llvm-project/clang/lib/Lex/Lexer.cpp

3944 lines
140 KiB
C++

//===- Lexer.cpp - C Language Family Lexer --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Lexer and Token interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Lexer.h"
#include "UnicodeCharSets.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/MultipleIncludeOpt.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Lex/Token.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/NativeFormatting.h"
#include "llvm/Support/UnicodeCharRanges.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
#include <tuple>
#include <utility>
using namespace clang;
//===----------------------------------------------------------------------===//
// Token Class Implementation
//===----------------------------------------------------------------------===//
/// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
if (isAnnotation())
return false;
if (IdentifierInfo *II = getIdentifierInfo())
return II->getObjCKeywordID() == objcKey;
return false;
}
/// getObjCKeywordID - Return the ObjC keyword kind.
tok::ObjCKeywordKind Token::getObjCKeywordID() const {
if (isAnnotation())
return tok::objc_not_keyword;
IdentifierInfo *specId = getIdentifierInfo();
return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
}
//===----------------------------------------------------------------------===//
// Lexer Class Implementation
//===----------------------------------------------------------------------===//
void Lexer::anchor() {}
void Lexer::InitLexer(const char *BufStart, const char *BufPtr,
const char *BufEnd) {
BufferStart = BufStart;
BufferPtr = BufPtr;
BufferEnd = BufEnd;
assert(BufEnd[0] == 0 &&
"We assume that the input buffer has a null character at the end"
" to simplify lexing!");
// Check whether we have a BOM in the beginning of the buffer. If yes - act
// accordingly. Right now we support only UTF-8 with and without BOM, so, just
// skip the UTF-8 BOM if it's present.
if (BufferStart == BufferPtr) {
// Determine the size of the BOM.
StringRef Buf(BufferStart, BufferEnd - BufferStart);
size_t BOMLength = llvm::StringSwitch<size_t>(Buf)
.StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM
.Default(0);
// Skip the BOM.
BufferPtr += BOMLength;
}
Is_PragmaLexer = false;
CurrentConflictMarkerState = CMK_None;
// Start of the file is a start of line.
IsAtStartOfLine = true;
IsAtPhysicalStartOfLine = true;
HasLeadingSpace = false;
HasLeadingEmptyMacro = false;
// We are not after parsing a #.
ParsingPreprocessorDirective = false;
// We are not after parsing #include.
ParsingFilename = false;
// We are not in raw mode. Raw mode disables diagnostics and interpretation
// of tokens (e.g. identifiers, thus disabling macro expansion). It is used
// to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
// or otherwise skipping over tokens.
LexingRawMode = false;
// Default to not keeping comments.
ExtendedTokenMode = 0;
}
/// Lexer constructor - Create a new lexer object for the specified buffer
/// with the specified preprocessor managing the lexing process. This lexer
/// assumes that the associated file buffer and Preprocessor objects will
/// outlive it, so it doesn't take ownership of either of them.
Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *InputFile, Preprocessor &PP)
: PreprocessorLexer(&PP, FID),
FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)),
LangOpts(PP.getLangOpts()) {
InitLexer(InputFile->getBufferStart(), InputFile->getBufferStart(),
InputFile->getBufferEnd());
resetExtendedTokenMode();
}
/// Lexer constructor - Create a new raw lexer object. This object is only
/// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
/// range will outlive it, so it doesn't take ownership of it.
Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts,
const char *BufStart, const char *BufPtr, const char *BufEnd)
: FileLoc(fileloc), LangOpts(langOpts) {
InitLexer(BufStart, BufPtr, BufEnd);
// We *are* in raw mode.
LexingRawMode = true;
}
/// Lexer constructor - Create a new raw lexer object. This object is only
/// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
/// range will outlive it, so it doesn't take ownership of it.
Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *FromFile,
const SourceManager &SM, const LangOptions &langOpts)
: Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile->getBufferStart(),
FromFile->getBufferStart(), FromFile->getBufferEnd()) {}
void Lexer::resetExtendedTokenMode() {
assert(PP && "Cannot reset token mode without a preprocessor");
if (LangOpts.TraditionalCPP)
SetKeepWhitespaceMode(true);
else
SetCommentRetentionState(PP->getCommentRetentionState());
}
/// Create_PragmaLexer: Lexer constructor - Create a new lexer object for
/// _Pragma expansion. This has a variety of magic semantics that this method
/// sets up. It returns a new'd Lexer that must be delete'd when done.
///
/// On entrance to this routine, TokStartLoc is a macro location which has a
/// spelling loc that indicates the bytes to be lexed for the token and an
/// expansion location that indicates where all lexed tokens should be
/// "expanded from".
///
/// TODO: It would really be nice to make _Pragma just be a wrapper around a
/// normal lexer that remaps tokens as they fly by. This would require making
/// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer
/// interface that could handle this stuff. This would pull GetMappedTokenLoc
/// out of the critical path of the lexer!
///
Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc,
SourceLocation ExpansionLocStart,
SourceLocation ExpansionLocEnd,
unsigned TokLen, Preprocessor &PP) {
SourceManager &SM = PP.getSourceManager();
// Create the lexer as if we were going to lex the file normally.
FileID SpellingFID = SM.getFileID(SpellingLoc);
const llvm::MemoryBuffer *InputFile = SM.getBuffer(SpellingFID);
Lexer *L = new Lexer(SpellingFID, InputFile, PP);
// Now that the lexer is created, change the start/end locations so that we
// just lex the subsection of the file that we want. This is lexing from a
// scratch buffer.
const char *StrData = SM.getCharacterData(SpellingLoc);
L->BufferPtr = StrData;
L->BufferEnd = StrData+TokLen;
assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!");
// Set the SourceLocation with the remapping information. This ensures that
// GetMappedTokenLoc will remap the tokens as they are lexed.
L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID),
ExpansionLocStart,
ExpansionLocEnd, TokLen);
// Ensure that the lexer thinks it is inside a directive, so that end \n will
// return an EOD token.
L->ParsingPreprocessorDirective = true;
// This lexer really is for _Pragma.
L->Is_PragmaLexer = true;
return L;
}
template <typename T> static void StringifyImpl(T &Str, char Quote) {
typename T::size_type i = 0, e = Str.size();
while (i < e) {
if (Str[i] == '\\' || Str[i] == Quote) {
Str.insert(Str.begin() + i, '\\');
i += 2;
++e;
} else if (Str[i] == '\n' || Str[i] == '\r') {
// Replace '\r\n' and '\n\r' to '\\' followed by 'n'.
if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') &&
Str[i] != Str[i + 1]) {
Str[i] = '\\';
Str[i + 1] = 'n';
} else {
// Replace '\n' and '\r' to '\\' followed by 'n'.
Str[i] = '\\';
Str.insert(Str.begin() + i + 1, 'n');
++e;
}
i += 2;
} else
++i;
}
}
std::string Lexer::Stringify(StringRef Str, bool Charify) {
std::string Result = Str;
char Quote = Charify ? '\'' : '"';
StringifyImpl(Result, Quote);
return Result;
}
void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); }
//===----------------------------------------------------------------------===//
// Token Spelling
//===----------------------------------------------------------------------===//
/// Slow case of getSpelling. Extract the characters comprising the
/// spelling of this token from the provided input buffer.
static size_t getSpellingSlow(const Token &Tok, const char *BufPtr,
const LangOptions &LangOpts, char *Spelling) {
assert(Tok.needsCleaning() && "getSpellingSlow called on simple token");
size_t Length = 0;
const char *BufEnd = BufPtr + Tok.getLength();
if (tok::isStringLiteral(Tok.getKind())) {
// Munch the encoding-prefix and opening double-quote.
while (BufPtr < BufEnd) {
unsigned Size;
Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
BufPtr += Size;
if (Spelling[Length - 1] == '"')
break;
}
// Raw string literals need special handling; trigraph expansion and line
// splicing do not occur within their d-char-sequence nor within their
// r-char-sequence.
if (Length >= 2 &&
Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') {
// Search backwards from the end of the token to find the matching closing
// quote.
const char *RawEnd = BufEnd;
do --RawEnd; while (*RawEnd != '"');
size_t RawLength = RawEnd - BufPtr + 1;
// Everything between the quotes is included verbatim in the spelling.
memcpy(Spelling + Length, BufPtr, RawLength);
Length += RawLength;
BufPtr += RawLength;
// The rest of the token is lexed normally.
}
}
while (BufPtr < BufEnd) {
unsigned Size;
Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
BufPtr += Size;
}
assert(Length < Tok.getLength() &&
"NeedsCleaning flag set on token that didn't need cleaning!");
return Length;
}
/// getSpelling() - Return the 'spelling' of this token. The spelling of a
/// token are the characters used to represent the token in the source file
/// after trigraph expansion and escaped-newline folding. In particular, this
/// wants to get the true, uncanonicalized, spelling of things like digraphs
/// UCNs, etc.
StringRef Lexer::getSpelling(SourceLocation loc,
SmallVectorImpl<char> &buffer,
const SourceManager &SM,
const LangOptions &options,
bool *invalid) {
// Break down the source location.
std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
// Try to the load the file buffer.
bool invalidTemp = false;
StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
if (invalidTemp) {
if (invalid) *invalid = true;
return {};
}
const char *tokenBegin = file.data() + locInfo.second;
// Lex from the start of the given location.
Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options,
file.begin(), tokenBegin, file.end());
Token token;
lexer.LexFromRawLexer(token);
unsigned length = token.getLength();
// Common case: no need for cleaning.
if (!token.needsCleaning())
return StringRef(tokenBegin, length);
// Hard case, we need to relex the characters into the string.
buffer.resize(length);
buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data()));
return StringRef(buffer.data(), buffer.size());
}
/// getSpelling() - Return the 'spelling' of this token. The spelling of a
/// token are the characters used to represent the token in the source file
/// after trigraph expansion and escaped-newline folding. In particular, this
/// wants to get the true, uncanonicalized, spelling of things like digraphs
/// UCNs, etc.
std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr,
const LangOptions &LangOpts, bool *Invalid) {
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
bool CharDataInvalid = false;
const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(),
&CharDataInvalid);
if (Invalid)
*Invalid = CharDataInvalid;
if (CharDataInvalid)
return {};
// If this token contains nothing interesting, return it directly.
if (!Tok.needsCleaning())
return std::string(TokStart, TokStart + Tok.getLength());
std::string Result;
Result.resize(Tok.getLength());
Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin()));
return Result;
}
/// getSpelling - This method is used to get the spelling of a token into a
/// preallocated buffer, instead of as an std::string. The caller is required
/// to allocate enough space for the token, which is guaranteed to be at least
/// Tok.getLength() bytes long. The actual length of the token is returned.
///
/// Note that this method may do two possible things: it may either fill in
/// the buffer specified with characters, or it may *change the input pointer*
/// to point to a constant buffer with the data already in it (avoiding a
/// copy). The caller is not allowed to modify the returned buffer pointer
/// if an internal buffer is returned.
unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer,
const SourceManager &SourceMgr,
const LangOptions &LangOpts, bool *Invalid) {
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
const char *TokStart = nullptr;
// NOTE: this has to be checked *before* testing for an IdentifierInfo.
if (Tok.is(tok::raw_identifier))
TokStart = Tok.getRawIdentifier().data();
else if (!Tok.hasUCN()) {
if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
// Just return the string from the identifier table, which is very quick.
Buffer = II->getNameStart();
return II->getLength();
}
}
// NOTE: this can be checked even after testing for an IdentifierInfo.
if (Tok.isLiteral())
TokStart = Tok.getLiteralData();
if (!TokStart) {
// Compute the start of the token in the input lexer buffer.
bool CharDataInvalid = false;
TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid);
if (Invalid)
*Invalid = CharDataInvalid;
if (CharDataInvalid) {
Buffer = "";
return 0;
}
}
// If this token contains nothing interesting, return it directly.
if (!Tok.needsCleaning()) {
Buffer = TokStart;
return Tok.getLength();
}
// Otherwise, hard case, relex the characters into the string.
return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer));
}
/// MeasureTokenLength - Relex the token at the specified location and return
/// its length in bytes in the input file. If the token needs cleaning (e.g.
/// includes a trigraph or an escaped newline) then this count includes bytes
/// that are part of that.
unsigned Lexer::MeasureTokenLength(SourceLocation Loc,
const SourceManager &SM,
const LangOptions &LangOpts) {
Token TheTok;
if (getRawToken(Loc, TheTok, SM, LangOpts))
return 0;
return TheTok.getLength();
}
/// Relex the token at the specified location.
/// \returns true if there was a failure, false on success.
bool Lexer::getRawToken(SourceLocation Loc, Token &Result,
const SourceManager &SM,
const LangOptions &LangOpts,
bool IgnoreWhiteSpace) {
// TODO: this could be special cased for common tokens like identifiers, ')',
// etc to make this faster, if it mattered. Just look at StrData[0] to handle
// all obviously single-char tokens. This could use
// Lexer::isObviouslySimpleCharacter for example to handle identifiers or
// something.
// If this comes from a macro expansion, we really do want the macro name, not
// the token this macro expanded to.
Loc = SM.getExpansionLoc(Loc);
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
bool Invalid = false;
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return true;
const char *StrData = Buffer.data()+LocInfo.second;
if (!IgnoreWhiteSpace && isWhitespace(StrData[0]))
return true;
// Create a lexer starting at the beginning of this token.
Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
Buffer.begin(), StrData, Buffer.end());
TheLexer.SetCommentRetentionState(true);
TheLexer.LexFromRawLexer(Result);
return false;
}
/// Returns the pointer that points to the beginning of line that contains
/// the given offset, or null if the offset if invalid.
static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) {
const char *BufStart = Buffer.data();
if (Offset >= Buffer.size())
return nullptr;
const char *LexStart = BufStart + Offset;
for (; LexStart != BufStart; --LexStart) {
if (isVerticalWhitespace(LexStart[0]) &&
!Lexer::isNewLineEscaped(BufStart, LexStart)) {
// LexStart should point at first character of logical line.
