llvm-project/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp

19026 lines
727 KiB
C++

//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
// both before and after the DAG is legalized.
//
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
// primarily intended to handle simplification opportunities that are implicit
// in the LLVM IR and exposed by the various codegen lowering phases.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "dagcombine"
STATISTIC(NodesCombined , "Number of dag nodes combined");
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
STATISTIC(SlicedLoads, "Number of load sliced");
STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
static cl::opt<bool>
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
cl::desc("Enable DAG combiner's use of IR alias analysis"));
static cl::opt<bool>
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
cl::desc("Enable DAG combiner's use of TBAA"));
#ifndef NDEBUG
static cl::opt<std::string>
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
cl::desc("Only use DAG-combiner alias analysis in this"
" function"));
#endif
/// Hidden option to stress test load slicing, i.e., when this option
/// is enabled, load slicing bypasses most of its profitability guards.
static cl::opt<bool>
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
cl::desc("Bypass the profitability model of load slicing"),
cl::init(false));
static cl::opt<bool>
MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
cl::desc("DAG combiner may split indexing from loads"));
namespace {
class DAGCombiner {
SelectionDAG &DAG;
const TargetLowering &TLI;
CombineLevel Level;
CodeGenOpt::Level OptLevel;
bool LegalOperations = false;
bool LegalTypes = false;
bool ForCodeSize;
/// Worklist of all of the nodes that need to be simplified.
///
/// This must behave as a stack -- new nodes to process are pushed onto the
/// back and when processing we pop off of the back.
///
/// The worklist will not contain duplicates but may contain null entries
/// due to nodes being deleted from the underlying DAG.
SmallVector<SDNode *, 64> Worklist;
/// Mapping from an SDNode to its position on the worklist.
///
/// This is used to find and remove nodes from the worklist (by nulling
/// them) when they are deleted from the underlying DAG. It relies on
/// stable indices of nodes within the worklist.
DenseMap<SDNode *, unsigned> WorklistMap;
/// Set of nodes which have been combined (at least once).
///
/// This is used to allow us to reliably add any operands of a DAG node
/// which have not yet been combined to the worklist.
SmallPtrSet<SDNode *, 32> CombinedNodes;
// AA - Used for DAG load/store alias analysis.
AliasAnalysis *AA;
/// When an instruction is simplified, add all users of the instruction to
/// the work lists because they might get more simplified now.
void AddUsersToWorklist(SDNode *N) {
for (SDNode *Node : N->uses())
AddToWorklist(Node);
}
/// Call the node-specific routine that folds each particular type of node.
SDValue visit(SDNode *N);
public:
DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
: DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
OptLevel(OL), AA(AA) {
ForCodeSize = DAG.getMachineFunction().getFunction().optForSize();
MaximumLegalStoreInBits = 0;
for (MVT VT : MVT::all_valuetypes())
if (EVT(VT).isSimple() && VT != MVT::Other &&
TLI.isTypeLegal(EVT(VT)) &&
VT.getSizeInBits() >= MaximumLegalStoreInBits)
MaximumLegalStoreInBits = VT.getSizeInBits();
}
/// Add to the worklist making sure its instance is at the back (next to be
/// processed.)
void AddToWorklist(SDNode *N) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Deleted Node added to Worklist");
// Skip handle nodes as they can't usefully be combined and confuse the
// zero-use deletion strategy.
if (N->getOpcode() == ISD::HANDLENODE)
return;
if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
Worklist.push_back(N);
}
/// Remove all instances of N from the worklist.
void removeFromWorklist(SDNode *N) {
CombinedNodes.erase(N);
auto It = WorklistMap.find(N);
if (It == WorklistMap.end())
return; // Not in the worklist.
// Null out the entry rather than erasing it to avoid a linear operation.
Worklist[It->second] = nullptr;
WorklistMap.erase(It);
}
void deleteAndRecombine(SDNode *N);
bool recursivelyDeleteUnusedNodes(SDNode *N);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo = true);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
return CombineTo(N, &Res, 1, AddTo);
}
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
bool AddTo = true) {
SDValue To[] = { Res0, Res1 };
return CombineTo(N, To, 2, AddTo);
}
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
private:
unsigned MaximumLegalStoreInBits;
/// Check the specified integer node value to see if it can be simplified or
/// if things it uses can be simplified by bit propagation.
/// If so, return true.
bool SimplifyDemandedBits(SDValue Op) {
unsigned BitWidth = Op.getScalarValueSizeInBits();
APInt Demanded = APInt::getAllOnesValue(BitWidth);
return SimplifyDemandedBits(Op, Demanded);
}
/// Check the specified vector node value to see if it can be simplified or
/// if things it uses can be simplified as it only uses some of the
/// elements. If so, return true.
bool SimplifyDemandedVectorElts(SDValue Op) {
unsigned NumElts = Op.getValueType().getVectorNumElements();
APInt Demanded = APInt::getAllOnesValue(NumElts);
return SimplifyDemandedVectorElts(Op, Demanded);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded,
bool AssumeSingleUse = false);
bool CombineToPreIndexedLoadStore(SDNode *N);
bool CombineToPostIndexedLoadStore(SDNode *N);
SDValue SplitIndexingFromLoad(LoadSDNode *LD);
bool SliceUpLoad(SDNode *N);
// Scalars have size 0 to distinguish from singleton vectors.
SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
/// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
/// load.
///
/// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
/// \param InVecVT type of the input vector to EVE with bitcasts resolved.
/// \param EltNo index of the vector element to load.
/// \param OriginalLoad load that EVE came from to be replaced.
/// \returns EVE on success SDValue() on failure.
SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
SDValue PromoteIntBinOp(SDValue Op);
SDValue PromoteIntShiftOp(SDValue Op);
SDValue PromoteExtend(SDValue Op);
bool PromoteLoad(SDValue Op);
/// Call the node-specific routine that knows how to fold each
/// particular type of node. If that doesn't do anything, try the
/// target-specific DAG combines.
SDValue combine(SDNode *N);
// Visitation implementation - Implement dag node combining for different
// node types. The semantics are as follows:
// Return Value:
// SDValue.getNode() == 0 - No change was made
// SDValue.getNode() == N - N was replaced, is dead and has been handled.
// otherwise - N should be replaced by the returned Operand.
//
SDValue visitTokenFactor(SDNode *N);
SDValue visitMERGE_VALUES(SDNode *N);
SDValue visitADD(SDNode *N);
SDValue visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference);
SDValue visitSUB(SDNode *N);
SDValue visitADDC(SDNode *N);
SDValue visitUADDO(SDNode *N);
SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitSUBC(SDNode *N);
SDValue visitUSUBO(SDNode *N);
SDValue visitADDE(SDNode *N);
SDValue visitADDCARRY(SDNode *N);
SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
SDValue visitSUBE(SDNode *N);
SDValue visitSUBCARRY(SDNode *N);
SDValue visitMUL(SDNode *N);
SDValue useDivRem(SDNode *N);
SDValue visitSDIV(SDNode *N);
SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitUDIV(SDNode *N);
SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitREM(SDNode *N);
SDValue visitMULHU(SDNode *N);
SDValue visitMULHS(SDNode *N);
SDValue visitSMUL_LOHI(SDNode *N);
SDValue visitUMUL_LOHI(SDNode *N);
SDValue visitSMULO(SDNode *N);
SDValue visitUMULO(SDNode *N);
SDValue visitIMINMAX(SDNode *N);
SDValue visitAND(SDNode *N);
SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitOR(SDNode *N);
SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitXOR(SDNode *N);
SDValue SimplifyVBinOp(SDNode *N);
SDValue visitSHL(SDNode *N);
SDValue visitSRA(SDNode *N);
SDValue visitSRL(SDNode *N);
SDValue visitRotate(SDNode *N);
SDValue visitABS(SDNode *N);
SDValue visitBSWAP(SDNode *N);
SDValue visitBITREVERSE(SDNode *N);
SDValue visitCTLZ(SDNode *N);
SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTTZ(SDNode *N);
SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTPOP(SDNode *N);
SDValue visitSELECT(SDNode *N);
SDValue visitVSELECT(SDNode *N);
SDValue visitSELECT_CC(SDNode *N);
SDValue visitSETCC(SDNode *N);
SDValue visitSETCCCARRY(SDNode *N);
SDValue visitSIGN_EXTEND(SDNode *N);
SDValue visitZERO_EXTEND(SDNode *N);
SDValue visitANY_EXTEND(SDNode *N);
SDValue visitAssertExt(SDNode *N);
SDValue visitSIGN_EXTEND_INREG(SDNode *N);
SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
SDValue visitTRUNCATE(SDNode *N);
SDValue visitBITCAST(SDNode *N);
SDValue visitBUILD_PAIR(SDNode *N);
SDValue visitFADD(SDNode *N);
SDValue visitFSUB(SDNode *N);
SDValue visitFMUL(SDNode *N);
SDValue visitFMA(SDNode *N);
SDValue visitFDIV(SDNode *N);
SDValue visitFREM(SDNode *N);
SDValue visitFSQRT(SDNode *N);
SDValue visitFCOPYSIGN(SDNode *N);
SDValue visitFPOW(SDNode *N);
SDValue visitSINT_TO_FP(SDNode *N);
SDValue visitUINT_TO_FP(SDNode *N);
SDValue visitFP_TO_SINT(SDNode *N);
SDValue visitFP_TO_UINT(SDNode *N);
SDValue visitFP_ROUND(SDNode *N);
SDValue visitFP_ROUND_INREG(SDNode *N);
SDValue visitFP_EXTEND(SDNode *N);
SDValue visitFNEG(SDNode *N);
SDValue visitFABS(SDNode *N);
SDValue visitFCEIL(SDNode *N);
SDValue visitFTRUNC(SDNode *N);
SDValue visitFFLOOR(SDNode *N);
SDValue visitFMINNUM(SDNode *N);
SDValue visitFMAXNUM(SDNode *N);
SDValue visitBRCOND(SDNode *N);
SDValue visitBR_CC(SDNode *N);
SDValue visitLOAD(SDNode *N);
SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
SDValue visitSTORE(SDNode *N);
SDValue visitINSERT_VECTOR_ELT(SDNode *N);
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
SDValue visitBUILD_VECTOR(SDNode *N);
SDValue visitCONCAT_VECTORS(SDNode *N);
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
SDValue visitVECTOR_SHUFFLE(SDNode *N);
SDValue visitSCALAR_TO_VECTOR(SDNode *N);
SDValue visitINSERT_SUBVECTOR(SDNode *N);
SDValue visitMLOAD(SDNode *N);
SDValue visitMSTORE(SDNode *N);
SDValue visitMGATHER(SDNode *N);
SDValue visitMSCATTER(SDNode *N);
SDValue visitFP_TO_FP16(SDNode *N);
SDValue visitFP16_TO_FP(SDNode *N);
SDValue visitFADDForFMACombine(SDNode *N);
SDValue visitFSUBForFMACombine(SDNode *N);
SDValue visitFMULForFMADistributiveCombine(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1, SDNodeFlags Flags);
SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
SDValue foldSelectOfConstants(SDNode *N);
SDValue foldVSelectOfConstants(SDNode *N);
SDValue foldBinOpIntoSelect(SDNode *BO);
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC,
bool NotExtCompare = false);
SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC);
SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
const SDLoc &DL);
SDValue unfoldMaskedMerge(SDNode *N);
SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, bool foldBooleans);
SDValue rebuildSetCC(SDValue N);
bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC) const;
bool isOneUseSetCC(SDValue N) const;
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp);
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
SDValue CombineExtLoad(SDNode *N);
SDValue CombineZExtLogicopShiftLoad(SDNode *N);
SDValue combineRepeatedFPDivisors(SDNode *N);
SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
SDValue BuildSDIV(SDNode *N);
SDValue BuildSDIVPow2(SDNode *N);
SDValue BuildUDIV(SDNode *N);
SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags);
SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal);
SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal);
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits = true);
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
SDValue InnerPos, SDValue InnerNeg,
unsigned PosOpcode, unsigned NegOpcode,
const SDLoc &DL);
SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
SDValue MatchLoadCombine(SDNode *N);
SDValue ReduceLoadWidth(SDNode *N);
SDValue ReduceLoadOpStoreWidth(SDNode *N);
SDValue splitMergedValStore(StoreSDNode *ST);
SDValue TransformFPLoadStorePair(SDNode *N);
SDValue convertBuildVecZextToZext(SDNode *N);
SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
SDValue reduceBuildVecToShuffle(SDNode *N);
SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
ArrayRef<int> VectorMask, SDValue VecIn1,
SDValue VecIn2, unsigned LeftIdx);
SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases);
/// Return true if there is any possibility that the two addresses overlap.
bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
/// Walk up chain skipping non-aliasing memory nodes, looking for a better
/// chain (aliasing node.)
SDValue FindBetterChain(SDNode *N, SDValue Chain);
/// Try to replace a store and any possibly adjacent stores on
/// consecutive chains with better chains. Return true only if St is
/// replaced.
///
/// Notice that other chains may still be replaced even if the function
/// returns false.
bool findBetterNeighborChains(StoreSDNode *St);
/// Holds a pointer to an LSBaseSDNode as well as information on where it
/// is located in a sequence of memory operations connected by a chain.
struct MemOpLink {
// Ptr to the mem node.
LSBaseSDNode *MemNode;
// Offset from the base ptr.
int64_t OffsetFromBase;
MemOpLink(LSBaseSDNode *N, int64_t Offset)
: MemNode(N), OffsetFromBase(Offset) {}
};
/// This is a helper function for visitMUL to check the profitability
/// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
/// MulNode is the original multiply, AddNode is (add x, c1),
/// and ConstNode is c2.
bool isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode);
/// This is a helper function for visitAND and visitZERO_EXTEND. Returns
/// true if the (and (load x) c) pattern matches an extload. ExtVT returns
/// the type of the loaded value to be extended.
bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
EVT LoadResultTy, EVT &ExtVT);
/// Helper function to calculate whether the given Load/Store can have its
/// width reduced to ExtVT.
bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
EVT &MemVT, unsigned ShAmt = 0);
/// Used by BackwardsPropagateMask to find suitable loads.
bool SearchForAndLoads(SDNode *N, SmallPtrSetImpl<LoadSDNode*> &Loads,
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
ConstantSDNode *Mask, SDNode *&NodeToMask);
/// Attempt to propagate a given AND node back to load leaves so that they
/// can be combined into narrow loads.
bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG);
/// Helper function for MergeConsecutiveStores which merges the
/// component store chains.
SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumStores);
/// This is a helper function for MergeConsecutiveStores. When the
/// source elements of the consecutive stores are all constants or
/// all extracted vector elements, try to merge them into one
/// larger store introducing bitcasts if necessary. \return True
/// if a merged store was created.
bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
EVT MemVT, unsigned NumStores,
bool IsConstantSrc, bool UseVector,
bool UseTrunc);
/// This is a helper function for MergeConsecutiveStores. Stores
/// that potentially may be merged with St are placed in
/// StoreNodes. RootNode is a chain predecessor to all store
/// candidates.
void getStoreMergeCandidates(StoreSDNode *St,
SmallVectorImpl<MemOpLink> &StoreNodes,
SDNode *&Root);
/// Helper function for MergeConsecutiveStores. Checks if
/// candidate stores have indirect dependency through their
/// operands. RootNode is the predecessor to all stores calculated
/// by getStoreMergeCandidates and is used to prune the dependency check.
/// \return True if safe to merge.
bool checkMergeStoreCandidatesForDependencies(
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
SDNode *RootNode);
/// Merge consecutive store operations into a wide store.
/// This optimization uses wide integers or vectors when possible.
/// \return number of stores that were merged into a merged store (the
/// affected nodes are stored as a prefix in \p StoreNodes).
bool MergeConsecutiveStores(StoreSDNode *St);
/// Try to transform a truncation where C is a constant:
/// (trunc (and X, C)) -> (and (trunc X), (trunc C))
///
/// \p N needs to be a truncation and its first operand an AND. Other
/// requirements are checked by the function (e.g. that trunc is
/// single-use) and if missed an empty SDValue is returned.
SDValue distributeTruncateThroughAnd(SDNode *N);
/// Helper function to determine whether the target supports operation
/// given by \p Opcode for type \p VT, that is, whether the operation
/// is legal or custom before legalizing operations, and whether is
/// legal (but not custom) after legalization.
bool hasOperation(unsigned Opcode, EVT VT) {
if (LegalOperations)
return TLI.isOperationLegal(Opcode, VT);
return TLI.isOperationLegalOrCustom(Opcode, VT);
}
public:
/// Runs the dag combiner on all nodes in the work list
void Run(CombineLevel AtLevel);
SelectionDAG &getDAG() const { return DAG; }
/// Returns a type large enough to hold any valid shift amount - before type
/// legalization these can be huge.
EVT getShiftAmountTy(EVT LHSTy) {
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
}
/// This method returns true if we are running before type legalization or
/// if the specified VT is legal.
bool isTypeLegal(const EVT &VT) {
if (!LegalTypes) return true;
return TLI.isTypeLegal(VT);
}
/// Convenience wrapper around TargetLowering::getSetCCResultType
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
SDValue OrigLoad, SDValue ExtLoad,
ISD::NodeType ExtType);
};
/// This class is a DAGUpdateListener that removes any deleted
/// nodes from the worklist.
class WorklistRemover : public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
public:
explicit WorklistRemover(DAGCombiner &dc)
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
void NodeDeleted(SDNode *N, SDNode *E) override {
DC.removeFromWorklist(N);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// TargetLowering::DAGCombinerInfo implementation
//===----------------------------------------------------------------------===//
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
((DAGCombiner*)DC)->AddToWorklist(N);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
}
void TargetLowering::DAGCombinerInfo::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
void DAGCombiner::deleteAndRecombine(SDNode *N) {
removeFromWorklist(N);
// If the operands of this node are only used by the node, they will now be
// dead. Make sure to re-visit them and recursively delete dead nodes.
for (const SDValue &Op : N->ops())
// For an operand generating multiple values, one of the values may
// become dead allowing further simplification (e.g. split index
// arithmetic from an indexed load).
if (Op->hasOneUse() || Op->getNumValues() > 1)
AddToWorklist(Op.getNode());
DAG.DeleteNode(N);
}
/// Return 1 if we can compute the negated form of the specified expression for
/// the same cost as the expression itself, or 2 if we can compute the negated
/// form more cheaply than the expression itself.
static char isNegatibleForFree(SDValue Op, bool LegalOperations,
const TargetLowering &TLI,
const TargetOptions *Options,
unsigned Depth = 0) {
// fneg is removable even if it has multiple uses.
if (Op.getOpcode() == ISD::FNEG) return 2;
// Don't allow anything with multiple uses unless we know it is free.
EVT VT = Op.getValueType();
const SDNodeFlags Flags = Op->getFlags();
if (!Op.hasOneUse())
if (!(Op.getOpcode() == ISD::FP_EXTEND &&
TLI.isFPExtFree(VT, Op.getOperand(0).getValueType())))
return 0;
// Don't recurse exponentially.
if (Depth > 6) return 0;
switch (Op.getOpcode()) {
default: return false;
case ISD::ConstantFP: {
if (!LegalOperations)
return 1;
// Don't invert constant FP values after legalization unless the target says
// the negated constant is legal.
return TLI.isOperationLegal(ISD::ConstantFP, VT) ||
TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT);
}
case ISD::FADD:
if (!Options->UnsafeFPMath && !Flags.hasNoSignedZeros())
return 0;
// After operation legalization, it might not be legal to create new FSUBs.
if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
return 0;
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
Options, Depth + 1))
return V;
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
Depth + 1);
case ISD::FSUB:
// We can't turn -(A-B) into B-A when we honor signed zeros.
if (!Options->NoSignedZerosFPMath &&
!Flags.hasNoSignedZeros())
return 0;
// fold (fneg (fsub A, B)) -> (fsub B, A)
return 1;
case ISD::FMUL:
case ISD::FDIV:
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
Options, Depth + 1))
return V;
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
Depth + 1);
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FSIN:
return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
Depth + 1);
}
}
/// If isNegatibleForFree returns true, return the newly negated expression.
static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOperations, unsigned Depth = 0) {
const TargetOptions &Options = DAG.getTarget().Options;
// fneg is removable even if it has multiple uses.
if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
const SDNodeFlags Flags = Op.getNode()->getFlags();
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown code");
case ISD::ConstantFP: {
APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
V.changeSign();
return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
}
case ISD::FADD:
assert(Options.UnsafeFPMath || Flags.hasNoSignedZeros());
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
DAG.getTargetLoweringInfo(), &Options, Depth+1))
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1), Flags);
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(1), DAG,
LegalOperations, Depth+1),
Op.getOperand(0), Flags);
case ISD::FSUB:
// fold (fneg (fsub 0, B)) -> B
if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
if (N0CFP->isZero())
return Op.getOperand(1);
// fold (fneg (fsub A, B)) -> (fsub B, A)
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(0), Flags);
case ISD::FMUL:
case ISD::FDIV:
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
DAG.getTargetLoweringInfo(), &Options, Depth+1))
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1), Flags);
// fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
Op.getOperand(0),
GetNegatedExpression(Op.getOperand(1), DAG,
LegalOperations, Depth+1), Flags);
case ISD::FP_EXTEND:
case ISD::FSIN:
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1));
case ISD::FP_ROUND:
return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1));
}
}
// APInts must be the same size for most operations, this helper
// function zero extends the shorter of the pair so that they match.
// We provide an Offset so that we can create bitwidths that won't overflow.
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
LHS = LHS.zextOrSelf(Bits);
RHS = RHS.zextOrSelf(Bits);
}
// Return true if this node is a setcc, or is a select_cc
// that selects between the target values used for true and false, making it
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
// the appropriate nodes based on the type of node we are checking. This
// simplifies life a bit for the callers.
bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC) const {
if (N.getOpcode() == ISD::SETCC) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(2);
return true;
}
if (N.getOpcode() != ISD::SELECT_CC ||
!TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
!TLI.isConstFalseVal(N.getOperand(3).getNode()))
return false;
if (TLI.getBooleanContents(N.getValueType()) ==
TargetLowering::UndefinedBooleanContent)
return false;
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(4);
return true;
}
/// Return true if this is a SetCC-equivalent operation with only one use.
/// If this is true, it allows the users to invert the operation for free when
/// it is profitable to do so.
bool DAGCombiner::isOneUseSetCC(SDValue N) const {
SDValue N0, N1, N2;
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
return true;
return false;
}
// Returns the SDNode if it is a constant float BuildVector
// or constant float.
static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
if (isa<ConstantFPSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
return N.getNode();
return nullptr;
}
// Determines if it is a constant integer or a build vector of constant
// integers (and undefs).
// Do not permit build vector implicit truncation.
static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
return !(Const->isOpaque() && NoOpaques);
if (N.getOpcode() != ISD::BUILD_VECTOR)
return false;
unsigned BitWidth = N.getScalarValueSizeInBits();
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
(Const->isOpaque() && NoOpaques))
return false;
}
return true;
}
// Determines if it is a constant null integer or a splatted vector of a
// constant null integer (with no undefs).
// Build vector implicit truncation is not an issue for null values.
static bool isNullConstantOrNullSplatConstant(SDValue N) {
// TODO: may want to use peekThroughBitcast() here.
if (ConstantSDNode *Splat = isConstOrConstSplat(N))
return Splat->isNullValue();
return false;
}
// Determines if it is a constant integer of one or a splatted vector of a
// constant integer of one (with no undefs).
// Do not permit build vector implicit truncation.
static bool isOneConstantOrOneSplatConstant(SDValue N) {
// TODO: may want to use peekThroughBitcast() here.
unsigned BitWidth = N.getScalarValueSizeInBits();
if (ConstantSDNode *Splat = isConstOrConstSplat(N))
return Splat->isOne() && Splat->getAPIntValue().getBitWidth() == BitWidth;
return false;
}
// Determines if it is a constant integer of all ones or a splatted vector of a
// constant integer of all ones (with no undefs).
// Do not permit build vector implicit truncation.
static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N) {
N = peekThroughBitcasts(N);
unsigned BitWidth = N.getScalarValueSizeInBits();
if (ConstantSDNode *Splat = isConstOrConstSplat(N))
return Splat->isAllOnesValue() &&
Splat->getAPIntValue().getBitWidth() == BitWidth;
return false;
}
// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
// undef's.
static bool isAnyConstantBuildVector(const SDNode *N) {
return ISD::isBuildVectorOfConstantSDNodes(N) ||
ISD::isBuildVectorOfConstantFPSDNodes(N);
}
SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1, SDNodeFlags Flags) {
// Don't reassociate reductions.
if (Flags.hasVectorReduction())
return SDValue();
EVT VT = N0.getValueType();
if (N0.getOpcode() == Opc && !N0->getFlags().hasVectorReduction()) {
if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
// reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
return SDValue();
}
if (N0.hasOneUse()) {
// reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
// use
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
if (!OpNode.getNode())
return SDValue();
AddToWorklist(OpNode.getNode());
return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
}
}
}
if (N1.getOpcode() == Opc && !N1->getFlags().hasVectorReduction()) {
if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
// reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
return SDValue();
}
if (N1.hasOneUse()) {
// reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one
// use
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0));
if (!OpNode.getNode())
return SDValue();
AddToWorklist(OpNode.getNode());
return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
}
}
}
return SDValue();
}
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo) {
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
To[0].getNode()->dump(&DAG);
dbgs() << " and " << NumTo - 1 << " other values\n");
for (unsigned i = 0, e = NumTo; i != e; ++i)
assert((!To[i].getNode() ||
N->getValueType(i) == To[i].getValueType()) &&
"Cannot combine value to value of different type!");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesWith(N, To);
if (AddTo) {
// Push the new nodes and any users onto the worklist
for (unsigned i = 0, e = NumTo; i != e; ++i) {
if (To[i].getNode()) {
AddToWorklist(To[i].getNode());
AddUsersToWorklist(To[i].getNode());
}
}
}
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (N->use_empty())
deleteAndRecombine(N);
return SDValue(N, 0);
}
void DAGCombiner::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
// Replace all uses. If any nodes become isomorphic to other nodes and
// are deleted, make sure to remove them from our worklist.
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
// Push the new node and any (possibly new) users onto the worklist.
AddToWorklist(TLO.New.getNode());
AddUsersToWorklist(TLO.New.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (TLO.Old.getNode()->use_empty())
deleteAndRecombine(TLO.Old.getNode());
}
/// Check the specified integer node value to see if it can be simplified or if
/// things it uses can be simplified by bit propagation. If so, return true.
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
KnownBits Known;
if (!TLI.SimplifyDemandedBits(Op, Demanded, Known, TLO))
return false;
// Revisit the node.
AddToWorklist(Op.getNode());
// Replace the old value with the new one.
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
dbgs() << '\n');
CommitTargetLoweringOpt(TLO);
return true;
}
/// Check the specified vector node value to see if it can be simplified or
/// if things it uses can be simplified as it only uses some of the elements.
/// If so, return true.
bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded,
bool AssumeSingleUse) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
APInt KnownUndef, KnownZero;
if (!TLI.SimplifyDemandedVectorElts(Op, Demanded, KnownUndef, KnownZero, TLO,
0, AssumeSingleUse))
return false;
// Revisit the node.
AddToWorklist(Op.getNode());
// Replace the old value with the new one.
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
dbgs() << '\n');
CommitTargetLoweringOpt(TLO);
return true;
}
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
SDLoc DL(Load);
EVT VT = Load->getValueType(0);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
Trunc.getNode()->dump(&DAG); dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
deleteAndRecombine(Load);
AddToWorklist(Trunc.getNode());
}
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
Replace = false;
SDLoc DL(Op);
if (ISD::isUNINDEXEDLoad(Op.getNode())) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
: LD->getExtensionType();
Replace = true;
return DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
}
unsigned Opc = Op.getOpcode();
switch (Opc) {
default: break;
case ISD::AssertSext:
if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
break;
case ISD::AssertZext:
if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
break;
case ISD::Constant: {
unsigned ExtOpc =
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
return DAG.getNode(ExtOpc, DL, PVT, Op);
}
}
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
return SDValue();
return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
}
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
return SDValue();
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
DAG.getValueType(OldVT));
}
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
}
/// Promote the specified integer binary operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
bool Replace0 = false;
SDValue N0 = Op.getOperand(0);
SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
bool Replace1 = false;
SDValue N1 = Op.getOperand(1);
SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
SDLoc DL(Op);
SDValue RV =
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
// We are always replacing N0/N1's use in N and only need
// additional replacements if there are additional uses.
Replace0 &= !N0->hasOneUse();
Replace1 &= (N0 != N1) && !N1->hasOneUse();
// Combine Op here so it is preserved past replacements.
CombineTo(Op.getNode(), RV);
// If operands have a use ordering, make sure we deal with
// predecessor first.
if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
std::swap(N0, N1);
std::swap(NN0, NN1);
}
if (Replace0) {
AddToWorklist(NN0.getNode());
ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
}
if (Replace1) {
AddToWorklist(NN1.getNode());
ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
}
return Op;
}
return SDValue();
}
/// Promote the specified integer shift operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
bool Replace = false;
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
if (Opc == ISD::SRA)
N0 = SExtPromoteOperand(N0, PVT);
else if (Opc == ISD::SRL)
N0 = ZExtPromoteOperand(N0, PVT);
else
N0 = PromoteOperand(N0, PVT, Replace);
if (!N0.getNode())
return SDValue();
SDLoc DL(Op);
SDValue RV =
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
AddToWorklist(N0.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
// Deal with Op being deleted.
if (Op && Op.getOpcode() != ISD::DELETED_NODE)
return RV;
}
return SDValue();
}
SDValue DAGCombiner::PromoteExtend(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
}
return SDValue();
}
bool DAGCombiner::PromoteLoad(SDValue Op) {
if (!LegalOperations)
return false;
if (!ISD::isUNINDEXEDLoad(Op.getNode()))
return false;
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return false;
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return false;
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
SDLoc DL(Op);
SDNode *N = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
: LD->getExtensionType();
SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
Result.getNode()->dump(&DAG); dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
deleteAndRecombine(N);
AddToWorklist(Result.getNode());
return true;
}
return false;
}
/// Recursively delete a node which has no uses and any operands for
/// which it is the only use.
///
/// Note that this both deletes the nodes and removes them from the worklist.
/// It also adds any nodes who have had a user deleted to the worklist as they
/// may now have only one use and subject to other combines.
bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
if (!N->use_empty())
return false;
SmallSetVector<SDNode *, 16> Nodes;
Nodes.insert(N);
do {
N = Nodes.pop_back_val();
if (!N)
continue;
if (N->use_empty()) {
for (const SDValue &ChildN : N->op_values())
Nodes.insert(ChildN.getNode());
removeFromWorklist(N);
DAG.DeleteNode(N);
} else {
AddToWorklist(N);
}
} while (!Nodes.empty());
return true;
}
//===----------------------------------------------------------------------===//
// Main DAG Combiner implementation
//===----------------------------------------------------------------------===//
void DAGCombiner::Run(CombineLevel AtLevel) {
// set the instance variables, so that the various visit routines may use it.
Level = AtLevel;
LegalOperations = Level >= AfterLegalizeVectorOps;
LegalTypes = Level >= AfterLegalizeTypes;
// Add all the dag nodes to the worklist.
for (SDNode &Node : DAG.allnodes())
AddToWorklist(&Node);
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// While the worklist isn't empty, find a node and try to combine it.
while (!WorklistMap.empty()) {
SDNode *N;
// The Worklist holds the SDNodes in order, but it may contain null entries.
do {
N = Worklist.pop_back_val();
} while (!N);
bool GoodWorklistEntry = WorklistMap.erase(N);
(void)GoodWorklistEntry;
assert(GoodWorklistEntry &&
"Found a worklist entry without a corresponding map entry!");
// If N has no uses, it is dead. Make sure to revisit all N's operands once
// N is deleted from the DAG, since they too may now be dead or may have a
// reduced number of uses, allowing other xforms.
if (recursivelyDeleteUnusedNodes(N))
continue;
WorklistRemover DeadNodes(*this);
// If this combine is running after legalizing the DAG, re-legalize any
// nodes pulled off the worklist.
if (Level == AfterLegalizeDAG) {
SmallSetVector<SDNode *, 16> UpdatedNodes;
bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
for (SDNode *LN : UpdatedNodes) {
AddToWorklist(LN);
AddUsersToWorklist(LN);
}
if (!NIsValid)
continue;
}
LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
// Add any operands of the new node which have not yet been combined to the
// worklist as well. Because the worklist uniques things already, this
// won't repeatedly process the same operand.
CombinedNodes.insert(N);
for (const SDValue &ChildN : N->op_values())
if (!CombinedNodes.count(ChildN.getNode()))
AddToWorklist(ChildN.getNode());
SDValue RV = combine(N);
if (!RV.getNode())
continue;
++NodesCombined;
// If we get back the same node we passed in, rather than a new node or
// zero, we know that the node must have defined multiple values and
// CombineTo was used. Since CombineTo takes care of the worklist
// mechanics for us, we have no work to do in this case.
if (RV.getNode() == N)
continue;
assert(N->getOpcode() != ISD::DELETED_NODE &&
RV.getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
if (N->getNumValues() == RV.getNode()->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode());
else {
assert(N->getValueType(0) == RV.getValueType() &&
N->getNumValues() == 1 && "Type mismatch");
DAG.ReplaceAllUsesWith(N, &RV);
}
// Push the new node and any users onto the worklist
AddToWorklist(RV.getNode());
AddUsersToWorklist(RV.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node. This will also take care of adding any
// operands which have lost a user to the worklist.
recursivelyDeleteUnusedNodes(N);
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
DAG.RemoveDeadNodes();
}
SDValue DAGCombiner::visit(SDNode *N) {
switch (N->getOpcode()) {
default: break;
case ISD::TokenFactor: return visitTokenFactor(N);
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
case ISD::ADD: return visitADD(N);
case ISD::SUB: return visitSUB(N);
case ISD::ADDC: return visitADDC(N);
case ISD::UADDO: return visitUADDO(N);
case ISD::SUBC: return visitSUBC(N);
case ISD::USUBO: return visitUSUBO(N);
case ISD::ADDE: return visitADDE(N);
case ISD::ADDCARRY: return visitADDCARRY(N);
case ISD::SUBE: return visitSUBE(N);
case ISD::SUBCARRY: return visitSUBCARRY(N);
case ISD::MUL: return visitMUL(N);
case ISD::SDIV: return visitSDIV(N);
case ISD::UDIV: return visitUDIV(N);
case ISD::SREM:
case ISD::UREM: return visitREM(N);
case ISD::MULHU: return visitMULHU(N);
case ISD::MULHS: return visitMULHS(N);
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
case ISD::SMULO: return visitSMULO(N);
case ISD::UMULO: return visitUMULO(N);
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX: return visitIMINMAX(N);
case ISD::AND: return visitAND(N);
case ISD::OR: return visitOR(N);
case ISD::XOR: return visitXOR(N);
case ISD::SHL: return visitSHL(N);
case ISD::SRA: return visitSRA(N);
case ISD::SRL: return visitSRL(N);
case ISD::ROTR:
case ISD::ROTL: return visitRotate(N);
case ISD::ABS: return visitABS(N);
case ISD::BSWAP: return visitBSWAP(N);
case ISD::BITREVERSE: return visitBITREVERSE(N);
case ISD::CTLZ: return visitCTLZ(N);
case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
case ISD::CTTZ: return visitCTTZ(N);
case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
case ISD::CTPOP: return visitCTPOP(N);
case ISD::SELECT: return visitSELECT(N);
case ISD::VSELECT: return visitVSELECT(N);
case ISD::SELECT_CC: return visitSELECT_CC(N);
case ISD::SETCC: return visitSETCC(N);
case ISD::SETCCCARRY: return visitSETCCCARRY(N);
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
case ISD::AssertSext:
case ISD::AssertZext: return visitAssertExt(N);
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
case ISD::TRUNCATE: return visitTRUNCATE(N);
case ISD::BITCAST: return visitBITCAST(N);
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
case ISD::FADD: return visitFADD(N);
case ISD::FSUB: return visitFSUB(N);
case ISD::FMUL: return visitFMUL(N);
case ISD::FMA: return visitFMA(N);
case ISD::FDIV: return visitFDIV(N);
case ISD::FREM: return visitFREM(N);
case ISD::FSQRT: return visitFSQRT(N);
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
case ISD::FPOW: return visitFPOW(N);
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
case ISD::FP_ROUND: return visitFP_ROUND(N);
case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
case ISD::FNEG: return visitFNEG(N);
case ISD::FABS: return visitFABS(N);
case ISD::FFLOOR: return visitFFLOOR(N);
case ISD::FMINNUM: return visitFMINNUM(N);
case ISD::FMAXNUM: return visitFMAXNUM(N);
case ISD::FCEIL: return visitFCEIL(N);
case ISD::FTRUNC: return visitFTRUNC(N);
case ISD::BRCOND: return visitBRCOND(N);
case ISD::BR_CC: return visitBR_CC(N);
case ISD::LOAD: return visitLOAD(N);
case ISD::STORE: return visitSTORE(N);
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
case ISD::MGATHER: return visitMGATHER(N);
case ISD::MLOAD: return visitMLOAD(N);
case ISD::MSCATTER: return visitMSCATTER(N);
case ISD::MSTORE: return visitMSTORE(N);
case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
}
return SDValue();
}
SDValue DAGCombiner::combine(SDNode *N) {
SDValue RV = visit(N);
// If nothing happened, try a target-specific DAG combine.
if (!RV.getNode()) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned NULL!");
if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
// Expose the DAG combiner to the target combiner impls.
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level, false, this);
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
}
}
// If nothing happened still, try promoting the operation.
if (!RV.getNode()) {
switch (N->getOpcode()) {
default: break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
RV = PromoteIntBinOp(SDValue(N, 0));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
RV = PromoteIntShiftOp(SDValue(N, 0));
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
RV = PromoteExtend(SDValue(N, 0));
break;
case ISD::LOAD:
if (PromoteLoad(SDValue(N, 0)))
RV = SDValue(N, 0);
break;
}
}
// If N is a commutative binary node, try eliminate it if the commuted
// version is already present in the DAG.
if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
N->getNumValues() == 1) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Constant operands are canonicalized to RHS.
if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
SDValue Ops[] = {N1, N0};
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
N->getFlags());
if (CSENode)
return SDValue(CSENode, 0);
}
}
return RV;
}
/// Given a node, return its input chain if it has one, otherwise return a null
/// sd operand.
static SDValue getInputChainForNode(SDNode *N) {
if (unsigned NumOps = N->getNumOperands()) {
if (N->getOperand(0).getValueType() == MVT::Other)
return N->getOperand(0);
if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
return N->getOperand(NumOps-1);
for (unsigned i = 1; i < NumOps-1; ++i)
if (N->getOperand(i).getValueType() == MVT::Other)
return N->getOperand(i);
}
return SDValue();
}
SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
// If N has two operands, where one has an input chain equal to the other,
// the 'other' chain is redundant.
if (N->getNumOperands() == 2) {
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
return N->getOperand(0);
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
return N->getOperand(1);
}
// Don't simplify token factors if optnone.
if (OptLevel == CodeGenOpt::None)
return SDValue();
SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
SmallPtrSet<SDNode*, 16> SeenOps;
bool Changed = false; // If we should replace this token factor.
// Start out with this token factor.
