequal;
|
|
} else {
|
|
Kind = tok::minus;
|
|
}
|
|
break;
|
|
case '~':
|
|
Kind = tok::tilde;
|
|
break;
|
|
case '!':
|
|
if (getCharAndSize(CurPtr, SizeTmp) == '=') {
|
|
Kind = tok::exclaimequal;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else {
|
|
Kind = tok::exclaim;
|
|
}
|
|
break;
|
|
case '/':
|
|
// 6.4.9: Comments
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '/') { // Line comment.
|
|
// Even if Line comments are disabled (e.g. in C89 mode), we generally
|
|
// want to lex this as a comment. There is one problem with this though,
|
|
// that in one particular corner case, this can change the behavior of the
|
|
// resultant program. For example, In "foo //**/ bar", C89 would lex
|
|
// this as "foo / bar" and languages with Line comments would lex it as
|
|
// "foo". Check to see if the character after the second slash is a '*'.
|
|
// If so, we will lex that as a "/" instead of the start of a comment.
|
|
// However, we never do this if we are just preprocessing.
|
|
bool TreatAsComment = LangOpts.LineComment &&
|
|
(LangOpts.CPlusPlus || !LangOpts.TraditionalCPP);
|
|
if (!TreatAsComment)
|
|
if (!(PP && PP->isPreprocessedOutput()))
|
|
TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*';
|
|
|
|
if (TreatAsComment) {
|
|
if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
TokAtPhysicalStartOfLine))
|
|
return true; // There is a token to return.
|
|
|
|
// It is common for the tokens immediately after a // comment to be
|
|
// whitespace (indentation for the next line). Instead of going through
|
|
// the big switch, handle it efficiently now.
|
|
goto SkipIgnoredUnits;
|
|
}
|
|
}
|
|
|
|
if (Char == '*') { // /**/ comment.
|
|
if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
|
|
TokAtPhysicalStartOfLine))
|
|
return true; // There is a token to return.
|
|
|
|
// We only saw whitespace, so just try again with this lexer.
|
|
// (We manually eliminate the tail call to avoid recursion.)
|
|
goto LexNextToken;
|
|
}
|
|
|
|
if (Char == '=') {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::slashequal;
|
|
} else {
|
|
Kind = tok::slash;
|
|
}
|
|
break;
|
|
case '%':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '=') {
|
|
Kind = tok::percentequal;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else if (LangOpts.Digraphs && Char == '>') {
|
|
Kind = tok::r_brace; // '%>' -> '}'
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else if (LangOpts.Digraphs && Char == ':') {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
|
|
Kind = tok::hashhash; // '%:%:' -> '##'
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
} else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::ext_charize_microsoft);
|
|
Kind = tok::hashat;
|
|
} else { // '%:' -> '#'
|
|
// We parsed a # character. If this occurs at the start of the line,
|
|
// it's actually the start of a preprocessing directive. Callback to
|
|
// the preprocessor to handle it.
|
|
// TODO: -fpreprocessed mode??
|
|
if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
|
|
goto HandleDirective;
|
|
|
|
Kind = tok::hash;
|
|
}
|
|
} else {
|
|
Kind = tok::percent;
|
|
}
|
|
break;
|
|
case '<':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (ParsingFilename) {
|
|
return LexAngledStringLiteral(Result, CurPtr);
|
|
} else if (Char == '<') {
|
|
char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
|
|
if (After == '=') {
|
|
Kind = tok::lesslessequal;
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
} else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) {
|
|
// If this is actually a '<<<<<<<' version control conflict marker,
|
|
// recognize it as such and recover nicely.
|
|
goto LexNextToken;
|
|
} else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) {
|
|
// If this is '<<<<' and we're in a Perforce-style conflict marker,
|
|
// ignore it.
|
|
goto LexNextToken;
|
|
} else if (LangOpts.CUDA && After == '<') {
|
|
Kind = tok::lesslessless;
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
} else {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::lessless;
|
|
}
|
|
} else if (Char == '=') {
|
|
char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
|
|
if (After == '>') {
|
|
if (getLangOpts().CPlusPlus2a) {
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::warn_cxx17_compat_spaceship);
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
Kind = tok::spaceship;
|
|
break;
|
|
}
|
|
// Suggest adding a space between the '<=' and the '>' to avoid a
|
|
// change in semantics if this turns up in C++ <=17 mode.