++LexStart;
break;
}
}
return LexStart;
}
static SourceLocation getBeginningOfFileToken(SourceLocation Loc,
const SourceManager &SM,
const LangOptions &LangOpts) {
assert(Loc.isFileID());
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
if (LocInfo.first.isInvalid())
return Loc;
bool Invalid = false;
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return Loc;
// Back up from the current location until we hit the beginning of a line
// (or the buffer). We'll relex from that point.
const char *StrData = Buffer.data() + LocInfo.second;
const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second);
if (!LexStart || LexStart == StrData)
return Loc;
// Create a lexer starting at the beginning of this token.
SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second);
Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart,
Buffer.end());
TheLexer.SetCommentRetentionState(true);
// Lex tokens until we find the token that contains the source location.
Token TheTok;
do {
TheLexer.LexFromRawLexer(TheTok);
if (TheLexer.getBufferLocation() > StrData) {
// Lexing this token has taken the lexer past the source location we're
// looking for. If the current token encompasses our source location,
// return the beginning of that token.
if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData)
return TheTok.getLocation();
// We ended up skipping over the source location entirely, which means
// that it points into whitespace. We're done here.
break;
}
} while (TheTok.getKind() != tok::eof);
// We've passed our source location; just return the original source location.
return Loc;
}
SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc,
const SourceManager &SM,
const LangOptions &LangOpts) {
if (Loc.isFileID())
return getBeginningOfFileToken(Loc, SM, LangOpts);
if (!SM.isMacroArgExpansion(Loc))
return Loc;
SourceLocation FileLoc = SM.getSpellingLoc(Loc);
SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts);
std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc);
std::pair<FileID, unsigned> BeginFileLocInfo =
SM.getDecomposedLoc(BeginFileLoc);
assert(FileLocInfo.first == BeginFileLocInfo.first &&
FileLocInfo.second >= BeginFileLocInfo.second);
return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second);
}
namespace {
enum PreambleDirectiveKind {
PDK_Skipped,
PDK_Unknown
};
} // namespace
PreambleBounds Lexer::ComputePreamble(StringRef Buffer,
const LangOptions &LangOpts,
unsigned MaxLines) {
// Create a lexer starting at the beginning of the file. Note that we use a
// "fake" file source location at offset 1 so that the lexer will track our
// position within the file.
const unsigned StartOffset = 1;
SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset);
Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(),
Buffer.end());
TheLexer.SetCommentRetentionState(true);
bool InPreprocessorDirective = false;
Token TheTok;
SourceLocation ActiveCommentLoc;
unsigned MaxLineOffset = 0;
if (MaxLines) {
const char *CurPtr = Buffer.begin();
unsigned CurLine = 0;
while (CurPtr != Buffer.end()) {
char ch = *CurPtr++;
if (ch == '\n') {
++CurLine;
if (CurLine == MaxLines)
break;
}
}
if (CurPtr != Buffer.end())
MaxLineOffset = CurPtr - Buffer.begin();
}
do {
TheLexer.LexFromRawLexer(TheTok);
if (InPreprocessorDirective) {
// If we've hit the end of the file, we're done.
if (TheTok.getKind() == tok::eof) {
break;
}
// If we haven't hit the end of the preprocessor directive, skip this
// token.
if (!TheTok.isAtStartOfLine())
continue;
// We've passed the end of the preprocessor directive, and will look
// at this token again below.
InPreprocessorDirective = false;
}
// Keep track of the # of lines in the preamble.
if (TheTok.isAtStartOfLine()) {
unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset;
// If we were asked to limit the number of lines in the preamble,
// and we're about to exceed that limit, we're done.
if (MaxLineOffset && TokOffset >= MaxLineOffset)
break;
}
// Comments are okay; skip over them.
if (TheTok.getKind() == tok::comment) {
if (ActiveCommentLoc.isInvalid())
ActiveCommentLoc = TheTok.getLocation();
continue;
}
if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) {
// This is the start of a preprocessor directive.
Token HashTok = TheTok;
InPreprocessorDirective = true;
ActiveCommentLoc = SourceLocation();
// Figure out which directive this is. Since we're lexing raw tokens,
// we don't have an identifier table available. Instead, just look at
// the raw identifier to recognize and categorize preprocessor directives.
TheLexer.LexFromRawLexer(TheTok);
if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) {
StringRef Keyword = TheTok.getRawIdentifier();
PreambleDirectiveKind PDK
= llvm::StringSwitch<PreambleDirectiveKind>(Keyword)
.Case("include", PDK_Skipped)
.Case("__include_macros", PDK_Skipped)
.Case("define", PDK_Skipped)
.Case("undef", PDK_Skipped)
.Case("line", PDK_Skipped)
.Case("error", PDK_Skipped)
.Case("pragma", PDK_Skipped)
.Case("import", PDK_Skipped)
.Case("include_next", PDK_Skipped)
.Case("warning", PDK_Skipped)
.Case("ident", PDK_Skipped)
.Case("sccs", PDK_Skipped)
.Case("assert", PDK_Skipped)
.Case("unassert", PDK_Skipped)
.Case("if", PDK_Skipped)
.Case("ifdef", PDK_Skipped)
.Case("ifndef", PDK_Skipped)
.Case("elif", PDK_Skipped)
.Case("else", PDK_Skipped)
.Case("endif", PDK_Skipped)
.Default(PDK_Unknown);
switch (PDK) {
case PDK_Skipped:
continue;
case PDK_Unknown:
// We don't know what this directive is; stop at the '#'.
break;
}
}
// We only end up here if we didn't recognize the preprocessor
// directive or it was one that can't occur in the preamble at this
// point. Roll back the current token to the location of the '#'.
InPreprocessorDirective = false;
TheTok = HashTok;
}
// We hit a token that we don't recognize as being in the
// "preprocessing only" part of the file, so we're no longer in
// the preamble.
break;
} while (true);
SourceLocation End;
if (ActiveCommentLoc.isValid())
End = ActiveCommentLoc; // don't truncate a decl comment.
else
End = TheTok.getLocation();
return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(),
TheTok.isAtStartOfLine());
}
unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo,
const SourceManager &SM,
const LangOptions &LangOpts) {
// Figure out how many physical characters away the specified expansion
// character is. This needs to take into consideration newlines and
// trigraphs.
bool Invalid = false;
const char *TokPtr = SM.getCharacterData(TokStart, &Invalid);
// If they request the first char of the token, we're trivially done.
if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr)))
return 0;
unsigned PhysOffset = 0;
// The usual case is that tokens don't contain anything interesting. Skip
// over the uninteresting characters. If a token only consists of simple
// chars, this method is extremely fast.
while (Lexer::isObviouslySimpleCharacter(*TokPtr)) {
if (CharNo == 0)
return PhysOffset;
++TokPtr;
--CharNo;
++PhysOffset;
}
// If we have a character that may be a trigraph or escaped newline, use a
// lexer to parse it correctly.
for (; CharNo; --CharNo) {
unsigned Size;
Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts);
TokPtr += Size;
PhysOffset += Size;
}
// Final detail: if we end up on an escaped newline, we want to return the
// location of the actual byte of the token. For example foo\<newline>bar
// advanced by 3 should return the location of b, not of \\. One compounding
// detail of this is that the escape may be made by a trigraph.
if (!Lexer::isObviouslySimpleCharacter(*TokPtr))
PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr;
return PhysOffset;
}
/// Computes the source location just past the end of the
/// token at this source location.
///
/// This routine can be used to produce a source location that
/// points just past the end of the token referenced by \p Loc, and
/// is generally used when a diagnostic needs to point just after a
/// token where it expected something different that it received. If
/// the returned source location would not be meaningful (e.g., if
/// it points into a macro), this routine returns an invalid
/// source location.
///
/// \param Offset an offset from the end of the token, where the source
/// location should refer to. The default offset (0) produces a source
/// location pointing just past the end of the token; an offset of 1 produces
/// a source location pointing to the last character in the token, etc.
SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset,
const SourceManager &SM,
const LangOptions &LangOpts) {
if (Loc.isInvalid())
return {};
if (Loc.isMacroID()) {
if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
return {}; // Points inside the macro expansion.
}
unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
if (Len > Offset)
Len = Len - Offset;
else
return Loc;
return Loc.getLocWithOffset(Len);
}
/// Returns true if the given MacroID location points at the first
/// token of the macro expansion.
bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc,
const SourceManager &SM,
const LangOptions &LangOpts,
SourceLocation *MacroBegin) {
assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
SourceLocation expansionLoc;
if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc))
return false;
if (expansionLoc.isFileID()) {
// No other macro expansions, this is the first.
if (MacroBegin)
*MacroBegin = expansionLoc;
return true;
}
return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin);
}
/// Returns true if the given MacroID location points at the last
/// token of the macro expansion.
bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc,
const SourceManager &SM,
const LangOptions &LangOpts,
SourceLocation *MacroEnd) {
assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
SourceLocation spellLoc = SM.getSpellingLoc(loc);
unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts);
if (tokLen == 0)
return false;
SourceLocation afterLoc = loc.getLocWithOffset(tokLen);
SourceLocation expansionLoc;
if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc))
return false;
if (expansionLoc.isFileID()) {
// No other macro expansions.
if (MacroEnd)
*MacroEnd = expansionLoc;
return true;
}
return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd);
}
static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range,
const SourceManager &SM,
const LangOptions &LangOpts) {
SourceLocation Begin = Range.getBegin();
SourceLocation End = Range.getEnd();
assert(Begin.isFileID() && End.isFileID());
if (Range.isTokenRange()) {
End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts);
if (End.isInvalid())
return {};
}
// Break down the source locations.
FileID FID;
unsigned BeginOffs;
std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin);
if (FID.isInvalid())
return {};
unsigned EndOffs;
if (!SM.isInFileID(End, FID, &EndOffs) ||
BeginOffs > EndOffs)
return {};
return CharSourceRange::getCharRange(Begin, End);
}
CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range,
const SourceManager &SM,
const LangOptions &LangOpts) {
SourceLocation Begin = Range.getBegin();
SourceLocation End = Range.getEnd();
if (Begin.isInvalid() || End.isInvalid())
return {};
if (Begin.isFileID() && End.isFileID())
return makeRangeFromFileLocs(Range, SM, LangOpts);
if (Begin.isMacroID() && End.isFileID()) {
if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin))
return {};
Range.setBegin(Begin);
return makeRangeFromFileLocs(Range, SM, LangOpts);
}
if (Begin.isFileID() && End.isMacroID()) {
if ((Range.isTokenRange() && !isAtEndOfMacroExpansion(End, SM, LangOpts,
&End)) ||
(Range.isCharRange() && !isAtStartOfMacroExpansion(End, SM, LangOpts,
&End)))
return {};
Range.setEnd(End);
return makeRangeFromFileLocs(Range, SM, LangOpts);
}
assert(Begin.isMacroID() && End.isMacroID());
SourceLocation MacroBegin, MacroEnd;
if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) &&
((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts,
&MacroEnd)) ||
(Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts,
&MacroEnd)))) {
Range.setBegin(MacroBegin);
Range.setEnd(MacroEnd);
return makeRangeFromFileLocs(Range, SM, LangOpts);
}
bool Invalid = false;
const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin),
&Invalid);
if (Invalid)
return {};
if (BeginEntry.getExpansion().isMacroArgExpansion()) {
const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End),
&Invalid);
if (Invalid)
return {};
if (EndEntry.getExpansion().isMacroArgExpansion() &&
BeginEntry.getExpansion().getExpansionLocStart() ==
EndEntry.getExpansion().getExpansionLocStart()) {
Range.setBegin(SM.getImmediateSpellingLoc(Begin));
Range.setEnd(SM.getImmediateSpellingLoc(End));
return makeFileCharRange(Range, SM, LangOpts);
}
}
return {};
}
StringRef Lexer::getSourceText(CharSourceRange Range,
const SourceManager &SM,
const LangOptions &LangOpts,
bool *Invalid) {
Range = makeFileCharRange(Range, SM, LangOpts);
if (Range.isInvalid()) {
if (Invalid) *Invalid = true;
return {};
}
// Break down the source location.
std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin());
if (beginInfo.first.isInvalid()) {
if (Invalid) *Invalid = true;
return {};
}
unsigned EndOffs;
if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) ||
beginInfo.second > EndOffs) {
if (Invalid) *Invalid = true;
return {};
}
// Try to the load the file buffer.
bool invalidTemp = false;
StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp);
if (invalidTemp) {
if (Invalid) *Invalid = true;
return {};
}
if (Invalid) *Invalid = false;
return file.substr(beginInfo.second, EndOffs - beginInfo.second);
}
StringRef Lexer::getImmediateMacroName(SourceLocation Loc,
const SourceManager &SM,
const LangOptions &LangOpts) {
assert(Loc.isMacroID() && "Only reasonable to call this on macros");
// Find the location of the immediate macro expansion.
while (true) {
FileID FID = SM.getFileID(Loc);
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID);
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
Loc = Expansion.getExpansionLocStart();
if (!Expansion.isMacroArgExpansion())
break;
// For macro arguments we need to check that the argument did not come
// from an inner macro, e.g: "MAC1( MAC2(foo) )"
// Loc points to the argument id of the macro definition, move to the
// macro expansion.
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
SourceLocation SpellLoc = Expansion.getSpellingLoc();
if (SpellLoc.isFileID())
break; // No inner macro.
// If spelling location resides in the same FileID as macro expansion
// location, it means there is no inner macro.
FileID MacroFID = SM.getFileID(Loc);
if (SM.isInFileID(SpellLoc, MacroFID))
break;
// Argument came from inner macro.
Loc = SpellLoc;
}
// Find the spelling location of the start of the non-argument expansion
// range. This is where the macro name was spelled in order to begin
// expanding this macro.
