llvm-project/compiler-rt/lib/dfsan/dfsan.cpp

1128 lines
36 KiB
C++

//===-- dfsan.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of DataFlowSanitizer.
//
// DataFlowSanitizer runtime. This file defines the public interface to
// DataFlowSanitizer as well as the definition of certain runtime functions
// called automatically by the compiler (specifically the instrumentation pass
// in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
//
// The public interface is defined in include/sanitizer/dfsan_interface.h whose
// functions are prefixed dfsan_ while the compiler interface functions are
// prefixed __dfsan_.
//===----------------------------------------------------------------------===//
#include "dfsan/dfsan.h"
#include "dfsan/dfsan_chained_origin_depot.h"
#include "dfsan/dfsan_flags.h"
#include "dfsan/dfsan_origin.h"
#include "dfsan/dfsan_thread.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
using namespace __dfsan;
Flags __dfsan::flags_data;
// The size of TLS variables. These constants must be kept in sync with the ones
// in DataFlowSanitizer.cpp.
static const int kDFsanArgTlsSize = 800;
static const int kDFsanRetvalTlsSize = 800;
static const int kDFsanArgOriginTlsSize = 800;
SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u64
__dfsan_retval_tls[kDFsanRetvalTlsSize / sizeof(u64)];
SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u32 __dfsan_retval_origin_tls;
SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u64
__dfsan_arg_tls[kDFsanArgTlsSize / sizeof(u64)];
SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u32
__dfsan_arg_origin_tls[kDFsanArgOriginTlsSize / sizeof(u32)];
// Instrumented code may set this value in terms of -dfsan-track-origins.
// * undefined or 0: do not track origins.
// * 1: track origins at memory store operations.
// * 2: track origins at memory load and store operations.
// TODO: track callsites.
extern "C" SANITIZER_WEAK_ATTRIBUTE const int __dfsan_track_origins;
extern "C" SANITIZER_INTERFACE_ATTRIBUTE int dfsan_get_track_origins() {
return &__dfsan_track_origins ? __dfsan_track_origins : 0;
}
// On Linux/x86_64, memory is laid out as follows:
//
// +--------------------+ 0x800000000000 (top of memory)
// | application 3 |
// +--------------------+ 0x700000000000
// | invalid |
// +--------------------+ 0x610000000000
// | origin 1 |
// +--------------------+ 0x600000000000
// | application 2 |
// +--------------------+ 0x510000000000
// | shadow 1 |
// +--------------------+ 0x500000000000
// | invalid |
// +--------------------+ 0x400000000000
// | origin 3 |
// +--------------------+ 0x300000000000
// | shadow 3 |
// +--------------------+ 0x200000000000
// | origin 2 |
// +--------------------+ 0x110000000000
// | invalid |
// +--------------------+ 0x100000000000
// | shadow 2 |
// +--------------------+ 0x010000000000
// | application 1 |
// +--------------------+ 0x000000000000
//
// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
dfsan_label label = ls[0];
for (uptr i = 1; i != n; ++i)
label |= ls[i];
return label;
}
// Return the union of all the n labels from addr at the high 32 bit, and the
// origin of the first taint byte at the low 32 bit.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE u64
__dfsan_load_label_and_origin(const void *addr, uptr n) {
dfsan_label label = 0;
u64 ret = 0;
uptr p = (uptr)addr;
dfsan_label *s = shadow_for((void *)p);
for (uptr i = 0; i < n; ++i) {
dfsan_label l = s[i];
if (!l)
continue;
label |= l;
if (!ret)
ret = *(dfsan_origin *)origin_for((void *)(p + i));
}
return ret | (u64)label << 32;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __dfsan_unimplemented(char *fname) {
if (flags().warn_unimplemented)
Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
fname);
}
// Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
// to try to figure out where labels are being introduced in a nominally
// label-free program.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
if (flags().warn_nonzero_labels)
Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
}
// Indirect call to an uninstrumented vararg function. We don't have a way of
// handling these at the moment.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__dfsan_vararg_wrapper(const char *fname) {
Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
"function %s\n", fname);
Die();
}
// Resolves the union of two labels.
SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_union(dfsan_label l1, dfsan_label l2) {
return l1 | l2;
}
static const uptr kOriginAlign = sizeof(dfsan_origin);
static const uptr kOriginAlignMask = ~(kOriginAlign - 1UL);
static uptr OriginAlignUp(uptr u) {
return (u + kOriginAlign - 1) & kOriginAlignMask;
}
static uptr OriginAlignDown(uptr u) { return u & kOriginAlignMask; }
// Return the origin of the first taint byte in the size bytes from the address
// addr.
static dfsan_origin GetOriginIfTainted(uptr addr, uptr size) {
for (uptr i = 0; i < size; ++i, ++addr) {
dfsan_label *s = shadow_for((void *)addr);
if (*s) {
// Validate address region.
CHECK(MEM_IS_SHADOW(s));
return *(dfsan_origin *)origin_for((void *)addr);
}
}
return 0;
}
// For platforms which support slow unwinder only, we need to restrict the store
// context size to 1, basically only storing the current pc, because the slow
// unwinder which is based on libunwind is not async signal safe and causes
// random freezes in forking applications as well as in signal handlers.
// DFSan supports only Linux. So we do not restrict the store context size.
#define GET_STORE_STACK_TRACE_PC_BP(pc, bp) \
BufferedStackTrace stack; \
stack.Unwind(pc, bp, nullptr, true, flags().store_context_size);
#define PRINT_CALLER_STACK_TRACE \
{ \
GET_CALLER_PC_BP_SP; \
(void)sp; \
GET_STORE_STACK_TRACE_PC_BP(pc, bp) \
stack.Print(); \
}
// Return a chain with the previous ID id and the current stack.
// from_init = true if this is the first chain of an origin tracking path.
static u32 ChainOrigin(u32 id, StackTrace *stack, bool from_init = false) {
// StackDepot is not async signal safe. Do not create new chains in a signal
// handler.
DFsanThread *t = GetCurrentThread();
if (t && t->InSignalHandler())
return id;
// As an optimization the origin of an application byte is updated only when
// its shadow is non-zero. Because we are only interested in the origins of
// taint labels, it does not matter what origin a zero label has. This reduces
// memory write cost. MSan does similar optimization. The following invariant
// may not hold because of some bugs. We check the invariant to help debug.
if (!from_init && id == 0 && flags().check_origin_invariant) {
Printf(" DFSan found invalid origin invariant\n");
PRINT_CALLER_STACK_TRACE
}
Origin o = Origin::FromRawId(id);
stack->tag = StackTrace::TAG_UNKNOWN;
Origin chained = Origin::CreateChainedOrigin(o, stack);
return chained.raw_id();
}
static void ChainAndWriteOriginIfTainted(uptr src, uptr size, uptr dst,
StackTrace *stack) {
dfsan_origin o = GetOriginIfTainted(src, size);
if (o) {
o = ChainOrigin(o, stack);
*(dfsan_origin *)origin_for((void *)dst) = o;
}
}
// Copy the origins of the size bytes from src to dst. The source and target
// memory ranges cannot be overlapped. This is used by memcpy. stack records the
// stack trace of the memcpy. When dst and src are not 4-byte aligned properly,
// origins at the unaligned address boundaries may be overwritten because four
// contiguous bytes share the same origin.
static void CopyOrigin(const void *dst, const void *src, uptr size,
StackTrace *stack) {
uptr d = (uptr)dst;
uptr beg = OriginAlignDown(d);
// Copy left unaligned origin if that memory is tainted.
if (beg < d) {
ChainAndWriteOriginIfTainted((uptr)src, beg + kOriginAlign - d, beg, stack);
beg += kOriginAlign;
}
uptr end = OriginAlignDown(d + size);
// If both ends fall into the same 4-byte slot, we are done.
if (end < beg)
return;
// Copy right unaligned origin if that memory is tainted.
if (end < d + size)
ChainAndWriteOriginIfTainted((uptr)src + (end - d), (d + size) - end, end,
stack);
if (beg >= end)
return;
// Align src up.
uptr src_a = OriginAlignUp((uptr)src);
dfsan_origin *src_o = origin_for((void *)src_a);
u32 *src_s = (u32 *)shadow_for((void *)src_a);
dfsan_origin *src_end = origin_for((void *)(src_a + (end - beg)));
dfsan_origin *dst_o = origin_for((void *)beg);
dfsan_origin last_src_o = 0;
dfsan_origin last_dst_o = 0;
for (; src_o < src_end; ++src_o, ++src_s, ++dst_o) {
if (!*src_s)
continue;
if (*src_o != last_src_o) {
last_src_o = *src_o;
last_dst_o = ChainOrigin(last_src_o, stack);
}
*dst_o = last_dst_o;
}
}
// Copy the origins of the size bytes from src to dst. The source and target
// memory ranges may be overlapped. So the copy is done in a reverse order.