TFs.push_back(N);
// Iterate through token factors. The TFs grows when new token factors are
// encountered.
for (unsigned i = 0; i < TFs.size(); ++i) {
SDNode *TF = TFs[i];
// Check each of the operands.
for (const SDValue &Op : TF->op_values()) {
switch (Op.getOpcode()) {
case ISD::EntryToken:
// Entry tokens don't need to be added to the list. They are
// redundant.
Changed = true;
break;
case ISD::TokenFactor:
if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
// Queue up for processing.
TFs.push_back(Op.getNode());
// Clean up in case the token factor is removed.
AddToWorklist(Op.getNode());
Changed = true;
break;
}
LLVM_FALLTHROUGH;
default:
// Only add if it isn't already in the list.
if (SeenOps.insert(Op.getNode()).second)
Ops.push_back(Op);
else
Changed = true;
break;
}
}
}
// Remove Nodes that are chained to another node in the list. Do so
// by walking up chains breath-first stopping when we've seen
// another operand. In general we must climb to the EntryNode, but we can exit
// early if we find all remaining work is associated with just one operand as
// no further pruning is possible.
// List of nodes to search through and original Ops from which they originate.
SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
SmallPtrSet<SDNode *, 16> SeenChains;
bool DidPruneOps = false;
unsigned NumLeftToConsider = 0;
for (const SDValue &Op : Ops) {
Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
OpWorkCount.push_back(1);
}
auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
// If this is an Op, we can remove the op from the list. Remark any
// search associated with it as from the current OpNumber.
if (SeenOps.count(Op) != 0) {
Changed = true;
DidPruneOps = true;
unsigned OrigOpNumber = 0;
while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
OrigOpNumber++;
assert((OrigOpNumber != Ops.size()) &&
"expected to find TokenFactor Operand");
// Re-mark worklist from OrigOpNumber to OpNumber
for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
if (Worklist[i].second == OrigOpNumber) {
Worklist[i].second = OpNumber;
}
}
OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
OpWorkCount[OrigOpNumber] = 0;
NumLeftToConsider--;
}
// Add if it's a new chain
if (SeenChains.insert(Op).second) {
OpWorkCount[OpNumber]++;
Worklist.push_back(std::make_pair(Op, OpNumber));
}
};
for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
// We need at least be consider at least 2 Ops to prune.
if (NumLeftToConsider <= 1)
break;
auto CurNode = Worklist[i].first;
auto CurOpNumber = Worklist[i].second;
assert((OpWorkCount[CurOpNumber] > 0) &&
"Node should not appear in worklist");
switch (CurNode->getOpcode()) {
case ISD::EntryToken:
// Hitting EntryToken is the only way for the search to terminate without
// hitting
// another operand's search. Prevent us from marking this operand
// considered.
NumLeftToConsider++;
break;
case ISD::TokenFactor:
for (const SDValue &Op : CurNode->op_values())
AddToWorklist(i, Op.getNode(), CurOpNumber);
break;
case ISD::CopyFromReg:
case ISD::CopyToReg:
AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
break;
default:
if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
break;
}
OpWorkCount[CurOpNumber]--;
if (OpWorkCount[CurOpNumber] == 0)
NumLeftToConsider--;
}
// If we've changed things around then replace token factor.
if (Changed) {
SDValue Result;
if (Ops.empty()) {
// The entry token is the only possible outcome.
Result = DAG.getEntryNode();
} else {
if (DidPruneOps) {
SmallVector<SDValue, 8> PrunedOps;
//
for (const SDValue &Op : Ops) {
if (SeenChains.count(Op.getNode()) == 0)
PrunedOps.push_back(Op);
}
Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, PrunedOps);
} else {
Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
}
}
return Result;
}
return SDValue();
}
/// MERGE_VALUES can always be eliminated.
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
WorklistRemover DeadNodes(*this);
// Replacing results may cause a different MERGE_VALUES to suddenly
// be CSE'd with N, and carry its uses with it. Iterate until no
// uses remain, to ensure that the node can be safely deleted.
// First add the users of this node to the work list so that they
// can be tried again once they have new operands.
AddUsersToWorklist(N);
do {
// Do as a single replacement to avoid rewalking use lists.
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
Ops.push_back(N->getOperand(i));
DAG.ReplaceAllUsesWith(N, Ops.data());
} while (!N->use_empty());
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
/// ConstantSDNode pointer else nullptr.
static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
}
SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
assert(ISD::isBinaryOp(BO) && "Unexpected binary operator");
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
// TODO: Handle ISD::SELECT_CC.
unsigned SelOpNo = 0;
SDValue Sel = BO->getOperand(0);
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
SelOpNo = 1;
Sel = BO->getOperand(1);
}
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
return SDValue();
SDValue CT = Sel.getOperand(1);
if (!isConstantOrConstantVector(CT, true) &&
!isConstantFPBuildVectorOrConstantFP(CT))
return SDValue();
SDValue CF = Sel.getOperand(2);
if (!isConstantOrConstantVector(CF, true) &&
!isConstantFPBuildVectorOrConstantFP(CF))
return SDValue();
// Bail out if any constants are opaque because we can't constant fold those.
// The exception is "and" and "or" with either 0 or -1 in which case we can
// propagate non constant operands into select. I.e.:
// and (select Cond, 0, -1), X --> select Cond, 0, X
// or X, (select Cond, -1, 0) --> select Cond, -1, X
auto BinOpcode = BO->getOpcode();
bool CanFoldNonConst = (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
(isNullConstantOrNullSplatConstant(CT) ||
isAllOnesConstantOrAllOnesSplatConstant(CT)) &&
(isNullConstantOrNullSplatConstant(CF) ||
isAllOnesConstantOrAllOnesSplatConstant(CF));
SDValue CBO = BO->getOperand(SelOpNo ^ 1);
if (!CanFoldNonConst &&
!isConstantOrConstantVector(CBO, true) &&
!isConstantFPBuildVectorOrConstantFP(CBO))
return SDValue();
EVT VT = Sel.getValueType();
// In case of shift value and shift amount may have different VT. For instance
// on x86 shift amount is i8 regardles of LHS type. Bail out if we have
// swapped operands and value types do not match. NB: x86 is fine if operands
// are not swapped with shift amount VT being not bigger than shifted value.
// TODO: that is possible to check for a shift operation, correct VTs and
// still perform optimization on x86 if needed.
if (SelOpNo && VT != CBO.getValueType())
return SDValue();
// We have a select-of-constants followed by a binary operator with a
// constant. Eliminate the binop by pulling the constant math into the select.
// Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
SDLoc DL(Sel);
SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
: DAG.getNode(BinOpcode, DL, VT, CT, CBO);
if (!CanFoldNonConst && !NewCT.isUndef() &&
!isConstantOrConstantVector(NewCT, true) &&
!isConstantFPBuildVectorOrConstantFP(NewCT))
return SDValue();
SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
: DAG.getNode(BinOpcode, DL, VT, CF, CBO);
if (!CanFoldNonConst && !NewCF.isUndef() &&
!isConstantOrConstantVector(NewCF, true) &&
!isConstantFPBuildVectorOrConstantFP(NewCF))
return SDValue();
return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
}
static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Expecting add or sub");
// Match a constant operand and a zext operand for the math instruction:
// add Z, C
// sub C, Z
bool IsAdd = N->getOpcode() == ISD::ADD;
SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
auto *CN = dyn_cast<ConstantSDNode>(C);
if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
// Match the zext operand as a setcc of a boolean.
if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
Z.getOperand(0).getValueType() != MVT::i1)
return SDValue();
// Match the compare as: setcc (X & 1), 0, eq.
SDValue SetCC = Z.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
SetCC.getOperand(0).getOpcode() != ISD::AND ||
!isOneConstant(SetCC.getOperand(0).getOperand(1)))
return SDValue();
// We are adding/subtracting a constant and an inverted low bit. Turn that
// into a subtract/add of the low bit with incremented/decremented constant:
// add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
// sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
EVT VT = C.getValueType();
SDLoc DL(N);
SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
}
/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
/// a shift and add with a different constant.
static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Expecting add or sub");
// We need a constant operand for the add/sub, and the other operand is a
// logical shift right: add (srl), C or sub C, (srl).
bool IsAdd = N->getOpcode() == ISD::ADD;
SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
ConstantSDNode *C = isConstOrConstSplat(ConstantOp);
if (!C || ShiftOp.getOpcode() != ISD::SRL)
return SDValue();
// The shift must be of a 'not' value.
SDValue Not = ShiftOp.getOperand(0);
if (!Not.hasOneUse() || !isBitwiseNot(Not))
return SDValue();
// The shift must be moving the sign bit to the least-significant-bit.
EVT VT = ShiftOp.getValueType();
SDValue ShAmt = ShiftOp.getOperand(1);
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
if (!ShAmtC || ShAmtC->getZExtValue() != VT.getScalarSizeInBits() - 1)
return SDValue();
// Eliminate the 'not' by adjusting the shift and add/sub constant:
// add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
// sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
SDLoc DL(N);
auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1;
return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT));
}
SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (add x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
}
// fold (add x, undef) -> undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
// canonicalize constant to RHS
if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
// fold (add c1, c2) -> c1+c2
return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
N1.getNode());
}
// fold (add x, 0) -> x
if (isNullConstant(N1))
return N0;
if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
// fold ((c1-A)+c2) -> (c1+c2)-A
if (N0.getOpcode() == ISD::SUB &&
isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
// FIXME: Adding 2 constants should be handled by FoldConstantArithmetic.
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
N0.getOperand(1));
}
// add (sext i1 X), 1 -> zext (not i1 X)
// We don't transform this pattern:
// add (zext i1 X), -1 -> sext (not i1 X)
// because most (?) targets generate better code for the zext form.
if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
isOneConstantOrOneSplatConstant(N1)) {
SDValue X = N0.getOperand(0);
if ((!LegalOperations ||
(TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
X.getScalarValueSizeInBits() == 1) {
SDValue Not = DAG.getNOT(DL, X, X.getValueType());
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
}
}
// Undo the add -> or combine to merge constant offsets from a frame index.
if (N0.getOpcode() == ISD::OR &&
isa<FrameIndexSDNode>(N0.getOperand(0)) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
}
}
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate add
if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
return RADD;
// fold ((0-A) + B) -> B-A
if (N0.getOpcode() == ISD::SUB &&
isNullConstantOrNullSplatConstant(N0.getOperand(0)))
return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
// fold (A + (0-B)) -> A-B
if (N1.getOpcode() == ISD::SUB &&
isNullConstantOrNullSplatConstant(N1.getOperand(0)))
return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
// fold (A+(B-A)) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
return N1.getOperand(0);
// fold ((B-A)+A) -> B
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
return N0.getOperand(0);
// fold (A+(B-(A+C))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(0))
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
N1.getOperand(1).getOperand(1));
// fold (A+(B-(C+A))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(1))
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
N1.getOperand(1).getOperand(0));
// fold (A+((B-A)+or-C)) to (B+or-C)
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
N1.getOperand(0).getOpcode() == ISD::SUB &&
N0 == N1.getOperand(0).getOperand(1))
return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
N1.getOperand(1));
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
}
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
return V;
if (SDValue V = foldAddSubOfSignBit(N, DAG))
return V;
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (a+b) -> (a|b) iff a and b share no bits.
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
DAG.haveNoCommonBitsSet(N0, N1))
return DAG.getNode(ISD::OR, DL, VT, N0, N1);
// fold (add (xor a, -1), 1) -> (sub 0, a)
if (isBitwiseNot(N0) && isOneConstantOrOneSplatConstant(N1))
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
N0.getOperand(0));
if (SDValue Combined = visitADDLike(N0, N1, N))
return Combined;
if (SDValue Combined = visitADDLike(N1, N0, N))
return Combined;
return SDValue();
}
static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
bool Masked = false;
// First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
while (true) {
if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
V = V.getOperand(0);
continue;
}
if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
Masked = true;
V = V.getOperand(0);
continue;
}
break;
}
// If this is not a carry, return.
if (V.getResNo() != 1)
return SDValue();
if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
return SDValue();
// If the result is masked, then no matter what kind of bool it is we can
// return. If it isn't, then we need to make sure the bool type is either 0 or
// 1 and not other values.
if (Masked ||
TLI.getBooleanContents(V.getValueType()) ==
TargetLoweringBase::ZeroOrOneBooleanContent)
return V;
return SDValue();
}
SDValue DAGCombiner::visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference) {
EVT VT = N0.getValueType();
SDLoc DL(LocReference);
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0)))
return DAG.getNode(ISD::SUB, DL, VT, N0,
DAG.getNode(ISD::SHL, DL, VT,
N1.getOperand(0).getOperand(1),
N1.getOperand(1)));
if (N1.getOpcode() == ISD::AND) {
SDValue AndOp0 = N1.getOperand(0);
unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
unsigned DestBits = VT.getScalarSizeInBits();
// (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
// and similar xforms where the inner op is either ~0 or 0.
if (NumSignBits == DestBits &&
isOneConstantOrOneSplatConstant(N1->getOperand(1)))
return DAG.getNode(ISD::SUB, DL, VT, N0, AndOp0);
}
// add (sext i1), X -> sub X, (zext i1)
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
N0.getOperand(0).getValueType() == MVT::i1 &&
!TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
}
// add X, (sextinreg Y i1) -> sub X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
}
}
// (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
N1.getResNo() == 0)
return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
N0, N1.getOperand(0), N1.getOperand(2));
// (add X, Carry) -> (addcarry X, 0, Carry)
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
if (SDValue Carry = getAsCarry(TLI, N1))
return DAG.getNode(ISD::ADDCARRY, DL,
DAG.getVTList(VT, Carry.getValueType()), N0,
DAG.getConstant(0, DL, VT), Carry);
return SDValue();
}
SDValue DAGCombiner::visitADDC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// If the flag result is dead, turn this into an ADD.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// canonicalize constant to RHS.
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
// fold (addc x, 0) -> x + no carry out
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
DL, MVT::Glue));
// If it cannot overflow, transform into an add.
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
return SDValue();
}
static SDValue flipBoolean(SDValue V, const SDLoc &DL, EVT VT,
SelectionDAG &DAG, const TargetLowering &TLI) {
SDValue Cst;
switch (TLI.getBooleanContents(VT)) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::UndefinedBooleanContent:
Cst = DAG.getConstant(1, DL, VT);
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
Cst = DAG.getConstant(-1, DL, VT);
break;
}
return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
}
static bool isBooleanFlip(SDValue V, EVT VT, const TargetLowering &TLI) {
if (V.getOpcode() != ISD::XOR) return false;
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V.getOperand(1));
if (!Const) return false;
switch(TLI.getBooleanContents(VT)) {
case TargetLowering::ZeroOrOneBooleanContent:
return Const->isOne();
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return Const->isAllOnesValue();
case TargetLowering::UndefinedBooleanContent:
return (Const->getAPIntValue() & 0x01) == 1;
}
llvm_unreachable("Unsupported boolean content");
}
SDValue DAGCombiner::visitUADDO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
if (VT.isVector())
return SDValue();
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
// If the flag result is dead, turn this into an ADD.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getUNDEF(CarryVT));
// canonicalize constant to RHS.
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N1, N0);
// fold (uaddo x, 0) -> x + no carry out
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
// If it cannot overflow, transform into an add.
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getConstant(0, DL, CarryVT));
// fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
if (isBitwiseNot(N0) && isOneConstantOrOneSplatConstant(N1)) {
SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
DAG.getConstant(0, DL, VT),
N0.getOperand(0));
return CombineTo(N, Sub,
flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI));
}
if (SDValue Combined = visitUADDOLike(N0, N1, N))
return Combined;
if (SDValue Combined = visitUADDOLike(N1, N0, N))
return Combined;
return SDValue();
}
SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
auto VT = N0.getValueType();
// (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
// If Y + 1 cannot overflow.
if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
SDValue Y = N1.getOperand(0);
SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
N1.getOperand(2));
}
// (uaddo X, Carry) -> (addcarry X, 0, Carry)
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
if (SDValue Carry = getAsCarry(TLI, N1))
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
DAG.getConstant(0, SDLoc(N), VT), Carry);
return SDValue();
}
SDValue DAGCombiner::visitADDE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
N1, N0, CarryIn);
// fold (adde x, y, false) -> (addc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
SDLoc DL(N);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
// fold (addcarry x, y, false) -> (uaddo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
}
EVT CarryVT = CarryIn.getValueType();
// fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
if (isNullConstant(N0) && isNullConstant(N1)) {
EVT VT = N0.getValueType();
SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
AddToWorklist(CarryExt.getNode());
return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
DAG.getConstant(1, DL, VT)),
DAG.getConstant(0, DL, CarryVT));
}
// fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry.
if (isBitwiseNot(N0) && isNullConstant(N1) &&
isBooleanFlip(CarryIn, CarryVT, TLI)) {
SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(),
DAG.getConstant(0, DL, N0.getValueType()),
N0.getOperand(0), CarryIn.getOperand(0));
return CombineTo(N, Sub,
flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI));
}
if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
return Combined;
if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
return Combined;
return SDValue();
}
SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
SDNode *N) {
// Iff the flag result is dead:
// (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
if ((N0.getOpcode() == ISD::ADD ||
(N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0)) &&
isNullConstant(N1) && !N->hasAnyUseOfValue(1))
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
N0.getOperand(0), N0.getOperand(1), CarryIn);
/**
* When one of the addcarry argument is itself a carry, we may be facing
* a diamond carry propagation. In which case we try to transform the DAG
* to ensure linear carry propagation if that is possible.
*
* We are trying to get:
* (addcarry X, 0, (addcarry A, B, Z):Carry)
*/
if (auto Y = getAsCarry(TLI, N1)) {
/**
* (uaddo A, B)
* / \
* Carry Sum
* | \
* | (addcarry *, 0, Z)
* | /
* \ Carry
* | /
* (addcarry X, *, *)
*/
if (Y.getOpcode() == ISD::UADDO &&
CarryIn.getResNo() == 1 &&
CarryIn.getOpcode() == ISD::ADDCARRY &&
isNullConstant(CarryIn.getOperand(1)) &&
CarryIn.getOperand(0) == Y.getValue(0)) {
auto NewY = DAG.getNode(ISD::ADDCARRY, SDLoc(N), Y->getVTList(),
Y.getOperand(0), Y.getOperand(1),
CarryIn.getOperand(2));
AddToWorklist(NewY.getNode());
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
DAG.getConstant(0, SDLoc(N), N0.getValueType()),
NewY.getValue(1));
}
}
return SDValue();
}
// Since it may not be valid to emit a fold to zero for vector initializers
// check if we can before folding.
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
SelectionDAG &DAG, bool LegalOperations,
bool LegalTypes) {
if (!VT.isVector())
return DAG.getConstant(0, DL, VT);
if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
return DAG.getConstant(0, DL, VT);
return SDValue();
}
SDValue DAGCombiner::visitSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (sub x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
}
// fold (sub x, x) -> 0
// FIXME: Refactor this and xor and other similar operations together.
if (N0 == N1)
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations, LegalTypes);
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
// fold (sub c1, c2) -> c1-c2
return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
N1.getNode());
}
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
// fold (sub x, c) -> (add x, -c)
if (N1C) {
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
}
if (isNullConstantOrNullSplatConstant(N0)) {
unsigned BitWidth = VT.getScalarSizeInBits();
// Right-shifting everything out but the sign bit followed by negation is
// the same as flipping arithmetic/logical shift type without the negation:
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) {
auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
}
}
// 0 - X --> 0 if the sub is NUW.
if (N->getFlags().hasNoUnsignedWrap())
return N0;
if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
// N1 is either 0 or the minimum signed value. If the sub is NSW, then
// N1 must be 0 because negating the minimum signed value is undefined.
if (N->getFlags().hasNoSignedWrap())
return N0;
// 0 - X --> X if X is 0 or the minimum signed value.
return N1;
}
}
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
if (isAllOnesConstantOrAllOnesSplatConstant(N0))
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
// fold (A - (0-B)) -> A+B
if (N1.getOpcode() == ISD::SUB &&
isNullConstantOrNullSplatConstant(N1.getOperand(0)))
return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
// fold A-(A-B) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
return N1.getOperand(1);
// fold (A+B)-A -> B
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
return N0.getOperand(1);
// fold (A+B)-B -> A
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
return N0.getOperand(0);
// fold C2-(A+C1) -> (C2-C1)-A
if (N1.getOpcode() == ISD::ADD) {
SDValue N11 = N1.getOperand(1);
if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11);
return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
}
}
// fold ((A+(B+or-C))-B) -> A+or-C
if (N0.getOpcode() == ISD::ADD &&
(N0.getOperand(1).getOpcode() == ISD::SUB ||
N0.getOperand(1).getOpcode() == ISD::ADD) &&
N0.getOperand(1).getOperand(0) == N1)
return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
N0.getOperand(1).getOperand(1));
// fold ((A+(C+B))-B) -> A+C
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
N0.getOperand(1).getOperand(0));
// fold ((A-(B-C))-C) -> A-B
if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
N0.getOperand(1).getOperand(0));
// fold (A-(B-C)) -> A+(C-B)
if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
N1.getOperand(0)));
// fold (X - (-Y * Z)) -> (X + (Y * Z))
if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
if (N1.getOperand(0).getOpcode() == ISD::SUB &&
isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0))) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
N1.getOperand(0).getOperand(1),
N1.getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
}
if (N1.getOperand(1).getOpcode() == ISD::SUB &&
isNullConstantOrNullSplatConstant(N1.getOperand(1).getOperand(0))) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
N1.getOperand(0),
N1.getOperand(1).getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
}
}
// If either operand of a sub is undef, the result is undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
return V;
if (SDValue V = foldAddSubOfSignBit(N, DAG))
return V;
// fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
SDValue S0 = N1.getOperand(0);
if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
unsigned OpSizeInBits = VT.getScalarSizeInBits();
if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
if (C->getAPIntValue() == (OpSizeInBits - 1))
return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
}
}
}
// If the relocation model supports it, consider symbol offsets.
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
// fold (sub Sym, c) -> Sym-c
if (N1C && GA->getOpcode() == ISD::GlobalAddress)
return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
GA->getOffset() -
(uint64_t)N1C->getSExtValue());
// fold (sub Sym+c1, Sym+c2) -> c1-c2
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
if (GA->getGlobal() == GB->getGlobal())
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
DL, VT);
}
// sub X, (sextinreg Y i1) -> add X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
}
}
// Prefer an add for more folding potential and possibly better codegen:
// sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
SDValue ShAmt = N1.getOperand(1);
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
if (ShAmtC && ShAmtC->getZExtValue() == N1.getScalarValueSizeInBits() - 1) {
SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
}
}
return SDValue();
}
SDValue DAGCombiner::visitSUBC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// If the flag result is dead, turn this into an SUB.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, x) -> 0 + no borrow
if (N0 == N1)
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, 0) -> x + no borrow
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
if (isAllOnesConstant(N0))
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
return SDValue();
}
SDValue DAGCombiner::visitUSUBO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
if (VT.isVector())
return SDValue();
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
// If the flag result is dead, turn this into an SUB.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getUNDEF(CarryVT));
// fold (usubo x, x) -> 0 + no borrow
if (N0 == N1)
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, CarryVT));
// fold (usubo x, 0) -> x + no borrow
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
// Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
if (isAllOnesConstant(N0))
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
DAG.getConstant(0, DL, CarryVT));
return SDValue();
}
SDValue DAGCombiner::visitSUBE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (sube x, y, false) -> (subc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (subcarry x, y, false) -> (usubo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
}
return SDValue();
}
SDValue DAGCombiner::visitMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold (mul x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, SDLoc(N), VT);
bool N0IsConst = false;
bool N1IsConst = false;
bool N1IsOpaqueConst = false;
bool N0IsOpaqueConst = false;
APInt ConstValue0, ConstValue1;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
assert((!N0IsConst ||
ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) &&
"Splat APInt should be element width");
assert((!N1IsConst ||
ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
"Splat APInt should be element width");
} else {
N0IsConst = isa<ConstantSDNode>(N0);
if (N0IsConst) {
ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
}
N1IsConst = isa<ConstantSDNode>(N1);
if (N1IsConst) {
ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
}
}
// fold (mul c1, c2) -> c1*c2
if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
N0.getNode(), N1.getNode());
// canonicalize constant to RHS (vector doesn't have to splat)
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
// fold (mul x, 0) -> 0
if (N1IsConst && ConstValue1.isNullValue())
return N1;
// fold (mul x, 1) -> x
if (N1IsConst && ConstValue1.isOneValue())
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (mul x, -1) -> 0-x
if (N1IsConst && ConstValue1.isAllOnesValue()) {
SDLoc DL(N);
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT), N0);
}
// fold (mul x, (1 << c)) -> x << c
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N1) &&
(!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
SDLoc DL(N);
SDValue LogBase2 = BuildLogBase2(N1, DL);
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
}
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
unsigned Log2Val = (-ConstValue1).logBase2();
SDLoc DL(N);
// FIXME: If the input is something that is easily negated (e.g. a
// single-use add), we should put the negate there.
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT),
DAG.getNode(ISD::SHL, DL, VT, N0,
DAG.getConstant(Log2Val, DL,
getShiftAmountTy(N0.getValueType()))));
}
// Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
// mul x, (2^N + 1) --> add (shl x, N), x
// mul x, (2^N - 1) --> sub (shl x, N), x
// Examples: x * 33 --> (x << 5) + x
// x * 15 --> (x << 4) - x
// x * -33 --> -((x << 5) + x)
// x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
if (N1IsConst && TLI.decomposeMulByConstant(VT, N1)) {
// TODO: We could handle more general decomposition of any constant by
// having the target set a limit on number of ops and making a
// callback to determine that sequence (similar to sqrt expansion).
unsigned MathOp = ISD::DELETED_NODE;
APInt MulC = ConstValue1.abs();
if ((MulC - 1).isPowerOf2())
MathOp = ISD::ADD;
else if ((MulC + 1).isPowerOf2())
MathOp = ISD::SUB;
if (MathOp != ISD::DELETED_NODE) {
unsigned ShAmt = MathOp == ISD::ADD ? (MulC - 1).logBase2()
: (MulC + 1).logBase2();
assert(ShAmt > 0 && ShAmt < VT.getScalarSizeInBits() &&
"Not expecting multiply-by-constant that could have simplified");
SDLoc DL(N);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, N0,
DAG.getConstant(ShAmt, DL, VT));
SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
if (ConstValue1.isNegative())
R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
return R;
}
}
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
if (N0.getOpcode() == ISD::SHL &&
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
if (isConstantOrConstantVector(C3))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
}
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
// use.
{
SDValue Sh(nullptr, 0), Y(nullptr, 0);
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
if (N0.getOpcode() == ISD::SHL &&
isConstantOrConstantVector(N0.getOperand(1)) &&
N0.getNode()->hasOneUse()) {
Sh = N0; Y = N1;
} else if (N1.getOpcode() == ISD::SHL &&
isConstantOrConstantVector(N1.getOperand(1)) &&
N1.getNode()->hasOneUse()) {
Sh = N1; Y = N0;
}
if (Sh.getNode()) {
SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
}
}
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
N0.getOpcode() == ISD::ADD &&
DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
isMulAddWithConstProfitable(N, N0, N1))
return DAG.getNode(ISD::ADD, SDLoc(N), VT,
DAG.getNode(ISD::MUL, SDLoc(N0), VT,
N0.getOperand(0), N1),
DAG.getNode(ISD::MUL, SDLoc(N1), VT,
N0.getOperand(1), N1));
// reassociate mul
if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
return RMUL;
return SDValue();
}
/// Return true if divmod libcall is available.
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
const TargetLowering &TLI) {
RTLIB::Libcall LC;
EVT NodeType = Node->getValueType(0);
if (!NodeType.isSimple())
return false;
switch (NodeType.getSimpleVT().SimpleTy) {
default: return false; // No libcall for vector types.
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
}
return TLI.getLibcallName(LC) != nullptr;
}
/// Issue divrem if both quotient and remainder are needed.
SDValue DAGCombiner::useDivRem(SDNode *Node) {
if (Node->use_empty())
return SDValue(); // This is a dead node, leave it alone.
unsigned Opcode = Node->getOpcode();
bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
// DivMod lib calls can still work on non-legal types if using lib-calls.
EVT VT = Node->getValueType(0);
if (VT.isVector() || !VT.isInteger())
return SDValue();
if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
return SDValue();
// If DIVREM is going to get expanded into a libcall,
// but there is no libcall available, then don't combine.
if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
!isDivRemLibcallAvailable(Node, isSigned, TLI))
return SDValue();
// If div is legal, it's better to do the normal expansion
unsigned OtherOpcode = 0;
if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
if (TLI.isOperationLegalOrCustom(Opcode, VT))
return SDValue();
} else {
OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
return SDValue();
}
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
SDValue combined;
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
User->use_empty())
continue;
// Convert the other matching node(s), too;
// otherwise, the DIVREM may get target-legalized into something
// target-specific that we won't be able to recognize.
unsigned UserOpc = User->getOpcode();
if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
User->getOperand(0) == Op0 &&
User->getOperand(1) == Op1) {
if (!combined) {
if (UserOpc == OtherOpcode) {
SDVTList VTs = DAG.getVTList(VT, VT);
combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
} else if (UserOpc == DivRemOpc) {
combined = SDValue(User, 0);
} else {
assert(UserOpc == Opcode);
continue;
}
}
if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
CombineTo(User, combined);
else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
CombineTo(User, combined.getValue(1));
}
}
return combined;
}
static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
unsigned Opc = N->getOpcode();
bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// X / undef -> undef
// X % undef -> undef
// X / 0 -> undef
// X % 0 -> undef
// NOTE: This includes vectors where any divisor element is zero/undef.
if (DAG.isUndef(Opc, {N0, N1}))
return DAG.getUNDEF(VT);
// undef / X -> 0
// undef % X -> 0
if (N0.isUndef())
return DAG.getConstant(0, DL, VT);
// TODO: 0 / X -> 0
// TODO: 0 % X -> 0
// X / X -> 1
// X % X -> 0
if (N0 == N1)
return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
// X / 1 -> X
// X % 1 -> 0
if (N1C && N1C->isOne())
return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
// If this is a boolean op (single-bit element type), we can't have
// division-by-zero or remainder-by-zero, so assume the divisor is 1.
// Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
return SDValue();
}
SDValue DAGCombiner::visitSDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
SDLoc DL(N);
// fold (sdiv c1, c2) -> c1/c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
// fold (sdiv X, -1) -> 0-X
if (N1C && N1C->isAllOnesValue())
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
// fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
if (N1C && N1C->getAPIntValue().isMinSignedValue())
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT));
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// If we know the sign bits of both operands are zero, strength reduce to a
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
if (SDValue V = visitSDIVLike(N0, N1, N))
return V;
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
// true. Otherwise, we break the simplification logic in visitREM().
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
return SDValue();
}
SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
unsigned BitWidth = VT.getScalarSizeInBits();
// Helper for determining whether a value is a power-2 constant scalar or a
// vector of such elements.
auto IsPowerOfTwo = [](ConstantSDNode *C) {
if (C->isNullValue() || C->isOpaque())
return false;
if (C->getAPIntValue().isPowerOf2())
return true;
if ((-C->getAPIntValue()).isPowerOf2())
return true;
return false;
};
// fold (sdiv X, pow2) -> simple ops after legalize
// FIXME: We check for the exact bit here because the generic lowering gives
// better results in that case. The target-specific lowering should learn how
// to handle exact sdivs efficiently.
if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
// Target-specific implementation of sdiv x, pow2.
if (SDValue Res = BuildSDIVPow2(N))
return Res;
// Create constants that are functions of the shift amount value.
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
if (!isConstantOrConstantVector(Inexact))
return SDValue();
// Splat the sign bit into the register
SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
AddToWorklist(Sign.getNode());
// Add (N0 < 0) ? abs2 - 1 : 0;
SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
AddToWorklist(Srl.getNode());
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
AddToWorklist(Add.getNode());
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
AddToWorklist(Sra.getNode());
// Special case: (sdiv X, 1) -> X
// Special Case: (sdiv X, -1) -> 0-X
SDValue One = DAG.getConstant(1, DL, VT);
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
// If dividing by a positive value, we're done. Otherwise, the result must
// be negated.
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
// FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
return Res;
}
// If integer divide is expensive and we satisfy the requirements, emit an
// alternate sequence. Targets may check function attributes for size/speed
// trade-offs.
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isConstantOrConstantVector(N1) &&
!TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildSDIV(N))
return Op;
return SDValue();
}
SDValue DAGCombiner::visitUDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
SDLoc DL(N);
// fold (udiv c1, c2) -> c1/c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C)
if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
N0C, N1C))
return Folded;
// fold (udiv X, -1) -> select(X == -1, 1, 0)
if (N1C && N1C->getAPIntValue().isAllOnesValue())
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT));
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (SDValue V = visitUDIVLike(N0, N1, N))
return V;
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
// true. Otherwise, we break the simplification logic in visitREM().
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
return SDValue();
}
SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
// fold (udiv x, (1 << c)) -> x >>u c
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N1)) {
SDValue LogBase2 = BuildLogBase2(N1, DL);
AddToWorklist(LogBase2.getNode());
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
AddToWorklist(Trunc.getNode());
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
}
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (N1.getOpcode() == ISD::SHL) {
SDValue N10 = N1.getOperand(0);
if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N10)) {
SDValue LogBase2 = BuildLogBase2(N10, DL);
AddToWorklist(LogBase2.getNode());
EVT ADDVT = N1.getOperand(1).getValueType();
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
AddToWorklist(Trunc.getNode());
SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
}
}
// fold (udiv x, c) -> alternate
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isConstantOrConstantVector(N1) &&
!TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildUDIV(N))
return Op;
return SDValue();
}
// handles ISD::SREM and ISD::UREM
SDValue DAGCombiner::visitREM(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
bool isSigned = (Opcode == ISD::SREM);
SDLoc DL(N);
// fold (rem c1, c2) -> c1%c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C)
if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
return Folded;
// fold (urem X, -1) -> select(X == -1, 0, x)
if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(0, DL, VT), N0);
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (isSigned) {
// If we know the sign bits of both operands are zero, strength reduce to a
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
} else {
SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
if (DAG.isKnownToBeAPowerOfTwo(N1)) {
// fold (urem x, pow2) -> (and x, pow2-1)
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
if (N1.getOpcode() == ISD::SHL &&
DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
}
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
// If X/C can be simplified by the division-by-constant logic, lower
// X%C to the equivalent of X-X/C*C.
// Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
// speculative DIV must not cause a DIVREM conversion. We guard against this
// by skipping the simplification if isIntDivCheap(). When div is not cheap,
// combine will not return a DIVREM. Regardless, checking cheapness here
// makes sense since the simplification results in fatter code.
if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
SDValue OptimizedDiv =
isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
if (OptimizedDiv.getNode()) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(OptimizedDiv.getNode());
AddToWorklist(Mul.getNode());
return Sub;
}
}
// sdiv, srem -> sdivrem
if (SDValue DivRem = useDivRem(N))
return DivRem.getValue(1);
return SDValue();
}
SDValue DAGCombiner::visitMULHS(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (VT.isVector()) {
// fold (mulhs x, 0) -> 0
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N0;
}
// fold (mulhs x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhs x, 1) -> (sra x, size(x)-1)
if (isOneConstant(N1))
return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
DAG.getConstant(N0.getValueSizeInBits() - 1, DL,
getShiftAmountTy(N0.getValueType())));
// fold (mulhs x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// If the type twice as wide is legal, transform the mulhs to a wider multiply
// plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(N1.getValueType())));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
return SDValue();
}
SDValue DAGCombiner::visitMULHU(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (VT.isVector()) {
// fold (mulhu x, 0) -> 0
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N0;
}
// fold (mulhu x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhu x, 1) -> 0
if (isOneConstant(N1))
return DAG.getConstant(0, DL, N0.getValueType());
// fold (mulhu x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
SDLoc DL(N);
unsigned NumEltBits = VT.getScalarSizeInBits();
SDValue LogBase2 = BuildLogBase2(N1, DL);
SDValue SRLAmt = DAG.getNode(
ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
}
// If the type twice as wide is legal, transform the mulhu to a wider multiply
// plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(N1.getValueType())));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
return SDValue();
}
/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
/// give the opcodes for the two computations that are being performed. Return
/// true if a simplification was made.
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp) {
// If the high half is not needed, just compute the low half.
bool HiExists = N->hasAnyUseOfValue(1);
if (!HiExists &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
return CombineTo(N, Res, Res);
}
// If the low half is not needed, just compute the high half.
bool LoExists = N->hasAnyUseOfValue(0);
if (!LoExists &&
(!LegalOperations ||
TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
return CombineTo(N, Res, Res);
}
// If both halves are used, return as it is.
if (LoExists && HiExists)
return SDValue();
// If the two computed results can be simplified separately, separate them.
if (LoExists) {
SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
AddToWorklist(Lo.getNode());
SDValue LoOpt = combine(Lo.getNode());
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
(!LegalOperations ||
TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
return CombineTo(N, LoOpt, LoOpt);
}
if (HiExists) {
SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
AddToWorklist(Hi.getNode());
SDValue HiOpt = combine(Hi.getNode());
if (HiOpt.getNode() && HiOpt != Hi &&
(!LegalOperations ||
TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
return CombineTo(N, HiOpt, HiOpt);
}
return SDValue();
}
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
return Res;
EVT VT = N->getValueType(0);
SDLoc DL(N);
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(Lo.getValueType())));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
return Res;
EVT VT = N->getValueType(0);
SDLoc DL(N);
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(Lo.getValueType())));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitSMULO(SDNode *N) {
// (smulo x, 2) -> (saddo x, x)
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (C2->getAPIntValue() == 2)
return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
N->getOperand(0), N->getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitUMULO(SDNode *N) {
// (umulo x, 2) -> (uaddo x, x)
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (C2->getAPIntValue() == 2)
return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
N->getOperand(0), N->getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold operation with constant operands.
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
// Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
// Only do this if the current op isn't legal and the flipped is.
unsigned Opcode = N->getOpcode();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegal(Opcode, VT) &&
(N0.isUndef() || DAG.SignBitIsZero(N0)) &&
(N1.isUndef() || DAG.SignBitIsZero(N1))) {
unsigned AltOpcode;
switch (Opcode) {
case ISD::SMIN: AltOpcode = ISD::UMIN; break;
case ISD::SMAX: AltOpcode = ISD::UMAX; break;
case ISD::UMIN: AltOpcode = ISD::SMIN; break;
case ISD::UMAX: AltOpcode = ISD::SMAX; break;
default: llvm_unreachable("Unknown MINMAX opcode");
}
if (TLI.isOperationLegal(AltOpcode, VT))
return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
}
return SDValue();
}
/// If this is a binary operator with two operands of the same opcode, try to
/// simplify it.
SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
EVT VT = N0.getValueType();
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
// Bail early if none of these transforms apply.
if (N0.getNumOperands() == 0) return SDValue();
// For each of OP in AND/OR/XOR:
// fold (OP (zext x), (zext y)) -> (zext (OP x, y))
// fold (OP (sext x), (sext y)) -> (sext (OP x, y))
// fold (OP (aext x), (aext y)) -> (aext (OP x, y))
// fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
// fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
//
// do not sink logical op inside of a vector extend, since it may combine
// into a vsetcc.
EVT Op0VT = N0.getOperand(0).getValueType();
if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND ||
N0.getOpcode() == ISD::BSWAP ||
// Avoid infinite looping with PromoteIntBinOp.