Loc = SM.getSpellingLoc(Loc);
// Dig out the buffer where the macro name was spelled and the extents of the
// name so that we can render it into the expansion note.
std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
}
StringRef Lexer::getImmediateMacroNameForDiagnostics(
SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) {
assert(Loc.isMacroID() && "Only reasonable to call this on macros");
// Walk past macro argument expansions.
while (SM.isMacroArgExpansion(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
// If the macro's spelling has no FileID, then it's actually a token paste
// or stringization (or similar) and not a macro at all.
if (!SM.getFileEntryForID(SM.getFileID(SM.getSpellingLoc(Loc))))
return {};
// Find the spelling location of the start of the non-argument expansion
// range. This is where the macro name was spelled in order to begin
// expanding this macro.
Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin());
// Dig out the buffer where the macro name was spelled and the extents of the
// name so that we can render it into the expansion note.
std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
}
bool Lexer::isIdentifierBodyChar(char c, const LangOptions &LangOpts) {
return isIdentifierBody(c, LangOpts.DollarIdents);
}
bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) {
assert(isVerticalWhitespace(Str[0]));
if (Str - 1 < BufferStart)
return false;
if ((Str[0] == '\n' && Str[-1] == '\r') ||
(Str[0] == '\r' && Str[-1] == '\n')) {
if (Str - 2 < BufferStart)
return false;
--Str;
}
--Str;
// Rewind to first non-space character:
while (Str > BufferStart && isHorizontalWhitespace(*Str))
--Str;
return *Str == '\\';
}
StringRef Lexer::getIndentationForLine(SourceLocation Loc,
const SourceManager &SM) {
if (Loc.isInvalid() || Loc.isMacroID())
return {};
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
if (LocInfo.first.isInvalid())
return {};
bool Invalid = false;
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return {};
const char *Line = findBeginningOfLine(Buffer, LocInfo.second);
if (!Line)
return {};
StringRef Rest = Buffer.substr(Line - Buffer.data());
size_t NumWhitespaceChars = Rest.find_first_not_of(" \t");
return NumWhitespaceChars == StringRef::npos
? ""
: Rest.take_front(NumWhitespaceChars);
}
//===----------------------------------------------------------------------===//
// Diagnostics forwarding code.
//===----------------------------------------------------------------------===//
/// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the
/// lexer buffer was all expanded at a single point, perform the mapping.
/// This is currently only used for _Pragma implementation, so it is the slow
/// path of the hot getSourceLocation method. Do not allow it to be inlined.
static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc(
Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen);
static SourceLocation GetMappedTokenLoc(Preprocessor &PP,
SourceLocation FileLoc,
unsigned CharNo, unsigned TokLen) {
assert(FileLoc.isMacroID() && "Must be a macro expansion");
// Otherwise, we're lexing "mapped tokens". This is used for things like
// _Pragma handling. Combine the expansion location of FileLoc with the
// spelling location.
SourceManager &SM = PP.getSourceManager();
// Create a new SLoc which is expanded from Expansion(FileLoc) but whose
// characters come from spelling(FileLoc)+Offset.
SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc);
SpellingLoc = SpellingLoc.getLocWithOffset(CharNo);
// Figure out the expansion loc range, which is the range covered by the
// original _Pragma(...) sequence.
CharSourceRange II = SM.getImmediateExpansionRange(FileLoc);
return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen);
}
/// getSourceLocation - Return a source location identifier for the specified
/// offset in the current file.
SourceLocation Lexer::getSourceLocation(const char *Loc,
unsigned TokLen) const {
assert(Loc >= BufferStart && Loc <= BufferEnd &&
"Location out of range for this buffer!");
// In the normal case, we're just lexing from a simple file buffer, return
// the file id from FileLoc with the offset specified.
unsigned CharNo = Loc-BufferStart;
if (FileLoc.isFileID())
return FileLoc.getLocWithOffset(CharNo);
// Otherwise, this is the _Pragma lexer case, which pretends that all of the
// tokens are lexed from where the _Pragma was defined.
assert(PP && "This doesn't work on raw lexers");
return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen);
}
/// Diag - Forwarding function for diagnostics. This translate a source
/// position in the current buffer into a SourceLocation object for rendering.
DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const {
return PP->Diag(getSourceLocation(Loc), DiagID);
}
//===----------------------------------------------------------------------===//
// Trigraph and Escaped Newline Handling Code.
//===----------------------------------------------------------------------===//
/// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
/// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
static char GetTrigraphCharForLetter(char Letter) {
switch (Letter) {
default: return 0;
case '=': return '#';
case ')': return ']';
case '(': return '[';
case '!': return '|';
case '\'': return '^';
case '>': return '}';
case '/': return '\\';
case '<': return '{';
case '-': return '~';
}
}
/// DecodeTrigraphChar - If the specified character is a legal trigraph when
/// prefixed with ??, emit a trigraph warning. If trigraphs are enabled,
/// return the result character. Finally, emit a warning about trigraph use
/// whether trigraphs are enabled or not.
static char DecodeTrigraphChar(const char *CP, Lexer *L) {
char Res = GetTrigraphCharForLetter(*CP);
if (!Res || !L) return Res;
if (!L->getLangOpts().Trigraphs) {
if (!L->isLexingRawMode())
L->Diag(CP-2, diag::trigraph_ignored);
return 0;
}
if (!L->isLexingRawMode())
L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1);
return Res;
}
/// getEscapedNewLineSize - Return the size of the specified escaped newline,
/// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a
/// trigraph equivalent on entry to this function.
unsigned Lexer::getEscapedNewLineSize(const char *Ptr) {
unsigned Size = 0;
while (isWhitespace(Ptr[Size])) {
++Size;
if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r')
continue;
// If this is a \r\n or \n\r, skip the other half.
if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') &&
Ptr[Size-1] != Ptr[Size])
++Size;
return Size;
}
// Not an escaped newline, must be a \t or something else.
return 0;
}
/// SkipEscapedNewLines - If P points to an escaped newline (or a series of
/// them), skip over them and return the first non-escaped-newline found,
/// otherwise return P.
const char *Lexer::SkipEscapedNewLines(const char *P) {
while (true) {
const char *AfterEscape;
if (*P == '\\') {
AfterEscape = P+1;
} else if (*P == '?') {
// If not a trigraph for escape, bail out.
if (P[1] != '?' || P[2] != '/')
return P;
// FIXME: Take LangOpts into account; the language might not
// support trigraphs.
AfterEscape = P+3;
} else {
return P;
}
unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape);
if (NewLineSize == 0) return P;
P = AfterEscape+NewLineSize;
}
}
Optional<Token> Lexer::findNextToken(SourceLocation Loc,
const SourceManager &SM,
const LangOptions &LangOpts) {
if (Loc.isMacroID()) {
if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
return None;
}
Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts);
// Break down the source location.
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
// Try to load the file buffer.
bool InvalidTemp = false;
StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
if (InvalidTemp)
return None;
const char *TokenBegin = File.data() + LocInfo.second;
// Lex from the start of the given location.
Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(),
TokenBegin, File.end());
// Find the token.
Token Tok;
lexer.LexFromRawLexer(Tok);
return Tok;
}
/// Checks that the given token is the first token that occurs after the
/// given location (this excludes comments and whitespace). Returns the location
/// immediately after the specified token. If the token is not found or the
/// location is inside a macro, the returned source location will be invalid.
SourceLocation Lexer::findLocationAfterToken(
SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM,
const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) {
Optional<Token> Tok = findNextToken(Loc, SM, LangOpts);
if (!Tok || Tok->isNot(TKind))
return {};
SourceLocation TokenLoc = Tok->getLocation();
// Calculate how much whitespace needs to be skipped if any.
unsigned NumWhitespaceChars = 0;
if (SkipTrailingWhitespaceAndNewLine) {
const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength();
unsigned char C = *TokenEnd;
while (isHorizontalWhitespace(C)) {
C = *(++TokenEnd);
NumWhitespaceChars++;
}
// Skip \r, \n, \r\n, or \n\r
if (C == '\n' || C == '\r') {
char PrevC = C;
C = *(++TokenEnd);
NumWhitespaceChars++;
if ((C == '\n' || C == '\r') && C != PrevC)
NumWhitespaceChars++;
}
}
return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars);
}
/// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
/// get its size, and return it. This is tricky in several cases:
/// 1. If currently at the start of a trigraph, we warn about the trigraph,
/// then either return the trigraph (skipping 3 chars) or the '?',
/// depending on whether trigraphs are enabled or not.
/// 2. If this is an escaped newline (potentially with whitespace between
/// the backslash and newline), implicitly skip the newline and return
/// the char after it.
///
/// This handles the slow/uncommon case of the getCharAndSize method. Here we
/// know that we can accumulate into Size, and that we have already incremented
/// Ptr by Size bytes.
///
/// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
/// be updated to match.
char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
Token *Tok) {
// If we have a slash, look for an escaped newline.
if (Ptr[0] == '\\') {
++Size;
++Ptr;
Slash:
// Common case, backslash-char where the char is not whitespace.
if (!isWhitespace(Ptr[0])) return '\\';
// See if we have optional whitespace characters between the slash and
// newline.
if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
// Remember that this token needs to be cleaned.
if (Tok) Tok->setFlag(Token::NeedsCleaning);
// Warn if there was whitespace between the backslash and newline.
if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode())
Diag(Ptr, diag::backslash_newline_space);
// Found backslash<whitespace><newline>. Parse the char after it.
Size += EscapedNewLineSize;
Ptr += EscapedNewLineSize;
// Use slow version to accumulate a correct size field.
return getCharAndSizeSlow(Ptr, Size, Tok);
}
// Otherwise, this is not an escaped newline, just return the slash.
return '\\';
}
// If this is a trigraph, process it.
if (Ptr[0] == '?' && Ptr[1] == '?') {
// If this is actually a legal trigraph (not something like "??x"), emit
// a trigraph warning. If so, and if trigraphs are enabled, return it.
if (char C = DecodeTrigraphChar(Ptr+2, Tok ? this : nullptr)) {
// Remember that this token needs to be cleaned.
if (Tok) Tok->setFlag(Token::NeedsCleaning);
Ptr += 3;
Size += 3;
if (C == '\\') goto Slash;
return C;
}
}
// If this is neither, return a single character.
++Size;
return *Ptr;
}
/// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
/// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size,
/// and that we have already incremented Ptr by Size bytes.
///
/// NOTE: When this method is updated, getCharAndSizeSlow (above) should
/// be updated to match.
char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
const LangOptions &LangOpts) {
// If we have a slash, look for an escaped newline.
if (Ptr[0] == '\\') {
++Size;
++Ptr;
Slash:
// Common case, backslash-char where the char is not whitespace.
if (!isWhitespace(Ptr[0])) return '\\';
// See if we have optional whitespace characters followed by a newline.
if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
// Found backslash<whitespace><newline>. Parse the char after it.
Size += EscapedNewLineSize;
Ptr += EscapedNewLineSize;
// Use slow version to accumulate a correct size field.
return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts);
}
// Otherwise, this is not an escaped newline, just return the slash.
return '\\';
}
// If this is a trigraph, process it.
if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
// If this is actually a legal trigraph (not something like "??x"), return
// it.
if (char C = GetTrigraphCharForLetter(Ptr[2])) {
Ptr += 3;
Size += 3;
if (C == '\\') goto Slash;
return C;
}
}
// If this is neither, return a single character.
++Size;
return *Ptr;
}
//===----------------------------------------------------------------------===//
// Helper methods for lexing.
//===----------------------------------------------------------------------===//
/// Routine that indiscriminately sets the offset into the source file.
void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) {
BufferPtr = BufferStart + Offset;
if (BufferPtr > BufferEnd)
BufferPtr = BufferEnd;
// FIXME: What exactly does the StartOfLine bit mean? There are two
// possible meanings for the "start" of the line: the first token on the
// unexpanded line, or the first token on the expanded line.
IsAtStartOfLine = StartOfLine;
IsAtPhysicalStartOfLine = StartOfLine;
}
static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts) {
if (LangOpts.AsmPreprocessor) {
return false;
} else if (LangOpts.CPlusPlus11 || LangOpts.C11) {
static const llvm::sys::UnicodeCharSet C11AllowedIDChars(
C11AllowedIDCharRanges);
return C11AllowedIDChars.contains(C);
} else if (LangOpts.CPlusPlus) {
static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars(
CXX03AllowedIDCharRanges);
return CXX03AllowedIDChars.contains(C);
} else {
static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
C99AllowedIDCharRanges);
return C99AllowedIDChars.contains(C);
}
}
static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts) {
assert(isAllowedIDChar(C, LangOpts));
if (LangOpts.AsmPreprocessor) {
return false;
} else if (LangOpts.CPlusPlus11 || LangOpts.C11) {
static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars(
C11DisallowedInitialIDCharRanges);
return !C11DisallowedInitialIDChars.contains(C);
} else if (LangOpts.CPlusPlus) {
return true;
} else {
static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
C99DisallowedInitialIDCharRanges);
return !C99DisallowedInitialIDChars.contains(C);
}
}
static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin,
const char *End) {
return CharSourceRange::getCharRange(L.getSourceLocation(Begin),
L.getSourceLocation(End));
}
static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C,
CharSourceRange Range, bool IsFirst) {
// Check C99 compatibility.
if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) {
enum {
CannotAppearInIdentifier = 0,
CannotStartIdentifier
};
static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
C99AllowedIDCharRanges);
static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
C99DisallowedInitialIDCharRanges);
if (!C99AllowedIDChars.contains(C)) {
Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
<< Range
<< CannotAppearInIdentifier;
} else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) {
Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
<< Range
<< CannotStartIdentifier;
}
}
// Check C++98 compatibility.
if (!Diags.isIgnored(diag::warn_cxx98_compat_unicode_id, Range.getBegin())) {
static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars(
CXX03AllowedIDCharRanges);
if (!CXX03AllowedIDChars.contains(C)) {
Diags.Report(Range.getBegin(), diag::warn_cxx98_compat_unicode_id)
<< Range;
}
}
}
/// After encountering UTF-8 character C and interpreting it as an identifier
/// character, check whether it's a homoglyph for a common non-identifier
/// source character that is unlikely to be an intentional identifier
/// character and warn if so.