// This is used by memmove. stack records the stack trace of the memmove.
static void ReverseCopyOrigin(const void *dst, const void *src, uptr size,
StackTrace *stack) {
uptr d = (uptr)dst;
uptr end = OriginAlignDown(d + size);
// Copy right unaligned origin if that memory is tainted.
if (end < d + size)
ChainAndWriteOriginIfTainted((uptr)src + (end - d), (d + size) - end, end,
stack);
uptr beg = OriginAlignDown(d);
if (beg + kOriginAlign < end) {
// Align src up.
uptr src_a = OriginAlignUp((uptr)src);
void *src_end = (void *)(src_a + end - beg - kOriginAlign);
dfsan_origin *src_end_o = origin_for(src_end);
u32 *src_end_s = (u32 *)shadow_for(src_end);
dfsan_origin *src_begin_o = origin_for((void *)src_a);
dfsan_origin *dst = origin_for((void *)(end - kOriginAlign));
dfsan_origin last_src_o = 0;
dfsan_origin last_dst_o = 0;
for (; src_end_o >= src_begin_o; --src_end_o, --src_end_s, --dst) {
if (!*src_end_s)
continue;
if (*src_end_o != last_src_o) {
last_src_o = *src_end_o;
last_dst_o = ChainOrigin(last_src_o, stack);
}
*dst = last_dst_o;
}
}
// Copy left unaligned origin if that memory is tainted.
if (beg < d)
ChainAndWriteOriginIfTainted((uptr)src, beg + kOriginAlign - d, beg, stack);
}
// Copy or move the origins of the len bytes from src to dst. The source and
// target memory ranges may or may not be overlapped. This is used by memory
// transfer operations. stack records the stack trace of the memory transfer
// operation.
static void MoveOrigin(const void *dst, const void *src, uptr size,
StackTrace *stack) {
// Validate address regions.
if (!MEM_IS_SHADOW(shadow_for(dst)) ||
!MEM_IS_SHADOW(shadow_for((void *)((uptr)dst + size))) ||
!MEM_IS_SHADOW(shadow_for(src)) ||
!MEM_IS_SHADOW(shadow_for((void *)((uptr)src + size)))) {
CHECK(false);
return;
}
// If destination origin range overlaps with source origin range, move
// origins by copying origins in a reverse order; otherwise, copy origins in
// a normal order. The orders of origin transfer are consistent with the
// orders of how memcpy and memmove transfer user data.
uptr src_aligned_beg = OriginAlignDown((uptr)src);
uptr src_aligned_end = OriginAlignDown((uptr)src + size);
uptr dst_aligned_beg = OriginAlignDown((uptr)dst);
if (dst_aligned_beg < src_aligned_end && dst_aligned_beg >= src_aligned_beg)
return ReverseCopyOrigin(dst, src, size, stack);
return CopyOrigin(dst, src, size, stack);
}
// Set the size bytes from the addres dst to be the origin value.
static void SetOrigin(const void *dst, uptr size, u32 origin) {
if (size == 0)
return;
// Origin mapping is 4 bytes per 4 bytes of application memory.
// Here we extend the range such that its left and right bounds are both
// 4 byte aligned.
uptr x = unaligned_origin_for((uptr)dst);
uptr beg = OriginAlignDown(x);
uptr end = OriginAlignUp(x + size); // align up.
u64 origin64 = ((u64)origin << 32) | origin;
// This is like memset, but the value is 32-bit. We unroll by 2 to write
// 64 bits at once. May want to unroll further to get 128-bit stores.