(N0.getOpcode() == ISD::ANY_EXTEND &&
(!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
(N0.getOpcode() == ISD::TRUNCATE &&
(!TLI.isZExtFree(VT, Op0VT) ||
!TLI.isTruncateFree(Op0VT, VT)) &&
TLI.isTypeLegal(Op0VT))) &&
!VT.isVector() &&
Op0VT == N1.getOperand(0).getValueType() &&
(!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
AddToWorklist(ORNode.getNode());
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
}
// For each of OP in SHL/SRL/SRA/AND...
// fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
// fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
// fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
N0.getOperand(1) == N1.getOperand(1)) {
SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
AddToWorklist(ORNode.getNode());
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
ORNode, N0.getOperand(1));
}
// Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
// Only perform this optimization up until type legalization, before
// LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
// adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
// we don't want to undo this promotion.
// We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
// on scalars.
if ((N0.getOpcode() == ISD::BITCAST ||
N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
Level <= AfterLegalizeTypes) {
SDValue In0 = N0.getOperand(0);
SDValue In1 = N1.getOperand(0);
EVT In0Ty = In0.getValueType();
EVT In1Ty = In1.getValueType();
SDLoc DL(N);
// If both incoming values are integers, and the original types are the
// same.
if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
AddToWorklist(Op.getNode());
return BC;
}
}
// Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
// Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
// If both shuffles use the same mask, and both shuffle within a single
// vector, then it is worthwhile to move the swizzle after the operation.
// The type-legalizer generates this pattern when loading illegal
// vector types from memory. In many cases this allows additional shuffle
// optimizations.
// There are other cases where moving the shuffle after the xor/and/or
// is profitable even if shuffles don't perform a swizzle.
// If both shuffles use the same mask, and both shuffles have the same first
// or second operand, then it might still be profitable to move the shuffle
// after the xor/and/or operation.
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
"Inputs to shuffles are not the same type");
// Check that both shuffles use the same mask. The masks are known to be of
// the same length because the result vector type is the same.
// Check also that shuffles have only one use to avoid introducing extra
// instructions.
if (SVN0->hasOneUse() && SVN1->hasOneUse() &&
SVN0->getMask().equals(SVN1->getMask())) {
SDValue ShOp = N0->getOperand(1);
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) {
if (!LegalTypes)
ShOp = DAG.getConstant(0, SDLoc(N), VT);
else
ShOp = SDValue();
}
// (AND (shuf (A, C), shuf (B, C))) -> shuf (AND (A, B), C)
// (OR (shuf (A, C), shuf (B, C))) -> shuf (OR (A, B), C)
// (XOR (shuf (A, C), shuf (B, C))) -> shuf (XOR (A, B), V_0)
if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
N0->getOperand(0), N1->getOperand(0));
AddToWorklist(NewNode.getNode());
return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
SVN0->getMask());
}
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
ShOp = N0->getOperand(0);
if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) {
if (!LegalTypes)
ShOp = DAG.getConstant(0, SDLoc(N), VT);
else
ShOp = SDValue();
}
// (AND (shuf (C, A), shuf (C, B))) -> shuf (C, AND (A, B))
// (OR (shuf (C, A), shuf (C, B))) -> shuf (C, OR (A, B))
// (XOR (shuf (C, A), shuf (C, B))) -> shuf (V_0, XOR (A, B))
if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) {
SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
N0->getOperand(1), N1->getOperand(1));
AddToWorklist(NewNode.getNode());
return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
SVN0->getMask());
}
}
}
return SDValue();
}
/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
const SDLoc &DL) {
SDValue LL, LR, RL, RR, N0CC, N1CC;
if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
!isSetCCEquivalent(N1, RL, RR, N1CC))
return SDValue();
assert(N0.getValueType() == N1.getValueType() &&
"Unexpected operand types for bitwise logic op");
assert(LL.getValueType() == LR.getValueType() &&
RL.getValueType() == RR.getValueType() &&
"Unexpected operand types for setcc");
// If we're here post-legalization or the logic op type is not i1, the logic
// op type must match a setcc result type. Also, all folds require new
// operations on the left and right operands, so those types must match.
EVT VT = N0.getValueType();
EVT OpVT = LL.getValueType();
if (LegalOperations || VT.getScalarType() != MVT::i1)
if (VT != getSetCCResultType(OpVT))
return SDValue();
if (OpVT != RL.getValueType())
return SDValue();
ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
bool IsInteger = OpVT.isInteger();
if (LR == RR && CC0 == CC1 && IsInteger) {
bool IsZero = isNullConstantOrNullSplatConstant(LR);
bool IsNeg1 = isAllOnesConstantOrAllOnesSplatConstant(LR);
// All bits clear?
bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
// All sign bits clear?
bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
// Any bits set?
bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
// Any sign bits set?
bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
// (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
// (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
// (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
// (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
AddToWorklist(Or.getNode());
return DAG.getSetCC(DL, VT, Or, LR, CC1);
}
// All bits set?
bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
// All sign bits set?
bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
// Any bits clear?
bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
// Any sign bits clear?
bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
// (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
// (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
// (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
// (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
AddToWorklist(And.getNode());
return DAG.getSetCC(DL, VT, And, LR, CC1);
}
}
// TODO: What is the 'or' equivalent of this fold?
// (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
IsInteger && CC0 == ISD::SETNE &&
((isNullConstant(LR) && isAllOnesConstant(RR)) ||
(isAllOnesConstant(LR) && isNullConstant(RR)))) {
SDValue One = DAG.getConstant(1, DL, OpVT);
SDValue Two = DAG.getConstant(2, DL, OpVT);
SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
AddToWorklist(Add.getNode());
return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
}
// Try more general transforms if the predicates match and the only user of
// the compares is the 'and' or 'or'.
if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
N0.hasOneUse() && N1.hasOneUse()) {
// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
// or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
SDValue Zero = DAG.getConstant(0, DL, OpVT);
return DAG.getSetCC(DL, VT, Or, Zero, CC1);
}
}
// Canonicalize equivalent operands to LL == RL.
if (LL == RR && LR == RL) {
CC1 = ISD::getSetCCSwappedOperands(CC1);
std::swap(RL, RR);
}
// (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
// (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
if (LL == RL && LR == RR) {
ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger)
: ISD::getSetCCOrOperation(CC0, CC1, IsInteger);
if (NewCC != ISD::SETCC_INVALID &&
(!LegalOperations ||
(TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
TLI.isOperationLegal(ISD::SETCC, OpVT))))
return DAG.getSetCC(DL, VT, LL, LR, NewCC);
}
return SDValue();
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an And operation to a single value. This makes them reusable in the context
/// of visitSELECT(). Rules involving constants are not included as
/// visitSELECT() already handles those cases.
SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N1.getValueType();
SDLoc DL(N);
// fold (and x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
return V;
if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
VT.getSizeInBits() <= 64) {
if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
// Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
// immediate for an add, but it is legal if its top c2 bits are set,
// transform the ADD so the immediate doesn't need to be materialized
// in a register.
APInt ADDC = ADDI->getAPIntValue();
APInt SRLC = SRLI->getAPIntValue();
if (ADDC.getMinSignedBits() <= 64 &&
SRLC.ult(VT.getSizeInBits()) &&
!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
SRLC.getZExtValue());
if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
ADDC |= Mask;
if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
SDLoc DL0(N0);
SDValue NewAdd =
DAG.getNode(ISD::ADD, DL0, VT,
N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
CombineTo(N0.getNode(), NewAdd);
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
}
}
}
}
}
// Reduce bit extract of low half of an integer to the narrower type.
// (and (srl i64:x, K), KMask) ->
// (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
unsigned Size = VT.getSizeInBits();
const APInt &AndMask = CAnd->getAPIntValue();
unsigned ShiftBits = CShift->getZExtValue();
// Bail out, this node will probably disappear anyway.
if (ShiftBits == 0)
return SDValue();
unsigned MaskBits = AndMask.countTrailingOnes();
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
if (AndMask.isMask() &&
// Required bits must not span the two halves of the integer and
// must fit in the half size type.
(ShiftBits + MaskBits <= Size / 2) &&
TLI.isNarrowingProfitable(VT, HalfVT) &&
TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
TLI.isTruncateFree(VT, HalfVT) &&
TLI.isZExtFree(HalfVT, VT)) {
// The isNarrowingProfitable is to avoid regressions on PPC and
// AArch64 which match a few 64-bit bit insert / bit extract patterns
// on downstream users of this. Those patterns could probably be
// extended to handle extensions mixed in.
SDValue SL(N0);
assert(MaskBits <= Size);
// Extracting the highest bit of the low half.
EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
N0.getOperand(0));
SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
}
}
}
}
return SDValue();
}
bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
EVT LoadResultTy, EVT &ExtVT) {
if (!AndC->getAPIntValue().isMask())
return false;
unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT LoadedVT = LoadN->getMemoryVT();
if (ExtVT == LoadedVT &&
(!LegalOperations ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
// ZEXTLOAD will match without needing to change the size of the value being
// loaded.
return true;
}
// Do not change the width of a volatile load.
if (LoadN->isVolatile())
return false;
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
return false;
if (LegalOperations &&
!TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
return false;
if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
return false;
return true;
}
bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
ISD::LoadExtType ExtType, EVT &MemVT,
unsigned ShAmt) {
if (!LDST)
return false;
// Only allow byte offsets.
if (ShAmt % 8)
return false;
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!MemVT.isRound())
return false;
// Don't change the width of a volatile load.
if (LDST->isVolatile())
return false;
// Verify that we are actually reducing a load width here.
if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
return false;
// Ensure that this isn't going to produce an unsupported unaligned access.
if (ShAmt &&
!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
LDST->getAddressSpace(), ShAmt / 8))
return false;
// It's not possible to generate a constant of extended or untyped type.
EVT PtrType = LDST->getBasePtr().getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
return false;
if (isa<LoadSDNode>(LDST)) {
LoadSDNode *Load = cast<LoadSDNode>(LDST);
// Don't transform one with multiple uses, this would require adding a new
// load.
if (!SDValue(Load, 0).hasOneUse())
return false;
if (LegalOperations &&
!TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
return false;
// For the transform to be legal, the load must produce only two values
// (the value loaded and the chain). Don't transform a pre-increment
// load, for example, which produces an extra value. Otherwise the
// transformation is not equivalent, and the downstream logic to replace
// uses gets things wrong.
if (Load->getNumValues() > 2)
return false;
// If the load that we're shrinking is an extload and we're not just
// discarding the extension we can't simply shrink the load. Bail.
// TODO: It would be possible to merge the extensions in some cases.
if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
return false;
if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
return false;
} else {
assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
StoreSDNode *Store = cast<StoreSDNode>(LDST);
// Can't write outside the original store
if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
return false;
if (LegalOperations &&
!TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
return false;
}
return true;
}
bool DAGCombiner::SearchForAndLoads(SDNode *N,
SmallPtrSetImpl<LoadSDNode*> &Loads,
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
ConstantSDNode *Mask,
SDNode *&NodeToMask) {
// Recursively search for the operands, looking for loads which can be
// narrowed.
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) {
SDValue Op = N->getOperand(i);
if (Op.getValueType().isVector())
return false;
// Some constants may need fixing up later if they are too large.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
(Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
NodesWithConsts.insert(N);
continue;
}
if (!Op.hasOneUse())
return false;
switch(Op.getOpcode()) {
case ISD::LOAD: {
auto *Load = cast<LoadSDNode>(Op);
EVT ExtVT;
if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
// ZEXTLOAD is already small enough.
if (Load->getExtensionType() == ISD::ZEXTLOAD &&
ExtVT.bitsGE(Load->getMemoryVT()))
continue;
// Use LE to convert equal sized loads to zext.
if (ExtVT.bitsLE(Load->getMemoryVT()))
Loads.insert(Load);
continue;
}
return false;
}
case ISD::ZERO_EXTEND:
case ISD::AssertZext: {
unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT VT = Op.getOpcode() == ISD::AssertZext ?
cast<VTSDNode>(Op.getOperand(1))->getVT() :
Op.getOperand(0).getValueType();
// We can accept extending nodes if the mask is wider or an equal
// width to the original type.
if (ExtVT.bitsGE(VT))
continue;
break;
}
case ISD::OR:
case ISD::XOR:
case ISD::AND:
if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
NodeToMask))
return false;
continue;
}
// Allow one node which will masked along with any loads found.
if (NodeToMask)
return false;
// Also ensure that the node to be masked only produces one data result.
NodeToMask = Op.getNode();
if (NodeToMask->getNumValues() > 1) {
bool HasValue = false;
for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
if (VT != MVT::Glue && VT != MVT::Other) {
if (HasValue) {
NodeToMask = nullptr;
return false;
}
HasValue = true;
}
}
assert(HasValue && "Node to be masked has no data result?");
}
}
return true;
}
bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) {
auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Mask)
return false;
if (!Mask->getAPIntValue().isMask())
return false;
// No need to do anything if the and directly uses a load.
if (isa<LoadSDNode>(N->getOperand(0)))
return false;
SmallPtrSet<LoadSDNode*, 8> Loads;
SmallPtrSet<SDNode*, 2> NodesWithConsts;
SDNode *FixupNode = nullptr;
if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
if (Loads.size() == 0)
return false;
LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
SDValue MaskOp = N->getOperand(1);
// If it exists, fixup the single node we allow in the tree that needs
// masking.
if (FixupNode) {
LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
FixupNode->getValueType(0),
SDValue(FixupNode, 0), MaskOp);
DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
if (And.getOpcode() == ISD ::AND)
DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
}
// Narrow any constants that need it.
for (auto *LogicN : NodesWithConsts) {
SDValue Op0 = LogicN->getOperand(0);
SDValue Op1 = LogicN->getOperand(1);
if (isa<ConstantSDNode>(Op0))
std::swap(Op0, Op1);
SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
Op1, MaskOp);
DAG.UpdateNodeOperands(LogicN, Op0, And);
}
// Create narrow loads.
for (auto *Load : Loads) {
LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
SDValue(Load, 0), MaskOp);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
if (And.getOpcode() == ISD ::AND)
And = SDValue(
DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
SDValue NewLoad = ReduceLoadWidth(And.getNode());
assert(NewLoad &&
"Shouldn't be masking the load if it can't be narrowed");
CombineTo(Load, NewLoad, NewLoad.getValue(1));
}
DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
return true;
}
return false;
}
// Unfold
// x & (-1 'logical shift' y)
// To
// (x 'opposite logical shift' y) 'logical shift' y
// if it is better for performance.
SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
assert(N->getOpcode() == ISD::AND);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Do we actually prefer shifts over mask?
if (!TLI.preferShiftsToClearExtremeBits(N0))
return SDValue();
// Try to match (-1 '[outer] logical shift' y)
unsigned OuterShift;
unsigned InnerShift; // The opposite direction to the OuterShift.
SDValue Y; // Shift amount.
auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
if (!M.hasOneUse())
return false;
OuterShift = M->getOpcode();
if (OuterShift == ISD::SHL)
InnerShift = ISD::SRL;
else if (OuterShift == ISD::SRL)
InnerShift = ISD::SHL;
else
return false;
if (!isAllOnesConstant(M->getOperand(0)))
return false;
Y = M->getOperand(1);
return true;
};
SDValue X;
if (matchMask(N1))
X = N0;
else if (matchMask(N0))
X = N1;
else
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
// tmp = x 'opposite logical shift' y
SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
// ret = tmp 'logical shift' y
SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
return T1;
}
SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
// x & x --> x
if (N0 == N1)
return N0;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (and x, 0) -> 0, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
// do not return N0, because undef node may exist in N0
return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
SDLoc(N), N0.getValueType());
if (ISD::isBuildVectorAllZeros(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
SDLoc(N), N1.getValueType());
// fold (and x, -1) -> x, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllOnes(N1.getNode()))
return N0;
}
// fold (and c1, c2) -> c1&c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
// fold (and x, -1) -> x
if (isAllOnesConstant(N1))
return N0;
// if (and x, c) is known to be zero, return 0
unsigned BitWidth = VT.getScalarSizeInBits();
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(BitWidth)))
return DAG.getConstant(0, SDLoc(N), VT);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate and
if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
return RAND;
// Try to convert a constant mask AND into a shuffle clear mask.
if (VT.isVector())
if (SDValue Shuffle = XformToShuffleWithZero(N))
return Shuffle;
// fold (and (or x, C), D) -> D if (C & D) == D
auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
};
if (N0.getOpcode() == ISD::OR &&
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
return N1;
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N0Op0 = N0.getOperand(0);
APInt Mask = ~N1C->getAPIntValue();
Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
N0.getValueType(), N0Op0);
// Replace uses of the AND with uses of the Zero extend node.
CombineTo(N, Zext);
// We actually want to replace all uses of the any_extend with the
// zero_extend, to avoid duplicating things. This will later cause this
// AND to be folded.
CombineTo(N0.getNode(), Zext);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
// (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
// already be zero by virtue of the width of the base type of the load.
//
// the 'X' node here can either be nothing or an extract_vector_elt to catch
// more cases.
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
N0.getOperand(0).getOpcode() == ISD::LOAD &&
N0.getOperand(0).getResNo() == 0) ||
(N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
N0 : N0.getOperand(0) );
// Get the constant (if applicable) the zero'th operand is being ANDed with.
// This can be a pure constant or a vector splat, in which case we treat the
// vector as a scalar and use the splat value.
APInt Constant = APInt::getNullValue(1);
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
Constant = C->getAPIntValue();
} else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
SplatBitSize, HasAnyUndefs);
if (IsSplat) {
// Undef bits can contribute to a possible optimisation if set, so
// set them.
SplatValue |= SplatUndef;
// The splat value may be something like "0x00FFFFFF", which means 0 for
// the first vector value and FF for the rest, repeating. We need a mask
// that will apply equally to all members of the vector, so AND all the
// lanes of the constant together.
EVT VT = Vector->getValueType(0);
unsigned BitWidth = VT.getScalarSizeInBits();
// If the splat value has been compressed to a bitlength lower
// than the size of the vector lane, we need to re-expand it to
// the lane size.
if (BitWidth > SplatBitSize)
for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
SplatBitSize < BitWidth;
SplatBitSize = SplatBitSize * 2)
SplatValue |= SplatValue.shl(SplatBitSize);
// Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
// multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
if (SplatBitSize % BitWidth == 0) {
Constant = APInt::getAllOnesValue(BitWidth);
for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
}
}
}
// If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
// actually legal and isn't going to get expanded, else this is a false
// optimisation.
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
Load->getValueType(0),
Load->getMemoryVT());
// Resize the constant to the same size as the original memory access before
// extension. If it is still the AllOnesValue then this AND is completely
// unneeded.
Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
bool B;
switch (Load->getExtensionType()) {
default: B = false; break;
case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
case ISD::ZEXTLOAD:
case ISD::NON_EXTLOAD: B = true; break;
}
if (B && Constant.isAllOnesValue()) {
// If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
// preserve semantics once we get rid of the AND.
SDValue NewLoad(Load, 0);
// Fold the AND away. NewLoad may get replaced immediately.
CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
if (Load->getExtensionType() == ISD::EXTLOAD) {
NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
Load->getValueType(0), SDLoc(Load),
Load->getChain(), Load->getBasePtr(),
Load->getOffset(), Load->getMemoryVT(),
Load->getMemOperand());
// Replace uses of the EXTLOAD with the new ZEXTLOAD.
if (Load->getNumValues() == 3) {
// PRE/POST_INC loads have 3 values.
SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
NewLoad.getValue(2) };
CombineTo(Load, To, 3, true);
} else {
CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
}
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (load x), 255) -> (zextload x, i8)
// fold (and (extload x, i16), 255) -> (zextload x, i8)
// fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
(N0.getOpcode() == ISD::ANY_EXTEND &&
N0.getOperand(0).getOpcode() == ISD::LOAD))) {
if (SDValue Res = ReduceLoadWidth(N)) {
LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
AddToWorklist(N);
CombineTo(LN0, Res, Res.getValue(1));
return SDValue(N, 0);
}
}
if (Level >= AfterLegalizeTypes) {
// Attempt to propagate the AND back up to the leaves which, if they're
// loads, can be combined to narrow loads and the AND node can be removed.
// Perform after legalization so that extend nodes will already be
// combined into the loads.
if (BackwardsPropagateMask(N, DAG)) {
return SDValue(N, 0);
}
}
if (SDValue Combined = visitANDLike(N0, N1, N))
return Combined;
// Simplify: (and (op x...), (op y...)) -> (op (and x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
return Tmp;
// Masking the negated extension of a boolean is just the zero-extended
// boolean:
// and (sub 0, zext(bool X)), 1 --> zext(bool X)
// and (sub 0, sext(bool X)), 1 --> zext(bool X)
//
// Note: the SimplifyDemandedBits fold below can make an information-losing
// transform, and then we have no way to find this better fold.
if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
if (isNullConstantOrNullSplatConstant(N0.getOperand(0))) {
SDValue SubRHS = N0.getOperand(1);
if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
return SubRHS;
if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
}
}
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
// fold (and (sra)) -> (and (srl)) when possible.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (zext_inreg (extload x)) -> (zextload x)
if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getScalarValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - MemVT.getScalarSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
AddToWorklist(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getScalarValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - MemVT.getScalarSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
AddToWorklist(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
N0.getOperand(1), false))
return BSwap;
}
if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
return Shifts;
return SDValue();
}
/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
return SDValue();
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
return SDValue();
// Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
bool LookPassAnd0 = false;
bool LookPassAnd1 = false;
if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
std::swap(N0, N1);
if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() == ISD::AND) {
if (!N0.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
// Also handle 0xffff since the LHS is guaranteed to have zeros there.
// This is needed for X86.
if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
N01C->getZExtValue() != 0xFFFF))
return SDValue();
N0 = N0.getOperand(0);
LookPassAnd0 = true;
}
if (N1.getOpcode() == ISD::AND) {
if (!N1.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C || N11C->getZExtValue() != 0xFF)
return SDValue();
N1 = N1.getOperand(0);
LookPassAnd1 = true;
}
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N01C || !N11C)
return SDValue();
if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
return SDValue();
// Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
SDValue N00 = N0->getOperand(0);
if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
if (!N00.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
if (!N001C || N001C->getZExtValue() != 0xFF)
return SDValue();
N00 = N00.getOperand(0);
LookPassAnd0 = true;
}
SDValue N10 = N1->getOperand(0);
if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
if (!N10.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
// Also allow 0xFFFF since the bits will be shifted out. This is needed
// for X86.
if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
N101C->getZExtValue() != 0xFFFF))
return SDValue();
N10 = N10.getOperand(0);
LookPassAnd1 = true;
}
if (N00 != N10)
return SDValue();
// Make sure everything beyond the low halfword gets set to zero since the SRL
// 16 will clear the top bits.
unsigned OpSizeInBits = VT.getSizeInBits();
if (DemandHighBits && OpSizeInBits > 16) {
// If the left-shift isn't masked out then the only way this is a bswap is
// if all bits beyond the low 8 are 0. In that case the entire pattern
// reduces to a left shift anyway: leave it for other parts of the combiner.
if (!LookPassAnd0)
return SDValue();
// However, if the right shift isn't masked out then it might be because
// it's not needed. See if we can spot that too.
if (!LookPassAnd1 &&
!DAG.MaskedValueIsZero(
N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
return SDValue();
}
SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
if (OpSizeInBits > 16) {
SDLoc DL(N);
Res = DAG.getNode(ISD::SRL, DL, VT, Res,
DAG.getConstant(OpSizeInBits - 16, DL,
getShiftAmountTy(VT)));
}
return Res;
}
/// Return true if the specified node is an element that makes up a 32-bit
/// packed halfword byteswap.
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
if (!N.getNode()->hasOneUse())
return false;
unsigned Opc = N.getOpcode();
if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
return false;
SDValue N0 = N.getOperand(0);
unsigned Opc0 = N0.getOpcode();
if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
return false;
ConstantSDNode *N1C = nullptr;
// SHL or SRL: look upstream for AND mask operand
if (Opc == ISD::AND)
N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
else if (Opc0 == ISD::AND)
N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!N1C)
return false;
unsigned MaskByteOffset;
switch (N1C->getZExtValue()) {
default:
return false;
case 0xFF: MaskByteOffset = 0; break;
case 0xFF00: MaskByteOffset = 1; break;
case 0xFFFF:
// In case demanded bits didn't clear the bits that will be shifted out.
// This is needed for X86.
if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
MaskByteOffset = 1;
break;
}
return false;
case 0xFF0000: MaskByteOffset = 2; break;
case 0xFF000000: MaskByteOffset = 3; break;
}
// Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
if (Opc == ISD::AND) {
if (MaskByteOffset == 0 || MaskByteOffset == 2) {
// (x >> 8) & 0xff
// (x >> 8) & 0xff0000
if (Opc0 != ISD::SRL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else {
// (x << 8) & 0xff00
// (x << 8) & 0xff000000
if (Opc0 != ISD::SHL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
} else if (Opc == ISD::SHL) {
// (x & 0xff) << 8
// (x & 0xff0000) << 8
if (MaskByteOffset != 0 && MaskByteOffset != 2)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else { // Opc == ISD::SRL
// (x & 0xff00) >> 8
// (x & 0xff000000) >> 8
if (MaskByteOffset != 1 && MaskByteOffset != 3)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
if (Parts[MaskByteOffset])
return false;
Parts[MaskByteOffset] = N0.getOperand(0).getNode();
return true;
}
/// Match a 32-bit packed halfword bswap. That is
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
/// => (rotl (bswap x), 16)
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
return SDValue();
// Look for either
// (or (or (and), (and)), (or (and), (and)))
// (or (or (or (and), (and)), (and)), (and))
if (N0.getOpcode() != ISD::OR)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDNode *Parts[4] = {};
if (N1.getOpcode() == ISD::OR &&
N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
// (or (or (and), (and)), (or (and), (and)))
if (!isBSwapHWordElement(N00, Parts))
return SDValue();
if (!isBSwapHWordElement(N01, Parts))
return SDValue();
SDValue N10 = N1.getOperand(0);
if (!isBSwapHWordElement(N10, Parts))
return SDValue();
SDValue N11 = N1.getOperand(1);
if (!isBSwapHWordElement(N11, Parts))
return SDValue();
} else {
// (or (or (or (and), (and)), (and)), (and))
if (!isBSwapHWordElement(N1, Parts))
return SDValue();
if (!isBSwapHWordElement(N01, Parts))
return SDValue();
if (N00.getOpcode() != ISD::OR)
return SDValue();
SDValue N000 = N00.getOperand(0);
if (!isBSwapHWordElement(N000, Parts))
return SDValue();
SDValue N001 = N00.getOperand(1);
if (!isBSwapHWordElement(N001, Parts))
return SDValue();
}
// Make sure the parts are all coming from the same node.
if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
return SDValue();
SDLoc DL(N);
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
SDValue(Parts[0], 0));
// Result of the bswap should be rotated by 16. If it's not legal, then
// do (x << 16) | (x >> 16).
SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
return DAG.getNode(ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an Or operation to a single value \see visitANDLike().
SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N1.getValueType();
SDLoc DL(N);
// fold (or x, undef) -> -1
if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
return DAG.getAllOnesConstant(DL, VT);
if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
return V;
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
// Don't increase # computations.
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
// We can only do this xform if we know that bits from X that are set in C2
// but not in C1 are already zero. Likewise for Y.
if (const ConstantSDNode *N0O1C =
getAsNonOpaqueConstant(N0.getOperand(1))) {
if (const ConstantSDNode *N1O1C =
getAsNonOpaqueConstant(N1.getOperand(1))) {
// We can only do this xform if we know that bits from X that are set in
// C2 but not in C1 are already zero. Likewise for Y.
const APInt &LHSMask = N0O1C->getAPIntValue();
const APInt &RHSMask = N1O1C->getAPIntValue();
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(0), N1.getOperand(0));
return DAG.getNode(ISD::AND, DL, VT, X,
DAG.getConstant(LHSMask | RHSMask, DL, VT));
}
}
}
}
// (or (and X, M), (and X, N)) -> (and X, (or M, N))
if (N0.getOpcode() == ISD::AND &&
N1.getOpcode() == ISD::AND &&
N0.getOperand(0) == N1.getOperand(0) &&
// Don't increase # computations.
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(1), N1.getOperand(1));
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
}
return SDValue();
}
SDValue DAGCombiner::visitOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
// x | x --> x
if (N0 == N1)
return N0;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (or x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
// fold (or x, -1) -> -1, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
// do not return N0, because undef node may exist in N0
return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
if (ISD::isBuildVectorAllOnes(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
// Do this only if the resulting shuffle is legal.
if (isa<ShuffleVectorSDNode>(N0) &&
isa<ShuffleVectorSDNode>(N1) &&
// Avoid folding a node with illegal type.
TLI.isTypeLegal(VT)) {
bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
// Ensure both shuffles have a zero input.
if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
bool CanFold = true;
int NumElts = VT.getVectorNumElements();
SmallVector<int, 4> Mask(NumElts);
for (int i = 0; i != NumElts; ++i) {
int M0 = SV0->getMaskElt(i);
int M1 = SV1->getMaskElt(i);
// Determine if either index is pointing to a zero vector.
bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
// If one element is zero and the otherside is undef, keep undef.
// This also handles the case that both are undef.
if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
Mask[i] = -1;
continue;
}
// Make sure only one of the elements is zero.
if (M0Zero == M1Zero) {
CanFold = false;
break;
}
assert((M0 >= 0 || M1 >= 0) && "Undef index!");
// We have a zero and non-zero element. If the non-zero came from
// SV0 make the index a LHS index. If it came from SV1, make it
// a RHS index. We need to mod by NumElts because we don't care
// which operand it came from in the original shuffles.
Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
}
if (CanFold) {
SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
if (!LegalMask) {
std::swap(NewLHS, NewRHS);
ShuffleVectorSDNode::commuteMask(Mask);
LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
}
if (LegalMask)
return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask);
}
}
}
}
// fold (or c1, c2) -> c1|c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
// fold (or x, 0) -> x
if (isNullConstant(N1))
return N0;
// fold (or x, -1) -> -1
if (isAllOnesConstant(N1))
return N1;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (or x, c) -> c iff (x & ~c) == 0
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
return N1;
if (SDValue Combined = visitORLike(N0, N1, N))
return Combined;
// Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
return BSwap;
if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
return BSwap;
// reassociate or
if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
return ROR;
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
// iff (c1 & c2) != 0.
auto MatchIntersect = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
return LHS->getAPIntValue().intersects(RHS->getAPIntValue());
};
if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect)) {
if (SDValue COR = DAG.FoldConstantArithmetic(
ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) {
SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
AddToWorklist(IOR.getNode());
return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
}
}
// Simplify: (or (op x...), (op y...)) -> (op (or x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
return Tmp;
// See if this is some rotate idiom.
if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
return SDValue(Rot, 0);
if (SDValue Load = MatchLoadCombine(N))
return Load;
// Simplify the operands using demanded-bits information.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
if (Op.getOpcode() == ISD::AND &&
DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
Mask = Op.getOperand(1);
return Op.getOperand(0);
}
return Op;
}
/// Match "(X shl/srl V1) & V2" where V2 may not be present.
static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
SDValue &Mask) {
Op = stripConstantMask(DAG, Op, Mask);
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
Shift = Op;
return true;
}
return false;
}
/// Helper function for visitOR to extract the needed side of a rotate idiom
/// from a shl/srl/mul/udiv. This is meant to handle cases where
/// InstCombine merged some outside op with one of the shifts from
/// the rotate pattern.
/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
/// Otherwise, returns an expansion of \p ExtractFrom based on the following
/// patterns:
///
/// (or (mul v c0) (shrl (mul v c1) c2)):
/// expands (mul v c0) -> (shl (mul v c1) c3)
///
/// (or (udiv v c0) (shl (udiv v c1) c2)):
/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
///
/// (or (shl v c0) (shrl (shl v c1) c2)):
/// expands (shl v c0) -> (shl (shl v c1) c3)
///
/// (or (shrl v c0) (shl (shrl v c1) c2)):
/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
///
/// Such that in all cases, c3+c2==bitwidth(op v c1).
static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
SDValue ExtractFrom, SDValue &Mask,
const SDLoc &DL) {
assert(OppShift && ExtractFrom && "Empty SDValue");
assert(
(OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
"Existing shift must be valid as a rotate half");
ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
// Preconditions:
// (or (op0 v c0) (shiftl/r (op0 v c1) c2))
//
// Find opcode of the needed shift to be extracted from (op0 v c0).
unsigned Opcode = ISD::DELETED_NODE;
bool IsMulOrDiv = false;
// Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
// opcode or its arithmetic (mul or udiv) variant.
auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
return false;
Opcode = NeededShift;
return true;
};
// op0 must be either the needed shift opcode or the mul/udiv equivalent
// that the needed shift can be extracted from.
if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
(OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
return SDValue();
// op0 must be the same opcode on both sides, have the same LHS argument,
// and produce the same value type.
SDValue OppShiftLHS = OppShift.getOperand(0);
EVT ShiftedVT = OppShiftLHS.getValueType();
if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
ShiftedVT != ExtractFrom.getValueType())
return SDValue();
// Amount of the existing shift.
ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
// Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
// Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
ConstantSDNode *ExtractFromCst =
isConstOrConstSplat(ExtractFrom.getOperand(1));
// TODO: We should be able to handle non-uniform constant vectors for these values
// Check that we have constant values.
if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
!OppLHSCst || !OppLHSCst->getAPIntValue() ||
!ExtractFromCst || !ExtractFromCst->getAPIntValue())
return SDValue();
// Compute the shift amount we need to extract to complete the rotate.
const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
if (OppShiftCst->getAPIntValue().ugt(VTWidth))
return SDValue();
APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
// Normalize the bitwidth of the two mul/udiv/shift constant operands.
APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
APInt OppLHSAmt = OppLHSCst->getAPIntValue();
zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
// Now try extract the needed shift from the ExtractFrom op and see if the
// result matches up with the existing shift's LHS op.
if (IsMulOrDiv) {
// Op to extract from is a mul or udiv by a constant.
// Check:
// c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
// c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
NeededShiftAmt.getZExtValue());
APInt ResultAmt;
APInt Rem;
APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
if (Rem != 0 || ResultAmt != OppLHSAmt)
return SDValue();
} else {
// Op to extract from is a shift by a constant.
// Check:
// c2 - (bitwidth(op0 v c0) - c1) == c0
if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
ExtractFromAmt.getBitWidth()))
return SDValue();
}
// Return the expanded shift op that should allow a rotate to be formed.
EVT ShiftVT = OppShift.getOperand(1).getValueType();
EVT ResVT = ExtractFrom.getValueType();
SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
}
// Return true if we can prove that, whenever Neg and Pos are both in the
// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
//
// (or (shift1 X, Neg), (shift2 X, Pos))
//
// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
// in direction shift1 by Neg. The range [0, EltSize) means that we only need
// to consider shift amounts with defined behavior.
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
SelectionDAG &DAG) {
// If EltSize is a power of 2 then:
//
// (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
// (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
//
// So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
// for the stronger condition:
//
// Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
//
// for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
// we can just replace Neg with Neg' for the rest of the function.
//
// In other cases we check for the even stronger condition:
//
// Neg == EltSize - Pos [B]
//
// for all Neg and Pos. Note that the (or ...) then invokes undefined
// behavior if Pos == 0 (and consequently Neg == EltSize).
//
// We could actually use [A] whenever EltSize is a power of 2, but the
// only extra cases that it would match are those uninteresting ones
// where Neg and Pos are never in range at the same time. E.g. for
// EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
// as well as (sub 32, Pos), but:
//
// (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
//
// always invokes undefined behavior for 32-bit X.
//
// Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
unsigned MaskLoBits = 0;
if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
KnownBits Known;
DAG.computeKnownBits(Neg.getOperand(0), Known);
unsigned Bits = Log2_64(EltSize);
if (NegC->getAPIntValue().getActiveBits() <= Bits &&
((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
Neg = Neg.getOperand(0);
MaskLoBits = Bits;
}
}
}
// Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
if (Neg.getOpcode() != ISD::SUB)
return false;
ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
if (!NegC)
return false;
SDValue NegOp1 = Neg.getOperand(1);
// On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
// Pos'. The truncation is redundant for the purpose of the equality.
if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
KnownBits Known;
DAG.computeKnownBits(Pos.getOperand(0), Known);
if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
MaskLoBits))
Pos = Pos.getOperand(0);
}
}
// The condition we need is now:
//
// (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
//
// If NegOp1 == Pos then we need:
//
// EltSize & Mask == NegC & Mask
//
// (because "x & Mask" is a truncation and distributes through subtraction).
APInt Width;
if (Pos == NegOp1)
Width = NegC->getAPIntValue();
// Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
// Then the condition we want to prove becomes:
//
// (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
//
// which, again because "x & Mask" is a truncation, becomes:
//
// NegC & Mask == (EltSize - PosC) & Mask
// EltSize & Mask == (NegC + PosC) & Mask
else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
Width = PosC->getAPIntValue() + NegC->getAPIntValue();
else
return false;
} else
return false;
// Now we just need to check that EltSize & Mask == Width & Mask.
if (MaskLoBits)
// EltSize & Mask is 0 since Mask is EltSize - 1.
return Width.getLoBits(MaskLoBits) == 0;
return Width == EltSize;
}
// A subroutine of MatchRotate used once we have found an OR of two opposite
// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
// former being preferred if supported. InnerPos and InnerNeg are Pos and
// Neg with outer conversions stripped away.
SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
SDValue Neg, SDValue InnerPos,
SDValue InnerNeg, unsigned PosOpcode,
unsigned NegOpcode, const SDLoc &DL) {
// fold (or (shl x, (*ext y)),
// (srl x, (*ext (sub 32, y)))) ->
// (rotl x, y) or (rotr x, (sub 32, y))
//
// fold (or (shl x, (*ext (sub 32, y))),
// (srl x, (*ext y))) ->
// (rotr x, y) or (rotl x, (sub 32, y))
EVT VT = Shifted.getValueType();
if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
HasPos ? Pos : Neg).getNode();
}
return nullptr;
}
// MatchRotate - Handle an 'or' of two operands. If this is one of the many
// idioms for rotate, and if the target supports rotation instructions, generate
// a rot[lr].
SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
EVT VT = LHS.getValueType();
if (!TLI.isTypeLegal(VT)) return nullptr;
// The target must have at least one rotate flavor.
bool HasROTL = hasOperation(ISD::ROTL, VT);
bool HasROTR = hasOperation(ISD::ROTR, VT);
if (!HasROTL && !HasROTR) return nullptr;
// Check for truncated rotate.
if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
assert(LHS.getValueType() == RHS.getValueType());
if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(),
SDValue(Rot, 0)).getNode();
}
}
// Match "(X shl/srl V1) & V2" where V2 may not be present.
SDValue LHSShift; // The shift.
SDValue LHSMask; // AND value if any.
matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
SDValue RHSShift; // The shift.
SDValue RHSMask; // AND value if any.
matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
// If neither side matched a rotate half, bail
if (!LHSShift && !RHSShift)
return nullptr;
// InstCombine may have combined a constant shl, srl, mul, or udiv with one
// side of the rotate, so try to handle that here. In all cases we need to
// pass the matched shift from the opposite side to compute the opcode and
// needed shift amount to extract. We still want to do this if both sides
// matched a rotate half because one half may be a potential overshift that
// can be broken down (ie if InstCombine merged two shl or srl ops into a
// single one).