static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C,
CharSourceRange Range) {
// FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes).
struct HomoglyphPair {
uint32_t Character;
char LooksLike;
bool operator<(HomoglyphPair R) const { return Character < R.Character; }
};
static constexpr HomoglyphPair SortedHomoglyphs[] = {
{U'\u00ad', 0}, // SOFT HYPHEN
{U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK
{U'\u037e', ';'}, // GREEK QUESTION MARK
{U'\u200b', 0}, // ZERO WIDTH SPACE
{U'\u200c', 0}, // ZERO WIDTH NON-JOINER
{U'\u200d', 0}, // ZERO WIDTH JOINER
{U'\u2060', 0}, // WORD JOINER
{U'\u2061', 0}, // FUNCTION APPLICATION
{U'\u2062', 0}, // INVISIBLE TIMES
{U'\u2063', 0}, // INVISIBLE SEPARATOR
{U'\u2064', 0}, // INVISIBLE PLUS
{U'\u2212', '-'}, // MINUS SIGN
{U'\u2215', '/'}, // DIVISION SLASH
{U'\u2216', '\\'}, // SET MINUS
{U'\u2217', '*'}, // ASTERISK OPERATOR
{U'\u2223', '|'}, // DIVIDES
{U'\u2227', '^'}, // LOGICAL AND
{U'\u2236', ':'}, // RATIO
{U'\u223c', '~'}, // TILDE OPERATOR
{U'\ua789', ':'}, // MODIFIER LETTER COLON
{U'\ufeff', 0}, // ZERO WIDTH NO-BREAK SPACE
{U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK
{U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN
{U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN
{U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN
{U'\uff06', '&'}, // FULLWIDTH AMPERSAND
{U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS
{U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS
{U'\uff0a', '*'}, // FULLWIDTH ASTERISK
{U'\uff0b', '+'}, // FULLWIDTH ASTERISK
{U'\uff0c', ','}, // FULLWIDTH COMMA
{U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS
{U'\uff0e', '.'}, // FULLWIDTH FULL STOP
{U'\uff0f', '/'}, // FULLWIDTH SOLIDUS
{U'\uff1a', ':'}, // FULLWIDTH COLON
{U'\uff1b', ';'}, // FULLWIDTH SEMICOLON
{U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN
{U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN
{U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN
{U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK
{U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT
{U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET
{U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS
{U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET
{U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT
{U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET
{U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE
{U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET
{U'\uff5e', '~'}, // FULLWIDTH TILDE
{0, 0}
};
auto Homoglyph =
std::lower_bound(std::begin(SortedHomoglyphs),
std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'});
if (Homoglyph->Character == C) {
llvm::SmallString<5> CharBuf;
{
llvm::raw_svector_ostream CharOS(CharBuf);
llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4);
}
if (Homoglyph->LooksLike) {
const char LooksLikeStr[] = {Homoglyph->LooksLike, 0};
Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph)
<< Range << CharBuf << LooksLikeStr;
} else {
Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width)
<< Range << CharBuf;
}
}
}
bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size,
Token &Result) {
const char *UCNPtr = CurPtr + Size;
uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr);
if (CodePoint == 0 || !isAllowedIDChar(CodePoint, LangOpts))
return false;
if (!isLexingRawMode())
maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
makeCharRange(*this, CurPtr, UCNPtr),
/*IsFirst=*/false);
Result.setFlag(Token::HasUCN);
if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') ||
(UCNPtr - CurPtr == 10 && CurPtr[1] == 'U'))
CurPtr = UCNPtr;
else
while (CurPtr != UCNPtr)
(void)getAndAdvanceChar(CurPtr, Result);
return true;
}
bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) {
const char *UnicodePtr = CurPtr;
llvm::UTF32 CodePoint;
llvm::ConversionResult Result =
llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr,
(const llvm::UTF8 *)BufferEnd,
&CodePoint,
llvm::strictConversion);
if (Result != llvm::conversionOK ||
!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts))
return false;
if (!isLexingRawMode()) {
maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
makeCharRange(*this, CurPtr, UnicodePtr),
/*IsFirst=*/false);
maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint,
makeCharRange(*this, CurPtr, UnicodePtr));
}
CurPtr = UnicodePtr;
return true;
}
bool Lexer::LexIdentifier(Token &Result, const char *CurPtr) {
// Match [_A-Za-z0-9]*, we have already matched [_A-Za-z$]
unsigned Size;
unsigned char C = *CurPtr++;
while (isIdentifierBody(C))
C = *CurPtr++;
--CurPtr; // Back up over the skipped character.
// Fast path, no $,\,? in identifier found. '\' might be an escaped newline
// or UCN, and ? might be a trigraph for '\', an escaped newline or UCN.
//
// TODO: Could merge these checks into an InfoTable flag to make the
// comparison cheaper
if (isASCII(C) && C != '\\' && C != '?' &&
(C != '$' || !LangOpts.DollarIdents)) {
FinishIdentifier:
const char *IdStart = BufferPtr;
FormTokenWithChars(Result, CurPtr, tok::raw_identifier);
Result.setRawIdentifierData(IdStart);
// If we are in raw mode, return this identifier raw. There is no need to
// look up identifier information or attempt to macro expand it.
if (LexingRawMode)
return true;
// Fill in Result.IdentifierInfo and update the token kind,
// looking up the identifier in the identifier table.
IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
// Note that we have to call PP->LookUpIdentifierInfo() even for code
// completion, it writes IdentifierInfo into Result, and callers rely on it.
// If the completion point is at the end of an identifier, we want to treat
// the identifier as incomplete even if it resolves to a macro or a keyword.
// This allows e.g. 'class^' to complete to 'classifier'.
if (isCodeCompletionPoint(CurPtr)) {
// Return the code-completion token.
Result.setKind(tok::code_completion);
// Skip the code-completion char and all immediate identifier characters.
// This ensures we get consistent behavior when completing at any point in
// an identifier (i.e. at the start, in the middle, at the end). Note that
// only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code
// simpler.
assert(*CurPtr == 0 && "Completion character must be 0");
++CurPtr;
// Note that code completion token is not added as a separate character
// when the completion point is at the end of the buffer. Therefore, we need
// to check if the buffer has ended.
if (CurPtr < BufferEnd) {
while (isIdentifierBody(*CurPtr))
++CurPtr;
}
BufferPtr = CurPtr;
return true;
}
// Finally, now that we know we have an identifier, pass this off to the
// preprocessor, which may macro expand it or something.
if (II->isHandleIdentifierCase())
return PP->HandleIdentifier(Result);
return true;
}
// Otherwise, $,\,? in identifier found. Enter slower path.
C = getCharAndSize(CurPtr, Size);
while (true) {
if (C == '$') {
// If we hit a $ and they are not supported in identifiers, we are done.
if (!LangOpts.DollarIdents) goto FinishIdentifier;
// Otherwise, emit a diagnostic and continue.
if (!isLexingRawMode())
Diag(CurPtr, diag::ext_dollar_in_identifier);
CurPtr = ConsumeChar(CurPtr, Size, Result);
C = getCharAndSize(CurPtr, Size);
continue;
} else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {
C = getCharAndSize(CurPtr, Size);
continue;
} else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {
C = getCharAndSize(CurPtr, Size);
continue;
} else if (!isIdentifierBody(C)) {
goto FinishIdentifier;
}
// Otherwise, this character is good, consume it.
CurPtr = ConsumeChar(CurPtr, Size, Result);
C = getCharAndSize(CurPtr, Size);
while (isIdentifierBody(C)) {
CurPtr = ConsumeChar(CurPtr, Size, Result);
C = getCharAndSize(CurPtr, Size);
}
}
}
/// isHexaLiteral - Return true if Start points to a hex constant.
/// in microsoft mode (where this is supposed to be several different tokens).
bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) {
unsigned Size;
char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts);
if (C1 != '0')
return false;
char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts);
return (C2 == 'x' || C2 == 'X');
}
/// LexNumericConstant - Lex the remainder of a integer or floating point
/// constant. From[-1] is the first character lexed. Return the end of the
/// constant.
bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) {
unsigned Size;
char C = getCharAndSize(CurPtr, Size);
char PrevCh = 0;
while (isPreprocessingNumberBody(C)) {
CurPtr = ConsumeChar(CurPtr, Size, Result);
PrevCh = C;
C = getCharAndSize(CurPtr, Size);
}
// If we fell out, check for a sign, due to 1e+12. If we have one, continue.
if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) {
// If we are in Microsoft mode, don't continue if the constant is hex.
// For example, MSVC will accept the following as 3 tokens: 0x1234567e+1
if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts))
return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
}
// If we have a hex FP constant, continue.
if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) {
// Outside C99 and C++17, we accept hexadecimal floating point numbers as a
// not-quite-conforming extension. Only do so if this looks like it's
// actually meant to be a hexfloat, and not if it has a ud-suffix.
bool IsHexFloat = true;
if (!LangOpts.C99) {
if (!isHexaLiteral(BufferPtr, LangOpts))
IsHexFloat = false;
else if (!getLangOpts().CPlusPlus17 &&
std::find(BufferPtr, CurPtr, '_') != CurPtr)
IsHexFloat = false;
}
if (IsHexFloat)
return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
}
// If we have a digit separator, continue.
if (C == '\'' && getLangOpts().CPlusPlus14) {
unsigned NextSize;
char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, getLangOpts());
if (isIdentifierBody(Next)) {
if (!isLexingRawMode())
Diag(CurPtr, diag::warn_cxx11_compat_digit_separator);
CurPtr = ConsumeChar(CurPtr, Size, Result);
CurPtr = ConsumeChar(CurPtr, NextSize, Result);
return LexNumericConstant(Result, CurPtr);
}
}
// If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue.
if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
return LexNumericConstant(Result, CurPtr);
if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
return LexNumericConstant(Result, CurPtr);
// Update the location of token as well as BufferPtr.
const char *TokStart = BufferPtr;
FormTokenWithChars(Result, CurPtr, tok::numeric_constant);
Result.setLiteralData(TokStart);
return true;
}
/// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes
/// in C++11, or warn on a ud-suffix in C++98.
const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr,
bool IsStringLiteral) {
assert(getLangOpts().CPlusPlus);
// Maximally munch an identifier.
unsigned Size;
char C = getCharAndSize(CurPtr, Size);
bool Consumed = false;
if (!isIdentifierHead(C)) {
if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
Consumed = true;
else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
Consumed = true;
else
return CurPtr;
}
if (!getLangOpts().CPlusPlus11) {
if (!isLexingRawMode())
Diag(CurPtr,
C == '_' ? diag::warn_cxx11_compat_user_defined_literal
: diag::warn_cxx11_compat_reserved_user_defined_literal)
<< FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
return CurPtr;
}
// C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix
// that does not start with an underscore is ill-formed. As a conforming
// extension, we treat all such suffixes as if they had whitespace before
// them. We assume a suffix beginning with a UCN or UTF-8 character is more
// likely to be a ud-suffix than a macro, however, and accept that.
if (!Consumed) {
bool IsUDSuffix = false;
if (C == '_')
IsUDSuffix = true;
else if (IsStringLiteral && getLangOpts().CPlusPlus14) {
// In C++1y, we need to look ahead a few characters to see if this is a
// valid suffix for a string literal or a numeric literal (this could be
// the 'operator""if' defining a numeric literal operator).
const unsigned MaxStandardSuffixLength = 3;
char Buffer[MaxStandardSuffixLength] = { C };
unsigned Consumed = Size;
unsigned Chars = 1;
while (true) {
unsigned NextSize;
char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize,
getLangOpts());
if (!isIdentifierBody(Next)) {
// End of suffix. Check whether this is on the whitelist.
const StringRef CompleteSuffix(Buffer, Chars);
IsUDSuffix = StringLiteralParser::isValidUDSuffix(getLangOpts(),
CompleteSuffix);
break;
}
if (Chars == MaxStandardSuffixLength)
// Too long: can't be a standard suffix.
break;
Buffer[Chars++] = Next;
Consumed += NextSize;
}
}
if (!IsUDSuffix) {
if (!isLexingRawMode())
Diag(CurPtr, getLangOpts().MSVCCompat
? diag::ext_ms_reserved_user_defined_literal
: diag::ext_reserved_user_defined_literal)
<< FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
return CurPtr;
}
CurPtr = ConsumeChar(CurPtr, Size, Result);
}
Result.setFlag(Token::HasUDSuffix);
while (true) {
C = getCharAndSize(CurPtr, Size);
if (isIdentifierBody(C)) { CurPtr = ConsumeChar(CurPtr, Size, Result); }
else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {}
else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {}
else break;
}
return CurPtr;
}
/// LexStringLiteral - Lex the remainder of a string literal, after having lexed
/// either " or L" or u8" or u" or U".
bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr,
tok::TokenKind Kind) {
const char *AfterQuote = CurPtr;
// Does this string contain the \0 character?
const char *NulCharacter = nullptr;
if (!isLexingRawMode() &&
(Kind == tok::utf8_string_literal ||
Kind == tok::utf16_string_literal ||
Kind == tok::utf32_string_literal))
Diag(BufferPtr, getLangOpts().CPlusPlus
? diag::warn_cxx98_compat_unicode_literal
: diag::warn_c99_compat_unicode_literal);
char C = getAndAdvanceChar(CurPtr, Result);
while (C != '"') {
// Skip escaped characters. Escaped newlines will already be processed by
// getAndAdvanceChar.
if (C == '\\')
C = getAndAdvanceChar(CurPtr, Result);
if (C == '\n' || C == '\r' || // Newline.
