llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp

185 lines
6.1 KiB
C++

//===-- RISCVBaseInfo.cpp - Top level definitions for RISCV MC ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone enum definitions for the RISCV target
// useful for the compiler back-end and the MC libraries.
//
//===----------------------------------------------------------------------===//
#include "RISCVBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/RISCVISAInfo.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
namespace RISCVSysReg {
#define GET_SysRegsList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVSysReg
namespace RISCVInsnOpcode {
#define GET_RISCVOpcodesList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVInsnOpcode
namespace RISCVABI {
ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits,
StringRef ABIName) {
auto TargetABI = getTargetABI(ABIName);
bool IsRV64 = TT.isArch64Bit();
bool IsRV32E = FeatureBits[RISCV::FeatureRV32E];
if (!ABIName.empty() && TargetABI == ABI_Unknown) {
errs()
<< "'" << ABIName
<< "' is not a recognized ABI for this target (ignoring target-abi)\n";
} else if (ABIName.startswith("ilp32") && IsRV64) {
errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (ABIName.startswith("lp64") && !IsRV64) {
errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (IsRV32E && TargetABI != ABI_ILP32E && TargetABI != ABI_Unknown) {
// TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
errs()
<< "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
TargetABI = ABI_Unknown;
}
if (TargetABI != ABI_Unknown)
return TargetABI;
// For now, default to the ilp32/ilp32e/lp64 ABI if no explicit ABI is given
// or an invalid/unrecognised string is given. In the future, it might be
// worth changing this to default to ilp32f/lp64f and ilp32d/lp64d when
// hardware support for floating point is present.
if (IsRV32E)
return ABI_ILP32E;
if (IsRV64)
return ABI_LP64;
return ABI_ILP32;
}
ABI getTargetABI(StringRef ABIName) {
auto TargetABI = StringSwitch<ABI>(ABIName)
.Case("ilp32", ABI_ILP32)
.Case("ilp32f", ABI_ILP32F)
.Case("ilp32d", ABI_ILP32D)
.Case("ilp32e", ABI_ILP32E)
.Case("lp64", ABI_LP64)
.Case("lp64f", ABI_LP64F)
.Case("lp64d", ABI_LP64D)
.Default(ABI_Unknown);
return TargetABI;
}
// To avoid the BP value clobbered by a function call, we need to choose a
// callee saved register to save the value. RV32E only has X8 and X9 as callee
// saved registers and X8 will be used as fp. So we choose X9 as bp.
MCRegister getBPReg() { return RISCV::X9; }
// Returns the register holding shadow call stack pointer.
MCRegister getSCSPReg() { return RISCV::X18; }
} // namespace RISCVABI
namespace RISCVFeatures {
void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV64 target requires an RV64 CPU");
if (!TT.isArch64Bit() && FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV32 target requires an RV32 CPU");
if (TT.isArch64Bit() && FeatureBits[RISCV::FeatureRV32E])
report_fatal_error("RV32E can't be enabled for an RV64 target");
}
void toFeatureVector(std::vector<std::string> &FeatureVector,
const FeatureBitset &FeatureBits) {
for (auto Feature : RISCVFeatureKV) {
if (FeatureBits[Feature.Value] &&
llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
FeatureVector.push_back(std::string("+") + Feature.Key);
}
}
} // namespace RISCVFeatures
// Encode VTYPE into the binary format used by the the VSETVLI instruction which
// is used by our MC layer representation.
//
// Bits | Name | Description
// -----+------------+------------------------------------------------
// 7 | vma | Vector mask agnostic
// 6 | vta | Vector tail agnostic
// 5:3 | vsew[2:0] | Standard element width (SEW) setting
// 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting
unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
bool TailAgnostic, bool MaskAgnostic) {
assert(isValidSEW(SEW) && "Invalid SEW");
unsigned VLMULBits = static_cast<unsigned>(VLMUL);
unsigned VSEWBits = Log2_32(SEW) - 3;
unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
if (TailAgnostic)
VTypeI |= 0x40;
if (MaskAgnostic)
VTypeI |= 0x80;
return VTypeI;
}
std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
switch (VLMUL) {
default:
llvm_unreachable("Unexpected LMUL value!");
case RISCVII::VLMUL::LMUL_1:
case RISCVII::VLMUL::LMUL_2:
case RISCVII::VLMUL::LMUL_4:
case RISCVII::VLMUL::LMUL_8:
return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
case RISCVII::VLMUL::LMUL_F2:
case RISCVII::VLMUL::LMUL_F4:
case RISCVII::VLMUL::LMUL_F8:
return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
}
}
void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
unsigned Sew = getSEW(VType);
OS << "e" << Sew;
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
if (Fractional)
OS << ", mf";
else
OS << ", m";
OS << LMul;
if (isTailAgnostic(VType))
OS << ", ta";
else
OS << ", tu";
if (isMaskAgnostic(VType))
OS << ", ma";
else
OS << ", mu";
}
} // namespace llvm