// Have LHS side of the rotate, try to extract the needed shift from the RHS.
if (LHSShift)
if (SDValue NewRHSShift =
extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
RHSShift = NewRHSShift;
// Have RHS side of the rotate, try to extract the needed shift from the LHS.
if (RHSShift)
if (SDValue NewLHSShift =
extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
LHSShift = NewLHSShift;
// If a side is still missing, nothing else we can do.
if (!RHSShift || !LHSShift)
return nullptr;
// At this point we've matched or extracted a shift op on each side.
if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
return nullptr; // Not shifting the same value.
if (LHSShift.getOpcode() == RHSShift.getOpcode())
return nullptr; // Shifts must disagree.
// Canonicalize shl to left side in a shl/srl pair.
if (RHSShift.getOpcode() == ISD::SHL) {
std::swap(LHS, RHS);
std::swap(LHSShift, RHSShift);
std::swap(LHSMask, RHSMask);
}
unsigned EltSizeInBits = VT.getScalarSizeInBits();
SDValue LHSShiftArg = LHSShift.getOperand(0);
SDValue LHSShiftAmt = LHSShift.getOperand(1);
SDValue RHSShiftArg = RHSShift.getOperand(0);
SDValue RHSShiftAmt = RHSShift.getOperand(1);
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
// fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
};
if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
// If there is an AND of either shifted operand, apply it to the result.
if (LHSMask.getNode() || RHSMask.getNode()) {
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
SDValue Mask = AllOnes;
if (LHSMask.getNode()) {
SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
}
if (RHSMask.getNode()) {
SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
}
Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
}
return Rot.getNode();
}
// If there is a mask here, and we have a variable shift, we can't be sure
// that we're masking out the right stuff.
if (LHSMask.getNode() || RHSMask.getNode())
return nullptr;
// If the shift amount is sign/zext/any-extended just peel it off.
SDValue LExtOp0 = LHSShiftAmt;
SDValue RExtOp0 = RHSShiftAmt;
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
LExtOp0 = LHSShiftAmt.getOperand(0);
RExtOp0 = RHSShiftAmt.getOperand(0);
}
SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
if (TryL)
return TryL;
SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
if (TryR)
return TryR;
return nullptr;
}
namespace {
/// Represents known origin of an individual byte in load combine pattern. The
/// value of the byte is either constant zero or comes from memory.
struct ByteProvider {
// For constant zero providers Load is set to nullptr. For memory providers
// Load represents the node which loads the byte from memory.
// ByteOffset is the offset of the byte in the value produced by the load.
LoadSDNode *Load = nullptr;
unsigned ByteOffset = 0;
ByteProvider() = default;
static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
return ByteProvider(Load, ByteOffset);
}
static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
bool isConstantZero() const { return !Load; }
bool isMemory() const { return Load; }
bool operator==(const ByteProvider &Other) const {
return Other.Load == Load && Other.ByteOffset == ByteOffset;
}
private:
ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
: Load(Load), ByteOffset(ByteOffset) {}
};
} // end anonymous namespace
/// Recursively traverses the expression calculating the origin of the requested
/// byte of the given value. Returns None if the provider can't be calculated.
///
/// For all the values except the root of the expression verifies that the value
/// has exactly one use and if it's not true return None. This way if the origin
/// of the byte is returned it's guaranteed that the values which contribute to
/// the byte are not used outside of this expression.
///
/// Because the parts of the expression are not allowed to have more than one
/// use this function iterates over trees, not DAGs. So it never visits the same
/// node more than once.
static const Optional<ByteProvider>
calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
bool Root = false) {
// Typical i64 by i8 pattern requires recursion up to 8 calls depth
if (Depth == 10)
return None;
if (!Root && !Op.hasOneUse())
return None;
assert(Op.getValueType().isScalarInteger() && "can't handle other types");
unsigned BitWidth = Op.getValueSizeInBits();
if (BitWidth % 8 != 0)
return None;
unsigned ByteWidth = BitWidth / 8;
assert(Index < ByteWidth && "invalid index requested");
(void) ByteWidth;
switch (Op.getOpcode()) {
case ISD::OR: {
auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
if (!LHS)
return None;
auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
if (!RHS)
return None;
if (LHS->isConstantZero())
return RHS;
if (RHS->isConstantZero())
return LHS;
return None;
}
case ISD::SHL: {
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!ShiftOp)
return None;
uint64_t BitShift = ShiftOp->getZExtValue();
if (BitShift % 8 != 0)
return None;
uint64_t ByteShift = BitShift / 8;
return Index < ByteShift
? ByteProvider::getConstantZero()
: calculateByteProvider(Op->getOperand(0), Index - ByteShift,
Depth + 1);
}
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
SDValue NarrowOp = Op->getOperand(0);
unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
if (NarrowBitWidth % 8 != 0)
return None;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
if (Index >= NarrowByteWidth)
return Op.getOpcode() == ISD::ZERO_EXTEND
? Optional<ByteProvider>(ByteProvider::getConstantZero())
: None;
return calculateByteProvider(NarrowOp, Index, Depth + 1);
}
case ISD::BSWAP:
return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
Depth + 1);
case ISD::LOAD: {
auto L = cast<LoadSDNode>(Op.getNode());
if (L->isVolatile() || L->isIndexed())
return None;
unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
if (NarrowBitWidth % 8 != 0)
return None;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
if (Index >= NarrowByteWidth)
return L->getExtensionType() == ISD::ZEXTLOAD
? Optional<ByteProvider>(ByteProvider::getConstantZero())
: None;
return ByteProvider::getMemory(L, Index);
}
}
return None;
}
/// Match a pattern where a wide type scalar value is loaded by several narrow
/// loads and combined by shifts and ors. Fold it into a single load or a load
/// and a BSWAP if the targets supports it.
///
/// Assuming little endian target:
/// i8 *a = ...
/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
/// =>
/// i32 val = *((i32)a)
///
/// i8 *a = ...
/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
/// =>
/// i32 val = BSWAP(*((i32)a))
///
/// TODO: This rule matches complex patterns with OR node roots and doesn't
/// interact well with the worklist mechanism. When a part of the pattern is
/// updated (e.g. one of the loads) its direct users are put into the worklist,
/// but the root node of the pattern which triggers the load combine is not
/// necessarily a direct user of the changed node. For example, once the address
/// of t28 load is reassociated load combine won't be triggered:
/// t25: i32 = add t4, Constant:i32<2>
/// t26: i64 = sign_extend t25
/// t27: i64 = add t2, t26
/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
/// t29: i32 = zero_extend t28
/// t32: i32 = shl t29, Constant:i8<8>
/// t33: i32 = or t23, t32
/// As a possible fix visitLoad can check if the load can be a part of a load
/// combine pattern and add corresponding OR roots to the worklist.
SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
assert(N->getOpcode() == ISD::OR &&
"Can only match load combining against OR nodes");
// Handles simple types only
EVT VT = N->getValueType(0);
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
unsigned ByteWidth = VT.getSizeInBits() / 8;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Before legalize we can introduce too wide illegal loads which will be later
// split into legal sized loads. This enables us to combine i64 load by i8
// patterns to a couple of i32 loads on 32 bit targets.
if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT))
return SDValue();
std::function<unsigned(unsigned, unsigned)> LittleEndianByteAt = [](
unsigned BW, unsigned i) { return i; };
std::function<unsigned(unsigned, unsigned)> BigEndianByteAt = [](
unsigned BW, unsigned i) { return BW - i - 1; };
bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
auto MemoryByteOffset = [&] (ByteProvider P) {
assert(P.isMemory() && "Must be a memory byte provider");
unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
assert(LoadBitWidth % 8 == 0 &&
"can only analyze providers for individual bytes not bit");
unsigned LoadByteWidth = LoadBitWidth / 8;
return IsBigEndianTarget
? BigEndianByteAt(LoadByteWidth, P.ByteOffset)
: LittleEndianByteAt(LoadByteWidth, P.ByteOffset);
};
Optional<BaseIndexOffset> Base;
SDValue Chain;
SmallPtrSet<LoadSDNode *, 8> Loads;
Optional<ByteProvider> FirstByteProvider;
int64_t FirstOffset = INT64_MAX;
// Check if all the bytes of the OR we are looking at are loaded from the same
// base address. Collect bytes offsets from Base address in ByteOffsets.
SmallVector<int64_t, 4> ByteOffsets(ByteWidth);
for (unsigned i = 0; i < ByteWidth; i++) {
auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
if (!P || !P->isMemory()) // All the bytes must be loaded from memory
return SDValue();
LoadSDNode *L = P->Load;
assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() &&
"Must be enforced by calculateByteProvider");
assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
// All loads must share the same chain
SDValue LChain = L->getChain();
if (!Chain)
Chain = LChain;
else if (Chain != LChain)
return SDValue();
// Loads must share the same base address
BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
int64_t ByteOffsetFromBase = 0;
if (!Base)
Base = Ptr;
else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
return SDValue();
// Calculate the offset of the current byte from the base address
ByteOffsetFromBase += MemoryByteOffset(*P);
ByteOffsets[i] = ByteOffsetFromBase;
// Remember the first byte load
if (ByteOffsetFromBase < FirstOffset) {
FirstByteProvider = P;
FirstOffset = ByteOffsetFromBase;
}
Loads.insert(L);
}
assert(!Loads.empty() && "All the bytes of the value must be loaded from "
"memory, so there must be at least one load which produces the value");
assert(Base && "Base address of the accessed memory location must be set");
assert(FirstOffset != INT64_MAX && "First byte offset must be set");
// Check if the bytes of the OR we are looking at match with either big or
// little endian value load
bool BigEndian = true, LittleEndian = true;
for (unsigned i = 0; i < ByteWidth; i++) {
int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
LittleEndian &= CurrentByteOffset == LittleEndianByteAt(ByteWidth, i);
BigEndian &= CurrentByteOffset == BigEndianByteAt(ByteWidth, i);
if (!BigEndian && !LittleEndian)
return SDValue();
}
assert((BigEndian != LittleEndian) && "should be either or");
assert(FirstByteProvider && "must be set");
// Ensure that the first byte is loaded from zero offset of the first load.
// So the combined value can be loaded from the first load address.
if (MemoryByteOffset(*FirstByteProvider) != 0)
return SDValue();
LoadSDNode *FirstLoad = FirstByteProvider->Load;
// The node we are looking at matches with the pattern, check if we can
// replace it with a single load and bswap if needed.
// If the load needs byte swap check if the target supports it
bool NeedsBswap = IsBigEndianTarget != BigEndian;
// Before legalize we can introduce illegal bswaps which will be later
// converted to an explicit bswap sequence. This way we end up with a single
// load and byte shuffling instead of several loads and byte shuffling.
if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
return SDValue();
// Check that a load of the wide type is both allowed and fast on the target
bool Fast = false;
bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
VT, FirstLoad->getAddressSpace(),
FirstLoad->getAlignment(), &Fast);
if (!Allowed || !Fast)
return SDValue();
SDValue NewLoad =
DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(),
FirstLoad->getPointerInfo(), FirstLoad->getAlignment());
// Transfer chain users from old loads to the new load.
for (LoadSDNode *L : Loads)
DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad;
}
// If the target has andn, bsl, or a similar bit-select instruction,
// we want to unfold masked merge, with canonical pattern of:
// | A | |B|
// ((x ^ y) & m) ^ y
// | D |
// Into:
// (x & m) | (y & ~m)
// If y is a constant, and the 'andn' does not work with immediates,
// we unfold into a different pattern:
// ~(~x & m) & (m | y)
// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
// the very least that breaks andnpd / andnps patterns, and because those
// patterns are simplified in IR and shouldn't be created in the DAG
SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
assert(N->getOpcode() == ISD::XOR);
// Don't touch 'not' (i.e. where y = -1).
if (isAllOnesConstantOrAllOnesSplatConstant(N->getOperand(1)))
return SDValue();
EVT VT = N->getValueType(0);
// There are 3 commutable operators in the pattern,
// so we have to deal with 8 possible variants of the basic pattern.
SDValue X, Y, M;
auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
if (And.getOpcode() != ISD::AND || !And.hasOneUse())
return false;
SDValue Xor = And.getOperand(XorIdx);
if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
return false;
SDValue Xor0 = Xor.getOperand(0);
SDValue Xor1 = Xor.getOperand(1);
// Don't touch 'not' (i.e. where y = -1).
if (isAllOnesConstantOrAllOnesSplatConstant(Xor1))
return false;
if (Other == Xor0)
std::swap(Xor0, Xor1);
if (Other != Xor1)
return false;
X = Xor0;
Y = Xor1;
M = And.getOperand(XorIdx ? 0 : 1);
return true;
};
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
!matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
return SDValue();
// Don't do anything if the mask is constant. This should not be reachable.
// InstCombine should have already unfolded this pattern, and DAGCombiner
// probably shouldn't produce it, too.
if (isa<ConstantSDNode>(M.getNode()))
return SDValue();
// We can transform if the target has AndNot
if (!TLI.hasAndNot(M))
return SDValue();
SDLoc DL(N);
// If Y is a constant, check that 'andn' works with immediates.
if (!TLI.hasAndNot(Y)) {
assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
// If not, we need to do a bit more work to make sure andn is still used.
SDValue NotX = DAG.getNOT(DL, X, VT);
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
}
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
SDValue NotM = DAG.getNOT(DL, M, VT);
SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
}
SDValue DAGCombiner::visitXOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (xor x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
}
// fold (xor undef, undef) -> 0. This is a common idiom (misuse).
if (N0.isUndef() && N1.isUndef())
return DAG.getConstant(0, SDLoc(N), VT);
// fold (xor x, undef) -> undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
// fold (xor c1, c2) -> c1^c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
// fold (xor x, 0) -> x
if (isNullConstant(N1))
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate xor
if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1, N->getFlags()))
return RXOR;
// fold !(x cc y) -> (x !cc y)
SDValue LHS, RHS, CC;
if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
bool isInt = LHS.getValueType().isInteger();
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
isInt);
if (!LegalOperations ||
TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
switch (N0.getOpcode()) {
default:
llvm_unreachable("Unhandled SetCC Equivalent!");
case ISD::SETCC:
return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
case ISD::SELECT_CC:
return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
N0.getOperand(3), NotCC);
}
}
}
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND &&
N0.getNode()->hasOneUse() &&
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
SDValue V = N0.getOperand(0);
SDLoc DL(N0);
V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V,
DAG.getConstant(1, DL, V.getValueType()));
AddToWorklist(V.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
}
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
if (isAllOnesConstant(N1) && N0.hasOneUse() &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
}
}
// fold (xor (and x, y), y) -> (and (not x), y)
if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
N0->getOperand(1) == N1) {
SDValue X = N0->getOperand(0);
SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
AddToWorklist(NotX.getNode());
return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
}
// fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
SDValue A = N0.getOpcode() == ISD::ADD ? N0 : N1;
SDValue S = N0.getOpcode() == ISD::SRA ? N0 : N1;
if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
SDValue S0 = S.getOperand(0);
if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
unsigned OpSizeInBits = VT.getScalarSizeInBits();
if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
if (C->getAPIntValue() == (OpSizeInBits - 1))
return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
}
}
}
// fold (xor x, x) -> 0
if (N0 == N1)
return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
// fold (xor (shl 1, x), -1) -> (rotl ~1, x)
// Here is a concrete example of this equivalence:
// i16 x == 14
// i16 shl == 1 << 14 == 16384 == 0b0100000000000000
// i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
//
// =>
//
// i16 ~1 == 0b1111111111111110
// i16 rol(~1, 14) == 0b1011111111111111
//
// Some additional tips to help conceptualize this transform:
// - Try to see the operation as placing a single zero in a value of all ones.
// - There exists no value for x which would allow the result to contain zero.
// - Values of x larger than the bitwidth are undefined and do not require a
// consistent result.
// - Pushing the zero left requires shifting one bits in from the right.
// A rotate left of ~1 is a nice way of achieving the desired result.
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL
&& isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
SDLoc DL(N);
return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
N0.getOperand(1));
}
// Simplify: xor (op x...), (op y...) -> (op (xor x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
return Tmp;
// Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
if (SDValue MM = unfoldMaskedMerge(N))
return MM;
// Simplify the expression using non-local knowledge.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// Handle transforms common to the three shifts, when the shift amount is a
/// constant.
SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
SDNode *LHS = N->getOperand(0).getNode();
if (!LHS->hasOneUse()) return SDValue();
// We want to pull some binops through shifts, so that we have (and (shift))
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of
// thing happens with address calculations, so it's important to canonicalize
// it.
bool HighBitSet = false; // Can we transform this if the high bit is set?
switch (LHS->getOpcode()) {
default: return SDValue();
case ISD::OR:
case ISD::XOR:
HighBitSet = false; // We can only transform sra if the high bit is clear.
break;
case ISD::AND:
HighBitSet = true; // We can only transform sra if the high bit is set.
break;
case ISD::ADD:
if (N->getOpcode() != ISD::SHL)
return SDValue(); // only shl(add) not sr[al](add).
HighBitSet = false; // We can only transform sra if the high bit is clear.
break;
}
// We require the RHS of the binop to be a constant and not opaque as well.
ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
if (!BinOpCst) return SDValue();
// FIXME: disable this unless the input to the binop is a shift by a constant
// or is copy/select.Enable this in other cases when figure out it's exactly profitable.
SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL ||
BinOpLHSVal->getOpcode() == ISD::SRA ||
BinOpLHSVal->getOpcode() == ISD::SRL;
bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg ||
BinOpLHSVal->getOpcode() == ISD::SELECT;
if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) &&
!isCopyOrSelect)
return SDValue();
if (isCopyOrSelect && N->hasOneUse())
return SDValue();
EVT VT = N->getValueType(0);
// If this is a signed shift right, and the high bit is modified by the
// logical operation, do not perform the transformation. The highBitSet
// boolean indicates the value of the high bit of the constant which would
// cause it to be modified for this operation.
if (N->getOpcode() == ISD::SRA) {
bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
if (BinOpRHSSignSet != HighBitSet)
return SDValue();
}
if (!TLI.isDesirableToCommuteWithShift(N, Level))
return SDValue();
// Fold the constants, shifting the binop RHS by the shift amount.
SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
N->getValueType(0),
LHS->getOperand(1), N->getOperand(1));
assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
// Create the new shift.
SDValue NewShift = DAG.getNode(N->getOpcode(),
SDLoc(LHS->getOperand(0)),
VT, LHS->getOperand(0), N->getOperand(1));
// Create the new binop.
return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
}
SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
assert(N->getOpcode() == ISD::TRUNCATE);
assert(N->getOperand(0).getOpcode() == ISD::AND);
// (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
SDValue N01 = N->getOperand(0).getOperand(1);
if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
SDLoc DL(N);
EVT TruncVT = N->getValueType(0);
SDValue N00 = N->getOperand(0).getOperand(0);
SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
AddToWorklist(Trunc00.getNode());
AddToWorklist(Trunc01.getNode());
return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
}
}
return SDValue();
}
SDValue DAGCombiner::visitRotate(SDNode *N) {
SDLoc dl(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
unsigned Bitsize = VT.getScalarSizeInBits();
// fold (rot x, 0) -> x
if (isNullConstantOrNullSplatConstant(N1))
return N0;
// fold (rot x, c) -> (rot x, c % BitSize)
if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) {
if (Cst->getAPIntValue().uge(Bitsize)) {
uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize);
return DAG.getNode(N->getOpcode(), dl, VT, N0,
DAG.getConstant(RotAmt, dl, N1.getValueType()));
}
}
// fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
}
unsigned NextOp = N0.getOpcode();
// fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
EVT ShiftVT = C1->getValueType(0);
bool SameSide = (N->getOpcode() == NextOp);
unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
if (SDValue CombinedShift =
DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) {
SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
ISD::SREM, dl, ShiftVT, CombinedShift.getNode(),
BitsizeC.getNode());
return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
CombinedShiftNorm);
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitSHL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
// If setcc produces all-one true value then:
// (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
if (N1CV && N1CV->isConstant()) {
if (N0.getOpcode() == ISD::AND) {
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
N01CV, N1CV))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
}
}
}
}
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (shl c1, c2) -> c1<<c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
// fold (shl 0, x) -> 0
if (isNullConstantOrNullSplatConstant(N0))
return N0;
// fold (shl x, c >= size(x)) -> undef
// NOTE: ALL vector elements must be too big to avoid partial UNDEFs.
auto MatchShiftTooBig = [OpSizeInBits](ConstantSDNode *Val) {
return Val->getAPIntValue().uge(OpSizeInBits);
};
if (ISD::matchUnaryPredicate(N1, MatchShiftTooBig))
return DAG.getUNDEF(VT);
// fold (shl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (shl undef, x) -> 0
if (N0.isUndef())
return DAG.getConstant(0, SDLoc(N), VT);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// if (shl x, c) is known to be zero, return 0
if (DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(OpSizeInBits)))
return DAG.getConstant(0, SDLoc(N), VT);
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
}
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
if (N0.getOpcode() == ISD::SHL) {
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
return DAG.getConstant(0, SDLoc(N), VT);
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
SDLoc DL(N);
EVT ShiftVT = N1.getValueType();
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
}
}
// fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
// For this to be valid, the second form must not preserve any of the bits
// that are shifted out by the inner shift in the first form. This means
// the outer shift size must be >= the number of bits added by the ext.
// As a corollary, we don't care what kind of ext it is.
if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND) &&
N0.getOperand(0).getOpcode() == ISD::SHL) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
APInt c1 = N0Op0C1->getAPIntValue();
APInt c2 = N1C->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
EVT InnerShiftVT = N0Op0.getValueType();
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
if (c2.uge(OpSizeInBits - InnerShiftSize)) {
SDLoc DL(N0);
APInt Sum = c1 + c2;
if (Sum.uge(OpSizeInBits))
return DAG.getConstant(0, DL, VT);
return DAG.getNode(
ISD::SHL, DL, VT,
DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)),
DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
}
}
}
// fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
// Only fold this if the inner zext has no other uses to avoid increasing
// the total number of instructions.
if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::SRL) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) {
uint64_t c1 = N0Op0C1->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
if (c1 == c2) {
SDValue NewOp0 = N0.getOperand(0);
EVT CountVT = NewOp0.getOperand(1).getValueType();
SDLoc DL(N);
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
NewOp0,
DAG.getConstant(c2, DL, CountVT));
AddToWorklist(NewSHL.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
}
}
}
}
// fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
// fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
N0->getFlags().hasExact()) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t C1 = N0C1->getZExtValue();
uint64_t C2 = N1C->getZExtValue();
SDLoc DL(N);
if (C1 <= C2)
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(C2 - C1, DL, N1.getValueType()));
return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
DAG.getConstant(C1 - C2, DL, N1.getValueType()));
}
}
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
// (and (srl x, (sub c1, c2), MASK)
// Only fold this if the inner shift has no other uses -- if it does, folding
// this will increase the total number of instructions.
if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t c1 = N0C1->getZExtValue();
if (c1 < OpSizeInBits) {
uint64_t c2 = N1C->getZExtValue();
APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
SDValue Shift;
if (c2 > c1) {
Mask <<= c2 - c1;
SDLoc DL(N);
Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(c2 - c1, DL, N1.getValueType()));
} else {
Mask.lshrInPlace(c1 - c2);
SDLoc DL(N);
Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
DAG.getConstant(c1 - c2, DL, N1.getValueType()));
}
SDLoc DL(N0);
return DAG.getNode(ISD::AND, DL, VT, Shift,
DAG.getConstant(Mask, DL, VT));
}
}
}
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
isConstantOrConstantVector(N1, /* No Opaques */ true)) {
SDLoc DL(N);
SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
}
// fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
// Variant of version done on multiply, except mul by a power of 2 is turned
// into a shift.
if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
N0.getNode()->hasOneUse() &&
isConstantOrConstantVector(N1, /* No Opaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
TLI.isDesirableToCommuteWithShift(N, Level)) {
SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
AddToWorklist(Shl0.getNode());
AddToWorklist(Shl1.getNode());
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
}
// fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
isConstantOrConstantVector(N1, /* No Opaques */ true) &&
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
if (isConstantOrConstantVector(Shl))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
}
if (N1C && !N1C->isOpaque())
if (SDValue NewSHL = visitShiftByConstant(N, N1C))
return NewSHL;
return SDValue();
}
SDValue DAGCombiner::visitSRA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// Arithmetic shifting an all-sign-bit value is a no-op.
// fold (sra 0, x) -> 0
// fold (sra -1, x) -> -1
if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
return N0;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (sra c1, c2) -> (sra c1, c2)
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
// fold (sra x, c >= size(x)) -> undef
// NOTE: ALL vector elements must be too big to avoid partial UNDEFs.
auto MatchShiftTooBig = [OpSizeInBits](ConstantSDNode *Val) {
return Val->getAPIntValue().uge(OpSizeInBits);
};
if (ISD::matchUnaryPredicate(N1, MatchShiftTooBig))
return DAG.getUNDEF(VT);
// fold (sra x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
// sext_inreg.
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
if (VT.isVector())
ExtVT = EVT::getVectorVT(*DAG.getContext(),
ExtVT, VT.getVectorNumElements());
if ((!LegalOperations ||
TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
N0.getOperand(0), DAG.getValueType(ExtVT));
}
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
// clamp (add c1, c2) to max shift.
if (N0.getOpcode() == ISD::SRA) {
SDLoc DL(N);
EVT ShiftVT = N1.getValueType();
EVT ShiftSVT = ShiftVT.getScalarType();
SmallVector<SDValue, 16> ShiftValues;
auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
APInt Sum = c1 + c2;
unsigned ShiftSum =
Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
return true;
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
SDValue ShiftValue;
if (VT.isVector())
ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
else
ShiftValue = ShiftValues[0];
return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
}
}
// fold (sra (shl X, m), (sub result_size, n))
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
// result_size - n != m.
// If truncate is free for the target sext(shl) is likely to result in better
// code.
if (N0.getOpcode() == ISD::SHL && N1C) {
// Get the two constanst of the shifts, CN0 = m, CN = n.
const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
if (N01C) {
LLVMContext &Ctx = *DAG.getContext();
// Determine what the truncate's result bitsize and type would be.
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
if (VT.isVector())
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
// Determine the residual right-shift amount.
int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
// If the shift is not a no-op (in which case this should be just a sign
// extend already), the truncated to type is legal, sign_extend is legal
// on that type, and the truncate to that type is both legal and free,
// perform the transform.
if ((ShiftAmt > 0) &&
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
TLI.isTruncateFree(VT, TruncVT)) {
SDLoc DL(N);
SDValue Amt = DAG.getConstant(ShiftAmt, DL,
getShiftAmountTy(N0.getOperand(0).getValueType()));
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
N0.getOperand(0), Amt);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
Shift);
return DAG.getNode(ISD::SIGN_EXTEND, DL,
N->getValueType(0), Trunc);
}
}
}
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
}
// fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
// if c1 is equal to the number of bits the trunc removes
if (N0.getOpcode() == ISD::TRUNCATE &&
(N0.getOperand(0).getOpcode() == ISD::SRL ||
N0.getOperand(0).getOpcode() == ISD::SRA) &&
N0.getOperand(0).hasOneUse() &&
N0.getOperand(0).getOperand(1).hasOneUse() &&
N1C) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
unsigned LargeShiftVal = LargeShift->getZExtValue();
EVT LargeVT = N0Op0.getValueType();
if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
SDLoc DL(N);
SDValue Amt =
DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
N0Op0.getOperand(0), Amt);
return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
}
}
}
// Simplify, based on bits shifted out of the LHS.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// If the sign bit is known to be zero, switch this to a SRL.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRA = visitShiftByConstant(N, N1C))
return NewSRA;
return SDValue();
}
SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (srl c1, c2) -> c1 >>u c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
// fold (srl 0, x) -> 0
if (isNullConstantOrNullSplatConstant(N0))
return N0;
// fold (srl x, c >= size(x)) -> undef
// NOTE: ALL vector elements must be too big to avoid partial UNDEFs.
auto MatchShiftTooBig = [OpSizeInBits](ConstantSDNode *Val) {
return Val->getAPIntValue().uge(OpSizeInBits);
};
if (ISD::matchUnaryPredicate(N1, MatchShiftTooBig))
return DAG.getUNDEF(VT);
// fold (srl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// if (srl x, c) is known to be zero, return 0
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(OpSizeInBits)))
return DAG.getConstant(0, SDLoc(N), VT);
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
if (N0.getOpcode() == ISD::SRL) {
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
return DAG.getConstant(0, SDLoc(N), VT);
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
SDLoc DL(N);
EVT ShiftVT = N1.getValueType();
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
}
}
// fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
N0.getOperand(0).getOpcode() == ISD::SRL) {
if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) {
uint64_t c1 = N001C->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
EVT InnerShiftVT = N0.getOperand(0).getValueType();
EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType();
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
// This is only valid if the OpSizeInBits + c1 = size of inner shift.
if (c1 + OpSizeInBits == InnerShiftSize) {
SDLoc DL(N0);
if (c1 + c2 >= InnerShiftSize)
return DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::TRUNCATE, DL, VT,
DAG.getNode(ISD::SRL, DL, InnerShiftVT,
N0.getOperand(0).getOperand(0),
DAG.getConstant(c1 + c2, DL,
ShiftCountVT)));
}
}
}
// fold (srl (shl x, c), c) -> (and x, cst2)
if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
SDLoc DL(N);
SDValue Mask =
DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
AddToWorklist(Mask.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
}
// fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
// Shifting in all undef bits?
EVT SmallVT = N0.getOperand(0).getValueType();
unsigned BitSize = SmallVT.getScalarSizeInBits();
if (N1C->getZExtValue() >= BitSize)
return DAG.getUNDEF(VT);
if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
uint64_t ShiftAmt = N1C->getZExtValue();
SDLoc DL0(N0);
SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
N0.getOperand(0),
DAG.getConstant(ShiftAmt, DL0,
getShiftAmountTy(SmallVT)));
AddToWorklist(SmallShift.getNode());
APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
DAG.getConstant(Mask, DL, VT));
}
}
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
// bit, which is unmodified by sra.
if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
if (N0.getOpcode() == ISD::SRA)
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
}
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
if (N1C && N0.getOpcode() == ISD::CTLZ &&
N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
KnownBits Known;
DAG.computeKnownBits(N0.getOperand(0), Known);
// If any of the input bits are KnownOne, then the input couldn't be all
// zeros, thus the result of the srl will always be zero.
if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
// If all of the bits input the to ctlz node are known to be zero, then
// the result of the ctlz is "32" and the result of the shift is one.
APInt UnknownBits = ~Known.Zero;
if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
// Otherwise, check to see if there is exactly one bit input to the ctlz.
if (UnknownBits.isPowerOf2()) {
// Okay, we know that only that the single bit specified by UnknownBits
// could be set on input to the CTLZ node. If this bit is set, the SRL
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
// to an SRL/XOR pair, which is likely to simplify more.
unsigned ShAmt = UnknownBits.countTrailingZeros();
SDValue Op = N0.getOperand(0);
if (ShAmt) {
SDLoc DL(N0);
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
DAG.getConstant(ShAmt, DL,
getShiftAmountTy(Op.getValueType())));
AddToWorklist(Op.getNode());
}
SDLoc DL(N);
return DAG.getNode(ISD::XOR, DL, VT,
Op, DAG.getConstant(1, DL, VT));
}
}
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
}
// fold operands of srl based on knowledge that the low bits are not
// demanded.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRL = visitShiftByConstant(N, N1C))
return NewSRL;
// Attempt to convert a srl of a load into a narrower zero-extending load.
if (SDValue NarrowLoad = ReduceLoadWidth(N))
return NarrowLoad;
// Here is a common situation. We want to optimize:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// However when after the source operand of SRL is optimized into AND, the SRL
// itself may not be optimized further. Look for it and add the BRCOND into
// the worklist.
if (N->hasOneUse()) {
SDNode *Use = *N->use_begin();
if (Use->getOpcode() == ISD::BRCOND)
AddToWorklist(Use);
else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
// Also look pass the truncate.
Use = *Use->use_begin();
if (Use->getOpcode() == ISD::BRCOND)
AddToWorklist(Use);
}
}
return SDValue();
}
SDValue DAGCombiner::visitABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (abs c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
// fold (abs (abs x)) -> (abs x)
if (N0.getOpcode() == ISD::ABS)
return N0;
// fold (abs x) -> x iff not-negative
if (DAG.SignBitIsZero(N0))
return N0;
return SDValue();
}
SDValue DAGCombiner::visitBSWAP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (bswap c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
// fold (bswap (bswap x)) -> x
if (N0.getOpcode() == ISD::BSWAP)
return N0->getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (bitreverse c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
// fold (bitreverse (bitreverse x)) -> x
if (N0.getOpcode() == ISD::BITREVERSE)
return N0.getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctlz c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
// If the value is known never to be zero, switch to the undef version.
if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
if (DAG.isKnownNeverZero(N0))
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
}
return SDValue();
}
SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctlz_zero_undef c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (cttz c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
// If the value is known never to be zero, switch to the undef version.
if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
if (DAG.isKnownNeverZero(N0))
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
}
return SDValue();
}
SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (cttz_zero_undef c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctpop c1) -> c2
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
return SDValue();
}
// FIXME: This should be checking for no signed zeros on individual operands, as
// well as no nans.
static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, SDValue RHS) {
const TargetOptions &Options = DAG.getTarget().Options;
EVT VT = LHS.getValueType();
return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
}
/// Generate Min/Max node
static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
SDValue RHS, SDValue True, SDValue False,
ISD::CondCode CC, const TargetLowering &TLI,
SelectionDAG &DAG) {
if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
return SDValue();
EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
switch (CC) {
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETULT:
case ISD::SETULE: {
unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGT:
case ISD::SETUGE: {
unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
default:
return SDValue();
}
}
SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
SDValue Cond = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
EVT CondVT = Cond.getValueType();
SDLoc DL(N);
if (!VT.isInteger())
return SDValue();
auto *C1 = dyn_cast<ConstantSDNode>(N1);
auto *C2 = dyn_cast<ConstantSDNode>(N2);
if (!C1 || !C2)
return SDValue();
// Only do this before legalization to avoid conflicting with target-specific
// transforms in the other direction (create a select from a zext/sext). There
// is also a target-independent combine here in DAGCombiner in the other
// direction for (select Cond, -1, 0) when the condition is not i1.
if (CondVT == MVT::i1 && !LegalOperations) {
if (C1->isNullValue() && C2->isOne()) {
// select Cond, 0, 1 --> zext (!Cond)
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
if (VT != MVT::i1)
NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
return NotCond;
}
if (C1->isNullValue() && C2->isAllOnesValue()) {
// select Cond, 0, -1 --> sext (!Cond)
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
if (VT != MVT::i1)
NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
return NotCond;
}
if (C1->isOne() && C2->isNullValue()) {
// select Cond, 1, 0 --> zext (Cond)
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
return Cond;
}
if (C1->isAllOnesValue() && C2->isNullValue()) {
// select Cond, -1, 0 --> sext (Cond)
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
return Cond;
}
// For any constants that differ by 1, we can transform the select into an
// extend and add. Use a target hook because some targets may prefer to
// transform in the other direction.
if (TLI.convertSelectOfConstantsToMath(VT)) {
if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) {
// select Cond, C1, C1-1 --> add (zext Cond), C1-1
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
}
if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) {
// select Cond, C1, C1+1 --> add (sext Cond), C1+1
if (VT != MVT::i1)
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
}
}
return SDValue();
}
// fold (select Cond, 0, 1) -> (xor Cond, 1)
// We can't do this reliably if integer based booleans have different contents
// to floating point based booleans. This is because we can't tell whether we
// have an integer-based boolean or a floating-point-based boolean unless we
// can find the SETCC that produced it and inspect its operands. This is
// fairly easy if C is the SETCC node, but it can potentially be
// undiscoverable (or not reasonably discoverable). For example, it could be
// in another basic block or it could require searching a complicated
// expression.
if (CondVT.isInteger() &&
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
TargetLowering::ZeroOrOneBooleanContent &&
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
TargetLowering::ZeroOrOneBooleanContent &&
C1->isNullValue() && C2->isOne()) {
SDValue NotCond =
DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
if (VT.bitsEq(CondVT))
return NotCond;
return DAG.getZExtOrTrunc(NotCond, DL, VT);
}
return SDValue();
}
SDValue DAGCombiner::visitSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
EVT VT0 = N0.getValueType();
SDLoc DL(N);
// fold (select C, X, X) -> X
if (N1 == N2)
return N1;
if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) {
// fold (select true, X, Y) -> X
// fold (select false, X, Y) -> Y
return !N0C->isNullValue() ? N1 : N2;
}
// fold (select X, X, Y) -> (or X, Y)
// fold (select X, 1, Y) -> (or C, Y)
if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
return DAG.getNode(ISD::OR, DL, VT, N0, N2);
if (SDValue V = foldSelectOfConstants(N))
return V;
// fold (select C, 0, X) -> (and (not C), X)
if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
AddToWorklist(NOTNode.getNode());
return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
}
// fold (select C, X, 1) -> (or (not C), X)
if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
AddToWorklist(NOTNode.getNode());
return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
}
// fold (select X, Y, X) -> (and X, Y)
// fold (select X, Y, 0) -> (and X, Y)
if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
return DAG.getNode(ISD::AND, DL, VT, N0, N1);
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
if (VT0 == MVT::i1) {
// The code in this block deals with the following 2 equivalences:
// select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
// select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
// The target can specify its preferred form with the
// shouldNormalizeToSelectSequence() callback. However we always transform
// to the right anyway if we find the inner select exists in the DAG anyway
// and we always transform to the left side if we know that we can further
// optimize the combination of the conditions.
bool normalizeToSequence =
TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
// select (and Cond0, Cond1), X, Y
// -> select Cond0, (select Cond1, X, Y), Y
if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect =
DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
InnerSelect, N2);
}
// select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect =
DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
InnerSelect);
}
// select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
SDValue N1_0 = N1->getOperand(0);
SDValue N1_1 = N1->getOperand(1);
SDValue N1_2 = N1->getOperand(2);
if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
// Create the actual and node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, N2);
}
// Otherwise see if we can optimize the "and" to a better pattern.
if (SDValue Combined = visitANDLike(N0, N1_0, N))
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
N2);
}
}
// select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
SDValue N2_0 = N2->getOperand(0);
SDValue N2_1 = N2->getOperand(1);
SDValue N2_2 = N2->getOperand(2);
if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
// Create the actual or node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, N2_2);
}
// Otherwise see if we can optimize to a better pattern.
if (SDValue Combined = visitORLike(N0, N2_0, N))
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
N2_2);
}
}
}
if (VT0 == MVT::i1) {
// select (not Cond), N1, N2 -> select Cond, N2, N1
if (isBitwiseNot(N0))
return DAG.getNode(ISD::SELECT, DL, VT, N0->getOperand(0), N2, N1);
}
// Fold selects based on a setcc into other things, such as min/max/abs.
if (N0.getOpcode() == ISD::SETCC) {
SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
// select (fcmp lt x, y), x, y -> fminnum x, y
// select (fcmp gt x, y), x, y -> fmaxnum x, y
//
// This is OK if we don't care what happens if either operand is a NaN.
if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2))
if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
CC, TLI, DAG))
return FMinMax;
// Use 'unsigned add with overflow' to optimize an unsigned saturating add.