(C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1;
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
return true;
}
if (C == 0) {
if (isCodeCompletionPoint(CurPtr-1)) {
if (ParsingFilename)
codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false);
else
PP->CodeCompleteNaturalLanguage();
FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
cutOffLexing();
return true;
}
NulCharacter = CurPtr-1;
}
C = getAndAdvanceChar(CurPtr, Result);
}
// If we are in C++11, lex the optional ud-suffix.
if (getLangOpts().CPlusPlus)
CurPtr = LexUDSuffix(Result, CurPtr, true);
// If a nul character existed in the string, warn about it.
if (NulCharacter && !isLexingRawMode())
Diag(NulCharacter, diag::null_in_char_or_string) << 1;
// Update the location of the token as well as the BufferPtr instance var.
const char *TokStart = BufferPtr;
FormTokenWithChars(Result, CurPtr, Kind);
Result.setLiteralData(TokStart);
return true;
}
/// LexRawStringLiteral - Lex the remainder of a raw string literal, after
/// having lexed R", LR", u8R", uR", or UR".
bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr,
tok::TokenKind Kind) {
// This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3:
// Between the initial and final double quote characters of the raw string,
// any transformations performed in phases 1 and 2 (trigraphs,
// universal-character-names, and line splicing) are reverted.
if (!isLexingRawMode())
Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal);
unsigned PrefixLen = 0;
while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen]))
++PrefixLen;
// If the last character was not a '(', then we didn't lex a valid delimiter.
if (CurPtr[PrefixLen] != '(') {
if (!isLexingRawMode()) {
const char *PrefixEnd = &CurPtr[PrefixLen];
if (PrefixLen == 16) {
Diag(PrefixEnd, diag::err_raw_delim_too_long);
} else {
Diag(PrefixEnd, diag::err_invalid_char_raw_delim)
<< StringRef(PrefixEnd, 1);
}
}
// Search for the next '"' in hopes of salvaging the lexer. Unfortunately,
// it's possible the '"' was intended to be part of the raw string, but
// there's not much we can do about that.
while (true) {
char C = *CurPtr++;
if (C == '"')
break;
if (C == 0 && CurPtr-1 == BufferEnd) {
--CurPtr;
break;
}
}
FormTokenWithChars(Result, CurPtr, tok::unknown);
return true;
}
// Save prefix and move CurPtr past it
const char *Prefix = CurPtr;
CurPtr += PrefixLen + 1; // skip over prefix and '('
while (true) {
char C = *CurPtr++;
if (C == ')') {
// Check for prefix match and closing quote.
if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') {
CurPtr += PrefixLen + 1; // skip over prefix and '"'
break;
}
} else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file.
if (!isLexingRawMode())
Diag(BufferPtr, diag::err_unterminated_raw_string)
<< StringRef(Prefix, PrefixLen);
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
return true;
}
}
// If we are in C++11, lex the optional ud-suffix.
if (getLangOpts().CPlusPlus)
CurPtr = LexUDSuffix(Result, CurPtr, true);
// Update the location of token as well as BufferPtr.
const char *TokStart = BufferPtr;
FormTokenWithChars(Result, CurPtr, Kind);
Result.setLiteralData(TokStart);
return true;
}
/// LexAngledStringLiteral - Lex the remainder of an angled string literal,
/// after having lexed the '<' character. This is used for #include filenames.
bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) {
// Does this string contain the \0 character?
const char *NulCharacter = nullptr;
const char *AfterLessPos = CurPtr;
char C = getAndAdvanceChar(CurPtr, Result);
while (C != '>') {
// Skip escaped characters. Escaped newlines will already be processed by
// getAndAdvanceChar.
if (C == '\\')
C = getAndAdvanceChar(CurPtr, Result);
if (C == '\n' || C == '\r' || // Newline.
(C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file.
// If the filename is unterminated, then it must just be a lone <
// character. Return this as such.
FormTokenWithChars(Result, AfterLessPos, tok::less);
return true;
}
if (C == 0) {
if (isCodeCompletionPoint(CurPtr - 1)) {
codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true);
cutOffLexing();
FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
return true;
}
NulCharacter = CurPtr-1;
}
C = getAndAdvanceChar(CurPtr, Result);
}
// If a nul character existed in the string, warn about it.
if (NulCharacter && !isLexingRawMode())
Diag(NulCharacter, diag::null_in_char_or_string) << 1;
// Update the location of token as well as BufferPtr.
const char *TokStart = BufferPtr;
FormTokenWithChars(Result, CurPtr, tok::header_name);
Result.setLiteralData(TokStart);
return true;
}
void Lexer::codeCompleteIncludedFile(const char *PathStart,
const char *CompletionPoint,
bool IsAngled) {
// Completion only applies to the filename, after the last slash.
StringRef PartialPath(PathStart, CompletionPoint - PathStart);
auto Slash = PartialPath.find_last_of(LangOpts.MSVCCompat ? "/\\" : "/");
StringRef Dir =
(Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash);
const char *StartOfFilename =
(Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1;
// Code completion filter range is the filename only, up to completion point.
PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get(
StringRef(StartOfFilename, CompletionPoint - StartOfFilename)));
// We should replace the characters up to the closing quote, if any.
while (CompletionPoint < BufferEnd) {
char Next = *(CompletionPoint + 1);
if (Next == 0 || Next == '\r' || Next == '\n')
break;
++CompletionPoint;
if (Next == (IsAngled ? '>' : '"'))
break;
}
PP->setCodeCompletionTokenRange(
FileLoc.getLocWithOffset(StartOfFilename - BufferStart),
FileLoc.getLocWithOffset(CompletionPoint - BufferStart));
PP->CodeCompleteIncludedFile(Dir, IsAngled);
}
/// LexCharConstant - Lex the remainder of a character constant, after having
/// lexed either ' or L' or u8' or u' or U'.
bool Lexer::LexCharConstant(Token &Result, const char *CurPtr,
tok::TokenKind Kind) {
// Does this character contain the \0 character?
const char *NulCharacter = nullptr;
if (!isLexingRawMode()) {
if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant)
Diag(BufferPtr, getLangOpts().CPlusPlus
? diag::warn_cxx98_compat_unicode_literal
: diag::warn_c99_compat_unicode_literal);
else if (Kind == tok::utf8_char_constant)
Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal);
}
char C = getAndAdvanceChar(CurPtr, Result);
if (C == '\'') {
if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
Diag(BufferPtr, diag::ext_empty_character);
FormTokenWithChars(Result, CurPtr, tok::unknown);
return true;
}
while (C != '\'') {
// Skip escaped characters.
if (C == '\\')
C = getAndAdvanceChar(CurPtr, Result);
if (C == '\n' || C == '\r' || // Newline.
(C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0;
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
return true;
}
if (C == 0) {
if (isCodeCompletionPoint(CurPtr-1)) {
PP->CodeCompleteNaturalLanguage();
FormTokenWithChars(Result, CurPtr-1, tok::unknown);
cutOffLexing();
return true;
}
NulCharacter = CurPtr-1;
}
C = getAndAdvanceChar(CurPtr, Result);
}
// If we are in C++11, lex the optional ud-suffix.
if (getLangOpts().CPlusPlus)
CurPtr = LexUDSuffix(Result, CurPtr, false);
// If a nul character existed in the character, warn about it.
if (NulCharacter && !isLexingRawMode())
Diag(NulCharacter, diag::null_in_char_or_string) << 0;
// Update the location of token as well as BufferPtr.
const char *TokStart = BufferPtr;
FormTokenWithChars(Result, CurPtr, Kind);
Result.setLiteralData(TokStart);
return true;
}
/// SkipWhitespace - Efficiently skip over a series of whitespace characters.
/// Update BufferPtr to point to the next non-whitespace character and return.
///
/// This method forms a token and returns true if KeepWhitespaceMode is enabled.
bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr,
bool &TokAtPhysicalStartOfLine) {
// Whitespace - Skip it, then return the token after the whitespace.
bool SawNewline = isVerticalWhitespace(CurPtr[-1]);
unsigned char Char = *CurPtr;
// Skip consecutive spaces efficiently.
while (true) {
// Skip horizontal whitespace very aggressively.
while (isHorizontalWhitespace(Char))
Char = *++CurPtr;
// Otherwise if we have something other than whitespace, we're done.
if (!isVerticalWhitespace(Char))
break;
if (ParsingPreprocessorDirective) {
// End of preprocessor directive line, let LexTokenInternal handle this.
BufferPtr = CurPtr;
return false;
}
// OK, but handle newline.
SawNewline = true;
Char = *++CurPtr;
}
// If the client wants us to return whitespace, return it now.
if (isKeepWhitespaceMode()) {
FormTokenWithChars(Result, CurPtr, tok::unknown);
if (SawNewline) {
IsAtStartOfLine = true;
IsAtPhysicalStartOfLine = true;
}
// FIXME: The next token will not have LeadingSpace set.
return true;
}
// If this isn't immediately after a newline, there is leading space.
char PrevChar = CurPtr[-1];
bool HasLeadingSpace = !isVerticalWhitespace(PrevChar);
Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
if (SawNewline) {
Result.setFlag(Token::StartOfLine);
TokAtPhysicalStartOfLine = true;
}
BufferPtr = CurPtr;
return false;
}
/// We have just read the // characters from input. Skip until we find the
/// newline character that terminates the comment. Then update BufferPtr and
/// return.
///
/// If we're in KeepCommentMode or any CommentHandler has inserted
/// some tokens, this will store the first token and return true.
bool Lexer::SkipLineComment(Token &Result, const char *CurPtr,
bool &TokAtPhysicalStartOfLine) {
// If Line comments aren't explicitly enabled for this language, emit an
// extension warning.
if (!LangOpts.LineComment && !isLexingRawMode()) {
Diag(BufferPtr, diag::ext_line_comment);
// Mark them enabled so we only emit one warning for this translation
// unit.
LangOpts.LineComment = true;
}
// Scan over the body of the comment. The common case, when scanning, is that
// the comment contains normal ascii characters with nothing interesting in
// them. As such, optimize for this case with the inner loop.
//
// This loop terminates with CurPtr pointing at the newline (or end of buffer)
// character that ends the line comment.
char C;
while (true) {
C = *CurPtr;
// Skip over characters in the fast loop.
while (C != 0 && // Potentially EOF.
C != '\n' && C != '\r') // Newline or DOS-style newline.
C = *++CurPtr;
const char *NextLine = CurPtr;
if (C != 0) {
// We found a newline, see if it's escaped.
const char *EscapePtr = CurPtr-1;
bool HasSpace = false;
while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace.
--EscapePtr;
HasSpace = true;
}
if (*EscapePtr == '\\')
// Escaped newline.
CurPtr = EscapePtr;
else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' &&
EscapePtr[-2] == '?' && LangOpts.Trigraphs)
// Trigraph-escaped newline.
CurPtr = EscapePtr-2;
else
break; // This is a newline, we're done.
// If there was space between the backslash and newline, warn about it.
if (HasSpace && !isLexingRawMode())
Diag(EscapePtr, diag::backslash_newline_space);
}
// Otherwise, this is a hard case. Fall back on getAndAdvanceChar to
// properly decode the character. Read it in raw mode to avoid emitting
// diagnostics about things like trigraphs. If we see an escaped newline,
// we'll handle it below.
const char *OldPtr = CurPtr;
bool OldRawMode = isLexingRawMode();
LexingRawMode = true;
C = getAndAdvanceChar(CurPtr, Result);
LexingRawMode = OldRawMode;
// If we only read only one character, then no special handling is needed.
// We're done and can skip forward to the newline.
if (C != 0 && CurPtr == OldPtr+1) {
CurPtr = NextLine;
break;
}
// If we read multiple characters, and one of those characters was a \r or
// \n, then we had an escaped newline within the comment. Emit diagnostic
// unless the next line is also a // comment.
if (CurPtr != OldPtr + 1 && C != '/' &&
(CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) {
for (; OldPtr != CurPtr; ++OldPtr)
if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
// Okay, we found a // comment that ends in a newline, if the next
// line is also a // comment, but has spaces, don't emit a diagnostic.
if (isWhitespace(C)) {
const char *ForwardPtr = CurPtr;
while (isWhitespace(*ForwardPtr)) // Skip whitespace.
++ForwardPtr;
if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
break;
}
if (!isLexingRawMode())
Diag(OldPtr-1, diag::ext_multi_line_line_comment);
break;
}
}
if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) {
--CurPtr;
break;
}
if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
PP->CodeCompleteNaturalLanguage();
cutOffLexing();
return false;
}
}
// Found but did not consume the newline. Notify comment handlers about the
// comment unless we're in a #if 0 block.
if (PP && !isLexingRawMode() &&
PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
getSourceLocation(CurPtr)))) {
BufferPtr = CurPtr;
return true; // A token has to be returned.
}
// If we are returning comments as tokens, return this comment as a token.
if (inKeepCommentMode())
return SaveLineComment(Result, CurPtr);
// If we are inside a preprocessor directive and we see the end of line,
// return immediately, so that the lexer can return this as an EOD token.
if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
BufferPtr = CurPtr;
return false;
}
// Otherwise, eat the \n character. We don't care if this is a \n\r or
// \r\n sequence. This is an efficiency hack (because we know the \n can't
// contribute to another token), it isn't needed for correctness. Note that
// this is ok even in KeepWhitespaceMode, because we would have returned the
/// comment above in that mode.
++CurPtr;
// The next returned token is at the start of the line.
Result.setFlag(Token::StartOfLine);
TokAtPhysicalStartOfLine = true;
// No leading whitespace seen so far.
Result.clearFlag(Token::LeadingSpace);
BufferPtr = CurPtr;
return false;
}
/// If in save-comment mode, package up this Line comment in an appropriate
/// way and return it.
bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) {
// If we're not in a preprocessor directive, just return the // comment
// directly.
FormTokenWithChars(Result, CurPtr, tok::comment);
if (!ParsingPreprocessorDirective || LexingRawMode)
return true;
// If this Line-style comment is in a macro definition, transmogrify it into
// a C-style block comment.
bool Invalid = false;
std::string Spelling = PP->getSpelling(Result, &Invalid);
if (Invalid)
return true;
assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?");
Spelling[1] = '*'; // Change prefix to "/*".