if (beg & 7ULL) {
if (*(u32 *)beg != origin)
*(u32 *)beg = origin;
beg += 4;
}
for (uptr addr = beg; addr < (end & ~7UL); addr += 8) {
if (*(u64 *)addr == origin64)
continue;
*(u64 *)addr = origin64;
}
if (end & 7ULL)
if (*(u32 *)(end - kOriginAlign) != origin)
*(u32 *)(end - kOriginAlign) = origin;
}
#define RET_CHAIN_ORIGIN(id) \
GET_CALLER_PC_BP_SP; \
(void)sp; \
GET_STORE_STACK_TRACE_PC_BP(pc, bp); \
return ChainOrigin(id, &stack);
// Return a new origin chain with the previous ID id and the current stack
// trace.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
__dfsan_chain_origin(dfsan_origin id) {
RET_CHAIN_ORIGIN(id)
}
// Return a new origin chain with the previous ID id and the current stack
// trace if the label is tainted.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
__dfsan_chain_origin_if_tainted(dfsan_label label, dfsan_origin id) {
if (!label)
return id;
RET_CHAIN_ORIGIN(id)
}
// Copy or move the origins of the len bytes from src to dst.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_mem_origin_transfer(
const void *dst, const void *src, uptr len) {
if (src == dst)
return;
GET_CALLER_PC_BP;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
MoveOrigin(dst, src, len, &stack);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_mem_origin_transfer(
const void *dst, const void *src, uptr len) {
__dfsan_mem_origin_transfer(dst, src, len);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_mem_shadow_transfer(
void *dst, const void *src, uptr len) {
internal_memcpy((void *)__dfsan::shadow_for(dst),
(const void *)__dfsan::shadow_for(src),
len * sizeof(dfsan_label));
}
namespace __dfsan {
bool dfsan_inited = false;
bool dfsan_init_is_running = false;
void dfsan_copy_memory(void *dst, const void *src, uptr size) {
internal_memcpy(dst, src, size);
dfsan_mem_shadow_transfer(dst, src, size);
if (dfsan_get_track_origins())
dfsan_mem_origin_transfer(dst, src, size);
}
// Releases the pages within the origin address range.
static void ReleaseOrigins(void *addr, uptr size) {
const uptr beg_origin_addr = (uptr)__dfsan::origin_for(addr);
const void *end_addr = (void *)((uptr)addr + size);
const uptr end_origin_addr = (uptr)__dfsan::origin_for(end_addr);
if (end_origin_addr - beg_origin_addr <
common_flags()->clear_shadow_mmap_threshold)
return;
const uptr page_size = GetPageSizeCached();
const uptr beg_aligned = RoundUpTo(beg_origin_addr, page_size);
const uptr end_aligned = RoundDownTo(end_origin_addr, page_size);
if (!MmapFixedSuperNoReserve(beg_aligned, end_aligned - beg_aligned))
Die();
}
static void WriteZeroShadowInRange(uptr beg, uptr end) {
// Don't write the label if it is already the value we need it to be.
// In a program where most addresses are not labeled, it is common that
// a page of shadow memory is entirely zeroed. The Linux copy-on-write
// implementation will share all of the zeroed pages, making a copy of a
// page when any value is written. The un-sharing will happen even if
// the value written does not change the value in memory. Avoiding the
// write when both |label| and |*labelp| are zero dramatically reduces
// the amount of real memory used by large programs.
if (!mem_is_zero((const char *)beg, end - beg))
internal_memset((void *)beg, 0, end - beg);
}
// Releases the pages within the shadow address range, and sets
// the shadow addresses not on the pages to be 0.
static void ReleaseOrClearShadows(void *addr, uptr size) {
const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(addr);
const void *end_addr = (void *)((uptr)addr + size);
const uptr end_shadow_addr = (uptr)__dfsan::shadow_for(end_addr);
if (end_shadow_addr - beg_shadow_addr <
common_flags()->clear_shadow_mmap_threshold) {
WriteZeroShadowInRange(beg_shadow_addr, end_shadow_addr);
return;
}
const uptr page_size = GetPageSizeCached();
const uptr beg_aligned = RoundUpTo(beg_shadow_addr, page_size);
const uptr end_aligned = RoundDownTo(end_shadow_addr, page_size);
if (beg_aligned >= end_aligned) {
WriteZeroShadowInRange(beg_shadow_addr, end_shadow_addr);
} else {
if (beg_aligned != beg_shadow_addr)
WriteZeroShadowInRange(beg_shadow_addr, beg_aligned);
if (end_aligned != end_shadow_addr)
WriteZeroShadowInRange(end_aligned, end_shadow_addr);
if (!MmapFixedSuperNoReserve(beg_aligned, end_aligned - beg_aligned))
Die();
}
}
void SetShadow(dfsan_label label, void *addr, uptr size, dfsan_origin origin) {