// This is conservatively limited to pre-legal-operations to give targets
// a chance to reverse the transform if they want to do that. Also, it is
// unlikely that the pattern would be formed late, so it's probably not
// worth going through the other checks.
if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
// select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
// uaddo Cond0, C; select uaddo.1, -1, uaddo.0
//
// The IR equivalent of this transform would have this form:
// %a = add %x, C
// %c = icmp ugt %x, ~C
// %r = select %c, -1, %a
// =>
// %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
// %u0 = extractvalue %u, 0
// %u1 = extractvalue %u, 1
// %r = select %u1, -1, %u0
SDVTList VTs = DAG.getVTList(VT, VT0);
SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
}
}
if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
(!LegalOperations && TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)))
return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, N2,
N0.getOperand(2));
return SimplifySelect(DL, N0, N1, N2);
}
return SDValue();
}
static
std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// Split the inputs.
SDValue Lo, Hi, LL, LH, RL, RH;
std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
return std::make_pair(Lo, Hi);
}
// This function assumes all the vselect's arguments are CONCAT_VECTOR
// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = N->getValueType(0);
int NumElems = VT.getVectorNumElements();
assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
RHS.getOpcode() == ISD::CONCAT_VECTORS &&
Cond.getOpcode() == ISD::BUILD_VECTOR);
// CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
// binary ones here.
if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
return SDValue();
// We're sure we have an even number of elements due to the
// concat_vectors we have as arguments to vselect.
// Skip BV elements until we find one that's not an UNDEF
// After we find an UNDEF element, keep looping until we get to half the
// length of the BV and see if all the non-undef nodes are the same.
ConstantSDNode *BottomHalf = nullptr;
for (int i = 0; i < NumElems / 2; ++i) {
if (Cond->getOperand(i)->isUndef())
continue;
if (BottomHalf == nullptr)
BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != BottomHalf)
return SDValue();
}
// Do the same for the second half of the BuildVector
ConstantSDNode *TopHalf = nullptr;
for (int i = NumElems / 2; i < NumElems; ++i) {
if (Cond->getOperand(i)->isUndef())
continue;
if (TopHalf == nullptr)
TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != TopHalf)
return SDValue();
}
assert(TopHalf && BottomHalf &&
"One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function.");
return DAG.getNode(
ISD::CONCAT_VECTORS, DL, VT,
BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
}
SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
SDValue Mask = MSC->getMask();
SDValue Data = MSC->getValue();
SDLoc DL(N);
// If the MSCATTER data type requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() != ISD::SETCC)
return SDValue();
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
SDValue Chain = MSC->getChain();
EVT MemoryVT = MSC->getMemoryVT();
unsigned Alignment = MSC->getOriginalAlignment();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
SDValue Scale = MSC->getScale();
SDValue BasePtr = MSC->getBasePtr();
SDValue IndexLo, IndexHi;
std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MSC->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, MSC->getAAInfo(), MSC->getRanges());
SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo, Scale };
SDValue Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other),
DataLo.getValueType(), DL, OpsLo, MMO);
// The order of the Scatter operation after split is well defined. The "Hi"
// part comes after the "Lo". So these two operations should be chained one
// after another.
SDValue OpsHi[] = { Lo, DataHi, MaskHi, BasePtr, IndexHi, Scale };
return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
DL, OpsHi, MMO);
}
SDValue DAGCombiner::visitMSTORE(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
SDValue Mask = MST->getMask();
SDValue Data = MST->getValue();
EVT VT = Data.getValueType();
SDLoc DL(N);
// If the MSTORE data type requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() == ISD::SETCC) {
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
SDValue Chain = MST->getChain();
SDValue Ptr = MST->getBasePtr();
EVT MemoryVT = MST->getMemoryVT();
unsigned Alignment = MST->getOriginalAlignment();
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment;
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MST->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, MST->getAAInfo(), MST->getRanges());
Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
MST->isTruncatingStore(),
MST->isCompressingStore());
Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
MST->isCompressingStore());
unsigned HiOffset = LoMemVT.getStoreSize();
MMO = DAG.getMachineFunction().getMachineMemOperand(
MST->getPointerInfo().getWithOffset(HiOffset),
MachineMemOperand::MOStore, HiMemVT.getStoreSize(), SecondHalfAlignment,
MST->getAAInfo(), MST->getRanges());
Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
MST->isTruncatingStore(),
MST->isCompressingStore());
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
return SDValue();
}
SDValue DAGCombiner::visitMGATHER(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
SDValue Mask = MGT->getMask();
SDLoc DL(N);
// If the MGATHER result requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() != ISD::SETCC)
return SDValue();
EVT VT = N->getValueType(0);
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
SDValue PassThru = MGT->getPassThru();
SDValue PassThruLo, PassThruHi;
std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
SDValue Chain = MGT->getChain();
EVT MemoryVT = MGT->getMemoryVT();
unsigned Alignment = MGT->getOriginalAlignment();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue Scale = MGT->getScale();
SDValue BasePtr = MGT->getBasePtr();
SDValue Index = MGT->getIndex();
SDValue IndexLo, IndexHi;
std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MGT->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MGT->getAAInfo(), MGT->getRanges());
SDValue OpsLo[] = { Chain, PassThruLo, MaskLo, BasePtr, IndexLo, Scale };
Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
MMO);
SDValue OpsHi[] = { Chain, PassThruHi, MaskHi, BasePtr, IndexHi, Scale };
Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
MMO);
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
// Build a factor node to remember that this load is independent of the
// other one.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
SDValue RetOps[] = { GatherRes, Chain };
return DAG.getMergeValues(RetOps, DL);
}
SDValue DAGCombiner::visitMLOAD(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
SDValue Mask = MLD->getMask();
SDLoc DL(N);
// If the MLOAD result requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() == ISD::SETCC) {
EVT VT = N->getValueType(0);
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
SDValue PassThru = MLD->getPassThru();
SDValue PassThruLo, PassThruHi;
std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
SDValue Chain = MLD->getChain();
SDValue Ptr = MLD->getBasePtr();
EVT MemoryVT = MLD->getMemoryVT();
unsigned Alignment = MLD->getOriginalAlignment();
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
Alignment/2 : Alignment;
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MLD->getAAInfo(), MLD->getRanges());
Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, PassThruLo, LoMemVT,
MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad());
Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
MLD->isExpandingLoad());
unsigned HiOffset = LoMemVT.getStoreSize();
MMO = DAG.getMachineFunction().getMachineMemOperand(
MLD->getPointerInfo().getWithOffset(HiOffset),
MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), SecondHalfAlignment,
MLD->getAAInfo(), MLD->getRanges());
Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, PassThruHi, HiMemVT,
MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad());
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
// Build a factor node to remember that this load is independent of the
// other one.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
SDValue RetOps[] = { LoadRes, Chain };
return DAG.getMergeValues(RetOps, DL);
}
return SDValue();
}
/// A vector select of 2 constant vectors can be simplified to math/logic to
/// avoid a variable select instruction and possibly avoid constant loads.
SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
SDValue Cond = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
!TLI.convertSelectOfConstantsToMath(VT) ||
!ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
!ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
return SDValue();
// Check if we can use the condition value to increment/decrement a single
// constant value. This simplifies a select to an add and removes a constant
// load/materialization from the general case.
bool AllAddOne = true;
bool AllSubOne = true;
unsigned Elts = VT.getVectorNumElements();
for (unsigned i = 0; i != Elts; ++i) {
SDValue N1Elt = N1.getOperand(i);
SDValue N2Elt = N2.getOperand(i);
if (N1Elt.isUndef() || N2Elt.isUndef())
continue;
const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
if (C1 != C2 + 1)
AllAddOne = false;
if (C1 != C2 - 1)
AllSubOne = false;
}
// Further simplifications for the extra-special cases where the constants are
// all 0 or all -1 should be implemented as folds of these patterns.
SDLoc DL(N);
if (AllAddOne || AllSubOne) {
// vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
// vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
}
// The general case for select-of-constants:
// vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
// ...but that only makes sense if a vselect is slower than 2 logic ops, so
// leave that to a machine-specific pass.
return SDValue();
}
SDValue DAGCombiner::visitVSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDLoc DL(N);
// fold (vselect C, X, X) -> X
if (N1 == N2)
return N1;
// Canonicalize integer abs.
// vselect (setg[te] X, 0), X, -X ->
// vselect (setgt X, -1), X, -X ->
// vselect (setl[te] X, 0), -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N0.getOpcode() == ISD::SETCC) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
bool isAbs = false;
bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
(ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
if (isAbs) {
EVT VT = LHS.getValueType();
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
return DAG.getNode(ISD::ABS, DL, VT, LHS);
SDValue Shift = DAG.getNode(
ISD::SRA, DL, VT, LHS,
DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
AddToWorklist(Shift.getNode());
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
}
// vselect x, y (fcmp lt x, y) -> fminnum x, y
// vselect x, y (fcmp gt x, y) -> fmaxnum x, y
//
// This is OK if we don't care about what happens if either operand is a
// NaN.
//
EVT VT = N->getValueType(0);
if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N0.getOperand(0), N0.getOperand(1))) {
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
if (SDValue FMinMax = combineMinNumMaxNum(
DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG))
return FMinMax;
}
// If this select has a condition (setcc) with narrower operands than the
// select, try to widen the compare to match the select width.
// TODO: This should be extended to handle any constant.
// TODO: This could be extended to handle non-loading patterns, but that
// requires thorough testing to avoid regressions.
if (isNullConstantOrNullSplatConstant(RHS)) {
EVT NarrowVT = LHS.getValueType();
EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
EVT SetCCVT = getSetCCResultType(LHS.getValueType());
unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
unsigned WideWidth = WideVT.getScalarSizeInBits();
bool IsSigned = isSignedIntSetCC(CC);
auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
SetCCWidth != 1 && SetCCWidth < WideWidth &&
TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
// Both compare operands can be widened for free. The LHS can use an
// extended load, and the RHS is a constant:
// vselect (ext (setcc load(X), C)), N1, N2 -->
// vselect (setcc extload(X), C'), N1, N2
auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
EVT WideSetCCVT = getSetCCResultType(WideVT);
SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
}
}
}
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
// Fold (vselect (build_vector all_ones), N1, N2) -> N1
if (ISD::isBuildVectorAllOnes(N0.getNode()))
return N1;
// Fold (vselect (build_vector all_zeros), N1, N2) -> N2
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N2;
// The ConvertSelectToConcatVector function is assuming both the above
// checks for (vselect (build_vector all{ones,zeros) ...) have been made
// and addressed.
if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
N2.getOpcode() == ISD::CONCAT_VECTORS &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
return CV;
}
if (SDValue V = foldVSelectOfConstants(N))
return V;
return SDValue();
}
SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue N3 = N->getOperand(3);
SDValue N4 = N->getOperand(4);
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
// fold select_cc lhs, rhs, x, x, cc -> x
if (N2 == N3)
return N2;
// Determine if the condition we're dealing with is constant
if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
CC, SDLoc(N), false)) {
AddToWorklist(SCC.getNode());
if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
if (!SCCC->isNullValue())
return N2; // cond always true -> true val
else
return N3; // cond always false -> false val
} else if (SCC->isUndef()) {
// When the condition is UNDEF, just return the first operand. This is
// coherent the DAG creation, no setcc node is created in this case
return N2;
} else if (SCC.getOpcode() == ISD::SETCC) {
// Fold to a simpler select_cc
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
SCC.getOperand(0), SCC.getOperand(1), N2, N3,
SCC.getOperand(2));
}
}
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N2, N3))
return SDValue(N, 0); // Don't revisit N.
// fold select_cc into other things, such as min/max/abs
return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
}
SDValue DAGCombiner::visitSETCC(SDNode *N) {
// setcc is very commonly used as an argument to brcond. This pattern
// also lend itself to numerous combines and, as a result, it is desired
// we keep the argument to a brcond as a setcc as much as possible.
bool PreferSetCC =
N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
SDValue Combined = SimplifySetCC(
N->getValueType(0), N->getOperand(0), N->getOperand(1),
cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
if (!Combined)
return SDValue();
// If we prefer to have a setcc, and we don't, we'll try our best to
// recreate one using rebuildSetCC.
if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
SDValue NewSetCC = rebuildSetCC(Combined);
// We don't have anything interesting to combine to.
if (NewSetCC.getNode() == N)
return SDValue();
if (NewSetCC)
return NewSetCC;
}
return Combined;
}
SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Carry = N->getOperand(2);
SDValue Cond = N->getOperand(3);
// If Carry is false, fold to a regular SETCC.
if (isNullConstant(Carry))
return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
return SDValue();
}
/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
/// a build_vector of constants.
/// This function is called by the DAGCombiner when visiting sext/zext/aext
/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
/// Vector extends are not folded if operations are legal; this is to
/// avoid introducing illegal build_vector dag nodes.
static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
SelectionDAG &DAG, bool LegalTypes,
bool LegalOperations) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
&& "Expected EXTEND dag node in input!");
// fold (sext c1) -> c1
// fold (zext c1) -> c1
// fold (aext c1) -> c1
if (isa<ConstantSDNode>(N0))
return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode();
// fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
// fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
// fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
EVT SVT = VT.getScalarType();
if (!(VT.isVector() &&
(!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
return nullptr;
// We can fold this node into a build_vector.
unsigned VTBits = SVT.getSizeInBits();
unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
SmallVector<SDValue, 8> Elts;
unsigned NumElts = VT.getVectorNumElements();
SDLoc DL(N);
for (unsigned i=0; i != NumElts; ++i) {
SDValue Op = N0->getOperand(i);
if (Op->isUndef()) {
Elts.push_back(DAG.getUNDEF(SVT));
continue;
}
SDLoc DL(Op);
// Get the constant value and if needed trunc it to the size of the type.
// Nodes like build_vector might have constants wider than the scalar type.
APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
else
Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
}
return DAG.getBuildVector(VT, DL, Elts).getNode();
}
// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
// transformation. Returns true if extension are possible and the above
// mentioned transformation is profitable.
static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
unsigned ExtOpc,
SmallVectorImpl<SDNode *> &ExtendNodes,
const TargetLowering &TLI) {
bool HasCopyToRegUses = false;
bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
UE = N0.getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User == N)
continue;
if (UI.getUse().getResNo() != N0.getResNo())
continue;
// FIXME: Only extend SETCC N, N and SETCC N, c for now.
if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
// Sign bits will be lost after a zext.
return false;
bool Add = false;
for (unsigned i = 0; i != 2; ++i) {
SDValue UseOp = User->getOperand(i);
if (UseOp == N0)
continue;
if (!isa<ConstantSDNode>(UseOp))
return false;
Add = true;
}
if (Add)
ExtendNodes.push_back(User);
continue;
}
// If truncates aren't free and there are users we can't
// extend, it isn't worthwhile.
if (!isTruncFree)
return false;
// Remember if this value is live-out.
if (User->getOpcode() == ISD::CopyToReg)
HasCopyToRegUses = true;
}
if (HasCopyToRegUses) {
bool BothLiveOut = false;
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
BothLiveOut = true;
break;
}
}
if (BothLiveOut)
// Both unextended and extended values are live out. There had better be
// a good reason for the transformation.
return ExtendNodes.size();
}
return true;
}
void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
SDValue OrigLoad, SDValue ExtLoad,
ISD::NodeType ExtType) {
// Extend SetCC uses if necessary.
SDLoc DL(ExtLoad);
for (SDNode *SetCC : SetCCs) {
SmallVector<SDValue, 4> Ops;
for (unsigned j = 0; j != 2; ++j) {
SDValue SOp = SetCC->getOperand(j);
if (SOp == OrigLoad)
Ops.push_back(ExtLoad);
else
Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
}
Ops.push_back(SetCC->getOperand(2));
CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
}
}
// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT DstVT = N->getValueType(0);
EVT SrcVT = N0.getValueType();
assert((N->getOpcode() == ISD::SIGN_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND) &&
"Unexpected node type (not an extend)!");
// fold (sext (load x)) to multiple smaller sextloads; same for zext.
// For example, on a target with legal v4i32, but illegal v8i32, turn:
// (v8i32 (sext (v8i16 (load x))))
// into:
// (v8i32 (concat_vectors (v4i32 (sextload x)),
// (v4i32 (sextload (x + 16)))))
// Where uses of the original load, i.e.:
// (v8i16 (load x))
// are replaced with:
// (v8i16 (truncate
// (v8i32 (concat_vectors (v4i32 (sextload x)),
// (v4i32 (sextload (x + 16)))))))
//
// This combine is only applicable to illegal, but splittable, vectors.
// All legal types, and illegal non-vector types, are handled elsewhere.
// This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
//
if (N0->getOpcode() != ISD::LOAD)
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
!N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
!DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
return SDValue();
SmallVector<SDNode *, 4> SetCCs;
if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
return SDValue();
ISD::LoadExtType ExtType =
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
// Try to split the vector types to get down to legal types.
EVT SplitSrcVT = SrcVT;
EVT SplitDstVT = DstVT;
while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
SplitSrcVT.getVectorNumElements() > 1) {
SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
}
if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
return SDValue();
SDLoc DL(N);
const unsigned NumSplits =
DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
const unsigned Stride = SplitSrcVT.getStoreSize();
SmallVector<SDValue, 4> Loads;
SmallVector<SDValue, 4> Chains;
SDValue BasePtr = LN0->getBasePtr();
for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
const unsigned Offset = Idx * Stride;
const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
SDValue SplitLoad = DAG.getExtLoad(
ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
DAG.getConstant(Stride, DL, BasePtr.getValueType()));
Loads.push_back(SplitLoad.getValue(0));
Chains.push_back(SplitLoad.getValue(1));
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
// Simplify TF.
AddToWorklist(NewChain.getNode());
CombineTo(N, NewValue);
// Replace uses of the original load (before extension)
// with a truncate of the concatenated sextloaded vectors.
SDValue Trunc =
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
CombineTo(N0.getNode(), Trunc, NewChain);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
assert(N->getOpcode() == ISD::ZERO_EXTEND);
EVT VT = N->getValueType(0);
// and/or/xor
SDValue N0 = N->getOperand(0);
if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) ||
N0.getOperand(1).getOpcode() != ISD::Constant ||
(LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
return SDValue();
// shl/shr
SDValue N1 = N0->getOperand(0);
if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
N1.getOperand(1).getOpcode() != ISD::Constant ||
(LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
return SDValue();
// load
if (!isa<LoadSDNode>(N1.getOperand(0)))
return SDValue();
LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
EVT MemVT = Load->getMemoryVT();
if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
return SDValue();
// If the shift op is SHL, the logic op must be AND, otherwise the result
// will be wrong.
if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
return SDValue();
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SmallVector<SDNode*, 4> SetCCs;
if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
ISD::ZERO_EXTEND, SetCCs, TLI))
return SDValue();
// Actually do the transformation.
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
Load->getChain(), Load->getBasePtr(),
Load->getMemoryVT(), Load->getMemOperand());
SDLoc DL1(N1);
SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
N1.getOperand(1));
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL0(N0);
SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
DAG.getConstant(Mask, DL0, VT));
ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
CombineTo(N, And);
if (SDValue(Load, 0).hasOneUse()) {
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
Load->getValueType(0), ExtLoad);
CombineTo(Load, Trunc, ExtLoad.getValue(1));
}
return SDValue(N,0); // Return N so it doesn't get rechecked!
}
/// If we're narrowing or widening the result of a vector select and the final
/// size is the same size as a setcc (compare) feeding the select, then try to
/// apply the cast operation to the select's operands because matching vector
/// sizes for a select condition and other operands should be more efficient.
SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
unsigned CastOpcode = Cast->getOpcode();
assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
CastOpcode == ISD::FP_ROUND) &&
"Unexpected opcode for vector select narrowing/widening");
// We only do this transform before legal ops because the pattern may be
// obfuscated by target-specific operations after legalization. Do not create
// an illegal select op, however, because that may be difficult to lower.
EVT VT = Cast->getValueType(0);
if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
return SDValue();
SDValue VSel = Cast->getOperand(0);
if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
VSel.getOperand(0).getOpcode() != ISD::SETCC)
return SDValue();
// Does the setcc have the same vector size as the casted select?
SDValue SetCC = VSel.getOperand(0);
EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
return SDValue();
// cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
SDValue A = VSel.getOperand(1);
SDValue B = VSel.getOperand(2);
SDValue CastA, CastB;
SDLoc DL(Cast);
if (CastOpcode == ISD::FP_ROUND) {
// FP_ROUND (fptrunc) has an extra flag operand to pass along.
CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
} else {
CastA = DAG.getNode(CastOpcode, DL, VT, A);
CastB = DAG.getNode(CastOpcode, DL, VT, B);
}
return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
}
// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
const TargetLowering &TLI, EVT VT,
bool LegalOperations, SDNode *N,
SDValue N0, ISD::LoadExtType ExtLoadType) {
SDNode *N0Node = N0.getNode();
bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
: ISD::isZEXTLoad(N0Node);
if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
!ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
return {};
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
if ((LegalOperations || LN0->isVolatile()) &&
!TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
return {};
SDValue ExtLoad =
DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
LN0->getBasePtr(), MemVT, LN0->getMemOperand());
Combiner.CombineTo(N, ExtLoad);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
// Only generate vector extloads when 1) they're legal, and 2) they are
// deemed desirable by the target.
static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
const TargetLowering &TLI, EVT VT,
bool LegalOperations, SDNode *N, SDValue N0,
ISD::LoadExtType ExtLoadType,
ISD::NodeType ExtOpc) {
if (!ISD::isNON_EXTLoad(N0.getNode()) ||
!ISD::isUNINDEXEDLoad(N0.getNode()) ||
((LegalOperations || VT.isVector() ||
cast<LoadSDNode>(N0)->isVolatile()) &&
!TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
return {};
bool DoXform = true;
SmallVector<SDNode *, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
if (VT.isVector())
DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
if (!DoXform)
return {};
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
// If the load value is used only by N, replace it via CombineTo N.
bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
Combiner.CombineTo(N, ExtLoad);
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc =
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
bool LegalOperations) {
assert((N->getOpcode() == ISD::SIGN_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
SDValue SetCC = N->getOperand(0);
if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
!SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
return SDValue();
SDValue X = SetCC.getOperand(0);
SDValue Ones = SetCC.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
EVT VT = N->getValueType(0);
EVT XVT = X.getValueType();
// setge X, C is canonicalized to setgt, so we do not need to match that
// pattern. The setlt sibling is folded in SimplifySelectCC() because it does
// not require the 'not' op.
if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
// Invert and smear/shift the sign bit:
// sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
// zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
SDLoc DL(N);
SDValue NotX = DAG.getNOT(DL, X, VT);
SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
}
return SDValue();
}
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
// fold (sext (sext x)) -> (sext x)
// fold (sext (aext x)) -> (sext x)
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
if (N0.getOpcode() == ISD::TRUNCATE) {
// fold (sext (truncate (load x))) -> (sext (smaller load x))
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
SDValue Op = N0.getOperand(0);
unsigned OpBits = Op.getScalarValueSizeInBits();
unsigned MidBits = N0.getScalarValueSizeInBits();
unsigned DestBits = VT.getScalarSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
if (OpBits == DestBits) {
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
// bits, it is already ready.
if (NumSignBits > DestBits-MidBits)
return Op;
} else if (OpBits < DestBits) {
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
// bits, just sext from i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
} else {
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
// bits, just truncate to i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
}
// fold (sext (truncate x)) -> (sextinreg x).
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
N0.getValueType())) {
if (OpBits < DestBits)
Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
else if (OpBits > DestBits)
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
DAG.getValueType(N0.getValueType()));
}
}
// Try to simplify (sext (load x)).
if (SDValue foldedExt =
tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
ISD::SEXTLOAD, ISD::SIGN_EXTEND))
return foldedExt;
// fold (sext (load x)) to multiple smaller sextloads.
// Only on illegal but splittable vectors.
if (SDValue ExtLoad = CombineExtLoad(N))
return ExtLoad;
// Try to simplify (sext (sextload x)).
if (SDValue foldedExt = tryToFoldExtOfExtload(
DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
return foldedExt;
// fold (sext (and/or/xor (load x), cst)) ->
// (and/or/xor (sextload x), (sext cst))
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
EVT MemVT = LN00->getMemoryVT();
if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
SmallVector<SDNode*, 4> SetCCs;
bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
ISD::SIGN_EXTEND, SetCCs, TLI);
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
LN00->getChain(), LN00->getBasePtr(),
LN00->getMemoryVT(),
LN00->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.sext(VT.getSizeInBits());
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
ExtLoad, DAG.getConstant(Mask, DL, VT));
ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
bool NoReplaceTruncAnd = !N0.hasOneUse();
bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
CombineTo(N, And);
// If N0 has multiple uses, change other uses as well.
if (NoReplaceTruncAnd) {
SDValue TruncAnd =
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
CombineTo(N0.getNode(), TruncAnd);
}
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
LN00->getValueType(0), ExtLoad);
CombineTo(LN00, Trunc, ExtLoad.getValue(1));
}
return SDValue(N,0); // Return N so it doesn't get rechecked!
}
}
}
if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
return V;
if (N0.getOpcode() == ISD::SETCC) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
EVT N00VT = N0.getOperand(0).getValueType();
// sext(setcc) -> sext_in_reg(vsetcc) for vectors.
// Only do this before legalize for now.
if (VT.isVector() && !LegalOperations &&
TLI.getBooleanContents(N00VT) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
// On some architectures (such as SSE/NEON/etc) the SETCC result type is
// of the same size as the compared operands. Only optimize sext(setcc())
// if this is the case.
EVT SVT = getSetCCResultType(N00VT);
// We know that the # elements of the results is the same as the
// # elements of the compare (and the # elements of the compare result
// for that matter). Check to see that they are the same size. If so,
// we know that the element size of the sext'd result matches the
// element size of the compare operands.
if (VT.getSizeInBits() == SVT.getSizeInBits())
return DAG.getSetCC(DL, VT, N00, N01, CC);
// If the desired elements are smaller or larger than the source
// elements, we can use a matching integer vector type and then
// truncate/sign extend.
EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
if (SVT == MatchingVecType) {
SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
return DAG.getSExtOrTrunc(VsetCC, DL, VT);
}
}
// sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
// Here, T can be 1 or -1, depending on the type of the setcc and
// getBooleanContents().
unsigned SetCCWidth = N0.getScalarValueSizeInBits();
// To determine the "true" side of the select, we need to know the high bit
// of the value returned by the setcc if it evaluates to true.
// If the type of the setcc is i1, then the true case of the select is just
// sext(i1 1), that is, -1.
// If the type of the setcc is larger (say, i8) then the value of the high
// bit depends on getBooleanContents(), so ask TLI for a real "true" value
// of the appropriate width.
SDValue ExtTrueVal = (SetCCWidth == 1)
? DAG.getAllOnesConstant(DL, VT)
: DAG.getBoolConstant(true, DL, VT, N00VT);
SDValue Zero = DAG.getConstant(0, DL, VT);
if (SDValue SCC =
SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
return SCC;
if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
EVT SetCCVT = getSetCCResultType(N00VT);
// Don't do this transform for i1 because there's a select transform
// that would reverse it.
// TODO: We should not do this transform at all without a target hook
// because a sext is likely cheaper than a select?
if (SetCCVT.getScalarSizeInBits() != 1 &&
(!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
}
}
}
// fold (sext x) -> (zext x) if the sign bit is known zero.
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
return SDValue();
}
// isTruncateOf - If N is a truncate of some other value, return true, record
// the value being truncated in Op and which of Op's bits are zero/one in Known.
// This function computes KnownBits to avoid a duplicated call to
// computeKnownBits in the caller.
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
KnownBits &Known) {
if (N->getOpcode() == ISD::TRUNCATE) {
Op = N->getOperand(0);
DAG.computeKnownBits(Op, Known);
return true;
}
if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
return false;
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
assert(Op0.getValueType() == Op1.getValueType());
if (isNullConstant(Op0))
Op = Op1;
else if (isNullConstant(Op1))
Op = Op0;
else
return false;
DAG.computeKnownBits(Op, Known);
if (!(Known.Zero | 1).isAllOnesValue())
return false;
return true;
}
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
// fold (zext (zext x)) -> (zext x)
// fold (zext (aext x)) -> (zext x)
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
N0.getOperand(0));
// fold (zext (truncate x)) -> (zext x) or
// (zext (truncate x)) -> (truncate x)
// This is valid when the truncated bits of x are already zero.
// FIXME: We should extend this to work for vectors too.
SDValue Op;
KnownBits Known;
if (!VT.isVector() && isTruncateOf(DAG, N0, Op, Known)) {
APInt TruncatedBits =
(Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
APInt(Op.getValueSizeInBits(), 0) :
APInt::getBitsSet(Op.getValueSizeInBits(),
N0.getValueSizeInBits(),
std::min(Op.getValueSizeInBits(),
VT.getSizeInBits()));
if (TruncatedBits.isSubsetOf(Known.Zero))
return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
}
// fold (zext (truncate x)) -> (and x, mask)
if (N0.getOpcode() == ISD::TRUNCATE) {
// fold (zext (truncate (load x))) -> (zext (smaller load x))
// fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
EVT SrcVT = N0.getOperand(0).getValueType();
EVT MinVT = N0.getValueType();
// Try to mask before the extension to avoid having to generate a larger mask,
// possibly over several sub-vectors.
if (SrcVT.bitsLT(VT) && VT.isVector()) {
if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
SDValue Op = N0.getOperand(0);
Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
AddToWorklist(Op.getNode());
SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
// Transfer the debug info; the new node is equivalent to N0.
DAG.transferDbgValues(N0, ZExtOrTrunc);
return ZExtOrTrunc;
}
}
if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
AddToWorklist(Op.getNode());
SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
// We may safely transfer the debug info describing the truncate node over
// to the equivalent and operation.
DAG.transferDbgValues(N0, And);
return And;
}
}
// Fold (zext (and (trunc x), cst)) -> (and x, cst),
// if either of the casts is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType()) ||
!TLI.isZExtFree(N0.getValueType(), VT))) {
SDValue X = N0.getOperand(0).getOperand(0);
X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
X, DAG.getConstant(Mask, DL, VT));
}
// Try to simplify (zext (load x)).
if (SDValue foldedExt =
tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
return foldedExt;
// fold (zext (load x)) to multiple smaller zextloads.
// Only on illegal but splittable vectors.
if (SDValue ExtLoad = CombineExtLoad(N))
return ExtLoad;
// fold (zext (and/or/xor (load x), cst)) ->
// (and/or/xor (zextload x), (zext cst))
// Unless (and (load x) cst) will match as a zextload already and has
// additional users.
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
EVT MemVT = LN00->getMemoryVT();
if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse()) {
if (N0.getOpcode() == ISD::AND) {
auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
EVT LoadResultTy = AndC->getValueType(0);
EVT ExtVT;
if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
DoXform = false;
}
}
if (DoXform)
DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
ISD::ZERO_EXTEND, SetCCs, TLI);
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
LN00->getChain(), LN00->getBasePtr(),
LN00->getMemoryVT(),
LN00->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL(N);
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
ExtLoad, DAG.getConstant(Mask, DL, VT));
ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
bool NoReplaceTruncAnd = !N0.hasOneUse();
bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
CombineTo(N, And);
// If N0 has multiple uses, change other uses as well.
if (NoReplaceTruncAnd) {
SDValue TruncAnd =
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
CombineTo(N0.getNode(), TruncAnd);
}
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
LN00->getValueType(0), ExtLoad);
CombineTo(LN00, Trunc, ExtLoad.getValue(1));
}
return SDValue(N,0); // Return N so it doesn't get rechecked!
}
}
}
// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
return ZExtLoad;
// Try to simplify (zext (zextload x)).
if (SDValue foldedExt = tryToFoldExtOfExtload(
DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
return foldedExt;
if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
return V;
if (N0.getOpcode() == ISD::SETCC) {
// Only do this before legalize for now.
if (!LegalOperations && VT.isVector() &&
N0.getValueType().getVectorElementType() == MVT::i1) {
EVT N00VT = N0.getOperand(0).getValueType();
if (getSetCCResultType(N00VT) == N0.getValueType())
return SDValue();
// We know that the # elements of the results is the same as the #
// elements of the compare (and the # elements of the compare result for
// that matter). Check to see that they are the same size. If so, we know
// that the element size of the sext'd result matches the element size of
// the compare operands.
SDLoc DL(N);
SDValue VecOnes = DAG.getConstant(1, DL, VT);
if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
// zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2));
return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
}
// If the desired elements are smaller or larger than the source
// elements we can use a matching integer vector type and then
// truncate/sign extend.
EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
SDValue VsetCC =
DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2));
return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
VecOnes);
}
// zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
SDLoc DL(N);
if (SDValue SCC = SimplifySelectCC(
DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
return SCC;
}
// (zext (shl (zext x), cst)) -> (shl (zext x), cst)
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
N0.hasOneUse()) {
SDValue ShAmt = N0.getOperand(1);
unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
if (N0.getOpcode() == ISD::SHL) {
SDValue InnerZExt = N0.getOperand(0);
// If the original shl may be shifting out bits, do not perform this
// transformation.
unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
InnerZExt.getOperand(0).getValueSizeInBits();
if (ShAmtVal > KnownZeroBits)
return SDValue();
}
SDLoc DL(N);
// Ensure that the shift amount is wide enough for the shifted value.
if (VT.getSizeInBits() >= 256)
ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
return DAG.getNode(N0.getOpcode(), DL, VT,
DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
ShAmt);
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
return SDValue();
}
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
if (N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
// fold (aext (truncate (load x))) -> (aext (smaller load x))
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (aext (truncate x))
if (N0.getOpcode() == ISD::TRUNCATE)
return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
// Fold (aext (and (trunc x), cst)) -> (and x, cst)
// if the trunc is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType())) {
SDLoc DL(N);
SDValue X = N0.getOperand(0).getOperand(0);
X = DAG.getAnyExtOrTrunc(X, DL, VT);
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
return DAG.getNode(ISD::AND, DL, VT,
X, DAG.getConstant(Mask, DL, VT));
}
// fold (aext (load x)) -> (aext (truncate (extload x)))
// None of the supported targets knows how to perform load and any_ext
// on vectors in one instruction. We only perform this transformation on
// scalars.
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs,
TLI);
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
// If the load value is used only by N, replace it via CombineTo N.
bool NoReplaceTrunc = N0.hasOneUse();
CombineTo(N, ExtLoad);
if (NoReplaceTrunc) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
} else {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
CombineTo(LN0, Trunc, ExtLoad.getValue(1));
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (aext (zextload x)) -> (aext (truncate (zextload x)))
// fold (aext (sextload x)) -> (aext (truncate (sextload x)))
// fold (aext ( extload x)) -> (aext (truncate (extload x)))
if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
ISD::LoadExtType ExtType = LN0->getExtensionType();
EVT MemVT = LN0->getMemoryVT();
if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
VT, LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
CombineTo(N, ExtLoad);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
if (N0.getOpcode() == ISD::SETCC) {
// For vectors:
// aext(setcc) -> vsetcc
// aext(setcc) -> truncate(vsetcc)
// aext(setcc) -> aext(vsetcc)
// Only do this before legalize for now.
if (VT.isVector() && !LegalOperations) {
EVT N00VT = N0.getOperand(0).getValueType();
if (getSetCCResultType(N00VT) == N0.getValueType())
return SDValue();
// We know that the # elements of the results is the same as the
// # elements of the compare (and the # elements of the compare result
// for that matter). Check to see that they are the same size. If so,
// we know that the element size of the sext'd result matches the
// element size of the compare operands.
if (VT.getSizeInBits() == N00VT.getSizeInBits())
return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If the desired elements are smaller or larger than the source
// elements we can use a matching integer vector type and then
// truncate/any extend
else {
EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
SDValue VsetCC =
DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
}
}
// aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
SDLoc DL(N);
if (SDValue SCC = SimplifySelectCC(
DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
return SCC;
}
return SDValue();
}
SDValue DAGCombiner::visitAssertExt(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT AssertVT = cast<VTSDNode>(N1)->getVT();
// fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
if (N0.getOpcode() == Opcode &&
AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
return N0;
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == Opcode) {
// We have an assert, truncate, assert sandwich. Make one stronger assert
// by asserting on the smallest asserted type to the larger source type.
// This eliminates the later assert:
// assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
// assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
SDValue BigA = N0.getOperand(0);
EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
"Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information");
SDLoc DL(N);
EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
BigA.getOperand(0), MinAssertVTVal);
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
}
return SDValue();
}
/// If the result of a wider load is shifted to right of N bits and then
/// truncated to a narrower type and where N is a multiple of number of bits of
/// the narrower type, transform it to a narrower load from address + N / num of
/// bits of new type. Also narrow the load if the result is masked with an AND
/// to effectively produce a smaller type. If the result is to be extended, also
/// fold the extension to form a extending load.
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
unsigned Opc = N->getOpcode();
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT ExtVT = VT;
// This transformation isn't valid for vector loads.
if (VT.isVector())
return SDValue();
unsigned ShAmt = 0;
bool HasShiftedOffset = false;
// Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
// extended to VT.
if (Opc == ISD::SIGN_EXTEND_INREG) {
ExtType = ISD::SEXTLOAD;
ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
} else if (Opc == ISD::SRL) {
// Another special-case: SRL is basically zero-extending a narrower value,
// or it maybe shifting a higher subword, half or byte into the lowest
// bits.
ExtType = ISD::ZEXTLOAD;
N0 = SDValue(N, 0);
auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!N01 || !LN0)
return SDValue();
uint64_t ShiftAmt = N01->getZExtValue();
uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
else
ExtVT = EVT::getIntegerVT(*DAG.getContext(),
VT.getSizeInBits() - ShiftAmt);
} else if (Opc == ISD::AND) {
// An AND with a constant mask is the same as a truncate + zero-extend.
auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!AndC)
return SDValue();
const APInt &Mask = AndC->getAPIntValue();
unsigned ActiveBits = 0;
if (Mask.isMask()) {
ActiveBits = Mask.countTrailingOnes();
} else if (Mask.isShiftedMask()) {
ShAmt = Mask.countTrailingZeros();
APInt ShiftedMask = Mask.lshr(ShAmt);
ActiveBits = ShiftedMask.countTrailingOnes();
HasShiftedOffset = true;
} else
return SDValue();
ExtType = ISD::ZEXTLOAD;
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
}
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
SDValue SRL = N0;
if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
ShAmt = ConstShift->getZExtValue();
unsigned EVTBits = ExtVT.getSizeInBits();
// Is the shift amount a multiple of size of VT?
if ((ShAmt & (EVTBits-1)) == 0) {
N0 = N0.getOperand(0);
// Is the load width a multiple of size of VT?
if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
return SDValue();
}
// At this point, we must have a load or else we can't do the transform.
if (!isa<LoadSDNode>(N0)) return SDValue();
auto *LN0 = cast<LoadSDNode>(N0);
// Because a SRL must be assumed to *need* to zero-extend the high bits
// (as opposed to anyext the high bits), we can't combine the zextload
// lowering of SRL and an sextload.
if (LN0->getExtensionType() == ISD::SEXTLOAD)
return SDValue();
// If the shift amount is larger than the input type then we're not
// accessing any of the loaded bytes. If the load was a zextload/extload
// then the result of the shift+trunc is zero/undef (handled elsewhere).
if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
return SDValue();
// If the SRL is only used by a masking AND, we may be able to adjust
// the ExtVT to make the AND redundant.