Spelling += "*/"; // add suffix.
Result.setKind(tok::comment);
PP->CreateString(Spelling, Result,
Result.getLocation(), Result.getLocation());
return true;
}
/// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
/// character (either \\n or \\r) is part of an escaped newline sequence. Issue
/// a diagnostic if so. We know that the newline is inside of a block comment.
static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr,
Lexer *L) {
assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
// Back up off the newline.
--CurPtr;
// If this is a two-character newline sequence, skip the other character.
if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
// \n\n or \r\r -> not escaped newline.
if (CurPtr[0] == CurPtr[1])
return false;
// \n\r or \r\n -> skip the newline.
--CurPtr;
}
// If we have horizontal whitespace, skip over it. We allow whitespace
// between the slash and newline.
bool HasSpace = false;
while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
--CurPtr;
HasSpace = true;
}
// If we have a slash, we know this is an escaped newline.
if (*CurPtr == '\\') {
if (CurPtr[-1] != '*') return false;
} else {
// It isn't a slash, is it the ?? / trigraph?
if (CurPtr[0] != '/' || CurPtr[-1] != '?' || CurPtr[-2] != '?' ||
CurPtr[-3] != '*')
return false;
// This is the trigraph ending the comment. Emit a stern warning!
CurPtr -= 2;
// If no trigraphs are enabled, warn that we ignored this trigraph and
// ignore this * character.
if (!L->getLangOpts().Trigraphs) {
if (!L->isLexingRawMode())
L->Diag(CurPtr, diag::trigraph_ignored_block_comment);
return false;
}
if (!L->isLexingRawMode())
L->Diag(CurPtr, diag::trigraph_ends_block_comment);
}
// Warn about having an escaped newline between the */ characters.
if (!L->isLexingRawMode())
L->Diag(CurPtr, diag::escaped_newline_block_comment_end);
// If there was space between the backslash and newline, warn about it.
if (HasSpace && !L->isLexingRawMode())
L->Diag(CurPtr, diag::backslash_newline_space);
return true;
}
#ifdef __SSE2__
#include <emmintrin.h>
#elif __ALTIVEC__
#include <altivec.h>
#undef bool
#endif
/// We have just read from input the / and * characters that started a comment.
/// Read until we find the * and / characters that terminate the comment.
/// Note that we don't bother decoding trigraphs or escaped newlines in block
/// comments, because they cannot cause the comment to end. The only thing
/// that can happen is the comment could end with an escaped newline between
/// the terminating * and /.
///
/// If we're in KeepCommentMode or any CommentHandler has inserted
/// some tokens, this will store the first token and return true.
bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr,
bool &TokAtPhysicalStartOfLine) {
// Scan one character past where we should, looking for a '/' character. Once
// we find it, check to see if it was preceded by a *. This common
// optimization helps people who like to put a lot of * characters in their
// comments.
// The first character we get with newlines and trigraphs skipped to handle
// the degenerate /*/ case below correctly if the * has an escaped newline
// after it.
unsigned CharSize;
unsigned char C = getCharAndSize(CurPtr, CharSize);
CurPtr += CharSize;
if (C == 0 && CurPtr == BufferEnd+1) {
if (!isLexingRawMode())
Diag(BufferPtr, diag::err_unterminated_block_comment);
--CurPtr;
// KeepWhitespaceMode should return this broken comment as a token. Since
// it isn't a well formed comment, just return it as an 'unknown' token.
if (isKeepWhitespaceMode()) {
FormTokenWithChars(Result, CurPtr, tok::unknown);
return true;
}
BufferPtr = CurPtr;
return false;
}
// Check to see if the first character after the '/*' is another /. If so,
// then this slash does not end the block comment, it is part of it.
if (C == '/')
C = *CurPtr++;
while (true) {
// Skip over all non-interesting characters until we find end of buffer or a
// (probably ending) '/' character.
if (CurPtr + 24 < BufferEnd &&
// If there is a code-completion point avoid the fast scan because it
// doesn't check for '\0'.
!(PP && PP->getCodeCompletionFileLoc() == FileLoc)) {
// While not aligned to a 16-byte boundary.
while (C != '/' && ((intptr_t)CurPtr & 0x0F) != 0)
C = *CurPtr++;
if (C == '/') goto FoundSlash;
#ifdef __SSE2__
__m128i Slashes = _mm_set1_epi8('/');
while (CurPtr+16 <= BufferEnd) {
int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr,
Slashes));
if (cmp != 0) {
// Adjust the pointer to point directly after the first slash. It's
// not necessary to set C here, it will be overwritten at the end of
// the outer loop.
CurPtr += llvm::countTrailingZeros<unsigned>(cmp) + 1;
goto FoundSlash;
}
CurPtr += 16;
}
#elif __ALTIVEC__
__vector unsigned char Slashes = {
'/', '/', '/', '/', '/', '/', '/', '/',
'/', '/', '/', '/', '/', '/', '/', '/'
};
while (CurPtr+16 <= BufferEnd &&
!vec_any_eq(*(const vector unsigned char*)CurPtr, Slashes))
CurPtr += 16;
#else
// Scan for '/' quickly. Many block comments are very large.
while (CurPtr[0] != '/' &&
CurPtr[1] != '/' &&
CurPtr[2] != '/' &&
CurPtr[3] != '/' &&
CurPtr+4 < BufferEnd) {
CurPtr += 4;
}
#endif
// It has to be one of the bytes scanned, increment to it and read one.
C = *CurPtr++;
}
// Loop to scan the remainder.
while (C != '/' && C != '\0')
C = *CurPtr++;
if (C == '/') {
FoundSlash:
if (CurPtr[-2] == '*') // We found the final */. We're done!
break;
if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
if (isEndOfBlockCommentWithEscapedNewLine(CurPtr-2, this)) {
// We found the final */, though it had an escaped newline between the
// * and /. We're done!
break;
}
}
if (CurPtr[0] == '*' && CurPtr[1] != '/') {
// If this is a /* inside of the comment, emit a warning. Don't do this
// if this is a /*/, which will end the comment. This misses cases with
// embedded escaped newlines, but oh well.
if (!isLexingRawMode())
Diag(CurPtr-1, diag::warn_nested_block_comment);
}
} else if (C == 0 && CurPtr == BufferEnd+1) {
if (!isLexingRawMode())
Diag(BufferPtr, diag::err_unterminated_block_comment);
// Note: the user probably forgot a */. We could continue immediately
// after the /*, but this would involve lexing a lot of what really is the
// comment, which surely would confuse the parser.
--CurPtr;
// KeepWhitespaceMode should return this broken comment as a token. Since
// it isn't a well formed comment, just return it as an 'unknown' token.
if (isKeepWhitespaceMode()) {
FormTokenWithChars(Result, CurPtr, tok::unknown);
return true;
}
BufferPtr = CurPtr;
return false;
} else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
PP->CodeCompleteNaturalLanguage();
cutOffLexing();
return false;
}
C = *CurPtr++;
}
// Notify comment handlers about the comment unless we're in a #if 0 block.
if (PP && !isLexingRawMode() &&
PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
getSourceLocation(CurPtr)))) {
BufferPtr = CurPtr;
return true; // A token has to be returned.
}
// If we are returning comments as tokens, return this comment as a token.
if (inKeepCommentMode()) {
FormTokenWithChars(Result, CurPtr, tok::comment);
return true;
}
// It is common for the tokens immediately after a /**/ comment to be
// whitespace. Instead of going through the big switch, handle it
// efficiently now. This is safe even in KeepWhitespaceMode because we would
// have already returned above with the comment as a token.
if (isHorizontalWhitespace(*CurPtr)) {
SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine);
return false;
}
// Otherwise, just return so that the next character will be lexed as a token.
BufferPtr = CurPtr;
Result.setFlag(Token::LeadingSpace);
return false;
}
//===----------------------------------------------------------------------===//
// Primary Lexing Entry Points
//===----------------------------------------------------------------------===//
/// ReadToEndOfLine - Read the rest of the current preprocessor line as an
/// uninterpreted string. This switches the lexer out of directive mode.
void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) {
assert(ParsingPreprocessorDirective && ParsingFilename == false &&
"Must be in a preprocessing directive!");
Token Tmp;
// CurPtr - Cache BufferPtr in an automatic variable.
const char *CurPtr = BufferPtr;
while (true) {
char Char = getAndAdvanceChar(CurPtr, Tmp);
switch (Char) {
default:
if (Result)
Result->push_back(Char);
break;
case 0: // Null.
// Found end of file?
if (CurPtr-1 != BufferEnd) {
if (isCodeCompletionPoint(CurPtr-1)) {
PP->CodeCompleteNaturalLanguage();
cutOffLexing();
return;
}
// Nope, normal character, continue.
if (Result)
Result->push_back(Char);
break;
}
// FALL THROUGH.
LLVM_FALLTHROUGH;
case '\r':
case '\n':
// Okay, we found the end of the line. First, back up past the \0, \r, \n.
assert(CurPtr[-1] == Char && "Trigraphs for newline?");
BufferPtr = CurPtr-1;
// Next, lex the character, which should handle the EOD transition.
Lex(Tmp);
if (Tmp.is(tok::code_completion)) {
if (PP)
PP->CodeCompleteNaturalLanguage();
Lex(Tmp);
}
assert(Tmp.is(tok::eod) && "Unexpected token!");
// Finally, we're done;
return;
}
}
}
/// LexEndOfFile - CurPtr points to the end of this file. Handle this
/// condition, reporting diagnostics and handling other edge cases as required.
/// This returns true if Result contains a token, false if PP.Lex should be
/// called again.
bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) {
// If we hit the end of the file while parsing a preprocessor directive,
// end the preprocessor directive first. The next token returned will
// then be the end of file.
if (ParsingPreprocessorDirective) {
// Done parsing the "line".
ParsingPreprocessorDirective = false;
// Update the location of token as well as BufferPtr.
FormTokenWithChars(Result, CurPtr, tok::eod);
// Restore comment saving mode, in case it was disabled for directive.
if (PP)
resetExtendedTokenMode();
return true; // Have a token.
}
// If we are in raw mode, return this event as an EOF token. Let the caller
// that put us in raw mode handle the event.
if (isLexingRawMode()) {
Result.startToken();
BufferPtr = BufferEnd;
FormTokenWithChars(Result, BufferEnd, tok::eof);
return true;
}
if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) {
PP->setRecordedPreambleConditionalStack(ConditionalStack);
ConditionalStack.clear();
}
// Issue diagnostics for unterminated #if and missing newline.
// If we are in a #if directive, emit an error.
while (!ConditionalStack.empty()) {
if (PP->getCodeCompletionFileLoc() != FileLoc)
PP->Diag(ConditionalStack.back().IfLoc,
diag::err_pp_unterminated_conditional);
ConditionalStack.pop_back();
}
// C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue
// a pedwarn.
if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) {
DiagnosticsEngine &Diags = PP->getDiagnostics();
SourceLocation EndLoc = getSourceLocation(BufferEnd);
unsigned DiagID;
if (LangOpts.CPlusPlus11) {
// C++11 [lex.phases] 2.2 p2
// Prefer the C++98 pedantic compatibility warning over the generic,
// non-extension, user-requested "missing newline at EOF" warning.
if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) {
DiagID = diag::warn_cxx98_compat_no_newline_eof;
} else {
DiagID = diag::warn_no_newline_eof;
}
} else {
DiagID = diag::ext_no_newline_eof;
}
Diag(BufferEnd, DiagID)
<< FixItHint::CreateInsertion(EndLoc, "\n");
}
BufferPtr = CurPtr;
// Finally, let the preprocessor handle this.
return PP->HandleEndOfFile(Result, isPragmaLexer());
}
/// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
/// the specified lexer will return a tok::l_paren token, 0 if it is something
/// else and 2 if there are no more tokens in the buffer controlled by the
/// lexer.
unsigned Lexer::isNextPPTokenLParen() {
assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
// Switch to 'skipping' mode. This will ensure that we can lex a token
// without emitting diagnostics, disables macro expansion, and will cause EOF
// to return an EOF token instead of popping the include stack.
LexingRawMode = true;
// Save state that can be changed while lexing so that we can restore it.
const char *TmpBufferPtr = BufferPtr;
bool inPPDirectiveMode = ParsingPreprocessorDirective;
bool atStartOfLine = IsAtStartOfLine;
bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
bool leadingSpace = HasLeadingSpace;
Token Tok;
Lex(Tok);
// Restore state that may have changed.
BufferPtr = TmpBufferPtr;
ParsingPreprocessorDirective = inPPDirectiveMode;
HasLeadingSpace = leadingSpace;
IsAtStartOfLine = atStartOfLine;
IsAtPhysicalStartOfLine = atPhysicalStartOfLine;
// Restore the lexer back to non-skipping mode.
LexingRawMode = false;
if (Tok.is(tok::eof))
return 2;
return Tok.is(tok::l_paren);
}
/// Find the end of a version control conflict marker.
static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd,
ConflictMarkerKind CMK) {
const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>";
size_t TermLen = CMK == CMK_Perforce ? 5 : 7;
auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen);
size_t Pos = RestOfBuffer.find(Terminator);
while (Pos != StringRef::npos) {
// Must occur at start of line.
if (Pos == 0 ||
(RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) {
RestOfBuffer = RestOfBuffer.substr(Pos+TermLen);
Pos = RestOfBuffer.find(Terminator);
continue;
}
return RestOfBuffer.data()+Pos;
}
return nullptr;
}
/// IsStartOfConflictMarker - If the specified pointer is the start of a version
/// control conflict marker like '<<<<<<<', recognize it as such, emit an error
/// and recover nicely. This returns true if it is a conflict marker and false
/// if not.
bool Lexer::IsStartOfConflictMarker(const char *CurPtr) {
// Only a conflict marker if it starts at the beginning of a line.
if (CurPtr != BufferStart &&
CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
return false;
// Check to see if we have <<<<<<< or >>>>.
if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") &&
!StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> "))
return false;
// If we have a situation where we don't care about conflict markers, ignore
// it.
if (CurrentConflictMarkerState || isLexingRawMode())
return false;
ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce;
// Check to see if there is an ending marker somewhere in the buffer at the
// start of a line to terminate this conflict marker.
if (FindConflictEnd(CurPtr, BufferEnd, Kind)) {
// We found a match. We are really in a conflict marker.