if (0 != label) {
const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(addr);
internal_memset((void *)beg_shadow_addr, label, size);
if (dfsan_get_track_origins())
SetOrigin(addr, size, origin);
return;
}
if (dfsan_get_track_origins())
ReleaseOrigins(addr, size);
ReleaseOrClearShadows(addr, size);
}
} // namespace __dfsan
// If the label s is tainted, set the size bytes from the address p to be a new
// origin chain with the previous ID o and the current stack trace. This is
// used by instrumentation to reduce code size when too much code is inserted.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_maybe_store_origin(
dfsan_label s, void *p, uptr size, dfsan_origin o) {
if (UNLIKELY(s)) {
GET_CALLER_PC_BP_SP;
(void)sp;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
SetOrigin(p, size, ChainOrigin(o, &stack));
}
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_set_label(
dfsan_label label, dfsan_origin origin, void *addr, uptr size) {
__dfsan::SetShadow(label, addr, size, origin);
}
SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
dfsan_origin init_origin = 0;
if (label && dfsan_get_track_origins()) {
GET_CALLER_PC_BP;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
init_origin = ChainOrigin(0, &stack, true);
}
__dfsan::SetShadow(label, addr, size, init_origin);
}
SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
if (0 == label)
return;
if (dfsan_get_track_origins()) {
GET_CALLER_PC_BP;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
dfsan_origin init_origin = ChainOrigin(0, &stack, true);
SetOrigin(addr, size, init_origin);
}
for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
*labelp |= label;
}
// Unlike the other dfsan interface functions the behavior of this function
// depends on the label of one of its arguments. Hence it is implemented as a
// custom function.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
__dfsw_dfsan_get_label(long data, dfsan_label data_label,
dfsan_label *ret_label) {
*ret_label = 0;
return data_label;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label __dfso_dfsan_get_label(
long data, dfsan_label data_label, dfsan_label *ret_label,
dfsan_origin data_origin, dfsan_origin *ret_origin) {
*ret_label = 0;
*ret_origin = 0;
return data_label;
}
// This function is used if dfsan_get_origin is called when origin tracking is
// off.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin __dfsw_dfsan_get_origin(
long data, dfsan_label data_label, dfsan_label *ret_label) {
*ret_label = 0;
return 0;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin __dfso_dfsan_get_origin(
long data, dfsan_label data_label, dfsan_label *ret_label,
dfsan_origin data_origin, dfsan_origin *ret_origin) {
*ret_label = 0;
*ret_origin = 0;
return data_origin;
}
SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_read_label(const void *addr, uptr size) {
if (size == 0)
return 0;
return __dfsan_union_load(shadow_for(addr), size);
}
SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
dfsan_read_origin_of_first_taint(const void *addr, uptr size) {
return GetOriginIfTainted((uptr)addr, size);
}
SANITIZER_INTERFACE_ATTRIBUTE void dfsan_set_label_origin(dfsan_label label,
dfsan_origin origin,
void *addr,
uptr size) {
__dfsan_set_label(label, origin, addr, size);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
dfsan_has_label(dfsan_label label, dfsan_label elem) {
return (label & elem) == elem;
}
namespace __dfsan {
typedef void (*dfsan_conditional_callback_t)(dfsan_label label,
dfsan_origin origin);
static dfsan_conditional_callback_t conditional_callback = nullptr;
static dfsan_label labels_in_signal_conditional = 0;
static void ConditionalCallback(dfsan_label label, dfsan_origin origin) {
// Programs have many branches. For efficiency the conditional sink callback
// handler needs to ignore as many as possible as early as possible.
if (label == 0) {
return;
}
if (conditional_callback == nullptr) {
return;
}
// This initial ConditionalCallback handler needs to be in here in dfsan
// runtime (rather than being an entirely user implemented hook) so that it
// has access to dfsan thread information.
DFsanThread *t = GetCurrentThread();
// A callback operation which does useful work (like record the flow) will
// likely be too long executed in a signal handler.
if (t && t->InSignalHandler()) {
// Record set of labels used in signal handler for completeness.