SDNode *Mask = *(SRL->use_begin());
if (Mask->getOpcode() == ISD::AND &&
isa<ConstantSDNode>(Mask->getOperand(1))) {
const APInt &ShiftMask =
cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue();
if (ShiftMask.isMask()) {
EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
ShiftMask.countTrailingOnes());
// If the mask is smaller, recompute the type.
if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
ExtVT = MaskedVT;
}
}
}
}
// If the load is shifted left (and the result isn't shifted back right),
// we can fold the truncate through the shift.
unsigned ShLeftAmt = 0;
if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
ShLeftAmt = N01->getZExtValue();
N0 = N0.getOperand(0);
}
}
// If we haven't found a load, we can't narrow it.
if (!isa<LoadSDNode>(N0))
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
return SDValue();
auto AdjustBigEndianShift = [&](unsigned ShAmt) {
unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
return LVTStoreBits - EVTStoreBits - ShAmt;
};
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (DAG.getDataLayout().isBigEndian())
ShAmt = AdjustBigEndianShift(ShAmt);
EVT PtrType = N0.getOperand(1).getValueType();
uint64_t PtrOff = ShAmt / 8;
unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
SDLoc DL(LN0);
// The original load itself didn't wrap, so an offset within it doesn't.
SDNodeFlags Flags;
Flags.setNoUnsignedWrap(true);
SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
PtrType, LN0->getBasePtr(),
DAG.getConstant(PtrOff, DL, PtrType),
Flags);
AddToWorklist(NewPtr.getNode());
SDValue Load;
if (ExtType == ISD::NON_EXTLOAD)
Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
else
Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
NewAlign, LN0->getMemOperand()->getFlags(),
LN0->getAAInfo());
// Replace the old load's chain with the new load's chain.
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
// Shift the result left, if we've swallowed a left shift.
SDValue Result = Load;
if (ShLeftAmt != 0) {
EVT ShImmTy = getShiftAmountTy(Result.getValueType());
if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
ShImmTy = VT;
// If the shift amount is as large as the result size (but, presumably,
// no larger than the source) then the useful bits of the result are
// zero; we can't simply return the shortened shift, because the result
// of that operation is undefined.
SDLoc DL(N0);
if (ShLeftAmt >= VT.getSizeInBits())
Result = DAG.getConstant(0, DL, VT);
else
Result = DAG.getNode(ISD::SHL, DL, VT,
Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
}
if (HasShiftedOffset) {
// Recalculate the shift amount after it has been altered to calculate
// the offset.
if (DAG.getDataLayout().isBigEndian())
ShAmt = AdjustBigEndianShift(ShAmt);
// We're using a shifted mask, so the load now has an offset. This means we
// now need to shift right the mask to match the new load and then shift
// right the result of the AND.
const APInt &Mask = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
APInt ShiftedMask = Mask.lshr(ShAmt);
DAG.UpdateNodeOperands(N, Result, DAG.getConstant(ShiftedMask, DL, VT));
SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
SDValue Shifted = DAG.getNode(ISD::SHL, DL, VT, SDValue(N, 0),
ShiftC);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shifted);
DAG.UpdateNodeOperands(Shifted.getNode(), SDValue(N, 0), ShiftC);
}
// Return the new loaded value.
return Result;
}
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N1)->getVT();
unsigned VTBits = VT.getScalarSizeInBits();
unsigned EVTBits = EVT.getScalarSizeInBits();
if (N0.isUndef())
return DAG.getUNDEF(VT);
// fold (sext_in_reg c1) -> c1
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
// If the input is already sign extended, just drop the extension.
if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
return N0;
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
N0.getOperand(0), N1);
// fold (sext_in_reg (sext x)) -> (sext x)
// fold (sext_in_reg (aext x)) -> (sext x)
// if x is small enough.
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getScalarValueSizeInBits() <= EVTBits &&
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
}
// fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) {
if (!LegalOperations ||
TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
return DAG.getSignExtendVectorInReg(N0.getOperand(0), SDLoc(N), VT);
}
// fold (sext_in_reg (zext x)) -> (sext x)
// iff we are extending the source sign bit.
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getScalarValueSizeInBits() == EVTBits &&
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
}
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1)))
return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
// fold operands of sext_in_reg based on knowledge that the top bits are not
// demanded.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (sext_in_reg (load x)) -> (smaller sextload x)
// fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
if (SDValue NarrowLoad = ReduceLoadWidth(N))
return NarrowLoad;
// fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
// fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
// We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
if (N0.getOpcode() == ISD::SRL) {
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
// We can turn this into an SRA iff the input to the SRL is already sign
// extended enough.
unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
return DAG.getNode(ISD::SRA, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1));
}
}
// fold (sext_inreg (extload x)) -> (sextload x)
// If sextload is not supported by target, we can only do the combine when
// load has one use. Doing otherwise can block folding the extload with other
// extends that the target does support.
if (ISD::isEXTLoad(N0.getNode()) &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() &&
N0.hasOneUse()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), EVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
AddToWorklist(ExtLoad.getNode());
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse() &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), EVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
N0.getOperand(1), false))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
BSwap, N1);
}
return SDValue();
}
SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.isUndef())
return DAG.getUNDEF(VT);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
return SDValue();
}
SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.isUndef())
return DAG.getUNDEF(VT);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
return SDValue();
}
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
bool isLE = DAG.getDataLayout().isLittleEndian();
// noop truncate
if (N0.getValueType() == N->getValueType(0))
return N0;
// fold (truncate (truncate x)) -> (truncate x)
if (N0.getOpcode() == ISD::TRUNCATE)
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
// fold (truncate c1) -> c1
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
if (C.getNode() != N)
return C;
}
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x
if (N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND ||
N0.getOpcode() == ISD::ANY_EXTEND) {
// if the source is smaller than the dest, we still need an extend.
if (N0.getOperand(0).getValueType().bitsLT(VT))
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
// if the source is larger than the dest, than we just need the truncate.
if (N0.getOperand(0).getValueType().bitsGT(VT))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
// if the source and dest are the same type, we can drop both the extend
// and the truncate.
return N0.getOperand(0);
}
// If this is anyext(trunc), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
return SDValue();
// Fold extract-and-trunc into a narrow extract. For example:
// i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
// i32 y = TRUNCATE(i64 x)
// -- becomes --
// v16i8 b = BITCAST (v2i64 val)
// i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
//
// Note: We only run this optimization after type legalization (which often
// creates this pattern) and before operation legalization after which
// we need to be more careful about the vector instructions that we generate.
if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
EVT VecTy = N0.getOperand(0).getValueType();
EVT ExTy = N0.getValueType();
EVT TrTy = N->getValueType(0);
unsigned NumElem = VecTy.getVectorNumElements();
unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
SDValue EltNo = N0->getOperand(1);
if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
SDLoc DL(N);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
DAG.getBitcast(NVT, N0.getOperand(0)),
DAG.getConstant(Index, DL, IndexTy));
}
}
// trunc (select c, a, b) -> select c, (trunc a), (trunc b)
if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
EVT SrcVT = N0.getValueType();
if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
TLI.isTruncateFree(SrcVT, VT)) {
SDLoc SL(N0);
SDValue Cond = N0.getOperand(0);
SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
}
}
// trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) &&
TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
SDValue Amt = N0.getOperand(1);
KnownBits Known;
DAG.computeKnownBits(Amt, Known);
unsigned Size = VT.getScalarSizeInBits();
if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
SDLoc SL(N);
EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
if (AmtVT != Amt.getValueType()) {
Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
AddToWorklist(Amt.getNode());
}
return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
}
}
// Fold a series of buildvector, bitcast, and truncate if possible.
// For example fold
// (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
// (2xi32 (buildvector x, y)).
if (Level == AfterLegalizeVectorOps && VT.isVector() &&
N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
N0.getOperand(0).hasOneUse()) {
SDValue BuildVect = N0.getOperand(0);
EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
EVT TruncVecEltTy = VT.getVectorElementType();
// Check that the element types match.
if (BuildVectEltTy == TruncVecEltTy) {
// Now we only need to compute the offset of the truncated elements.
unsigned BuildVecNumElts = BuildVect.getNumOperands();
unsigned TruncVecNumElts = VT.getVectorNumElements();
unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
"Invalid number of elements");
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
Opnds.push_back(BuildVect.getOperand(i));
return DAG.getBuildVector(VT, SDLoc(N), Opnds);
}
}
// See if we can simplify the input to this truncate through knowledge that
// only the low bits are being used.
// For example "trunc (or (shl x, 8), y)" // -> trunc y
// Currently we only perform this optimization on scalars because vectors
// may have different active low bits.
if (!VT.isVector()) {
APInt Mask =
APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
}
// fold (truncate (load x)) -> (smaller load x)
// fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
if (SDValue Reduced = ReduceLoadWidth(N))
return Reduced;
// Handle the case where the load remains an extending load even
// after truncation.
if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (!LN0->isVolatile() &&
LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
VT, LN0->getChain(), LN0->getBasePtr(),
LN0->getMemoryVT(),
LN0->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
return NewLoad;
}
}
}
// fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
// where ... are all 'undef'.
if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
SmallVector<EVT, 8> VTs;
SDValue V;
unsigned Idx = 0;
unsigned NumDefs = 0;
for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
SDValue X = N0.getOperand(i);
if (!X.isUndef()) {
V = X;
Idx = i;
NumDefs++;
}
// Stop if more than one members are non-undef.
if (NumDefs > 1)
break;
VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
VT.getVectorElementType(),
X.getValueType().getVectorNumElements()));
}
if (NumDefs == 0)
return DAG.getUNDEF(VT);
if (NumDefs == 1) {
assert(V.getNode() && "The single defined operand is empty!");
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
if (i != Idx) {
Opnds.push_back(DAG.getUNDEF(VTs[i]));
continue;
}
SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
AddToWorklist(NV.getNode());
Opnds.push_back(NV);
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
}
}
// Fold truncate of a bitcast of a vector to an extract of the low vector
// element.
//
// e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
SDValue VecSrc = N0.getOperand(0);
EVT SrcVT = VecSrc.getValueType();
if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
(!LegalOperations ||
TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
SDLoc SL(N);
EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1;
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
VecSrc, DAG.getConstant(Idx, SL, IdxVT));
}
}
// Simplify the operands using demanded-bits information.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
// (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
// When the adde's carry is not used.
if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
(!LegalOperations || TLI.isOperationLegal(N0.getOpcode(), VT))) {
SDLoc SL(N);
auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
auto VTs = DAG.getVTList(VT, N0->getValueType(1));
return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
}
// fold (truncate (extract_subvector(ext x))) ->
// (extract_subvector x)
// TODO: This can be generalized to cover cases where the truncate and extract
// do not fully cancel each other out.
if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::SIGN_EXTEND ||
N00.getOpcode() == ISD::ZERO_EXTEND ||
N00.getOpcode() == ISD::ANY_EXTEND) {
if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
VT.getVectorElementType())
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
N00.getOperand(0), N0.getOperand(1));
}
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
return SDValue();
}
static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
SDValue Elt = N->getOperand(i);
if (Elt.getOpcode() != ISD::MERGE_VALUES)
return Elt.getNode();
return Elt.getOperand(Elt.getResNo()).getNode();
}
/// build_pair (load, load) -> load
/// if load locations are consecutive.
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
assert(N->getOpcode() == ISD::BUILD_PAIR);
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
// A BUILD_PAIR is always having the least significant part in elt 0 and the
// most significant part in elt 1. So when combining into one large load, we
// need to consider the endianness.
if (DAG.getDataLayout().isBigEndian())
std::swap(LD1, LD2);
if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
LD1->getAddressSpace() != LD2->getAddressSpace())
return SDValue();
EVT LD1VT = LD1->getValueType(0);
unsigned LD1Bytes = LD1VT.getStoreSize();
if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
unsigned Align = LD1->getAlignment();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
VT.getTypeForEVT(*DAG.getContext()));
if (NewAlign <= Align &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
LD1->getPointerInfo(), Align);
}
return SDValue();
}
static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
// On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
// and Lo parts; on big-endian machines it doesn't.
return DAG.getDataLayout().isBigEndian() ? 1 : 0;
}
static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI) {
// If this is not a bitcast to an FP type or if the target doesn't have
// IEEE754-compliant FP logic, we're done.
EVT VT = N->getValueType(0);
if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
return SDValue();
// TODO: Handle cases where the integer constant is a different scalar
// bitwidth to the FP.
SDValue N0 = N->getOperand(0);
EVT SourceVT = N0.getValueType();
if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
return SDValue();
unsigned FPOpcode;
APInt SignMask;
switch (N0.getOpcode()) {
case ISD::AND:
FPOpcode = ISD::FABS;
SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
break;
case ISD::XOR:
FPOpcode = ISD::FNEG;
SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
break;
case ISD::OR:
FPOpcode = ISD::FABS;
SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
break;
default:
return SDValue();
}
// Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
// Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
// Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
// fneg (fabs X)
SDValue LogicOp0 = N0.getOperand(0);
ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
LogicOp0.getOpcode() == ISD::BITCAST &&
LogicOp0.getOperand(0).getValueType() == VT) {
SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
NumFPLogicOpsConv++;
if (N0.getOpcode() == ISD::OR)
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
return FPOp;
}
return SDValue();
}
SDValue DAGCombiner::visitBITCAST(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.isUndef())
return DAG.getUNDEF(VT);
// If the input is a BUILD_VECTOR with all constant elements, fold this now.
// Only do this before legalize types, since we might create an illegal
// scalar type. Even if we knew we wouldn't create an illegal scalar type
// we can only do this before legalize ops, since the target maybe
// depending on the bitcast.
// First check to see if this is all constant.
if (!LegalTypes &&
N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
VT.isVector() && cast<BuildVectorSDNode>(N0)->isConstant())
return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
VT.getVectorElementType());
// If the input is a constant, let getNode fold it.
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
// If we can't allow illegal operations, we need to check that this is just
// a fp -> int or int -> conversion and that the resulting operation will
// be legal.
if (!LegalOperations ||
(isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
(isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
TLI.isOperationLegal(ISD::Constant, VT))) {
SDValue C = DAG.getBitcast(VT, N0);
if (C.getNode() != N)
return C;
}
}
// (conv (conv x, t1), t2) -> (conv x, t2)
if (N0.getOpcode() == ISD::BITCAST)
return DAG.getBitcast(VT, N0.getOperand(0));
// fold (conv (load x)) -> (load (conv*)x)
// If the resultant load doesn't need a higher alignment than the original!
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not remove the cast if the types differ in endian layout.
TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
// If the load is volatile, we only want to change the load type if the
// resulting load is legal. Otherwise we might increase the number of
// memory accesses. We don't care if the original type was legal or not
// as we assume software couldn't rely on the number of accesses of an
// illegal type.
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isOperationLegal(ISD::LOAD, VT)) &&
TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
unsigned OrigAlign = LN0->getAlignment();
bool Fast = false;
if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
LN0->getAddressSpace(), OrigAlign, &Fast) &&
Fast) {
SDValue Load =
DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
LN0->getPointerInfo(), OrigAlign,
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
return Load;
}
}
if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
return V;
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
//
// For ppc_fp128:
// fold (bitcast (fneg x)) ->
// flipbit = signbit
// (xor (bitcast x) (build_pair flipbit, flipbit))
//
// fold (bitcast (fabs x)) ->
// flipbit = (and (extract_element (bitcast x), 0), signbit)
// (xor (bitcast x) (build_pair flipbit, flipbit))
// This often reduces constant pool loads.
if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
(N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
N0.getNode()->hasOneUse() && VT.isInteger() &&
!VT.isVector() && !N0.getValueType().isVector()) {
SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
AddToWorklist(NewConv.getNode());
SDLoc DL(N);
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
assert(VT.getSizeInBits() == 128);
SDValue SignBit = DAG.getConstant(
APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
SDValue FlipBit;
if (N0.getOpcode() == ISD::FNEG) {
FlipBit = SignBit;
AddToWorklist(FlipBit.getNode());
} else {
assert(N0.getOpcode() == ISD::FABS);
SDValue Hi =
DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
SDLoc(NewConv)));
AddToWorklist(Hi.getNode());
FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
AddToWorklist(FlipBit.getNode());
}
SDValue FlipBits =
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
AddToWorklist(FlipBits.getNode());
return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
}
APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
if (N0.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::XOR, DL, VT,
NewConv, DAG.getConstant(SignBit, DL, VT));
assert(N0.getOpcode() == ISD::FABS);
return DAG.getNode(ISD::AND, DL, VT,
NewConv, DAG.getConstant(~SignBit, DL, VT));
}
// fold (bitconvert (fcopysign cst, x)) ->
// (or (and (bitconvert x), sign), (and cst, (not sign)))
// Note that we don't handle (copysign x, cst) because this can always be
// folded to an fneg or fabs.
//
// For ppc_fp128:
// fold (bitcast (fcopysign cst, x)) ->
// flipbit = (and (extract_element
// (xor (bitcast cst), (bitcast x)), 0),
// signbit)
// (xor (bitcast cst) (build_pair flipbit, flipbit))
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
VT.isInteger() && !VT.isVector()) {
unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
if (isTypeLegal(IntXVT)) {
SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
AddToWorklist(X.getNode());
// If X has a different width than the result/lhs, sext it or truncate it.
unsigned VTWidth = VT.getSizeInBits();
if (OrigXWidth < VTWidth) {
X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
AddToWorklist(X.getNode());
} else if (OrigXWidth > VTWidth) {
// To get the sign bit in the right place, we have to shift it right
// before truncating.
SDLoc DL(X);
X = DAG.getNode(ISD::SRL, DL,
X.getValueType(), X,
DAG.getConstant(OrigXWidth-VTWidth, DL,
X.getValueType()));
AddToWorklist(X.getNode());
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
AddToWorklist(X.getNode());
}
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
AddToWorklist(Cst.getNode());
SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
AddToWorklist(X.getNode());
SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
AddToWorklist(XorResult.getNode());
SDValue XorResult64 = DAG.getNode(
ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
SDLoc(XorResult)));
AddToWorklist(XorResult64.getNode());
SDValue FlipBit =
DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
AddToWorklist(FlipBit.getNode());
SDValue FlipBits =
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
AddToWorklist(FlipBits.getNode());
return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
}
APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
X = DAG.getNode(ISD::AND, SDLoc(X), VT,
X, DAG.getConstant(SignBit, SDLoc(X), VT));
AddToWorklist(X.getNode());
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
AddToWorklist(Cst.getNode());
return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
}
}
// bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
if (N0.getOpcode() == ISD::BUILD_PAIR)
if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
return CombineLD;
// Remove double bitcasts from shuffles - this is often a legacy of
// XformToShuffleWithZero being used to combine bitmaskings (of
// float vectors bitcast to integer vectors) into shuffles.
// bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
N0->getOpcode() == ISD::VECTOR_SHUFFLE &&
VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
!(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
// If operands are a bitcast, peek through if it casts the original VT.
// If operands are a constant, just bitcast back to original VT.
auto PeekThroughBitcast = [&](SDValue Op) {
if (Op.getOpcode() == ISD::BITCAST &&
Op.getOperand(0).getValueType() == VT)
return SDValue(Op.getOperand(0));
if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
return DAG.getBitcast(VT, Op);
return SDValue();
};
// FIXME: If either input vector is bitcast, try to convert the shuffle to
// the result type of this bitcast. This would eliminate at least one
// bitcast. See the transform in InstCombine.
SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
if (!(SV0 && SV1))
return SDValue();
int MaskScale =
VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
SmallVector<int, 8> NewMask;
for (int M : SVN->getMask())
for (int i = 0; i != MaskScale; ++i)
NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
if (!LegalMask) {
std::swap(SV0, SV1);
ShuffleVectorSDNode::commuteMask(NewMask);
LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
}
if (LegalMask)
return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
}
return SDValue();
}
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
EVT VT = N->getValueType(0);
return CombineConsecutiveLoads(N, VT);
}
/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
/// operands. DstEltVT indicates the destination element value type.
SDValue DAGCombiner::
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
// If this is already the right type, we're done.
if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
unsigned SrcBitSize = SrcEltVT.getSizeInBits();
unsigned DstBitSize = DstEltVT.getSizeInBits();
// If this is a conversion of N elements of one type to N elements of another
// type, convert each element. This handles FP<->INT cases.
if (SrcBitSize == DstBitSize) {
SmallVector<SDValue, 8> Ops;
for (SDValue Op : BV->op_values()) {
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated. Make that explicit here.
if (Op.getValueType() != SrcEltVT)
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
Ops.push_back(DAG.getBitcast(DstEltVT, Op));
AddToWorklist(Ops.back().getNode());
}
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
BV->getValueType(0).getVectorNumElements());
return DAG.getBuildVector(VT, SDLoc(BV), Ops);
}
// Otherwise, we're growing or shrinking the elements. To avoid having to
// handle annoying details of growing/shrinking FP values, we convert them to
// int first.
if (SrcEltVT.isFloatingPoint()) {
// Convert the input float vector to a int vector where the elements are the
// same sizes.
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
SrcEltVT = IntVT;
}
// Now we know the input is an integer vector. If the output is a FP type,
// convert to integer first, then to FP of the right size.
if (DstEltVT.isFloatingPoint()) {
EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
// Next, convert to FP elements of the same size.
return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
}
SDLoc DL(BV);
// Okay, we know the src/dst types are both integers of differing types.
// Handling growing first.
assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
if (SrcBitSize < DstBitSize) {
unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e;
i += NumInputsPerOutput) {
bool isLE = DAG.getDataLayout().isLittleEndian();
APInt NewBits = APInt(DstBitSize, 0);
bool EltIsUndef = true;
for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
// Shift the previously computed bits over.
NewBits <<= SrcBitSize;
SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
if (Op.isUndef()) continue;
EltIsUndef = false;
NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
zextOrTrunc(SrcBitSize).zext(DstBitSize);
}
if (EltIsUndef)
Ops.push_back(DAG.getUNDEF(DstEltVT));
else
Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
}
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
return DAG.getBuildVector(VT, DL, Ops);
}
// Finally, this must be the case where we are shrinking elements: each input
// turns into multiple outputs.
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
NumOutputsPerInput*BV->getNumOperands());
SmallVector<SDValue, 8> Ops;
for (const SDValue &Op : BV->op_values()) {
if (Op.isUndef()) {
Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
continue;
}
APInt OpVal = cast<ConstantSDNode>(Op)->
getAPIntValue().zextOrTrunc(SrcBitSize);
for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
APInt ThisVal = OpVal.trunc(DstBitSize);
Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
OpVal.lshrInPlace(DstBitSize);
}
// For big endian targets, swap the order of the pieces of each element.
if (DAG.getDataLayout().isBigEndian())
std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
}
return DAG.getBuildVector(VT, DL, Ops);
}
static bool isContractable(SDNode *N) {
SDNodeFlags F = N->getFlags();
return F.hasAllowContract() || F.hasAllowReassociation();
}
/// Try to perform FMA combining on a given FADD node.
SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const TargetOptions &Options = DAG.getTarget().Options;
// Floating-point multiply-add with intermediate rounding.
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
SDNodeFlags Flags = N->getFlags();
bool CanFuse = Options.UnsafeFPMath || isContractable(N);
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
CanFuse || HasFMAD);
// If the addition is not contractable, do not combine.
if (!AllowFusionGlobally && !isContractable(N))
return SDValue();
const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
// Is the node an FMUL and contractable either due to global flags or
// SDNodeFlags.
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
if (N.getOpcode() != ISD::FMUL)
return false;
return AllowFusionGlobally || isContractable(N.getNode());
};
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
if (N0.getNode()->use_size() > N1.getNode()->use_size())
std::swap(N0, N1);
}
// fold (fadd (fmul x, y), z) -> (fma x, y, z)
if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1), N1, Flags);
}
// fold (fadd x, (fmul y, z)) -> (fma y, z, x)
// Note: Commutes FADD operands.
if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(0), N1.getOperand(1), N0, Flags);
}
// Look through FP_EXTEND nodes to do more combining.
// fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (isContractableFMUL(N00) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)), N1, Flags);
}
}
// fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
// Note: Commutes FADD operands.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (isContractableFMUL(N10) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(1)), N0, Flags);
}
}
// More folding opportunities when target permits.
if (Aggressive) {
// fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
if (CanFuse &&
N0.getOpcode() == PreferredFusedOpcode &&
N0.getOperand(2).getOpcode() == ISD::FMUL &&
N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(2).getOperand(0),
N0.getOperand(2).getOperand(1),
N1, Flags), Flags);
}
// fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
if (CanFuse &&
N1->getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FMUL &&
N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(0), N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(2).getOperand(0),
N1.getOperand(2).getOperand(1),
N0, Flags), Flags);
}
// fold (fadd (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y, (fma (fpext u), (fpext v), z))
auto FoldFAddFMAFPExtFMul = [&] (
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
SDNodeFlags Flags) {
return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
Z, Flags), Flags);
};
if (N0.getOpcode() == PreferredFusedOpcode) {
SDValue N02 = N0.getOperand(2);
if (N02.getOpcode() == ISD::FP_EXTEND) {
SDValue N020 = N02.getOperand(0);
if (isContractableFMUL(N020) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
N020.getOperand(0), N020.getOperand(1),
N1, Flags);
}
}
}
// fold (fadd (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
auto FoldFAddFPExtFMAFMul = [&] (
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
SDNodeFlags Flags) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
Z, Flags), Flags);
};
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == PreferredFusedOpcode) {
SDValue N002 = N00.getOperand(2);
if (isContractableFMUL(N002) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
N002.getOperand(0), N002.getOperand(1),
N1, Flags);
}
}
}
// fold (fadd x, (fma y, z, (fpext (fmul u, v)))
// -> (fma y, z, (fma (fpext u), (fpext v), x))
if (N1.getOpcode() == PreferredFusedOpcode) {
SDValue N12 = N1.getOperand(2);
if (N12.getOpcode() == ISD::FP_EXTEND) {
SDValue N120 = N12.getOperand(0);
if (isContractableFMUL(N120) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
N120.getOperand(0), N120.getOperand(1),
N0, Flags);
}
}
}
// fold (fadd x, (fpext (fma y, z, (fmul u, v)))
// -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (N10.getOpcode() == PreferredFusedOpcode) {
SDValue N102 = N10.getOperand(2);
if (isContractableFMUL(N102) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
N102.getOperand(0), N102.getOperand(1),
N0, Flags);
}
}
}
}
return SDValue();
}
/// Try to perform FMA combining on a given FSUB node.
SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const TargetOptions &Options = DAG.getTarget().Options;
// Floating-point multiply-add with intermediate rounding.
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
const SDNodeFlags Flags = N->getFlags();
bool CanFuse = Options.UnsafeFPMath || isContractable(N);
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
CanFuse || HasFMAD);
// If the subtraction is not contractable, do not combine.
if (!AllowFusionGlobally && !isContractable(N))
return SDValue();
const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
// Is the node an FMUL and contractable either due to global flags or
// SDNodeFlags.
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
if (N.getOpcode() != ISD::FMUL)
return false;
return AllowFusionGlobally || isContractable(N.getNode());
};
// fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
}
// fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
// Note: Commutes FSUB operands.
if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
N1.getOperand(0)),
N1.getOperand(1), N0, Flags);
}
// fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
(Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
SDValue N00 = N0.getOperand(0).getOperand(0);
SDValue N01 = N0.getOperand(0).getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
}
// Look through FP_EXTEND nodes to do more combining.
// fold (fsub (fpext (fmul x, y)), z)
// -> (fma (fpext x), (fpext y), (fneg z))
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (isContractableFMUL(N00) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
}
}
// fold (fsub x, (fpext (fmul y, z)))
// -> (fma (fneg (fpext y)), (fpext z), x)
// Note: Commutes FSUB operands.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (isContractableFMUL(N10) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(0))),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(1)),
N0, Flags);
}
}
// fold (fsub (fpext (fneg (fmul, x, y))), z)
// -> (fneg (fma (fpext x), (fpext y), z))
// Note: This could be removed with appropriate canonicalization of the
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
// from implementing the canonicalization in visitFSUB.
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FNEG) {
SDValue N000 = N00.getOperand(0);
if (isContractableFMUL(N000) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(1)),
N1, Flags));
}
}
}
// fold (fsub (fneg (fpext (fmul, x, y))), z)
// -> (fneg (fma (fpext x)), (fpext y), z)
// Note: This could be removed with appropriate canonicalization of the
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
// from implementing the canonicalization in visitFSUB.
if (N0.getOpcode() == ISD::FNEG) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FP_EXTEND) {
SDValue N000 = N00.getOperand(0);
if (isContractableFMUL(N000) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) {
return DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(1)),
N1, Flags));
}
}
}
// More folding opportunities when target permits.
if (Aggressive) {
// fold (fsub (fma x, y, (fmul u, v)), z)
// -> (fma x, y (fma u, v, (fneg z)))
if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
N0.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(2).getOperand(0),
N0.getOperand(2).getOperand(1),
DAG.getNode(ISD::FNEG, SL, VT,
N1), Flags), Flags);
}
// fold (fsub x, (fma y, z, (fmul u, v)))
// -> (fma (fneg y), z, (fma (fneg u), v, x))
if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
isContractableFMUL(N1.getOperand(2))) {
SDValue N20 = N1.getOperand(2).getOperand(0);
SDValue N21 = N1.getOperand(2).getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
N1.getOperand(0)),
N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N20),
N21, N0, Flags), Flags);
}
// fold (fsub (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
if (N0.getOpcode() == PreferredFusedOpcode) {
SDValue N02 = N0.getOperand(2);
if (N02.getOpcode() == ISD::FP_EXTEND) {
SDValue N020 = N02.getOperand(0);
if (isContractableFMUL(N020) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N020.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N020.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT,
N1), Flags), Flags);
}
}
}
// fold (fsub (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y),
// (fma (fpext u), (fpext v), (fneg z)))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == PreferredFusedOpcode) {
SDValue N002 = N00.getOperand(2);
if (isContractableFMUL(N002) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N002.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N002.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT,
N1), Flags), Flags);
}
}
}
// fold (fsub x, (fma y, z, (fpext (fmul u, v))))
// -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
if (N1.getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
SDValue N120 = N1.getOperand(2).getOperand(0);
if (isContractableFMUL(N120) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
SDValue N1200 = N120.getOperand(0);
SDValue N1201 = N120.getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL,
VT, N1200)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N1201),
N0, Flags), Flags);
}
}
// fold (fsub x, (fpext (fma y, z, (fmul u, v))))
// -> (fma (fneg (fpext y)), (fpext z),
// (fma (fneg (fpext u)), (fpext v), x))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N1.getOpcode() == ISD::FP_EXTEND &&
N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
SDValue CvtSrc = N1.getOperand(0);
SDValue N100 = CvtSrc.getOperand(0);
SDValue N101 = CvtSrc.getOperand(1);
SDValue N102 = CvtSrc.getOperand(2);
if (isContractableFMUL(N102) &&
TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) {
SDValue N1020 = N102.getOperand(0);
SDValue N1021 = N102.getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N100)),
DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL,
VT, N1020)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N1021),
N0, Flags), Flags);
}
}
}
return SDValue();
}
/// Try to perform FMA combining on a given FMUL node based on the distributive
/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
/// subtraction instead of addition).
SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const SDNodeFlags Flags = N->getFlags();
assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
const TargetOptions &Options = DAG.getTarget().Options;
// The transforms below are incorrect when x == 0 and y == inf, because the
// intermediate multiplication produces a nan.
if (!Options.NoInfsFPMath)
return SDValue();
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// Floating-point multiply-add with intermediate rounding. This can result
// in a less precise result due to the changed rounding order.
bool HasFMAD = Options.UnsafeFPMath &&
(LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
// fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
// fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
if (C->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
Y, Flags);
if (C->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
}
}
return SDValue();
};
if (SDValue FMA = FuseFADD(N0, N1, Flags))
return FMA;
if (SDValue FMA = FuseFADD(N1, N0, Flags))
return FMA;
// fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
// fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
// fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
// fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
if (C0->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
Y, Flags);
if (C0->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
}
if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
if (C1->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
if (C1->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
Y, Flags);
}
}
return SDValue();
};
if (SDValue FMA = FuseFSUB(N0, N1, Flags))
return FMA;
if (SDValue FMA = FuseFSUB(N1, N0, Flags))
return FMA;
return SDValue();
}
SDValue DAGCombiner::visitFADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fadd c1, c2) -> c1 + c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
// N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
if (N1C && N1C->isZero())
if (N1C->isNegative() || Options.UnsafeFPMath || Flags.hasNoSignedZeros())
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (fadd A, (fneg B)) -> (fsub A, B)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
return DAG.getNode(ISD::FSUB, DL, VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations), Flags);
// fold (fadd (fneg A), B) -> (fsub B, A)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
return DAG.getNode(ISD::FSUB, DL, VT, N1,
GetNegatedExpression(N0, DAG, LegalOperations), Flags);
auto isFMulNegTwo = [](SDValue FMul) {
if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
return false;
auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
return C && C->isExactlyValue(-2.0);
};
// fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
if (isFMulNegTwo(N0)) {
SDValue B = N0.getOperand(0);
SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags);
}
// fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
if (isFMulNegTwo(N1)) {
SDValue B = N1.getOperand(0);
SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags);
}
// No FP constant should be created after legalization as Instruction
// Selection pass has a hard time dealing with FP constants.
bool AllowNewConst = (Level < AfterLegalizeDAG);
// If 'unsafe math' or nnan is enabled, fold lots of things.
if ((Options.UnsafeFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
// If allowed, fold (fadd (fneg x), x) -> 0.0
if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
return DAG.getConstantFP(0.0, DL, VT);
// If allowed, fold (fadd x, (fneg x)) -> 0.0
if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
return DAG.getConstantFP(0.0, DL, VT);
}
// If 'unsafe math' or reassoc and nsz, fold lots of things.
// TODO: break out portions of the transformations below for which Unsafe is
// considered and which do not require both nsz and reassoc
if ((Options.UnsafeFPMath ||
(Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
AllowNewConst) {
// fadd (fadd x, c1), c2 -> fadd x, c1 + c2
if (N1CFP && N0.getOpcode() == ISD::FADD &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags);
return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags);
}
// We can fold chains of FADD's of the same value into multiplications.
// This transform is not safe in general because we are reducing the number
// of rounding steps.
if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
if (N0.getOpcode() == ISD::FMUL) {
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
// (fadd (fmul x, c), x) -> (fmul x, c+1)
if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
}
// (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
N1.getOperand(0) == N1.getOperand(1) &&
N0.getOperand(0) == N1.getOperand(0)) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
DAG.getConstantFP(2.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
}
}
if (N1.getOpcode() == ISD::FMUL) {
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
// (fadd x, (fmul x, c)) -> (fmul x, c+1)
if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
}
// (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
N0.getOperand(0) == N0.getOperand(1) &&
N1.getOperand(0) == N0.getOperand(0)) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
DAG.getConstantFP(2.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
}
}
if (N0.getOpcode() == ISD::FADD) {
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
// (fadd (fadd x, x), x) -> (fmul x, 3.0)
if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
(N0.getOperand(0) == N1)) {
return DAG.getNode(ISD::FMUL, DL, VT,
N1, DAG.getConstantFP(3.0, DL, VT), Flags);
}
}
if (N1.getOpcode() == ISD::FADD) {
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
// (fadd x, (fadd x, x)) -> (fmul x, 3.0)
if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
N1.getOperand(0) == N0) {
return DAG.getNode(ISD::FMUL, DL, VT,
N0, DAG.getConstantFP(3.0, DL, VT), Flags);
}
}
// (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
N0.getOperand(0) == N0.getOperand(1) &&
N1.getOperand(0) == N1.getOperand(1) &&
N0.getOperand(0) == N1.getOperand(0)) {
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
DAG.getConstantFP(4.0, DL, VT), Flags);
}
}
} // enable-unsafe-fp-math
// FADD -> FMA combines:
if (SDValue Fused = visitFADDForFMACombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fsub c1, c2) -> c1-c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// (fsub A, 0) -> A
if (N1CFP && N1CFP->isZero()) {
if (!N1CFP->isNegative() || Options.UnsafeFPMath ||
Flags.hasNoSignedZeros()) {
return N0;
}
}
if (N0 == N1) {
// (fsub x, x) -> 0.0
if (Options.UnsafeFPMath || Flags.hasNoNaNs())
return DAG.getConstantFP(0.0f, DL, VT);
}
// (fsub -0.0, N1) -> -N1
if (N0CFP && N0CFP->isZero()) {
if (N0CFP->isNegative() ||
(Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
return GetNegatedExpression(N1, DAG, LegalOperations);
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
}
}
if ((Options.UnsafeFPMath ||
(Flags.hasAllowReassociation() && Flags.hasNoSignedZeros()))
&& N1.getOpcode() == ISD::FADD) {
// X - (X + Y) -> -Y
if (N0 == N1->getOperand(0))
return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags);
// X - (Y + X) -> -Y
if (N0 == N1->getOperand(1))
return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags);
}
// fold (fsub A, (fneg B)) -> (fadd A, B)
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
return DAG.getNode(ISD::FADD, DL, VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations), Flags);
// FSUB -> FMA combines:
if (SDValue Fused = visitFSUBForFMACombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector()) {
// This just handles C1 * C2 for vectors. Other vector folds are below.
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
}
// fold (fmul c1, c2) -> c1*c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
// canonicalize constant to RHS
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
// fold (fmul A, 1.0) -> A
if (N1CFP && N1CFP->isExactlyValue(1.0))
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (Options.UnsafeFPMath ||
(Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) {
// fold (fmul A, 0) -> 0
if (N1CFP && N1CFP->isZero())
return N1;
}
if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
// fmul (fmul X, C1), C2 -> fmul X, C1 * C2
if (isConstantFPBuildVectorOrConstantFP(N1) &&
N0.getOpcode() == ISD::FMUL) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
// Avoid an infinite loop by making sure that N00 is not a constant
// (the inner multiply has not been constant folded yet).
if (isConstantFPBuildVectorOrConstantFP(N01) &&
!isConstantFPBuildVectorOrConstantFP(N00)) {
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
}
}
// Match a special-case: we convert X * 2.0 into fadd.