|
|
if (getLangOpts().CPlusPlus && !isLexingRawMode()) {
|
|
Diag(BufferPtr, diag::warn_cxx2a_compat_spaceship)
|
|
<< FixItHint::CreateInsertion(
|
|
getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " ");
|
|
}
|
|
}
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::lessequal;
|
|
} else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '['
|
|
if (LangOpts.CPlusPlus11 &&
|
|
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') {
|
|
// C++0x [lex.pptoken]p3:
|
|
// Otherwise, if the next three characters are <:: and the subsequent
|
|
// character is neither : nor >, the < is treated as a preprocessor
|
|
// token by itself and not as the first character of the alternative
|
|
// token <:.
|
|
unsigned SizeTmp3;
|
|
char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
|
|
if (After != ':' && After != '>') {
|
|
Kind = tok::less;
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon);
|
|
break;
|
|
}
|
|
}
|
|
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::l_square;
|
|
} else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{'
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::l_brace;
|
|
} else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 &&
|
|
lexEditorPlaceholder(Result, CurPtr)) {
|
|
return true;
|
|
} else {
|
|
Kind = tok::less;
|
|
}
|
|
break;
|
|
case '>':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '=') {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::greaterequal;
|
|
} else if (Char == '>') {
|
|
char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
|
|
if (After == '=') {
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
Kind = tok::greatergreaterequal;
|
|
} else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) {
|
|
// If this is actually a '>>>>' conflict marker, recognize it as such
|
|
// and recover nicely.
|
|
goto LexNextToken;
|
|
} else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) {
|
|
// If this is '>>>>>>>' and we're in a conflict marker, ignore it.
|
|
goto LexNextToken;
|
|
} else if (LangOpts.CUDA && After == '>') {
|
|
Kind = tok::greatergreatergreater;
|
|
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
|
|
SizeTmp2, Result);
|
|
} else {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::greatergreater;
|
|
}
|
|
} else {
|
|
Kind = tok::greater;
|
|
}
|
|
break;
|
|
case '^':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '=') {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::caretequal;
|
|
} else if (LangOpts.OpenCL && Char == '^') {
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
Kind = tok::caretcaret;
|
|
} else {
|
|
Kind = tok::caret;
|
|
}
|
|
break;
|
|
case '|':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '=') {
|
|
Kind = tok::pipeequal;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else if (Char == '|') {
|
|
// If this is '|||||||' and we're in a conflict marker, ignore it.
|
|
if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1))
|
|
goto LexNextToken;
|
|
Kind = tok::pipepipe;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else {
|
|
Kind = tok::pipe;
|
|
}
|
|
break;
|
|
case ':':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (LangOpts.Digraphs && Char == '>') {
|
|
Kind = tok::r_square; // ':>' -> ']'
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else if ((LangOpts.CPlusPlus ||
|
|
LangOpts.DoubleSquareBracketAttributes) &&
|
|
Char == ':') {
|
|
Kind = tok::coloncolon;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else {
|
|
Kind = tok::colon;
|
|
}
|
|
break;
|
|
case ';':
|
|
Kind = tok::semi;
|
|
break;
|
|
case '=':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '=') {
|
|
// If this is '====' and we're in a conflict marker, ignore it.
|
|
if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1))
|
|
goto LexNextToken;
|
|
|
|
Kind = tok::equalequal;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else {
|
|
Kind = tok::equal;
|
|
}
|
|
break;
|
|
case ',':
|
|
Kind = tok::comma;
|
|
break;
|
|
case '#':
|
|
Char = getCharAndSize(CurPtr, SizeTmp);
|
|
if (Char == '#') {
|
|
Kind = tok::hashhash;
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize
|
|
Kind = tok::hashat;
|
|
if (!isLexingRawMode())
|
|
Diag(BufferPtr, diag::ext_charize_microsoft);
|
|
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
|
|
} else {
|
|
// We parsed a # character. If this occurs at the start of the line,
|
|
// it's actually the start of a preprocessing directive. Callback to
|
|
// the preprocessor to handle it.