labels_in_signal_conditional |= label;
return;
}
conditional_callback(label, origin);
}
} // namespace __dfsan
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__dfsan_conditional_callback_origin(dfsan_label label, dfsan_origin origin) {
__dfsan::ConditionalCallback(label, origin);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_conditional_callback(
dfsan_label label) {
__dfsan::ConditionalCallback(label, 0);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_set_conditional_callback(
__dfsan::dfsan_conditional_callback_t callback) {
__dfsan::conditional_callback = callback;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_get_labels_in_signal_conditional() {
return __dfsan::labels_in_signal_conditional;
}
class Decorator : public __sanitizer::SanitizerCommonDecorator {
public:
Decorator() : SanitizerCommonDecorator() {}
const char *Origin() const { return Magenta(); }
};
namespace {
void PrintNoOriginTrackingWarning() {
Decorator d;
Printf(
" %sDFSan: origin tracking is not enabled. Did you specify the "
"-dfsan-track-origins=1 option?%s\n",
d.Warning(), d.Default());
}
void PrintNoTaintWarning(const void *address) {
Decorator d;
Printf(" %sDFSan: no tainted value at %x%s\n", d.Warning(), address,
d.Default());
}
void PrintInvalidOriginWarning(dfsan_label label, const void *address) {
Decorator d;
Printf(
" %sTaint value 0x%x (at %p) has invalid origin tracking. This can "
"be a DFSan bug.%s\n",
d.Warning(), label, address, d.Default());
}
void PrintInvalidOriginIdWarning(dfsan_origin origin) {
Decorator d;
Printf(
" %sOrigin Id %d has invalid origin tracking. This can "
"be a DFSan bug.%s\n",
d.Warning(), origin, d.Default());
}
bool PrintOriginTraceFramesToStr(Origin o, InternalScopedString *out) {
Decorator d;
bool found = false;
while (o.isChainedOrigin()) {
StackTrace stack;
dfsan_origin origin_id = o.raw_id();
o = o.getNextChainedOrigin(&stack);
if (o.isChainedOrigin())
out->append(
" %sOrigin value: 0x%x, Taint value was stored to memory at%s\n",
d.Origin(), origin_id, d.Default());
else
out->append(" %sOrigin value: 0x%x, Taint value was created at%s\n",
d.Origin(), origin_id, d.Default());
// Includes a trailing newline, so no need to add it again.
stack.PrintTo(out);
found = true;
}
return found;
}
bool PrintOriginTraceToStr(const void *addr, const char *description,
InternalScopedString *out) {
CHECK(out);
CHECK(dfsan_get_track_origins());
Decorator d;
const dfsan_label label = *__dfsan::shadow_for(addr);
CHECK(label);
const dfsan_origin origin = *__dfsan::origin_for(addr);
out->append(" %sTaint value 0x%x (at %p) origin tracking (%s)%s\n",
d.Origin(), label, addr, description ? description : "",
d.Default());
Origin o = Origin::FromRawId(origin);
return PrintOriginTraceFramesToStr(o, out);
}
} // namespace
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_print_origin_trace(
const void *addr, const char *description) {
if (!dfsan_get_track_origins()) {
PrintNoOriginTrackingWarning();
return;
}
const dfsan_label label = *__dfsan::shadow_for(addr);
if (!label) {
PrintNoTaintWarning(addr);
return;
}
InternalScopedString trace;
bool success = PrintOriginTraceToStr(addr, description, &trace);
if (trace.length())
Printf("%s", trace.data());
if (!success)
PrintInvalidOriginWarning(label, addr);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
dfsan_sprint_origin_trace(const void *addr, const char *description,
char *out_buf, uptr out_buf_size) {
CHECK(out_buf);
if (!dfsan_get_track_origins()) {
PrintNoOriginTrackingWarning();
return 0;
}
const dfsan_label label = *__dfsan::shadow_for(addr);
if (!label) {
PrintNoTaintWarning(addr);
return 0;
}
InternalScopedString trace;
bool success = PrintOriginTraceToStr(addr, description, &trace);
if (!success) {
PrintInvalidOriginWarning(label, addr);
return 0;
}
if (out_buf_size) {
internal_strncpy(out_buf, trace.data(), out_buf_size - 1);
out_buf[out_buf_size - 1] = '\0';
}
return trace.length();
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_print_origin_id_trace(
dfsan_origin origin) {
if (!dfsan_get_track_origins()) {
PrintNoOriginTrackingWarning();
return;
}
Origin o = Origin::FromRawId(origin);
InternalScopedString trace;
bool success = PrintOriginTraceFramesToStr(o, &trace);
if (trace.length())
Printf("%s", trace.data());
if (!success)
PrintInvalidOriginIdWarning(origin);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr dfsan_sprint_origin_id_trace(
dfsan_origin origin, char *out_buf, uptr out_buf_size) {
CHECK(out_buf);
if (!dfsan_get_track_origins()) {
PrintNoOriginTrackingWarning();
return 0;
}
Origin o = Origin::FromRawId(origin);
InternalScopedString trace;
bool success = PrintOriginTraceFramesToStr(o, &trace);
if (!success) {