// fmul (fadd X, X), C -> fmul X, 2.0 * C
if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
N0.getOperand(0) == N0.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
}
}
// fold (fmul X, 2.0) -> (fadd X, X)
if (N1CFP && N1CFP->isExactlyValue(+2.0))
return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
// fold (fmul X, -1.0) -> (fneg X)
if (N1CFP && N1CFP->isExactlyValue(-1.0))
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, DL, VT, N0);
// fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
return DAG.getNode(ISD::FMUL, DL, VT,
GetNegatedExpression(N0, DAG, LegalOperations),
GetNegatedExpression(N1, DAG, LegalOperations),
Flags);
}
}
// fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
// fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
(N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
TLI.isOperationLegal(ISD::FABS, VT)) {
SDValue Select = N0, X = N1;
if (Select.getOpcode() != ISD::SELECT)
std::swap(Select, X);
SDValue Cond = Select.getOperand(0);
auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
if (TrueOpnd && FalseOpnd &&
Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
switch (CC) {
default: break;
case ISD::SETOLT:
case ISD::SETULT:
case ISD::SETOLE:
case ISD::SETULE:
case ISD::SETLT:
case ISD::SETLE:
std::swap(TrueOpnd, FalseOpnd);
LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETUGT:
case ISD::SETOGE:
case ISD::SETUGE:
case ISD::SETGT:
case ISD::SETGE:
if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, DL, VT,
DAG.getNode(ISD::FABS, DL, VT, X));
if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
return DAG.getNode(ISD::FABS, DL, VT, X);
break;
}
}
}
// FMUL -> FMA combines:
if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFMA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
// FMA nodes have flags that propagate to the created nodes.
const SDNodeFlags Flags = N->getFlags();
bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);
// Constant fold FMA.
if (isa<ConstantFPSDNode>(N0) &&
isa<ConstantFPSDNode>(N1) &&
isa<ConstantFPSDNode>(N2)) {
return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
}
if (UnsafeFPMath) {
if (N0CFP && N0CFP->isZero())
return N2;
if (N1CFP && N1CFP->isZero())
return N2;
}
// TODO: The FMA node should have flags that propagate to these nodes.
if (N0CFP && N0CFP->isExactlyValue(1.0))
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
if (N1CFP && N1CFP->isExactlyValue(1.0))
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
// Canonicalize (fma c, x, y) -> (fma x, c, y)
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
if (UnsafeFPMath) {
// (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
Flags), Flags);
}
// (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
if (N0.getOpcode() == ISD::FMUL &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
return DAG.getNode(ISD::FMA, DL, VT,
N0.getOperand(0),
DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
Flags),
N2);
}
}
// (fma x, 1, y) -> (fadd x, y)
// (fma x, -1, y) -> (fadd (fneg x), y)
if (N1CFP) {
if (N1CFP->isExactlyValue(1.0))
// TODO: The FMA node should have flags that propagate to this node.
return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
if (N1CFP->isExactlyValue(-1.0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
AddToWorklist(RHSNeg.getNode());
// TODO: The FMA node should have flags that propagate to this node.
return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
}
// fma (fneg x), K, y -> fma x -K, y
if (N0.getOpcode() == ISD::FNEG &&
(TLI.isOperationLegal(ISD::ConstantFP, VT) ||
(N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT)))) {
return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2);
}
}
if (UnsafeFPMath) {
// (fma x, c, x) -> (fmul x, (c+1))
if (N1CFP && N0 == N2) {
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getNode(ISD::FADD, DL, VT, N1,
DAG.getConstantFP(1.0, DL, VT), Flags),
Flags);
}
// (fma x, c, (fneg x)) -> (fmul x, (c-1))
if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getNode(ISD::FADD, DL, VT, N1,
DAG.getConstantFP(-1.0, DL, VT), Flags),
Flags);
}
}
return SDValue();
}
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal.
// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
// Notice that this is not always beneficial. One reason is different targets
// may have different costs for FDIV and FMUL, so sometimes the cost of two
// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
const SDNodeFlags Flags = N->getFlags();
if (!UnsafeMath && !Flags.hasAllowReciprocal())
return SDValue();
// Skip if current node is a reciprocal.
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
if (N0CFP && N0CFP->isExactlyValue(1.0))
return SDValue();
// Exit early if the target does not want this transform or if there can't
// possibly be enough uses of the divisor to make the transform worthwhile.
SDValue N1 = N->getOperand(1);
unsigned MinUses = TLI.combineRepeatedFPDivisors();
if (!MinUses || N1->use_size() < MinUses)
return SDValue();
// Find all FDIV users of the same divisor.
// Use a set because duplicates may be present in the user list.
SetVector<SDNode *> Users;
for (auto *U : N1->uses()) {
if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
// This division is eligible for optimization only if global unsafe math
// is enabled or if this division allows reciprocal formation.
if (UnsafeMath || U->getFlags().hasAllowReciprocal())
Users.insert(U);
}
}
// Now that we have the actual number of divisor uses, make sure it meets
// the minimum threshold specified by the target.
if (Users.size() < MinUses)
return SDValue();
EVT VT = N->getValueType(0);
SDLoc DL(N);
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
// Dividend / Divisor -> Dividend * Reciprocal
for (auto *U : Users) {
SDValue Dividend = U->getOperand(0);
if (Dividend != FPOne) {
SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
Reciprocal, Flags);
CombineTo(U, NewNode);
} else if (U != Reciprocal.getNode()) {
// In the absence of fast-math-flags, this user node is always the
// same node as Reciprocal, but with FMF they may be different nodes.
CombineTo(U, Reciprocal);
}
}
return SDValue(N, 0); // N was replaced.
}
SDValue DAGCombiner::visitFDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
SDNodeFlags Flags = N->getFlags();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fdiv c1, c2) -> c1/c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
// fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
if (N1CFP) {
// Compute the reciprocal 1.0 / c2.
const APFloat &N1APF = N1CFP->getValueAPF();
APFloat Recip(N1APF.getSemantics(), 1); // 1.0
APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
// Only do the transform if the reciprocal is a legal fp immediate that
// isn't too nasty (eg NaN, denormal, ...).
if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
(!LegalOperations ||
// FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
// backend)... we should handle this gracefully after Legalize.
// TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
TLI.isOperationLegal(ISD::ConstantFP, VT) ||
TLI.isFPImmLegal(Recip, VT)))
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getConstantFP(Recip, DL, VT), Flags);
}
// If this FDIV is part of a reciprocal square root, it may be folded
// into a target-specific square root estimate instruction.
if (N1.getOpcode() == ISD::FSQRT) {
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) {
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FP_EXTEND &&
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
Flags)) {
RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FP_ROUND &&
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
Flags)) {
RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FMUL) {
// Look through an FMUL. Even though this won't remove the FDIV directly,
// it's still worthwhile to get rid of the FSQRT if possible.
SDValue SqrtOp;
SDValue OtherOp;
if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
SqrtOp = N1.getOperand(0);
OtherOp = N1.getOperand(1);
} else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
SqrtOp = N1.getOperand(1);
OtherOp = N1.getOperand(0);
}
if (SqrtOp.getNode()) {
// We found a FSQRT, so try to make this fold:
// x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
}
}
// Fold into a reciprocal estimate and multiply instead of a real divide.
if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
}
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
GetNegatedExpression(N0, DAG, LegalOperations),
GetNegatedExpression(N1, DAG, LegalOperations),
Flags);
}
}
if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N))
return CombineRepeatedDivisors;
return SDValue();
}
SDValue DAGCombiner::visitFREM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
// fold (frem c1, c2) -> fmod(c1,c2)
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags());
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
return SDValue();
}
SDValue DAGCombiner::visitFSQRT(SDNode *N) {
SDNodeFlags Flags = N->getFlags();
if (!DAG.getTarget().Options.UnsafeFPMath &&
!Flags.hasApproximateFuncs())
return SDValue();
SDValue N0 = N->getOperand(0);
if (TLI.isFsqrtCheap(N0, DAG))
return SDValue();
// FSQRT nodes have flags that propagate to the created nodes.
return buildSqrtEstimate(N0, Flags);
}
/// copysign(x, fp_extend(y)) -> copysign(x, y)
/// copysign(x, fp_round(y)) -> copysign(x, y)
static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
SDValue N1 = N->getOperand(1);
if ((N1.getOpcode() == ISD::FP_EXTEND ||
N1.getOpcode() == ISD::FP_ROUND)) {
// Do not optimize out type conversion of f128 type yet.
// For some targets like x86_64, configuration is changed to keep one f128
// value in one SSE register, but instruction selection cannot handle
// FCOPYSIGN on SSE registers yet.
EVT N1VT = N1->getValueType(0);
EVT N1Op0VT = N1->getOperand(0).getValueType();
return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
}
return false;
}
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
if (N0CFP && N1CFP) // Constant fold
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
if (N1CFP) {
const APFloat &V = N1CFP->getValueAPF();
// copysign(x, c1) -> fabs(x) iff ispos(c1)
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
if (!V.isNegative()) {
if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
} else {
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
}
}
// copysign(fabs(x), y) -> copysign(x, y)
// copysign(fneg(x), y) -> copysign(x, y)
// copysign(copysign(x,z), y) -> copysign(x, y)
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
// copysign(x, abs(y)) -> abs(x)
if (N1.getOpcode() == ISD::FABS)
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
// copysign(x, copysign(y,z)) -> copysign(x, z)
if (N1.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
// copysign(x, fp_extend(y)) -> copysign(x, y)
// copysign(x, fp_round(y)) -> copysign(x, y)
if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitFPOW(SDNode *N) {
ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
if (!ExponentC)
return SDValue();
// Try to convert x ** (1/3) into cube root.
// TODO: Handle the various flavors of long double.
// TODO: Since we're approximating, we don't need an exact 1/3 exponent.
// Some range near 1/3 should be fine.
EVT VT = N->getValueType(0);
if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
(VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
// pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
// pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
// pow(-val, 1/3) = nan; cbrt(-val) = -num.
// For regular numbers, rounding may cause the results to differ.
// Therefore, we require { nsz ninf nnan afn } for this transform.
// TODO: We could select out the special cases if we don't have nsz/ninf.
SDNodeFlags Flags = N->getFlags();
if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
!Flags.hasApproximateFuncs())
return SDValue();
// Do not create a cbrt() libcall if the target does not have it, and do not
// turn a pow that has lowering support into a cbrt() libcall.
if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
(!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
return SDValue();
return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags);
}
// Try to convert x ** (1/4) into square roots.
// x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
// TODO: This could be extended (using a target hook) to handle smaller
// power-of-2 fractional exponents.
if (ExponentC->getValueAPF().isExactlyValue(0.25)) {
// pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
// pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
// For regular numbers, rounding may cause the results to differ.
// Therefore, we require { nsz ninf afn } for this transform.
// TODO: We could select out the special cases if we don't have nsz/ninf.
SDNodeFlags Flags = N->getFlags();
if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() ||
!Flags.hasApproximateFuncs())
return SDValue();
// Don't double the number of libcalls. We are trying to inline fast code.
if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
return SDValue();
// Assume that libcalls are the smallest code.
// TODO: This restriction should probably be lifted for vectors.
if (DAG.getMachineFunction().getFunction().optForSize())
return SDValue();
// pow(X, 0.25) --> sqrt(sqrt(X))
SDLoc DL(N);
SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags);
return DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags);
}
return SDValue();
}
static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI) {
// This optimization is guarded by a function attribute because it may produce
// unexpected results. Ie, programs may be relying on the platform-specific
// undefined behavior when the float-to-int conversion overflows.
const Function &F = DAG.getMachineFunction().getFunction();
Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
if (StrictOverflow.getValueAsString().equals("false"))
return SDValue();
// We only do this if the target has legal ftrunc. Otherwise, we'd likely be
// replacing casts with a libcall. We also must be allowed to ignore -0.0
// because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
// conversions would return +0.0.
// FIXME: We should be able to use node-level FMF here.
// TODO: If strict math, should we use FABS (+ range check for signed cast)?
EVT VT = N->getValueType(0);
if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
!DAG.getTarget().Options.NoSignedZerosFPMath)
return SDValue();
// fptosi/fptoui round towards zero, so converting from FP to integer and
// back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
SDValue N0 = N->getOperand(0);
if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
N0.getOperand(0).getValueType() == VT)
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
N0.getOperand(0).getValueType() == VT)
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = N0.getValueType();
// fold (sint_to_fp c1) -> c1fp
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
// ...but only if the target supports immediate floating-point values
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
// If the input is a legal type, and SINT_TO_FP is not legal on this target,
// but UINT_TO_FP is legal on this target, try to convert.
if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
hasOperation(ISD::UINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to UINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
}
// The next optimizations are desirable only if SELECT_CC can be lowered.
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
// fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
!VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0), N0.getOperand(1),
DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
// fold (sint_to_fp (zext (setcc x, y, cc))) ->
// (select_cc x, y, 1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::ZERO_EXTEND &&
N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(0).getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
}
if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
return FTrunc;
return SDValue();
}
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = N0.getValueType();
// fold (uint_to_fp c1) -> c1fp
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
// ...but only if the target supports immediate floating-point values
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
// If the input is a legal type, and UINT_TO_FP is not legal on this target,
// but SINT_TO_FP is legal on this target, try to convert.
if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
hasOperation(ISD::SINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to SINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
}
// The next optimizations are desirable only if SELECT_CC can be lowered.
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
// fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0), N0.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
}
if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
return FTrunc;
return SDValue();
}
// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
return SDValue();
SDValue Src = N0.getOperand(0);
EVT SrcVT = Src.getValueType();
bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
// We can safely assume the conversion won't overflow the output range,
// because (for example) (uint8_t)18293.f is undefined behavior.
// Since we can assume the conversion won't overflow, our decision as to
// whether the input will fit in the float should depend on the minimum
// of the input range and output range.
// This means this is also safe for a signed input and unsigned output, since
// a negative input would lead to undefined behavior.
unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
unsigned ActualSize = std::min(InputSize, OutputSize);
const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
// We can only fold away the float conversion if the input range can be
// represented exactly in the float range.
if (APFloat::semanticsPrecision(sem) >= ActualSize) {
if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
}
if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
return DAG.getBitcast(VT, Src);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fp_to_sint c1fp) -> c1
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
return FoldIntToFPToInt(N, DAG);
}
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fp_to_uint c1fp) -> c1
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
return FoldIntToFPToInt(N, DAG);
}
SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
EVT VT = N->getValueType(0);
// fold (fp_round c1fp) -> c1fp
if (N0CFP)
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
// fold (fp_round (fp_extend x)) -> x
if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
return N0.getOperand(0);
// fold (fp_round (fp_round x)) -> (fp_round x)
if (N0.getOpcode() == ISD::FP_ROUND) {
const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
// Skip this folding if it results in an fp_round from f80 to f16.
//
// f80 to f16 always generates an expensive (and as yet, unimplemented)
// libcall to __truncxfhf2 instead of selecting native f16 conversion
// instructions from f32 or f64. Moreover, the first (value-preserving)
// fp_round from f80 to either f32 or f64 may become a NOP in platforms like
// x86.
if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
return SDValue();
// If the first fp_round isn't a value preserving truncation, it might
// introduce a tie in the second fp_round, that wouldn't occur in the
// single-step fp_round we want to fold to.
// In other words, double rounding isn't the same as rounding.
// Also, this is a value preserving truncation iff both fp_round's are.
if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
SDLoc DL(N);
return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
}
}
// fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
N0.getOperand(0), N1);
AddToWorklist(Tmp.getNode());
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
Tmp, N0.getOperand(1));
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
return SDValue();
}
SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
// fold (fp_round_inreg c1fp) -> c1fp
if (N0CFP && isTypeLegal(EVT)) {
SDLoc DL(N);
SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() &&
N->use_begin()->getOpcode() == ISD::FP_ROUND)
return SDValue();
// fold (fp_extend c1fp) -> c1fp
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
// fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
if (N0.getOpcode() == ISD::FP16_TO_FP &&
TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
// value of X.
if (N0.getOpcode() == ISD::FP_ROUND
&& N0.getConstantOperandVal(1) == 1) {
SDValue In = N0.getOperand(0);
if (In.getValueType() == VT) return In;
if (VT.bitsLT(In.getValueType()))
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
In, N0.getOperand(1));
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
}
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
N0.getValueType(), ExtLoad,
DAG.getIntPtrConstant(1, SDLoc(N0))),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
return NewVSel;
return SDValue();
}
SDValue DAGCombiner::visitFCEIL(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fceil c1) -> fceil(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ftrunc c1) -> ftrunc(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
// fold ftrunc (known rounded int x) -> x
// ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
// likely to be generated to extract integer from a rounded floating value.
switch (N0.getOpcode()) {
default: break;
case ISD::FRINT:
case ISD::FTRUNC:
case ISD::FNEARBYINT:
case ISD::FFLOOR:
case ISD::FCEIL:
return N0;
}
return SDValue();
}
SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ffloor c1) -> ffloor(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
return SDValue();
}
// FIXME: FNEG and FABS have a lot in common; refactor.
SDValue DAGCombiner::visitFNEG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// Constant fold FNEG.
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
&DAG.getTarget().Options))
return GetNegatedExpression(N0, DAG, LegalOperations);
// Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
// constant pool values.
if (!TLI.isFNegFree(VT) &&
N0.getOpcode() == ISD::BITCAST &&
N0.getNode()->hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
APInt SignMask;
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x80... per scalar element
// and splat it.
SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x80...
SignMask = APInt::getSignMask(IntVT.getSizeInBits());
}
SDLoc DL0(N0);
Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
DAG.getConstant(SignMask, DL0, IntVT));
AddToWorklist(Int.getNode());
return DAG.getBitcast(VT, Int);
}
}
// (fneg (fmul c, x)) -> (fmul -c, x)
if (N0.getOpcode() == ISD::FMUL &&
(N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
if (CFP1) {
APFloat CVal = CFP1->getValueAPF();
CVal.changeSign();
if (Level >= AfterLegalizeDAG &&
(TLI.isFPImmLegal(CVal, VT) ||
TLI.isOperationLegal(ISD::ConstantFP, VT)))
return DAG.getNode(
ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)),
N0->getFlags());
}
}
return SDValue();
}
SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
if (N0CFP && N1CFP) {
const APFloat &C0 = N0CFP->getValueAPF();
const APFloat &C1 = N1CFP->getValueAPF();
return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT);
}
// Canonicalize to constant on RHS.
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0);
return SDValue();
}
SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
if (N0CFP && N1CFP) {
const APFloat &C0 = N0CFP->getValueAPF();
const APFloat &C1 = N1CFP->getValueAPF();
return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT);
}
// Canonicalize to constant on RHS.
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0);
return SDValue();
}
SDValue DAGCombiner::visitFABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fabs c1) -> fabs(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
// fold (fabs (fabs x)) -> (fabs x)
if (N0.getOpcode() == ISD::FABS)
return N->getOperand(0);
// fold (fabs (fneg x)) -> (fabs x)
// fold (fabs (fcopysign x, y)) -> (fabs x)
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
// fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
APInt SignMask;
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x7f... per scalar element
// and splat it.
SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x7f...
SignMask = ~APInt::getSignMask(IntVT.getSizeInBits());
}
SDLoc DL(N0);
Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
DAG.getConstant(SignMask, DL, IntVT));
AddToWorklist(Int.getNode());
return DAG.getBitcast(N->getValueType(0), Int);
}
}
return SDValue();
}
SDValue DAGCombiner::visitBRCOND(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
// If N is a constant we could fold this into a fallthrough or unconditional
// branch. However that doesn't happen very often in normal code, because
// Instcombine/SimplifyCFG should have handled the available opportunities.
// If we did this folding here, it would be necessary to update the
// MachineBasicBlock CFG, which is awkward.
// fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
// on the target.
if (N1.getOpcode() == ISD::SETCC &&
TLI.isOperationLegalOrCustom(ISD::BR_CC,
N1.getOperand(0).getValueType())) {
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
Chain, N1.getOperand(2),
N1.getOperand(0), N1.getOperand(1), N2);
}
if (N1.hasOneUse()) {
if (SDValue NewN1 = rebuildSetCC(N1))
return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2);
}
return SDValue();
}
SDValue DAGCombiner::rebuildSetCC(SDValue N) {
if (N.getOpcode() == ISD::SRL ||
(N.getOpcode() == ISD::TRUNCATE &&
(N.getOperand(0).hasOneUse() &&
N.getOperand(0).getOpcode() == ISD::SRL))) {
// Look pass the truncate.
if (N.getOpcode() == ISD::TRUNCATE)
N = N.getOperand(0);
// Match this pattern so that we can generate simpler code:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and i32 %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// This applies only when the AND constant value has one bit set and the
// SRL constant is equal to the log2 of the AND constant. The back-end is
// smart enough to convert the result into a TEST/JMP sequence.
SDValue Op0 = N.getOperand(0);
SDValue Op1 = N.getOperand(1);
if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
SDValue AndOp1 = Op0.getOperand(1);
if (AndOp1.getOpcode() == ISD::Constant) {
const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
if (AndConst.isPowerOf2() &&
cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
SDLoc DL(N);
return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
Op0, DAG.getConstant(0, DL, Op0.getValueType()),
ISD::SETNE);
}
}
}
}
// Transform br(xor(x, y)) -> br(x != y)
// Transform br(xor(xor(x,y), 1)) -> br (x == y)
if (N.getOpcode() == ISD::XOR) {
// Because we may call this on a speculatively constructed
// SimplifiedSetCC Node, we need to simplify this node first.
// Ideally this should be folded into SimplifySetCC and not
// here. For now, grab a handle to N so we don't lose it from
// replacements interal to the visit.
HandleSDNode XORHandle(N);
while (N.getOpcode() == ISD::XOR) {
SDValue Tmp = visitXOR(N.getNode());
// No simplification done.
if (!Tmp.getNode())
break;
// Returning N is form in-visit replacement that may invalidated
// N. Grab value from Handle.
if (Tmp.getNode() == N.getNode())
N = XORHandle.getValue();
else // Node simplified. Try simplifying again.
N = Tmp;
}
if (N.getOpcode() != ISD::XOR)
return N;
SDNode *TheXor = N.getNode();
SDValue Op0 = TheXor->getOperand(0);
SDValue Op1 = TheXor->getOperand(1);
if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
bool Equal = false;
if (isOneConstant(Op0) && Op0.hasOneUse() &&
Op0.getOpcode() == ISD::XOR) {
TheXor = Op0.getNode();
Equal = true;
}
EVT SetCCVT = N.getValueType();
if (LegalTypes)
SetCCVT = getSetCCResultType(SetCCVT);
// Replace the uses of XOR with SETCC
return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1,
Equal ? ISD::SETEQ : ISD::SETNE);
}
}
return SDValue();
}
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
//
SDValue DAGCombiner::visitBR_CC(SDNode *N) {
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
// If N is a constant we could fold this into a fallthrough or unconditional
// branch. However that doesn't happen very often in normal code, because
// Instcombine/SimplifyCFG should have handled the available opportunities.
// If we did this folding here, it would be necessary to update the
// MachineBasicBlock CFG, which is awkward.
// Use SimplifySetCC to simplify SETCC's.
SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
CondLHS, CondRHS, CC->get(), SDLoc(N),
false);
if (Simp.getNode()) AddToWorklist(Simp.getNode());
// fold to a simpler setcc
if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
N->getOperand(0), Simp.getOperand(2),
Simp.getOperand(0), Simp.getOperand(1),
N->getOperand(4));
return SDValue();
}
/// Return true if 'Use' is a load or a store that uses N as its base pointer
/// and that N may be folded in the load / store addressing mode.
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
SelectionDAG &DAG,
const TargetLowering &TLI) {
EVT VT;
unsigned AS;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
return false;
VT = LD->getMemoryVT();
AS = LD->getAddressSpace();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
return false;
VT = ST->getMemoryVT();
AS = ST->getAddressSpace();
} else
return false;
TargetLowering::AddrMode AM;
if (N->getOpcode() == ISD::ADD) {
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else if (N->getOpcode() == ISD::SUB) {
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = -Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else
return false;
return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
VT.getTypeForEVT(*DAG.getContext()), AS);
}
/// Try turning a load/store into a pre-indexed load/store when the base
/// pointer is an add or subtract and it has other uses besides the load/store.
/// After the transformation, the new indexed load/store has effectively folded
/// the add/subtract in and all of its other uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
// If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
// out. There is no reason to make this a preinc/predec.
if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
Ptr.getNode()->hasOneUse())
return false;
// Ask the target to do addressing mode selection.
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
return false;
// Backends without true r+i pre-indexed forms may need to pass a
// constant base with a variable offset so that constant coercion
// will work with the patterns in canonical form.
bool Swapped = false;
if (isa<ConstantSDNode>(BasePtr)) {
std::swap(BasePtr, Offset);
Swapped = true;
}
// Don't create a indexed load / store with zero offset.
if (isNullConstant(Offset))
return false;
// Try turning it into a pre-indexed load / store except when:
// 1) The new base ptr is a frame index.
// 2) If N is a store and the new base ptr is either the same as or is a
// predecessor of the value being stored.
// 3) Another use of old base ptr is a predecessor of N. If ptr is folded
// that would create a cycle.
// 4) All uses are load / store ops that use it as old base ptr.
// Check #1. Preinc'ing a frame index would require copying the stack pointer
// (plus the implicit offset) to a register to preinc anyway.
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
return false;
// Check #2.
if (!isLoad) {
SDValue Val = cast<StoreSDNode>(N)->getValue();
if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
return false;
}
// Caches for hasPredecessorHelper.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Worklist.push_back(N);
// If the offset is a constant, there may be other adds of constants that
// can be folded with this one. We should do this to avoid having to keep
// a copy of the original base pointer.
SmallVector<SDNode *, 16> OtherUses;
if (isa<ConstantSDNode>(Offset))
for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
UE = BasePtr.getNode()->use_end();
UI != UE; ++UI) {
SDUse &Use = UI.getUse();
// Skip the use that is Ptr and uses of other results from BasePtr's
// node (important for nodes that return multiple results).
if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
continue;
if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
continue;
if (Use.getUser()->getOpcode() != ISD::ADD &&
Use.getUser()->getOpcode() != ISD::SUB) {
OtherUses.clear();
break;
}
SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
if (!isa<ConstantSDNode>(Op1)) {
OtherUses.clear();
break;
}
// FIXME: In some cases, we can be smarter about this.
if (Op1.getValueType() != Offset.getValueType()) {
OtherUses.clear();
break;
}
OtherUses.push_back(Use.getUser());
}
if (Swapped)
std::swap(BasePtr, Offset);
// Now check for #3 and #4.
bool RealUse = false;
for (SDNode *Use : Ptr.getNode()->uses()) {
if (Use == N)
continue;
if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
return false;
// If Ptr may be folded in addressing mode of other use, then it's
// not profitable to do this transformation.
if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
RealUse = true;
}
if (!RealUse)
return false;
SDValue Result;
if (isLoad)
Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
else
Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
++PreIndexedNodes;
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
Result.getNode()->dump(&DAG); dbgs() << '\n');
WorklistRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
}
// Finally, since the node is now dead, remove it from the graph.
deleteAndRecombine(N);
if (Swapped)
std::swap(BasePtr, Offset);
// Replace other uses of BasePtr that can be updated to use Ptr
for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
unsigned OffsetIdx = 1;
if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
OffsetIdx = 0;
assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
BasePtr.getNode() && "Expected BasePtr operand");
// We need to replace ptr0 in the following expression:
// x0 * offset0 + y0 * ptr0 = t0
// knowing that
// x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
//
// where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
// indexed load/store and the expression that needs to be re-written.
//
// Therefore, we have:
// t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
ConstantSDNode *CN =
cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
int X0, X1, Y0, Y1;
const APInt &Offset0 = CN->getAPIntValue();
APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
APInt CNV = Offset0;
if (X0 < 0) CNV = -CNV;
if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
else CNV = CNV - Offset1;
SDLoc DL(OtherUses[i]);
// We can now generate the new expression.
SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
SDValue NewUse = DAG.getNode(Opcode,
DL,
OtherUses[i]->getValueType(0), NewOp1, NewOp2);
DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
deleteAndRecombine(OtherUses[i]);
}
// Replace the uses of Ptr with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
deleteAndRecombine(Ptr.getNode());
AddToWorklist(Result.getNode());
return true;
}
/// Try to combine a load/store with a add/sub of the base pointer node into a
/// post-indexed load/store. The transformation folded the add/subtract into the
/// new indexed load/store effectively and all of its uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
if (Ptr.getNode()->hasOneUse())
return false;
for (SDNode *Op : Ptr.getNode()->uses()) {
if (Op == N ||
(Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
continue;
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
// Don't create a indexed load / store with zero offset.
if (isNullConstant(Offset))
continue;
// Try turning it into a post-indexed load / store except when
// 1) All uses are load / store ops that use it as base ptr (and
// it may be folded as addressing mmode).
// 2) Op must be independent of N, i.e. Op is neither a predecessor
// nor a successor of N. Otherwise, if Op is folded that would
// create a cycle.
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
continue;
// Check for #1.
bool TryNext = false;
for (SDNode *Use : BasePtr.getNode()->uses()) {
if (Use == Ptr.getNode())
continue;
// If all the uses are load / store addresses, then don't do the
// transformation.
if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
bool RealUse = false;
for (SDNode *UseUse : Use->uses()) {
if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
RealUse = true;
}
if (!RealUse) {
TryNext = true;
break;
}
}
}
if (TryNext)
continue;
// Check for #2.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 8> Worklist;
// Ptr is predecessor to both N and Op.
Visited.insert(Ptr.getNode());
Worklist.push_back(N);
Worklist.push_back(Op);
if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
!SDNode::hasPredecessorHelper(Op, Visited, Worklist)) {
SDValue Result = isLoad
? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM)
: DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
++PostIndexedNodes;
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
}
// Finally, since the node is now dead, remove it from the graph.
deleteAndRecombine(N);
// Replace the uses of Use with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
Result.getValue(isLoad ? 1 : 0));
deleteAndRecombine(Op);
return true;
}
}
}
return false;
}
/// Return the base-pointer arithmetic from an indexed \p LD.
SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
ISD::MemIndexedMode AM = LD->getAddressingMode();
assert(AM != ISD::UNINDEXED);
SDValue BP = LD->getOperand(1);
SDValue Inc = LD->getOperand(2);
// Some backends use TargetConstants for load offsets, but don't expect
// TargetConstants in general ADD nodes. We can convert these constants into
// regular Constants (if the constant is not opaque).
assert((Inc.getOpcode() != ISD::TargetConstant ||
!cast<ConstantSDNode>(Inc)->isOpaque()) &&
"Cannot split out indexing using opaque target constants");
if (Inc.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
ConstInc->getValueType(0));
}
unsigned Opc =
(AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
}
static inline int numVectorEltsOrZero(EVT T) {
return T.isVector() ? T.getVectorNumElements() : 0;
}
bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
Val = ST->getValue();
EVT STType = Val.getValueType();
EVT STMemType = ST->getMemoryVT();
if (STType == STMemType)
return true;
if (isTypeLegal(STMemType))
return false; // fail.
if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
return true;
}
if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
STType.isInteger() && STMemType.isInteger()) {
Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
return true;
}
if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
Val = DAG.getBitcast(STMemType, Val);
return true;
}
return false; // fail.
}
bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
EVT LDMemType = LD->getMemoryVT();
EVT LDType = LD->getValueType(0);
assert(Val.getValueType() == LDMemType &&
"Attempting to extend value of non-matching type");
if (LDType == LDMemType)
return true;
if (LDMemType.isInteger() && LDType.isInteger()) {
switch (LD->getExtensionType()) {
case ISD::NON_EXTLOAD:
Val = DAG.getBitcast(LDType, Val);
return true;
case ISD::EXTLOAD:
Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
return true;
case ISD::SEXTLOAD:
Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
return true;
case ISD::ZEXTLOAD:
Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
return true;
}
}
return false;
}
SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
if (OptLevel == CodeGenOpt::None || LD->isVolatile())
return SDValue();
SDValue Chain = LD->getOperand(0);
StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
if (!ST || ST->isVolatile())
return SDValue();
EVT LDType = LD->getValueType(0);
EVT LDMemType = LD->getMemoryVT();
EVT STMemType = ST->getMemoryVT();
EVT STType = ST->getValue().getValueType();
BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
int64_t Offset;
bool STCoversLD =
BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset) && (Offset >= 0) &&
(Offset * 8 <= LDMemType.getSizeInBits()) &&
(Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());
if (!STCoversLD)
return SDValue();
// Normalize for Endianness.
if (DAG.getDataLayout().isBigEndian())
Offset =
(STMemType.getSizeInBits() - LDMemType.getSizeInBits()) / 8 - Offset;
// Memory as copy space (potentially masked).
if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
// Simple case: Direct non-truncating forwarding
if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
return CombineTo(LD, ST->getValue(), Chain);
// Can we model the truncate and extension with an and mask?
if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
!LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
// Mask to size of LDMemType
auto Mask =
DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
STMemType.getSizeInBits()),
SDLoc(ST), STType);
auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
return CombineTo(LD, Val, Chain);
}
}
// TODO: Deal with nonzero offset.
if (LD->getBasePtr().isUndef() || Offset != 0)
return SDValue();
// Model necessary truncations / extenstions.
SDValue Val;
// Truncate Value To Stored Memory Size.
do {
if (!getTruncatedStoreValue(ST, Val))
continue;
if (!isTypeLegal(LDMemType))
continue;
if (STMemType != LDMemType) {
if (numVectorEltsOrZero(STMemType) == numVectorEltsOrZero(LDMemType) &&
STMemType.isInteger() && LDMemType.isInteger())
Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
else
continue;
}
if (!extendLoadedValueToExtension(LD, Val))
continue;
return CombineTo(LD, Val, Chain);
} while (false);
// On failure, cleanup dead nodes we may have created.
if (Val->use_empty())
deleteAndRecombine(Val.getNode());
return SDValue();
}
SDValue DAGCombiner::visitLOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
// If load is not volatile and there are no uses of the loaded value (and
// the updated indexed value in case of indexed loads), change uses of the
// chain value into uses of the chain input (i.e. delete the dead load).
if (!LD->isVolatile()) {
if (N->getValueType(1) == MVT::Other) {
// Unindexed loads.
if (!N->hasAnyUseOfValue(0)) {
// It's not safe to use the two value CombineTo variant here. e.g.
// v1, chain2 = load chain1, loc
// v2, chain3 = load chain2, loc
// v3 = add v2, c
// Now we replace use of chain2 with chain1. This makes the second load
// isomorphic to the one we are deleting, and thus makes this load live.
LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
dbgs() << "\n");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
AddUsersToWorklist(Chain.getNode());
if (N->use_empty())
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
} else {
// Indexed loads.
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
// If this load has an opaque TargetConstant offset, then we cannot split
// the indexing into an add/sub directly (that TargetConstant may not be
// valid for a different type of node, and we cannot convert an opaque
// target constant into a regular constant).
bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
if (!N->hasAnyUseOfValue(0) &&
((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
SDValue Index;
if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
Index = SplitIndexingFromLoad(LD);
// Try to fold the base pointer arithmetic into subsequent loads and
// stores.
AddUsersToWorklist(N);
} else
Index = DAG.getUNDEF(N->getValueType(1));
LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
dbgs() << " and 2 other values\n");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
// If this load is directly stored, replace the load value with the stored
// value.
if (auto V = ForwardStoreValueToDirectLoad(LD))
return V;
// Try to infer better alignment information than the load already has.
if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) {
SDValue NewLoad = DAG.getExtLoad(
LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
LD->getPointerInfo(), LD->getMemoryVT(), Align,
LD->getMemOperand()->getFlags(), LD->getAAInfo());
// NewLoad will always be N as we are only refining the alignment
assert(NewLoad.getNode() == N);
(void)NewLoad;
}
}
}
if (LD->isUnindexed()) {
// Walk up chain skipping non-aliasing memory nodes.
SDValue BetterChain = FindBetterChain(N, Chain);
// If there is a better chain.
if (Chain != BetterChain) {
SDValue ReplLoad;
// Replace the chain to void dependency.
if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
BetterChain, Ptr, LD->getMemOperand());
} else {
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
LD->getValueType(0),
BetterChain, Ptr, LD->getMemoryVT(),
LD->getMemOperand());
}
// Create token factor to keep old chain connected.
SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
MVT::Other, Chain, ReplLoad.getValue(1));
// Replace uses with load result and token factor
return CombineTo(N, ReplLoad.getValue(0), Token);
}
}
// Try transforming N to an indexed load.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
// Try to slice up N to more direct loads if the slices are mapped to
// different register banks or pairing can take place.
if (SliceUpLoad(N))
return SDValue(N, 0);
return SDValue();
}
namespace {
/// Helper structure used to slice a load in smaller loads.
/// Basically a slice is obtained from the following sequence:
/// Origin = load Ty1, Base
/// Shift = srl Ty1 Origin, CstTy Amount
/// Inst = trunc Shift to Ty2
///
/// Then, it will be rewritten into:
/// Slice = load SliceTy, Base + SliceOffset
/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
///
/// SliceTy is deduced from the number of bits that are actually used to
/// build Inst.
struct LoadedSlice {
/// Helper structure used to compute the cost of a slice.
struct Cost {
/// Are we optimizing for code size.
bool ForCodeSize;
/// Various cost.
unsigned Loads = 0;
unsigned Truncates = 0;
unsigned CrossRegisterBanksCopies = 0;
unsigned ZExts = 0;
unsigned Shift = 0;
Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {}
/// Get the cost of one isolated slice.
Cost(const LoadedSlice &LS, bool ForCodeSize = false)
: ForCodeSize(ForCodeSize), Loads(1) {
EVT TruncType = LS.Inst->getValueType(0);
EVT LoadedType = LS.getLoadedType();
if (TruncType != LoadedType &&
!LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
ZExts = 1;
}
/// Account for slicing gain in the current cost.
/// Slicing provide a few gains like removing a shift or a
/// truncate. This method allows to grow the cost of the original
/// load with the gain from this slice.
void addSliceGain(const LoadedSlice &LS) {
// Each slice saves a truncate.
const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
LS.Inst->getValueType(0)))
++Truncates;
// If there is a shift amount, this slice gets rid of it.
if (LS.Shift)
++Shift;
// If this slice can merge a cross register bank copy, account for it.
if (LS.canMergeExpensiveCrossRegisterBankCopy())
++CrossRegisterBanksCopies;
}
Cost &operator+=(const Cost &RHS) {
Loads += RHS.Loads;
Truncates += RHS.Truncates;
CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
ZExts += RHS.ZExts;
Shift += RHS.Shift;
return *this;
}
bool operator==(const Cost &RHS) const {
return Loads == RHS.Loads && Truncates == RHS.Truncates &&
CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
ZExts == RHS.ZExts && Shift == RHS.Shift;
}
bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
bool operator<(const Cost &RHS) const {
// Assume cross register banks copies are as expensive as loads.
// FIXME: Do we want some more target hooks?
unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
// Unless we are optimizing for code size, consider the
// expensive operation first.
if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
return ExpensiveOpsLHS < ExpensiveOpsRHS;
return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
(RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
}
bool operator>(const Cost &RHS) const { return RHS < *this; }
bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
};
// The last instruction that represent the slice. This should be a
// truncate instruction.
SDNode *Inst;
// The original load instruction.
LoadSDNode *Origin;
// The right shift amount in bits from the original load.
unsigned Shift;
// The DAG from which Origin came from.
// This is used to get some contextual information about legal types, etc.
SelectionDAG *DAG;
LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
unsigned Shift = 0, SelectionDAG *DAG = nullptr)
: Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
/// Get the bits used in a chunk of bits \p BitWidth large.
/// \return Result is \p BitWidth and has used bits set to 1 and
/// not used bits set to 0.
APInt getUsedBits() const {
// Reproduce the trunc(lshr) sequence:
// - Start from the truncated value.
// - Zero extend to the desired bit width.
// - Shift left.
assert(Origin && "No original load to compare against.");
unsigned BitWidth = Origin->getValueSizeInBits(0);
assert(Inst && "This slice is not bound to an instruction");
assert(Inst->getValueSizeInBits(0) <= BitWidth &&
"Extracted slice is bigger than the whole type!");
APInt UsedBits(Inst->getValueSizeInBits(0), 0);
UsedBits.setAllBits();
UsedBits = UsedBits.zext(BitWidth);
UsedBits <<= Shift;
return UsedBits;
}
/// Get the size of the slice to be loaded in bytes.
unsigned getLoadedSize() const {
unsigned SliceSize = getUsedBits().countPopulation();
assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
return SliceSize / 8;
}
/// Get the type that will be loaded for this slice.
/// Note: This may not be the final type for the slice.