|
|
// TODO: -fpreprocessed mode??
|
|
if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
|
|
goto HandleDirective;
|
|
|
|
Kind = tok::hash;
|
|
}
|
|
break;
|
|
|
|
case '@':
|
|
// Objective C support.
|
|
if (CurPtr[-1] == '@' && LangOpts.ObjC)
|
|
Kind = tok::at;
|
|
else
|
|
Kind = tok::unknown;
|
|
break;
|
|
|
|
// UCNs (C99 6.4.3, C++11 [lex.charset]p2)
|
|
case '\\':
|
|
if (!LangOpts.AsmPreprocessor) {
|
|
if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) {
|
|
if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
|
|
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
|
|
return true; // KeepWhitespaceMode
|
|
|
|
// We only saw whitespace, so just try again with this lexer.
|
|
// (We manually eliminate the tail call to avoid recursion.)
|
|
goto LexNextToken;
|
|
}
|
|
|
|
return LexUnicode(Result, CodePoint, CurPtr);
|
|
}
|
|
}
|
|
|
|
Kind = tok::unknown;
|
|
break;
|
|
|
|
default: {
|
|
if (isASCII(Char)) {
|
|
Kind = tok::unknown;
|
|
break;
|
|
}
|
|
|
|
llvm::UTF32 CodePoint;
|
|
|
|
// We can't just reset CurPtr to BufferPtr because BufferPtr may point to
|
|
// an escaped newline.
|
|
--CurPtr;
|
|
llvm::ConversionResult Status =
|
|
llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr,
|
|
(const llvm::UTF8 *)BufferEnd,
|
|
&CodePoint,
|
|
llvm::strictConversion);
|
|
if (Status == llvm::conversionOK) {
|
|
if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
|
|
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
|
|
return true; // KeepWhitespaceMode
|
|
|
|
// We only saw whitespace, so just try again with this lexer.
|
|
// (We manually eliminate the tail call to avoid recursion.)
|
|
goto LexNextToken;
|
|
}
|
|
return LexUnicode(Result, CodePoint, CurPtr);
|
|
}
|
|
|
|
if (isLexingRawMode() || ParsingPreprocessorDirective ||
|
|
PP->isPreprocessedOutput()) {
|
|
++CurPtr;
|
|
Kind = tok::unknown;
|
|
break;
|
|
}
|
|
|
|
// Non-ASCII characters tend to creep into source code unintentionally.
|
|
// Instead of letting the parser complain about the unknown token,
|
|
// just diagnose the invalid UTF-8, then drop the character.
|
|
Diag(CurPtr, diag::err_invalid_utf8);
|
|
|
|
BufferPtr = CurPtr+1;
|
|
// We're pretending the character didn't exist, so just try again with
|
|
// this lexer.
|
|
// (We manually eliminate the tail call to avoid recursion.)
|
|
goto LexNextToken;
|
|
}
|
|
}
|
|
|
|
// Notify MIOpt that we read a non-whitespace/non-comment token.
|
|
MIOpt.ReadToken();
|
|
|
|
// Update the location of token as well as BufferPtr.
|
|
FormTokenWithChars(Result, CurPtr, Kind);
|
|
return true;
|
|
|
|
HandleDirective:
|
|
// We parsed a # character and it's the start of a preprocessing directive.
|
|
|
|
FormTokenWithChars(Result, CurPtr, tok::hash);
|
|
PP->HandleDirective(Result);
|
|
|
|
if (PP->hadModuleLoaderFatalFailure()) {
|
|
// With a fatal failure in the module loader, we abort parsing.
|
|
assert(Result.is(tok::eof) && "Preprocessor did not set tok:eof");
|
|
return true;
|
|
}
|
|
|
|
// We parsed the directive; lex a token with the new state.
|
|
return false;
|
|
}
|