// Diagnose this, and ignore to the end of line.
Diag(CurPtr, diag::err_conflict_marker);
CurrentConflictMarkerState = Kind;
// Skip ahead to the end of line. We know this exists because the
// end-of-conflict marker starts with \r or \n.
while (*CurPtr != '\r' && *CurPtr != '\n') {
assert(CurPtr != BufferEnd && "Didn't find end of line");
++CurPtr;
}
BufferPtr = CurPtr;
return true;
}
// No end of conflict marker found.
return false;
}
/// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if
/// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it
/// is the end of a conflict marker. Handle it by ignoring up until the end of
/// the line. This returns true if it is a conflict marker and false if not.
bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) {
// Only a conflict marker if it starts at the beginning of a line.
if (CurPtr != BufferStart &&
CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
return false;
// If we have a situation where we don't care about conflict markers, ignore
// it.
if (!CurrentConflictMarkerState || isLexingRawMode())
return false;
// Check to see if we have the marker (4 characters in a row).
for (unsigned i = 1; i != 4; ++i)
if (CurPtr[i] != CurPtr[0])
return false;
// If we do have it, search for the end of the conflict marker. This could
// fail if it got skipped with a '#if 0' or something. Note that CurPtr might
// be the end of conflict marker.
if (const char *End = FindConflictEnd(CurPtr, BufferEnd,
CurrentConflictMarkerState)) {
CurPtr = End;
// Skip ahead to the end of line.
while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n')
++CurPtr;
BufferPtr = CurPtr;
// No longer in the conflict marker.
CurrentConflictMarkerState = CMK_None;
return true;
}
return false;
}
static const char *findPlaceholderEnd(const char *CurPtr,
const char *BufferEnd) {
if (CurPtr == BufferEnd)
return nullptr;
BufferEnd -= 1; // Scan until the second last character.
for (; CurPtr != BufferEnd; ++CurPtr) {
if (CurPtr[0] == '#' && CurPtr[1] == '>')
return CurPtr + 2;
}
return nullptr;
}
bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) {
assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!");
if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode)
return false;
const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd);
if (!End)
return false;
const char *Start = CurPtr - 1;
if (!LangOpts.AllowEditorPlaceholders)
Diag(Start, diag::err_placeholder_in_source);
Result.startToken();
FormTokenWithChars(Result, End, tok::raw_identifier);
Result.setRawIdentifierData(Start);
PP->LookUpIdentifierInfo(Result);
Result.setFlag(Token::IsEditorPlaceholder);
BufferPtr = End;
return true;
}
bool Lexer::isCodeCompletionPoint(const char *CurPtr) const {
if (PP && PP->isCodeCompletionEnabled()) {
SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart);
return Loc == PP->getCodeCompletionLoc();
}
return false;
}
uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc,
Token *Result) {
unsigned CharSize;
char Kind = getCharAndSize(StartPtr, CharSize);
unsigned NumHexDigits;
if (Kind == 'u')
NumHexDigits = 4;
else if (Kind == 'U')
NumHexDigits = 8;
else
return 0;
if (!LangOpts.CPlusPlus && !LangOpts.C99) {
if (Result && !isLexingRawMode())
Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89);
return 0;
}
const char *CurPtr = StartPtr + CharSize;
const char *KindLoc = &CurPtr[-1];
uint32_t CodePoint = 0;
for (unsigned i = 0; i < NumHexDigits; ++i) {
char C = getCharAndSize(CurPtr, CharSize);
unsigned Value = llvm::hexDigitValue(C);
if (Value == -1U) {
if (Result && !isLexingRawMode()) {
if (i == 0) {
Diag(BufferPtr, diag::warn_ucn_escape_no_digits)
<< StringRef(KindLoc, 1);
} else {
Diag(BufferPtr, diag::warn_ucn_escape_incomplete);
// If the user wrote \U1234, suggest a fixit to \u.
if (i == 4 && NumHexDigits == 8) {
CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1);
Diag(KindLoc, diag::note_ucn_four_not_eight)
<< FixItHint::CreateReplacement(URange, "u");
}
}
}
return 0;
}
CodePoint <<= 4;
CodePoint += Value;
CurPtr += CharSize;
}
if (Result) {
Result->setFlag(Token::HasUCN);
if (CurPtr - StartPtr == (ptrdiff_t)NumHexDigits + 2)
StartPtr = CurPtr;
else
while (StartPtr != CurPtr)
(void)getAndAdvanceChar(StartPtr, *Result);
} else {
StartPtr = CurPtr;
}
// Don't apply C family restrictions to UCNs in assembly mode
if (LangOpts.AsmPreprocessor)
return CodePoint;
// C99 6.4.3p2: A universal character name shall not specify a character whose
// short identifier is less than 00A0 other than 0024 ($), 0040 (@), or
// 0060 (`), nor one in the range D800 through DFFF inclusive.)
// C++11 [lex.charset]p2: If the hexadecimal value for a
// universal-character-name corresponds to a surrogate code point (in the
// range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally,
// if the hexadecimal value for a universal-character-name outside the
// c-char-sequence, s-char-sequence, or r-char-sequence of a character or
// string literal corresponds to a control character (in either of the
// ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the
// basic source character set, the program is ill-formed.
if (CodePoint < 0xA0) {
if (CodePoint == 0x24 || CodePoint == 0x40 || CodePoint == 0x60)
return CodePoint;
// We don't use isLexingRawMode() here because we need to warn about bad
// UCNs even when skipping preprocessing tokens in a #if block.
if (Result && PP) {
if (CodePoint < 0x20 || CodePoint >= 0x7F)
Diag(BufferPtr, diag::err_ucn_control_character);
else {
char C = static_cast<char>(CodePoint);
Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1);
}
}
return 0;
} else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) {
// C++03 allows UCNs representing surrogate characters. C99 and C++11 don't.
// We don't use isLexingRawMode() here because we need to diagnose bad
// UCNs even when skipping preprocessing tokens in a #if block.
if (Result && PP) {
if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11)
Diag(BufferPtr, diag::warn_ucn_escape_surrogate);
else
Diag(BufferPtr, diag::err_ucn_escape_invalid);
}
return 0;
}
return CodePoint;
}
bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C,
const char *CurPtr) {
static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars(
UnicodeWhitespaceCharRanges);
if (!isLexingRawMode() && !PP->isPreprocessedOutput() &&
UnicodeWhitespaceChars.contains(C)) {
Diag(BufferPtr, diag::ext_unicode_whitespace)
<< makeCharRange(*this, BufferPtr, CurPtr);
Result.setFlag(Token::LeadingSpace);
return true;
}
return false;
}
bool Lexer::LexUnicode(Token &Result, uint32_t C, const char *CurPtr) {
if (isAllowedIDChar(C, LangOpts) && isAllowedInitiallyIDChar(C, LangOpts)) {
if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
!PP->isPreprocessedOutput()) {
maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C,
makeCharRange(*this, BufferPtr, CurPtr),
/*IsFirst=*/true);
maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C,
makeCharRange(*this, BufferPtr, CurPtr));
}
MIOpt.ReadToken();
return LexIdentifier(Result, CurPtr);
}
if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
!PP->isPreprocessedOutput() &&
!isASCII(*BufferPtr) && !isAllowedIDChar(C, LangOpts)) {
// Non-ASCII characters tend to creep into source code unintentionally.
// Instead of letting the parser complain about the unknown token,
// just drop the character.
// Note that we can /only/ do this when the non-ASCII character is actually
// spelled as Unicode, not written as a UCN. The standard requires that
// we not throw away any possible preprocessor tokens, but there's a
// loophole in the mapping of Unicode characters to basic character set
// characters that allows us to map these particular characters to, say,
// whitespace.
Diag(BufferPtr, diag::err_non_ascii)
<< FixItHint::CreateRemoval(makeCharRange(*this, BufferPtr, CurPtr));
BufferPtr = CurPtr;
return false;
}
// Otherwise, we have an explicit UCN or a character that's unlikely to show
// up by accident.
MIOpt.ReadToken();
FormTokenWithChars(Result, CurPtr, tok::unknown);
return true;
}
void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
IsAtStartOfLine = Result.isAtStartOfLine();
HasLeadingSpace = Result.hasLeadingSpace();
HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro();
// Note that this doesn't affect IsAtPhysicalStartOfLine.
}
bool Lexer::Lex(Token &Result) {
// Start a new token.
Result.startToken();
// Set up misc whitespace flags for LexTokenInternal.
if (IsAtStartOfLine) {
Result.setFlag(Token::StartOfLine);
IsAtStartOfLine = false;
}
if (HasLeadingSpace) {
Result.setFlag(Token::LeadingSpace);
HasLeadingSpace = false;
}
if (HasLeadingEmptyMacro) {
Result.setFlag(Token::LeadingEmptyMacro);
HasLeadingEmptyMacro = false;
}
bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
IsAtPhysicalStartOfLine = false;
bool isRawLex = isLexingRawMode();
(void) isRawLex;
bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine);
// (After the LexTokenInternal call, the lexer might be destroyed.)
assert((returnedToken || !isRawLex) && "Raw lex must succeed");
return returnedToken;
}
/// LexTokenInternal - This implements a simple C family lexer. It is an
/// extremely performance critical piece of code. This assumes that the buffer
/// has a null character at the end of the file. This returns a preprocessing
/// token, not a normal token, as such, it is an internal interface. It assumes
/// that the Flags of result have been cleared before calling this.
bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) {
LexNextToken:
// New token, can't need cleaning yet.
Result.clearFlag(Token::NeedsCleaning);
Result.setIdentifierInfo(nullptr);
// CurPtr - Cache BufferPtr in an automatic variable.
const char *CurPtr = BufferPtr;
// Small amounts of horizontal whitespace is very common between tokens.
if ((*CurPtr == ' ') || (*CurPtr == '\t')) {
++CurPtr;
while ((*CurPtr == ' ') || (*CurPtr == '\t'))
++CurPtr;
// If we are keeping whitespace and other tokens, just return what we just
// skipped. The next lexer invocation will return the token after the
// whitespace.
if (isKeepWhitespaceMode()) {
FormTokenWithChars(Result, CurPtr, tok::unknown);
// FIXME: The next token will not have LeadingSpace set.
return true;
}
BufferPtr = CurPtr;
Result.setFlag(Token::LeadingSpace);
}
unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below.
// Read a character, advancing over it.
char Char = getAndAdvanceChar(CurPtr, Result);
tok::TokenKind Kind;
switch (Char) {
case 0: // Null.
// Found end of file?
if (CurPtr-1 == BufferEnd)
return LexEndOfFile(Result, CurPtr-1);
// Check if we are performing code completion.
if (isCodeCompletionPoint(CurPtr-1)) {
// Return the code-completion token.
Result.startToken();
FormTokenWithChars(Result, CurPtr, tok::code_completion);
return true;
}
if (!isLexingRawMode())
Diag(CurPtr-1, diag::null_in_file);
Result.setFlag(Token::LeadingSpace);
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
return true; // KeepWhitespaceMode
// We know the lexer hasn't changed, so just try again with this lexer.
// (We manually eliminate the tail call to avoid recursion.)
goto LexNextToken;
case 26: // DOS & CP/M EOF: "^Z".
// If we're in Microsoft extensions mode, treat this as end of file.
if (LangOpts.MicrosoftExt) {
if (!isLexingRawMode())
Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft);
return LexEndOfFile(Result, CurPtr-1);
}
// If Microsoft extensions are disabled, this is just random garbage.
Kind = tok::unknown;
break;
case '\r':
if (CurPtr[0] == '\n')
Char = getAndAdvanceChar(CurPtr, Result);
LLVM_FALLTHROUGH;
case '\n':
// If we are inside a preprocessor directive and we see the end of line,
// we know we are done with the directive, so return an EOD token.
if (ParsingPreprocessorDirective) {
// Done parsing the "line".
ParsingPreprocessorDirective = false;
// Restore comment saving mode, in case it was disabled for directive.
if (PP)
resetExtendedTokenMode();
// Since we consumed a newline, we are back at the start of a line.
IsAtStartOfLine = true;
IsAtPhysicalStartOfLine = true;
Kind = tok::eod;
break;
}
// No leading whitespace seen so far.
Result.clearFlag(Token::LeadingSpace);
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
return true; // KeepWhitespaceMode
// We only saw whitespace, so just try again with this lexer.
// (We manually eliminate the tail call to avoid recursion.)
goto LexNextToken;
case ' ':
case '\t':
case '\f':
case '\v':
SkipHorizontalWhitespace:
Result.setFlag(Token::LeadingSpace);
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
return true; // KeepWhitespaceMode
SkipIgnoredUnits:
CurPtr = BufferPtr;
// If the next token is obviously a // or /* */ comment, skip it efficiently
// too (without going through the big switch stmt).
if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() &&
LangOpts.LineComment &&
(LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) {
if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
return true; // There is a token to return.
goto SkipIgnoredUnits;
} else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) {
if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
return true; // There is a token to return.
goto SkipIgnoredUnits;
} else if (isHorizontalWhitespace(*CurPtr)) {
goto SkipHorizontalWhitespace;
}
// We only saw whitespace, so just try again with this lexer.
// (We manually eliminate the tail call to avoid recursion.)
goto LexNextToken;
// C99 6.4.4.1: Integer Constants.
// C99 6.4.4.2: Floating Constants.