PrintInvalidOriginIdWarning(origin);
return 0;
}
if (out_buf_size) {
internal_strncpy(out_buf, trace.data(), out_buf_size - 1);
out_buf[out_buf_size - 1] = '\0';
}
return trace.length();
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
dfsan_get_init_origin(const void *addr) {
if (!dfsan_get_track_origins())
return 0;
const dfsan_label label = *__dfsan::shadow_for(addr);
if (!label)
return 0;
const dfsan_origin origin = *__dfsan::origin_for(addr);
Origin o = Origin::FromRawId(origin);
dfsan_origin origin_id = o.raw_id();
while (o.isChainedOrigin()) {
StackTrace stack;
origin_id = o.raw_id();
o = o.getNextChainedOrigin(&stack);
}
return origin_id;
}
void __sanitizer::BufferedStackTrace::UnwindImpl(uptr pc, uptr bp,
void *context,
bool request_fast,
u32 max_depth) {
using namespace __dfsan;
DFsanThread *t = GetCurrentThread();
if (!t || !StackTrace::WillUseFastUnwind(request_fast)) {
return Unwind(max_depth, pc, bp, context, 0, 0, false);
}
Unwind(max_depth, pc, bp, nullptr, t->stack_top(), t->stack_bottom(), true);
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_print_stack_trace() {
GET_CALLER_PC_BP;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
stack.Print();
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
dfsan_sprint_stack_trace(char *out_buf, uptr out_buf_size) {
CHECK(out_buf);
GET_CALLER_PC_BP;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
return stack.PrintTo(out_buf, out_buf_size);
}
void Flags::SetDefaults() {
#define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
#include "dfsan_flags.inc"
#undef DFSAN_FLAG
}
static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
#define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
RegisterFlag(parser, #Name, Description, &f->Name);
#include "dfsan_flags.inc"
#undef DFSAN_FLAG
}
static void InitializeFlags() {
SetCommonFlagsDefaults();
{
CommonFlags cf;
cf.CopyFrom(*common_flags());
cf.intercept_tls_get_addr = true;
OverrideCommonFlags(cf);
}
flags().SetDefaults();
FlagParser parser;
RegisterCommonFlags(&parser);
RegisterDfsanFlags(&parser, &flags());
parser.ParseStringFromEnv("DFSAN_OPTIONS");
InitializeCommonFlags();
if (Verbosity()) ReportUnrecognizedFlags();
if (common_flags()->help) parser.PrintFlagDescriptions();
}
SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_clear_arg_tls(uptr offset, uptr size) {
internal_memset((void *)((uptr)__dfsan_arg_tls + offset), 0, size);
}
SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_clear_thread_local_state() {
internal_memset(__dfsan_arg_tls, 0, sizeof(__dfsan_arg_tls));
internal_memset(__dfsan_retval_tls, 0, sizeof(__dfsan_retval_tls));
if (dfsan_get_track_origins()) {
internal_memset(__dfsan_arg_origin_tls, 0, sizeof(__dfsan_arg_origin_tls));
internal_memset(&__dfsan_retval_origin_tls, 0,
sizeof(__dfsan_retval_origin_tls));
}
}
extern "C" void dfsan_flush() {
const uptr maxVirtualAddress = GetMaxUserVirtualAddress();
for (unsigned i = 0; i < kMemoryLayoutSize; ++i) {
uptr start = kMemoryLayout[i].start;
uptr end = kMemoryLayout[i].end;
uptr size = end - start;
MappingDesc::Type type = kMemoryLayout[i].type;
if (type != MappingDesc::SHADOW && type != MappingDesc::ORIGIN)
continue;
// Check if the segment should be mapped based on platform constraints.
if (start >= maxVirtualAddress)
continue;
if (!MmapFixedSuperNoReserve(start, size, kMemoryLayout[i].name)) {
Printf("FATAL: DataFlowSanitizer: failed to clear memory region\n");
Die();
}
}
__dfsan::labels_in_signal_conditional = 0;
}
// TODO: CheckMemoryLayoutSanity is based on msan.
// Consider refactoring these into a shared implementation.
static void CheckMemoryLayoutSanity() {
uptr prev_end = 0;
for (unsigned i = 0; i < kMemoryLayoutSize; ++i) {
uptr start = kMemoryLayout[i].start;
uptr end = kMemoryLayout[i].end;
MappingDesc::Type type = kMemoryLayout[i].type;
CHECK_LT(start, end);
CHECK_EQ(prev_end, start);
CHECK(addr_is_type(start, type));
CHECK(addr_is_type((start + end) / 2, type));
CHECK(addr_is_type(end - 1, type));
if (type == MappingDesc::APP) {
uptr addr = start;
CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr)));
CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr)));
CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr)));
addr = (start + end) / 2;
CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr)));
CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr)));
CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr)));
addr = end - 1;
CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr)));
CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr)));
CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr)));
}
prev_end = end;
}
}
// TODO: CheckMemoryRangeAvailability is based on msan.