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexNumericConstant(Result, CurPtr);
case 'u': // Identifier (uber) or C11/C++11 UTF-8 or UTF-16 string literal
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
if (LangOpts.CPlusPlus11 || LangOpts.C11) {
Char = getCharAndSize(CurPtr, SizeTmp);
// UTF-16 string literal
if (Char == '"')
return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
tok::utf16_string_literal);
// UTF-16 character constant
if (Char == '\'')
return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
tok::utf16_char_constant);
// UTF-16 raw string literal
if (Char == 'R' && LangOpts.CPlusPlus11 &&
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
return LexRawStringLiteral(Result,
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result),
tok::utf16_string_literal);
if (Char == '8') {
char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2);
// UTF-8 string literal
if (Char2 == '"')
return LexStringLiteral(Result,
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result),
tok::utf8_string_literal);
if (Char2 == '\'' && LangOpts.CPlusPlus17)
return LexCharConstant(
Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result),
tok::utf8_char_constant);
if (Char2 == 'R' && LangOpts.CPlusPlus11) {
unsigned SizeTmp3;
char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
// UTF-8 raw string literal
if (Char3 == '"') {
return LexRawStringLiteral(Result,
ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result),
SizeTmp3, Result),
tok::utf8_string_literal);
}
}
}
}
// treat u like the start of an identifier.
return LexIdentifier(Result, CurPtr);
case 'U': // Identifier (Uber) or C11/C++11 UTF-32 string literal
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
if (LangOpts.CPlusPlus11 || LangOpts.C11) {
Char = getCharAndSize(CurPtr, SizeTmp);
// UTF-32 string literal
if (Char == '"')
return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
tok::utf32_string_literal);
// UTF-32 character constant
if (Char == '\'')
return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
tok::utf32_char_constant);
// UTF-32 raw string literal
if (Char == 'R' && LangOpts.CPlusPlus11 &&
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
return LexRawStringLiteral(Result,
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result),
tok::utf32_string_literal);
}
// treat U like the start of an identifier.
return LexIdentifier(Result, CurPtr);
case 'R': // Identifier or C++0x raw string literal
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
if (LangOpts.CPlusPlus11) {
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '"')
return LexRawStringLiteral(Result,
ConsumeChar(CurPtr, SizeTmp, Result),
tok::string_literal);
}
// treat R like the start of an identifier.
return LexIdentifier(Result, CurPtr);
case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz").
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
Char = getCharAndSize(CurPtr, SizeTmp);
// Wide string literal.
if (Char == '"')
return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
tok::wide_string_literal);
// Wide raw string literal.
if (LangOpts.CPlusPlus11 && Char == 'R' &&
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
return LexRawStringLiteral(Result,
ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result),
tok::wide_string_literal);
// Wide character constant.
if (Char == '\'')
return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
tok::wide_char_constant);
// FALL THROUGH, treating L like the start of an identifier.
LLVM_FALLTHROUGH;
// C99 6.4.2: Identifiers.
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N':
case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/
case 'V': case 'W': case 'X': case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/
case 'v': case 'w': case 'x': case 'y': case 'z':
case '_':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexIdentifier(Result, CurPtr);
case '$': // $ in identifiers.
if (LangOpts.DollarIdents) {
if (!isLexingRawMode())
Diag(CurPtr-1, diag::ext_dollar_in_identifier);
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexIdentifier(Result, CurPtr);
}
Kind = tok::unknown;
break;
// C99 6.4.4: Character Constants.
case '\'':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexCharConstant(Result, CurPtr, tok::char_constant);
// C99 6.4.5: String Literals.
case '"':
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexStringLiteral(Result, CurPtr,
ParsingFilename ? tok::header_name
: tok::string_literal);
// C99 6.4.6: Punctuators.
case '?':
Kind = tok::question;
break;
case '[':
Kind = tok::l_square;
break;
case ']':
Kind = tok::r_square;
break;
case '(':
Kind = tok::l_paren;
break;
case ')':
Kind = tok::r_paren;
break;
case '{':
Kind = tok::l_brace;
break;
case '}':
Kind = tok::r_brace;
break;
case '.':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char >= '0' && Char <= '9') {
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
} else if (LangOpts.CPlusPlus && Char == '*') {
Kind = tok::periodstar;
CurPtr += SizeTmp;
} else if (Char == '.' &&
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
Kind = tok::ellipsis;
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else {
Kind = tok::period;
}
break;
case '&':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '&') {
Kind = tok::ampamp;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '=') {
Kind = tok::ampequal;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Kind = tok::amp;
}
break;
case '*':
if (getCharAndSize(CurPtr, SizeTmp) == '=') {
Kind = tok::starequal;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Kind = tok::star;
}
break;
case '+':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '+') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::plusplus;
} else if (Char == '=') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::plusequal;
} else {
Kind = tok::plus;
}
break;
case '-':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '-') { // --
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::minusminus;
} else if (Char == '>' && LangOpts.CPlusPlus &&
getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->*
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
Kind = tok::arrowstar;
} else if (Char == '>') { // ->
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::arrow;
} else if (Char == '=') { // -=
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::minusequal;
} else {
Kind = tok::minus;
}
break;
case '~':
Kind = tok::tilde;
break;
case '!':
if (getCharAndSize(CurPtr, SizeTmp) == '=') {
Kind = tok::exclaimequal;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Kind = tok::exclaim;
}
break;
case '/':
// 6.4.9: Comments
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '/') { // Line comment.
// Even if Line comments are disabled (e.g. in C89 mode), we generally
// want to lex this as a comment. There is one problem with this though,
// that in one particular corner case, this can change the behavior of the
// resultant program. For example, In "foo //**/ bar", C89 would lex
// this as "foo / bar" and languages with Line comments would lex it as
// "foo". Check to see if the character after the second slash is a '*'.
// If so, we will lex that as a "/" instead of the start of a comment.
// However, we never do this if we are just preprocessing.
bool TreatAsComment = LangOpts.LineComment &&
(LangOpts.CPlusPlus || !LangOpts.TraditionalCPP);
if (!TreatAsComment)
if (!(PP && PP->isPreprocessedOutput()))
TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*';
if (TreatAsComment) {
if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
TokAtPhysicalStartOfLine))
return true; // There is a token to return.
// It is common for the tokens immediately after a // comment to be
// whitespace (indentation for the next line). Instead of going through
// the big switch, handle it efficiently now.
goto SkipIgnoredUnits;
}
}
if (Char == '*') { // /**/ comment.
if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
TokAtPhysicalStartOfLine))
return true; // There is a token to return.
// We only saw whitespace, so just try again with this lexer.
// (We manually eliminate the tail call to avoid recursion.)
goto LexNextToken;
}
if (Char == '=') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::slashequal;
} else {
Kind = tok::slash;
}
break;
case '%':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
Kind = tok::percentequal;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (LangOpts.Digraphs && Char == '>') {
Kind = tok::r_brace; // '%>' -> '}'
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (LangOpts.Digraphs && Char == ':') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
Kind = tok::hashhash; // '%:%:' -> '##'
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
if (!isLexingRawMode())
Diag(BufferPtr, diag::ext_charize_microsoft);
Kind = tok::hashat;
} else { // '%:' -> '#'
// We parsed a # character. If this occurs at the start of the line,
// it's actually the start of a preprocessing directive. Callback to
// the preprocessor to handle it.
// TODO: -fpreprocessed mode??
if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
goto HandleDirective;
Kind = tok::hash;
}
} else {
Kind = tok::percent;
}
break;
case '<':
Char = getCharAndSize(CurPtr, SizeTmp);
if (ParsingFilename) {
return LexAngledStringLiteral(Result, CurPtr);
} else if (Char == '<') {
char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
if (After == '=') {
Kind = tok::lesslessequal;
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) {
// If this is actually a '<<<<<<<' version control conflict marker,
// recognize it as such and recover nicely.
goto LexNextToken;
} else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) {
// If this is '<<<<' and we're in a Perforce-style conflict marker,
// ignore it.
goto LexNextToken;
} else if (LangOpts.CUDA && After == '<') {
Kind = tok::lesslessless;
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::lessless;
}
} else if (Char == '=') {
char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
if (After == '>') {
if (getLangOpts().CPlusPlus2a) {
if (!isLexingRawMode())
Diag(BufferPtr, diag::warn_cxx17_compat_spaceship);
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
Kind = tok::spaceship;
break;
}
// Suggest adding a space between the '<=' and the '>' to avoid a
// change in semantics if this turns up in C++ <=17 mode.
if (getLangOpts().CPlusPlus && !isLexingRawMode()) {
Diag(BufferPtr, diag::warn_cxx2a_compat_spaceship)
<< FixItHint::CreateInsertion(
getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " ");
}
}
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::lessequal;
} else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '['
if (LangOpts.CPlusPlus11 &&
getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') {
// C++0x [lex.pptoken]p3:
// Otherwise, if the next three characters are <:: and the subsequent
// character is neither : nor >, the < is treated as a preprocessor
// token by itself and not as the first character of the alternative
// token <:.
unsigned SizeTmp3;
char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
if (After != ':' && After != '>') {
Kind = tok::less;
if (!isLexingRawMode())
Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon);
break;
}
}
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::l_square;
} else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{'
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::l_brace;
} else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 &&
lexEditorPlaceholder(Result, CurPtr)) {
return true;
} else {
Kind = tok::less;
}
break;
case '>':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::greaterequal;
} else if (Char == '>') {
char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
if (After == '=') {
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
Kind = tok::greatergreaterequal;
} else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) {
// If this is actually a '>>>>' conflict marker, recognize it as such
// and recover nicely.
goto LexNextToken;
} else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) {
// If this is '>>>>>>>' and we're in a conflict marker, ignore it.
goto LexNextToken;
} else if (LangOpts.CUDA && After == '>') {
Kind = tok::greatergreatergreater;
CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
SizeTmp2, Result);
} else {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::greatergreater;
}
} else {
Kind = tok::greater;
}
break;
case '^':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::caretequal;
} else if (LangOpts.OpenCL && Char == '^') {
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
Kind = tok::caretcaret;
} else {
Kind = tok::caret;
}
break;
case '|':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
Kind = tok::pipeequal;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '|') {
// If this is '|||||||' and we're in a conflict marker, ignore it.
if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1))
goto LexNextToken;
Kind = tok::pipepipe;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Kind = tok::pipe;
}
break;
case ':':
Char = getCharAndSize(CurPtr, SizeTmp);
if (LangOpts.Digraphs && Char == '>') {
Kind = tok::r_square; // ':>' -> ']'
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if ((LangOpts.CPlusPlus ||
LangOpts.DoubleSquareBracketAttributes) &&
Char == ':') {
Kind = tok::coloncolon;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Kind = tok::colon;
}
break;
case ';':
Kind = tok::semi;
break;
case '=':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '=') {
// If this is '====' and we're in a conflict marker, ignore it.
if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1))
goto LexNextToken;
Kind = tok::equalequal;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
Kind = tok::equal;
}
break;
case ',':
Kind = tok::comma;
break;
case '#':
Char = getCharAndSize(CurPtr, SizeTmp);
if (Char == '#') {
Kind = tok::hashhash;
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize
Kind = tok::hashat;
if (!isLexingRawMode())
Diag(BufferPtr, diag::ext_charize_microsoft);
CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
} else {
// We parsed a # character. If this occurs at the start of the line,
// it's actually the start of a preprocessing directive. Callback to
// the preprocessor to handle it.
// TODO: -fpreprocessed mode??
if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
goto HandleDirective;
Kind = tok::hash;
}
break;
case '@':
// Objective C support.
if (CurPtr[-1] == '@' && LangOpts.ObjC)
Kind = tok::at;
else
Kind = tok::unknown;
break;
// UCNs (C99 6.4.3, C++11 [lex.charset]p2)
case '\\':
if (!LangOpts.AsmPreprocessor) {
if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) {
if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
return true; // KeepWhitespaceMode
// We only saw whitespace, so just try again with this lexer.
// (We manually eliminate the tail call to avoid recursion.)
goto LexNextToken;
}
return LexUnicode(Result, CodePoint, CurPtr);
}
}
Kind = tok::unknown;
break;
default: {
if (isASCII(Char)) {
Kind = tok::unknown;
break;
}
llvm::UTF32 CodePoint;
// We can't just reset CurPtr to BufferPtr because BufferPtr may point to
// an escaped newline.
--CurPtr;
llvm::ConversionResult Status =
llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr,
(const llvm::UTF8 *)BufferEnd,
&CodePoint,
llvm::strictConversion);
if (Status == llvm::conversionOK) {
if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
return true; // KeepWhitespaceMode
// We only saw whitespace, so just try again with this lexer.
// (We manually eliminate the tail call to avoid recursion.)
goto LexNextToken;
}
return LexUnicode(Result, CodePoint, CurPtr);
}
if (isLexingRawMode() || ParsingPreprocessorDirective ||
PP->isPreprocessedOutput()) {
++CurPtr;
Kind = tok::unknown;
break;
}
// Non-ASCII characters tend to creep into source code unintentionally.
// Instead of letting the parser complain about the unknown token,
// just diagnose the invalid UTF-8, then drop the character.
Diag(CurPtr, diag::err_invalid_utf8);
BufferPtr = CurPtr+1;
// We're pretending the character didn't exist, so just try again with
// this lexer.
// (We manually eliminate the tail call to avoid recursion.)
goto LexNextToken;
}
}
// Notify MIOpt that we read a non-whitespace/non-comment token.
MIOpt.ReadToken();
// Update the location of token as well as BufferPtr.
FormTokenWithChars(Result, CurPtr, Kind);
return true;
HandleDirective:
// We parsed a # character and it's the start of a preprocessing directive.
FormTokenWithChars(Result, CurPtr, tok::hash);
PP->HandleDirective(Result);
if (PP->hadModuleLoaderFatalFailure()) {
// With a fatal failure in the module loader, we abort parsing.
assert(Result.is(tok::eof) && "Preprocessor did not set tok:eof");
return true;
}
// We parsed the directive; lex a token with the new state.
return false;
}