// Consider refactoring these into a shared implementation.
static bool CheckMemoryRangeAvailability(uptr beg, uptr size) {
if (size > 0) {
uptr end = beg + size - 1;
if (!MemoryRangeIsAvailable(beg, end)) {
Printf("FATAL: Memory range %p - %p is not available.\n", beg, end);
return false;
}
}
return true;
}
// TODO: ProtectMemoryRange is based on msan.
// Consider refactoring these into a shared implementation.
static bool ProtectMemoryRange(uptr beg, uptr size, const char *name) {
if (size > 0) {
void *addr = MmapFixedNoAccess(beg, size, name);
if (beg == 0 && addr) {
// Depending on the kernel configuration, we may not be able to protect
// the page at address zero.
uptr gap = 16 * GetPageSizeCached();
beg += gap;
size -= gap;
addr = MmapFixedNoAccess(beg, size, name);
}
if ((uptr)addr != beg) {
uptr end = beg + size - 1;
Printf("FATAL: Cannot protect memory range %p - %p (%s).\n", beg, end,
name);
return false;
}
}
return true;
}
// TODO: InitShadow is based on msan.
// Consider refactoring these into a shared implementation.
bool InitShadow(bool init_origins) {
// Let user know mapping parameters first.
VPrintf(1, "dfsan_init %p\n", (void *)&__dfsan::dfsan_init);
for (unsigned i = 0; i < kMemoryLayoutSize; ++i)
VPrintf(1, "%s: %zx - %zx\n", kMemoryLayout[i].name, kMemoryLayout[i].start,
kMemoryLayout[i].end - 1);
CheckMemoryLayoutSanity();
if (!MEM_IS_APP(&__dfsan::dfsan_init)) {
Printf("FATAL: Code %p is out of application range. Non-PIE build?\n",
(uptr)&__dfsan::dfsan_init);
return false;
}
const uptr maxVirtualAddress = GetMaxUserVirtualAddress();
for (unsigned i = 0; i < kMemoryLayoutSize; ++i) {
uptr start = kMemoryLayout[i].start;
uptr end = kMemoryLayout[i].end;
uptr size = end - start;
MappingDesc::Type type = kMemoryLayout[i].type;
// Check if the segment should be mapped based on platform constraints.
if (start >= maxVirtualAddress)
continue;
bool map = type == MappingDesc::SHADOW ||
(init_origins && type == MappingDesc::ORIGIN);
bool protect = type == MappingDesc::INVALID ||
(!init_origins && type == MappingDesc::ORIGIN);
CHECK(!(map && protect));
if (!map && !protect)
CHECK(type == MappingDesc::APP);
if (map) {
if (!CheckMemoryRangeAvailability(start, size))
return false;
if (!MmapFixedSuperNoReserve(start, size, kMemoryLayout[i].name))
return false;
if (common_flags()->use_madv_dontdump)
DontDumpShadowMemory(start, size);
}
if (protect) {
if (!CheckMemoryRangeAvailability(start, size))
return false;
if (!ProtectMemoryRange(start, size, kMemoryLayout[i].name))
return false;
}
}
return true;
}
static void DFsanInit(int argc, char **argv, char **envp) {
CHECK(!dfsan_init_is_running);
if (dfsan_inited)
return;
dfsan_init_is_running = true;
SanitizerToolName = "DataflowSanitizer";
AvoidCVE_2016_2143();
InitializeFlags();
CheckASLR();
InitShadow(dfsan_get_track_origins());
initialize_interceptors();
// Set up threads
DFsanTSDInit(DFsanTSDDtor);
dfsan_allocator_init();
DFsanThread *main_thread = DFsanThread::Create(nullptr, nullptr, nullptr);
SetCurrentThread(main_thread);
main_thread->Init();
dfsan_init_is_running = false;
dfsan_inited = true;
}
namespace __dfsan {
void dfsan_init() { DFsanInit(0, nullptr, nullptr); }
} // namespace __dfsan
#if SANITIZER_CAN_USE_PREINIT_ARRAY
__attribute__((section(".preinit_array"),
used)) static void (*dfsan_init_ptr)(int, char **,
char **) = DFsanInit;
#endif