EVT getLoadedType() const {
assert(DAG && "Missing context");
LLVMContext &Ctxt = *DAG->getContext();
return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
}
/// Get the alignment of the load used for this slice.
unsigned getAlignment() const {
unsigned Alignment = Origin->getAlignment();
unsigned Offset = getOffsetFromBase();
if (Offset != 0)
Alignment = MinAlign(Alignment, Alignment + Offset);
return Alignment;
}
/// Check if this slice can be rewritten with legal operations.
bool isLegal() const {
// An invalid slice is not legal.
if (!Origin || !Inst || !DAG)
return false;
// Offsets are for indexed load only, we do not handle that.
if (!Origin->getOffset().isUndef())
return false;
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
// Check that the type is legal.
EVT SliceType = getLoadedType();
if (!TLI.isTypeLegal(SliceType))
return false;
// Check that the load is legal for this type.
if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
return false;
// Check that the offset can be computed.
// 1. Check its type.
EVT PtrType = Origin->getBasePtr().getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
return false;
// 2. Check that it fits in the immediate.
if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
return false;
// 3. Check that the computation is legal.
if (!TLI.isOperationLegal(ISD::ADD, PtrType))
return false;
// Check that the zext is legal if it needs one.
EVT TruncateType = Inst->getValueType(0);
if (TruncateType != SliceType &&
!TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
return false;
return true;
}
/// Get the offset in bytes of this slice in the original chunk of
/// bits.
/// \pre DAG != nullptr.
uint64_t getOffsetFromBase() const {
assert(DAG && "Missing context.");
bool IsBigEndian = DAG->getDataLayout().isBigEndian();
assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
uint64_t Offset = Shift / 8;
unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
"The size of the original loaded type is not a multiple of a"
" byte.");
// If Offset is bigger than TySizeInBytes, it means we are loading all
// zeros. This should have been optimized before in the process.
assert(TySizeInBytes > Offset &&
"Invalid shift amount for given loaded size");
if (IsBigEndian)
Offset = TySizeInBytes - Offset - getLoadedSize();
return Offset;
}
/// Generate the sequence of instructions to load the slice
/// represented by this object and redirect the uses of this slice to
/// this new sequence of instructions.
/// \pre this->Inst && this->Origin are valid Instructions and this
/// object passed the legal check: LoadedSlice::isLegal returned true.
/// \return The last instruction of the sequence used to load the slice.
SDValue loadSlice() const {
assert(Inst && Origin && "Unable to replace a non-existing slice.");
const SDValue &OldBaseAddr = Origin->getBasePtr();
SDValue BaseAddr = OldBaseAddr;
// Get the offset in that chunk of bytes w.r.t. the endianness.
int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
assert(Offset >= 0 && "Offset too big to fit in int64_t!");
if (Offset) {
// BaseAddr = BaseAddr + Offset.
EVT ArithType = BaseAddr.getValueType();
SDLoc DL(Origin);
BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
DAG->getConstant(Offset, DL, ArithType));
}
// Create the type of the loaded slice according to its size.
EVT SliceType = getLoadedType();
// Create the load for the slice.
SDValue LastInst =
DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
Origin->getPointerInfo().getWithOffset(Offset),
getAlignment(), Origin->getMemOperand()->getFlags());
// If the final type is not the same as the loaded type, this means that
// we have to pad with zero. Create a zero extend for that.
EVT FinalType = Inst->getValueType(0);
if (SliceType != FinalType)
LastInst =
DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
return LastInst;
}
/// Check if this slice can be merged with an expensive cross register
/// bank copy. E.g.,
/// i = load i32
/// f = bitcast i32 i to float
bool canMergeExpensiveCrossRegisterBankCopy() const {
if (!Inst || !Inst->hasOneUse())
return false;
SDNode *Use = *Inst->use_begin();
if (Use->getOpcode() != ISD::BITCAST)
return false;
assert(DAG && "Missing context");
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
EVT ResVT = Use->getValueType(0);
const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
const TargetRegisterClass *ArgRC =
TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
return false;
// At this point, we know that we perform a cross-register-bank copy.
// Check if it is expensive.
const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
// Assume bitcasts are cheap, unless both register classes do not
// explicitly share a common sub class.
if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
return false;
// Check if it will be merged with the load.
// 1. Check the alignment constraint.
unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
ResVT.getTypeForEVT(*DAG->getContext()));
if (RequiredAlignment > getAlignment())
return false;
// 2. Check that the load is a legal operation for that type.
if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
return false;
// 3. Check that we do not have a zext in the way.
if (Inst->getValueType(0) != getLoadedType())
return false;
return true;
}
};
} // end anonymous namespace
/// Check that all bits set in \p UsedBits form a dense region, i.e.,
/// \p UsedBits looks like 0..0 1..1 0..0.
static bool areUsedBitsDense(const APInt &UsedBits) {
// If all the bits are one, this is dense!
if (UsedBits.isAllOnesValue())
return true;
// Get rid of the unused bits on the right.
APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
// Get rid of the unused bits on the left.
if (NarrowedUsedBits.countLeadingZeros())
NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
// Check that the chunk of bits is completely used.
return NarrowedUsedBits.isAllOnesValue();
}
/// Check whether or not \p First and \p Second are next to each other
/// in memory. This means that there is no hole between the bits loaded
/// by \p First and the bits loaded by \p Second.
static bool areSlicesNextToEachOther(const LoadedSlice &First,
const LoadedSlice &Second) {
assert(First.Origin == Second.Origin && First.Origin &&
"Unable to match different memory origins.");
APInt UsedBits = First.getUsedBits();
assert((UsedBits & Second.getUsedBits()) == 0 &&
"Slices are not supposed to overlap.");
UsedBits |= Second.getUsedBits();
return areUsedBitsDense(UsedBits);
}
/// Adjust the \p GlobalLSCost according to the target
/// paring capabilities and the layout of the slices.
/// \pre \p GlobalLSCost should account for at least as many loads as
/// there is in the slices in \p LoadedSlices.
static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
LoadedSlice::Cost &GlobalLSCost) {
unsigned NumberOfSlices = LoadedSlices.size();
// If there is less than 2 elements, no pairing is possible.
if (NumberOfSlices < 2)
return;
// Sort the slices so that elements that are likely to be next to each
// other in memory are next to each other in the list.
llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
});
const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
// First (resp. Second) is the first (resp. Second) potentially candidate
// to be placed in a paired load.
const LoadedSlice *First = nullptr;
const LoadedSlice *Second = nullptr;
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
// Set the beginning of the pair.
First = Second) {
Second = &LoadedSlices[CurrSlice];
// If First is NULL, it means we start a new pair.
// Get to the next slice.
if (!First)
continue;
EVT LoadedType = First->getLoadedType();
// If the types of the slices are different, we cannot pair them.
if (LoadedType != Second->getLoadedType())
continue;
// Check if the target supplies paired loads for this type.
unsigned RequiredAlignment = 0;
if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
// move to the next pair, this type is hopeless.
Second = nullptr;
continue;
}
// Check if we meet the alignment requirement.
if (RequiredAlignment > First->getAlignment())
continue;
// Check that both loads are next to each other in memory.
if (!areSlicesNextToEachOther(*First, *Second))
continue;
assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
--GlobalLSCost.Loads;
// Move to the next pair.
Second = nullptr;
}
}
/// Check the profitability of all involved LoadedSlice.
/// Currently, it is considered profitable if there is exactly two
/// involved slices (1) which are (2) next to each other in memory, and
/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
///
/// Note: The order of the elements in \p LoadedSlices may be modified, but not
/// the elements themselves.
///
/// FIXME: When the cost model will be mature enough, we can relax
/// constraints (1) and (2).
static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
const APInt &UsedBits, bool ForCodeSize) {
unsigned NumberOfSlices = LoadedSlices.size();
if (StressLoadSlicing)
return NumberOfSlices > 1;
// Check (1).
if (NumberOfSlices != 2)
return false;
// Check (2).
if (!areUsedBitsDense(UsedBits))
return false;
// Check (3).
LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
// The original code has one big load.
OrigCost.Loads = 1;
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
const LoadedSlice &LS = LoadedSlices[CurrSlice];
// Accumulate the cost of all the slices.
LoadedSlice::Cost SliceCost(LS, ForCodeSize);
GlobalSlicingCost += SliceCost;
// Account as cost in the original configuration the gain obtained
// with the current slices.
OrigCost.addSliceGain(LS);
}
// If the target supports paired load, adjust the cost accordingly.
adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
return OrigCost > GlobalSlicingCost;
}
/// If the given load, \p LI, is used only by trunc or trunc(lshr)
/// operations, split it in the various pieces being extracted.
///
/// This sort of thing is introduced by SROA.
/// This slicing takes care not to insert overlapping loads.
/// \pre LI is a simple load (i.e., not an atomic or volatile load).
bool DAGCombiner::SliceUpLoad(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
LoadSDNode *LD = cast<LoadSDNode>(N);
if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
!LD->getValueType(0).isInteger())
return false;
// Keep track of already used bits to detect overlapping values.
// In that case, we will just abort the transformation.
APInt UsedBits(LD->getValueSizeInBits(0), 0);
SmallVector<LoadedSlice, 4> LoadedSlices;
// Check if this load is used as several smaller chunks of bits.
// Basically, look for uses in trunc or trunc(lshr) and record a new chain
// of computation for each trunc.
for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
UI != UIEnd; ++UI) {
// Skip the uses of the chain.
if (UI.getUse().getResNo() != 0)
continue;
SDNode *User = *UI;
unsigned Shift = 0;
// Check if this is a trunc(lshr).
if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
isa<ConstantSDNode>(User->getOperand(1))) {
Shift = User->getConstantOperandVal(1);
User = *User->use_begin();
}
// At this point, User is a Truncate, iff we encountered, trunc or
// trunc(lshr).
if (User->getOpcode() != ISD::TRUNCATE)
return false;
// The width of the type must be a power of 2 and greater than 8-bits.
// Otherwise the load cannot be represented in LLVM IR.
// Moreover, if we shifted with a non-8-bits multiple, the slice
// will be across several bytes. We do not support that.
unsigned Width = User->getValueSizeInBits(0);
if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
return false;
// Build the slice for this chain of computations.
LoadedSlice LS(User, LD, Shift, &DAG);
APInt CurrentUsedBits = LS.getUsedBits();
// Check if this slice overlaps with another.
if ((CurrentUsedBits & UsedBits) != 0)
return false;
// Update the bits used globally.
UsedBits |= CurrentUsedBits;
// Check if the new slice would be legal.
if (!LS.isLegal())
return false;
// Record the slice.
LoadedSlices.push_back(LS);
}
// Abort slicing if it does not seem to be profitable.
if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
return false;
++SlicedLoads;
// Rewrite each chain to use an independent load.
// By construction, each chain can be represented by a unique load.
// Prepare the argument for the new token factor for all the slices.
SmallVector<SDValue, 8> ArgChains;
for (SmallVectorImpl<LoadedSlice>::const_iterator
LSIt = LoadedSlices.begin(),
LSItEnd = LoadedSlices.end();
LSIt != LSItEnd; ++LSIt) {
SDValue SliceInst = LSIt->loadSlice();
CombineTo(LSIt->Inst, SliceInst, true);
if (SliceInst.getOpcode() != ISD::LOAD)
SliceInst = SliceInst.getOperand(0);
assert(SliceInst->getOpcode() == ISD::LOAD &&
"It takes more than a zext to get to the loaded slice!!");
ArgChains.push_back(SliceInst.getValue(1));
}
SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
ArgChains);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
AddToWorklist(Chain.getNode());
return true;
}
/// Check to see if V is (and load (ptr), imm), where the load is having
/// specific bytes cleared out. If so, return the byte size being masked out
/// and the shift amount.
static std::pair<unsigned, unsigned>
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
std::pair<unsigned, unsigned> Result(0, 0);
// Check for the structure we're looking for.
if (V->getOpcode() != ISD::AND ||
!isa<ConstantSDNode>(V->getOperand(1)) ||
!ISD::isNormalLoad(V->getOperand(0).getNode()))
return Result;
// Check the chain and pointer.
LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
// This only handles simple types.
if (V.getValueType() != MVT::i16 &&
V.getValueType() != MVT::i32 &&
V.getValueType() != MVT::i64)
return Result;
// Check the constant mask. Invert it so that the bits being masked out are
// 0 and the bits being kept are 1. Use getSExtValue so that leading bits
// follow the sign bit for uniformity.
uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
unsigned NotMaskLZ = countLeadingZeros(NotMask);
if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
unsigned NotMaskTZ = countTrailingZeros(NotMask);
if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
if (NotMaskLZ == 64) return Result; // All zero mask.
// See if we have a continuous run of bits. If so, we have 0*1+0*
if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
return Result;
// Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
if (V.getValueType() != MVT::i64 && NotMaskLZ)
NotMaskLZ -= 64-V.getValueSizeInBits();
unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
switch (MaskedBytes) {
case 1:
case 2:
case 4: break;
default: return Result; // All one mask, or 5-byte mask.
}
// Verify that the first bit starts at a multiple of mask so that the access
// is aligned the same as the access width.
if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
// For narrowing to be valid, it must be the case that the load the
// immediately preceeding memory operation before the store.
if (LD == Chain.getNode())
; // ok.
else if (Chain->getOpcode() == ISD::TokenFactor &&
SDValue(LD, 1).hasOneUse()) {
// LD has only 1 chain use so they are no indirect dependencies.
bool isOk = false;
for (const SDValue &ChainOp : Chain->op_values())
if (ChainOp.getNode() == LD) {
isOk = true;
break;
}
if (!isOk)
return Result;
} else
return Result; // Fail.
Result.first = MaskedBytes;
Result.second = NotMaskTZ/8;
return Result;
}
/// Check to see if IVal is something that provides a value as specified by
/// MaskInfo. If so, replace the specified store with a narrower store of
/// truncated IVal.
static SDNode *
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
SDValue IVal, StoreSDNode *St,
DAGCombiner *DC) {
unsigned NumBytes = MaskInfo.first;
unsigned ByteShift = MaskInfo.second;
SelectionDAG &DAG = DC->getDAG();
// Check to see if IVal is all zeros in the part being masked in by the 'or'
// that uses this. If not, this is not a replacement.
APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
ByteShift*8, (ByteShift+NumBytes)*8);
if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
// Check that it is legal on the target to do this. It is legal if the new
// VT we're shrinking to (i8/i16/i32) is legal or we're still before type
// legalization.
MVT VT = MVT::getIntegerVT(NumBytes*8);
if (!DC->isTypeLegal(VT))
return nullptr;
// Okay, we can do this! Replace the 'St' store with a store of IVal that is
// shifted by ByteShift and truncated down to NumBytes.
if (ByteShift) {
SDLoc DL(IVal);
IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
DAG.getConstant(ByteShift*8, DL,
DC->getShiftAmountTy(IVal.getValueType())));
}
// Figure out the offset for the store and the alignment of the access.
unsigned StOffset;
unsigned NewAlign = St->getAlignment();
if (DAG.getDataLayout().isLittleEndian())
StOffset = ByteShift;
else
StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
SDValue Ptr = St->getBasePtr();
if (StOffset) {
SDLoc DL(IVal);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
NewAlign = MinAlign(NewAlign, StOffset);
}
// Truncate down to the new size.
IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
++OpsNarrowed;
return DAG
.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
St->getPointerInfo().getWithOffset(StOffset), NewAlign)
.getNode();
}
/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
/// narrowing the load and store if it would end up being a win for performance
/// or code size.
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
if (ST->isVolatile())
return SDValue();
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
EVT VT = Value.getValueType();
if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
return SDValue();
unsigned Opc = Value.getOpcode();
// If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
// is a byte mask indicating a consecutive number of bytes, check to see if
// Y is known to provide just those bytes. If so, we try to replace the
// load + replace + store sequence with a single (narrower) store, which makes
// the load dead.
if (Opc == ISD::OR) {
std::pair<unsigned, unsigned> MaskedLoad;
MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
if (MaskedLoad.first)
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
Value.getOperand(1), ST,this))
return SDValue(NewST, 0);
// Or is commutative, so try swapping X and Y.
MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
if (MaskedLoad.first)
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
Value.getOperand(0), ST,this))
return SDValue(NewST, 0);
}
if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
Value.getOperand(1).getOpcode() != ISD::Constant)
return SDValue();
SDValue N0 = Value.getOperand(0);
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Chain == SDValue(N0.getNode(), 1)) {
LoadSDNode *LD = cast<LoadSDNode>(N0);
if (LD->getBasePtr() != Ptr ||
LD->getPointerInfo().getAddrSpace() !=
ST->getPointerInfo().getAddrSpace())
return SDValue();
// Find the type to narrow it the load / op / store to.
SDValue N1 = Value.getOperand(1);
unsigned BitWidth = N1.getValueSizeInBits();
APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
if (Opc == ISD::AND)
Imm ^= APInt::getAllOnesValue(BitWidth);
if (Imm == 0 || Imm.isAllOnesValue())
return SDValue();
unsigned ShAmt = Imm.countTrailingZeros();
unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
unsigned NewBW = NextPowerOf2(MSB - ShAmt);
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
// The narrowing should be profitable, the load/store operation should be
// legal (or custom) and the store size should be equal to the NewVT width.
while (NewBW < BitWidth &&
(NewVT.getStoreSizeInBits() != NewBW ||
!TLI.isOperationLegalOrCustom(Opc, NewVT) ||
!TLI.isNarrowingProfitable(VT, NewVT))) {
NewBW = NextPowerOf2(NewBW);
NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
}
if (NewBW >= BitWidth)
return SDValue();
// If the lsb changed does not start at the type bitwidth boundary,
// start at the previous one.
if (ShAmt % NewBW)
ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
std::min(BitWidth, ShAmt + NewBW));
if ((Imm & Mask) == Imm) {
APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
if (Opc == ISD::AND)
NewImm ^= APInt::getAllOnesValue(NewBW);
uint64_t PtrOff = ShAmt / 8;
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (DAG.getDataLayout().isBigEndian())
PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
return SDValue();
SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
Ptr.getValueType(), Ptr,
DAG.getConstant(PtrOff, SDLoc(LD),
Ptr.getValueType()));
SDValue NewLD =
DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
LD->getMemOperand()->getFlags(), LD->getAAInfo());
SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
DAG.getConstant(NewImm, SDLoc(Value),
NewVT));
SDValue NewST =
DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
AddToWorklist(NewPtr.getNode());
AddToWorklist(NewLD.getNode());
AddToWorklist(NewVal.getNode());
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
++OpsNarrowed;
return NewST;
}
}
return SDValue();
}
/// For a given floating point load / store pair, if the load value isn't used
/// by any other operations, then consider transforming the pair to integer
/// load / store operations if the target deems the transformation profitable.
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
Value.hasOneUse() &&
Chain == SDValue(Value.getNode(), 1)) {
LoadSDNode *LD = cast<LoadSDNode>(Value);
EVT VT = LD->getMemoryVT();
if (!VT.isFloatingPoint() ||
VT != ST->getMemoryVT() ||
LD->isNonTemporal() ||
ST->isNonTemporal() ||
LD->getPointerInfo().getAddrSpace() != 0 ||
ST->getPointerInfo().getAddrSpace() != 0)
return SDValue();
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
!TLI.isOperationLegal(ISD::STORE, IntVT) ||
!TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
!TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
return SDValue();
unsigned LDAlign = LD->getAlignment();
unsigned STAlign = ST->getAlignment();
Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
if (LDAlign < ABIAlign || STAlign < ABIAlign)
return SDValue();
SDValue NewLD =
DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
LD->getPointerInfo(), LDAlign);
SDValue NewST =
DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(),
ST->getPointerInfo(), STAlign);
AddToWorklist(NewLD.getNode());
AddToWorklist(NewST.getNode());
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
++LdStFP2Int;
return NewST;
}
return SDValue();
}
// This is a helper function for visitMUL to check the profitability
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
// MulNode is the original multiply, AddNode is (add x, c1),
// and ConstNode is c2.
//
// If the (add x, c1) has multiple uses, we could increase
// the number of adds if we make this transformation.
// It would only be worth doing this if we can remove a
// multiply in the process. Check for that here.
// To illustrate:
// (A + c1) * c3
// (A + c2) * c3
// We're checking for cases where we have common "c3 * A" expressions.
bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode) {
APInt Val;
// If the add only has one use, this would be OK to do.
if (AddNode.getNode()->hasOneUse())
return true;
// Walk all the users of the constant with which we're multiplying.
for (SDNode *Use : ConstNode->uses()) {
if (Use == MulNode) // This use is the one we're on right now. Skip it.
continue;
if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
SDNode *OtherOp;
SDNode *MulVar = AddNode.getOperand(0).getNode();
// OtherOp is what we're multiplying against the constant.
if (Use->getOperand(0) == ConstNode)
OtherOp = Use->getOperand(1).getNode();
else
OtherOp = Use->getOperand(0).getNode();
// Check to see if multiply is with the same operand of our "add".
//
// ConstNode = CONST
// Use = ConstNode * A <-- visiting Use. OtherOp is A.
// ...
// AddNode = (A + c1) <-- MulVar is A.
// = AddNode * ConstNode <-- current visiting instruction.
//
// If we make this transformation, we will have a common
// multiply (ConstNode * A) that we can save.
if (OtherOp == MulVar)
return true;
// Now check to see if a future expansion will give us a common
// multiply.
//
// ConstNode = CONST
// AddNode = (A + c1)
// ... = AddNode * ConstNode <-- current visiting instruction.
// ...
// OtherOp = (A + c2)
// Use = OtherOp * ConstNode <-- visiting Use.
//
// If we make this transformation, we will have a common
// multiply (CONST * A) after we also do the same transformation
// to the "t2" instruction.
if (OtherOp->getOpcode() == ISD::ADD &&
DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
OtherOp->getOperand(0).getNode() == MulVar)
return true;
}
}
// Didn't find a case where this would be profitable.
return false;
}
SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumStores) {
SmallVector<SDValue, 8> Chains;
SmallPtrSet<const SDNode *, 8> Visited;
SDLoc StoreDL(StoreNodes[0].MemNode);
for (unsigned i = 0; i < NumStores; ++i) {
Visited.insert(StoreNodes[i].MemNode);
}
// don't include nodes that are children
for (unsigned i = 0; i < NumStores; ++i) {
if (Visited.count(StoreNodes[i].MemNode->getChain().getNode()) == 0)
Chains.push_back(StoreNodes[i].MemNode->getChain());
}
assert(Chains.size() > 0 && "Chain should have generated a chain");
return DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, Chains);
}
bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
bool IsConstantSrc, bool UseVector, bool UseTrunc) {
// Make sure we have something to merge.
if (NumStores < 2)
return false;
// The latest Node in the DAG.
SDLoc DL(StoreNodes[0].MemNode);
int64_t ElementSizeBits = MemVT.getStoreSizeInBits();
unsigned SizeInBits = NumStores * ElementSizeBits;
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
EVT StoreTy;
if (UseVector) {
unsigned Elts = NumStores * NumMemElts;
// Get the type for the merged vector store.
StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
} else
StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
SDValue StoredVal;
if (UseVector) {
if (IsConstantSrc) {
SmallVector<SDValue, 8> BuildVector;
for (unsigned I = 0; I != NumStores; ++I) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
SDValue Val = St->getValue();
// If constant is of the wrong type, convert it now.
if (MemVT != Val.getValueType()) {
Val = peekThroughBitcasts(Val);
// Deal with constants of wrong size.
if (ElementSizeBits != Val.getValueSizeInBits()) {
EVT IntMemVT =
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
if (isa<ConstantFPSDNode>(Val)) {
// Not clear how to truncate FP values.
return false;
} else if (auto *C = dyn_cast<ConstantSDNode>(Val))
Val = DAG.getConstant(C->getAPIntValue()
.zextOrTrunc(Val.getValueSizeInBits())
.zextOrTrunc(ElementSizeBits),
SDLoc(C), IntMemVT);
}
// Make sure correctly size type is the correct type.
Val = DAG.getBitcast(MemVT, Val);
}
BuildVector.push_back(Val);
}
StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR,
DL, StoreTy, BuildVector);
} else {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumStores; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue Val = peekThroughBitcasts(St->getValue());
// All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
// type MemVT. If the underlying value is not the correct
// type, but it is an extraction of an appropriate vector we
// can recast Val to be of the correct type. This may require
// converting between EXTRACT_VECTOR_ELT and
// EXTRACT_SUBVECTOR.
if ((MemVT != Val.getValueType()) &&
(Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
EVT MemVTScalarTy = MemVT.getScalarType();
// We may need to add a bitcast here to get types to line up.
if (MemVTScalarTy != Val.getValueType().getScalarType()) {
Val = DAG.getBitcast(MemVT, Val);
} else {
unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
: ISD::EXTRACT_VECTOR_ELT;
SDValue Vec = Val.getOperand(0);
SDValue Idx = Val.getOperand(1);
Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
}
}
Ops.push_back(Val);
}
// Build the extracted vector elements back into a vector.
StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR,
DL, StoreTy, Ops);
}
} else {
// We should always use a vector store when merging extracted vector
// elements, so this path implies a store of constants.
assert(IsConstantSrc && "Merged vector elements should use vector store");
APInt StoreInt(SizeInBits, 0);
// Construct a single integer constant which is made of the smaller
// constant inputs.
bool IsLE = DAG.getDataLayout().isLittleEndian();
for (unsigned i = 0; i < NumStores; ++i) {
unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
SDValue Val = St->getValue();
Val = peekThroughBitcasts(Val);
StoreInt <<= ElementSizeBits;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
StoreInt |= C->getAPIntValue()
.zextOrTrunc(ElementSizeBits)
.zextOrTrunc(SizeInBits);
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
StoreInt |= C->getValueAPF()
.bitcastToAPInt()
.zextOrTrunc(ElementSizeBits)
.zextOrTrunc(SizeInBits);
// If fp truncation is necessary give up for now.
if (MemVT.getSizeInBits() != ElementSizeBits)
return false;
} else {
llvm_unreachable("Invalid constant element type");
}
}
// Create the new Load and Store operations.
StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
}
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
// make sure we use trunc store if it's necessary to be legal.
SDValue NewStore;
if (!UseTrunc) {
NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(),
FirstInChain->getAlignment());
} else { // Must be realized as a trunc store
EVT LegalizedStoredValTy =
TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
SDValue ExtendedStoreVal =
DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
LegalizedStoredValTy);
NewStore = DAG.getTruncStore(
NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
FirstInChain->getAlignment(),
FirstInChain->getMemOperand()->getFlags());
}
// Replace all merged stores with the new store.
for (unsigned i = 0; i < NumStores; ++i)
CombineTo(StoreNodes[i].MemNode, NewStore);
AddToWorklist(NewChain.getNode());
return true;
}
void DAGCombiner::getStoreMergeCandidates(
StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
SDNode *&RootNode) {
// This holds the base pointer, index, and the offset in bytes from the base
// pointer.
BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
EVT MemVT = St->getMemoryVT();
SDValue Val = peekThroughBitcasts(St->getValue());
// We must have a base and an offset.
if (!BasePtr.getBase().getNode())
return;
// Do not handle stores to undef base pointers.
if (BasePtr.getBase().isUndef())
return;
bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val);
bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
Val.getOpcode() == ISD::EXTRACT_SUBVECTOR);
bool IsLoadSrc = isa<LoadSDNode>(Val);
BaseIndexOffset LBasePtr;
// Match on loadbaseptr if relevant.
EVT LoadVT;
if (IsLoadSrc) {
auto *Ld = cast<LoadSDNode>(Val);
LBasePtr = BaseIndexOffset::match(Ld, DAG);
LoadVT = Ld->getMemoryVT();
// Load and store should be the same type.
if (MemVT != LoadVT)
return;
// Loads must only have one use.
if (!Ld->hasNUsesOfValue(1, 0))
return;
// The memory operands must not be volatile.
if (Ld->isVolatile() || Ld->isIndexed())
return;
}
auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
int64_t &Offset) -> bool {
if (Other->isVolatile() || Other->isIndexed())
return false;
SDValue Val = peekThroughBitcasts(Other->getValue());
// Allow merging constants of different types as integers.
bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
: Other->getMemoryVT() != MemVT;
if (IsLoadSrc) {
if (NoTypeMatch)
return false;
// The Load's Base Ptr must also match
if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(Val)) {
auto LPtr = BaseIndexOffset::match(OtherLd, DAG);
if (LoadVT != OtherLd->getMemoryVT())
return false;
// Loads must only have one use.
if (!OtherLd->hasNUsesOfValue(1, 0))
return false;
// The memory operands must not be volatile.
if (OtherLd->isVolatile() || OtherLd->isIndexed())
return false;
if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
return false;
} else
return false;
}
if (IsConstantSrc) {
if (NoTypeMatch)
return false;
if (!(isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val)))
return false;
}
if (IsExtractVecSrc) {
// Do not merge truncated stores here.
if (Other->isTruncatingStore())
return false;
if (!MemVT.bitsEq(Val.getValueType()))
return false;
if (Val.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
Val.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
}
Ptr = BaseIndexOffset::match(Other, DAG);
return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
};
// We looking for a root node which is an ancestor to all mergable
// stores. We search up through a load, to our root and then down
// through all children. For instance we will find Store{1,2,3} if
// St is Store1, Store2. or Store3 where the root is not a load
// which always true for nonvolatile ops. TODO: Expand
// the search to find all valid candidates through multiple layers of loads.
//
// Root
// |-------|-------|
// Load Load Store3
// | |
// Store1 Store2
//
// FIXME: We should be able to climb and
// descend TokenFactors to find candidates as well.
RootNode = St->getChain().getNode();
if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
RootNode = Ldn->getChain().getNode();
for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I)
if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain
for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
if (I2.getOperandNo() == 0)
if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) {
BaseIndexOffset Ptr;
int64_t PtrDiff;
if (CandidateMatch(OtherST, Ptr, PtrDiff))
StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
}
} else
for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I)
if (I.getOperandNo() == 0)
if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
BaseIndexOffset Ptr;
int64_t PtrDiff;
if (CandidateMatch(OtherST, Ptr, PtrDiff))
StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
}
}
// We need to check that merging these stores does not cause a loop in
// the DAG. Any store candidate may depend on another candidate
// indirectly through its operand (we already consider dependencies
// through the chain). Check in parallel by searching up from
// non-chain operands of candidates.
bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
SDNode *RootNode) {
// FIXME: We should be able to truncate a full search of
// predecessors by doing a BFS and keeping tabs the originating
// stores from which worklist nodes come from in a similar way to
// TokenFactor simplfication.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 8> Worklist;
// RootNode is a predecessor to all candidates so we need not search
// past it. Add RootNode (peeking through TokenFactors). Do not count
// these towards size check.
Worklist.push_back(RootNode);
while (!Worklist.empty()) {
auto N = Worklist.pop_back_val();
if (!Visited.insert(N).second)
continue; // Already present in Visited.
if (N->getOpcode() == ISD::TokenFactor) {
for (SDValue Op : N->ops())
Worklist.push_back(Op.getNode());
}
}
// Don't count pruning nodes towards max.
unsigned int Max = 1024 + Visited.size();
// Search Ops of store candidates.
for (unsigned i = 0; i < NumStores; ++i) {
SDNode *N = StoreNodes[i].MemNode;
// Of the 4 Store Operands:
// * Chain (Op 0) -> We have already considered these
// in candidate selection and can be
// safely ignored
// * Value (Op 1) -> Cycles may happen (e.g. through load chains)
// * Address (Op 2) -> Merged addresses may only vary by a fixed constant
// and so no cycles are possible.
// * (Op 3) -> appears to always be undef. Cannot be source of cycle.
//
// Thus we need only check predecessors of the value operands.
auto *Op = N->getOperand(1).getNode();
if (Visited.insert(Op).second)
Worklist.push_back(Op);
}
// Search through DAG. We can stop early if we find a store node.
for (unsigned i = 0; i < NumStores; ++i)
if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
Max))
return false;
return true;
}
bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) {
if (OptLevel == CodeGenOpt::None)
return false;
EVT MemVT = St->getMemoryVT();
int64_t ElementSizeBytes = MemVT.getStoreSize();
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
return false;
bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
// This function cannot currently deal with non-byte-sized memory sizes.
if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
return false;
if (!MemVT.isSimple())
return false;
// Perform an early exit check. Do not bother looking at stored values that
// are not constants, loads, or extracted vector elements.
SDValue StoredVal = peekThroughBitcasts(St->getValue());
bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
isa<ConstantFPSDNode>(StoredVal);
bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
return false;
SmallVector<MemOpLink, 8> StoreNodes;
SDNode *RootNode;
// Find potential store merge candidates by searching through chain sub-DAG
getStoreMergeCandidates(St, StoreNodes, RootNode);
// Check if there is anything to merge.
if (StoreNodes.size() < 2)
return false;
// Sort the memory operands according to their distance from the
// base pointer.
llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
return LHS.OffsetFromBase < RHS.OffsetFromBase;
});
// Store Merge attempts to merge the lowest stores. This generally
// works out as if successful, as the remaining stores are checked
// after the first collection of stores is merged. However, in the
// case that a non-mergeable store is found first, e.g., {p[-2],
// p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
// mergeable cases. To prevent this, we prune such stores from the
// front of StoreNodes here.
bool RV = false;
while (StoreNodes.size() > 1) {
unsigned StartIdx = 0;
while ((StartIdx + 1 < StoreNodes.size()) &&
StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
StoreNodes[StartIdx + 1].OffsetFromBase)
++StartIdx;
// Bail if we don't have enough candidates to merge.
if (StartIdx + 1 >= StoreNodes.size())
return RV;
if (StartIdx)
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
// Scan the memory operations on the chain and find the first
// non-consecutive store memory address.
unsigned NumConsecutiveStores = 1;
int64_t StartAddress = StoreNodes[0].OffsetFromBase;
// Check that the addresses are consecutive starting from the second
// element in the list of stores.
for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
break;
NumConsecutiveStores = i + 1;
}
if (NumConsecutiveStores < 2) {
StoreNodes.erase(StoreNodes.begin(),
StoreNodes.begin() + NumConsecutiveStores);
continue;
}
// The node with the lowest store address.
LLVMContext &Context = *DAG.getContext();
const DataLayout &DL = DAG.getDataLayout();
// Store the constants into memory as one consecutive store.
if (IsConstantSrc) {
while (NumConsecutiveStores >= 2) {
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
unsigned FirstStoreAlign = FirstInChain->getAlignment();
unsigned LastLegalType = 1;
unsigned LastLegalVectorType = 1;
bool LastIntegerTrunc = false;
bool NonZero = false;
unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue StoredVal = ST->getValue();
bool IsElementZero = false;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
IsElementZero = C->isNullValue();
else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
IsElementZero = C->getConstantFPValue()->isNullValue();
if (IsElementZero) {
if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
FirstZeroAfterNonZero = i;
}
NonZero |= !IsElementZero;
// Find a legal type for the constant store.
unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
bool IsFast = false;
// Break early when size is too large to be legal.
if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
break;
if (TLI.isTypeLegal(StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFast) &&
IsFast) {
LastIntegerTrunc = false;
LastLegalType = i + 1;
// Or check whether a truncstore is legal.
} else if (TLI.getTypeAction(Context, StoreTy) ==
TargetLowering::TypePromoteInteger) {
EVT LegalizedStoredValTy =
TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFast) &&
IsFast) {
LastIntegerTrunc = true;
LastLegalType = i + 1;
}
}
// We only use vectors if the constant is known to be zero or the
// target allows it and the function is not marked with the
// noimplicitfloat attribute.
if ((!NonZero ||
TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
!NoVectors) {
// Find a legal type for the vector store.
unsigned Elts = (i + 1) * NumMemElts;
EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
FirstStoreAlign, &IsFast) &&
IsFast)
LastLegalVectorType = i + 1;
}
}
bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
// Check if we found a legal integer type that creates a meaningful
// merge.
if (NumElem < 2) {
// We know that candidate stores are in order and of correct
// shape. While there is no mergeable sequence from the
// beginning one may start later in the sequence. The only
// reason a merge of size N could have failed where another of
// the same size would not have, is if the alignment has
// improved or we've dropped a non-zero value. Drop as many
// candidates as we can here.
unsigned NumSkip = 1;
while (
(NumSkip < NumConsecutiveStores) &&
(NumSkip < FirstZeroAfterNonZero) &&
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
NumSkip++;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
NumConsecutiveStores -= NumSkip;
continue;
}
// Check that we can merge these candidates without causing a cycle.
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
RootNode)) {
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
continue;
}
RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true,
UseVector, LastIntegerTrunc);
// Remove merged stores for next iteration.
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
}
continue;
}
// When extracting multiple vector elements, try to store them
// in one vector store rather than a sequence of scalar stores.
if (IsExtractVecSrc) {
// Loop on Consecutive Stores on success.
while (NumConsecutiveStores >= 2) {
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
unsigned FirstStoreAlign = FirstInChain->getAlignment();
unsigned NumStoresToMerge = 1;
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
// Find a legal type for the vector store.
unsigned Elts = (i + 1) * NumMemElts;
EVT Ty =
EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
bool IsFast;
// Break early when size is too large to be legal.
if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
break;
if (TLI.isTypeLegal(Ty) &&
TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
FirstStoreAlign, &IsFast) &&
IsFast)
NumStoresToMerge = i + 1;
}
// Check if we found a legal integer type creating a meaningful
// merge.
if (NumStoresToMerge < 2) {
// We know that candidate stores are in order and of correct
// shape. While there is no mergeable sequence from the
// beginning one may start later in the sequence. The only
// reason a merge of size N could have failed where another of
// the same size would not have, is if the alignment has
// improved. Drop as many candidates as we can here.
unsigned NumSkip = 1;
while (
(NumSkip < NumConsecutiveStores) &&
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
NumSkip++;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
NumConsecutiveStores -= NumSkip;
continue;
}
// Check that we can merge these candidates without causing a cycle.
if (!checkMergeStoreCandidatesForDependencies(
StoreNodes, NumStoresToMerge, RootNode)) {
StoreNodes.erase(StoreNodes.begin(),
StoreNodes.begin() + NumStoresToMerge);
NumConsecutiveStores -= NumStoresToMerge;
continue;
}
RV |= MergeStoresOfConstantsOrVecElts(
StoreNodes, MemVT, NumStoresToMerge, false, true, false);
StoreNodes.erase(StoreNodes.begin(),
StoreNodes.begin() + NumStoresToMerge);
NumConsecutiveStores -= NumStoresToMerge;
}
continue;
}
// Below we handle the case of multiple consecutive stores that
// come from multiple consecutive loads. We merge them into a single
// wide load and a single wide store.
// Look for load nodes which are used by the stored values.
SmallVector<MemOpLink, 8> LoadNodes;
// Find acceptable loads. Loads need to have the same chain (token factor),
// must not be zext, volatile, indexed, and they must be consecutive.
BaseIndexOffset LdBasePtr;
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue Val = peekThroughBitcasts(St->getValue());
LoadSDNode *Ld = cast<LoadSDNode>(Val);
BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
// If this is not the first ptr that we check.
int64_t LdOffset = 0;
if (LdBasePtr.getBase().getNode()) {
// The base ptr must be the same.
if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
break;
} else {
// Check that all other base pointers are the same as this one.
LdBasePtr = LdPtr;
}
// We found a potential memory operand to merge.
LoadNodes.push_back(MemOpLink(Ld, LdOffset));
}
while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
// If we have load/store pair instructions and we only have two values,
// don't bother merging.
unsigned RequiredAlignment;
if (LoadNodes.size() == 2 &&
TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) {
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
break;
}
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
unsigned FirstStoreAlign = FirstInChain->getAlignment();
LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
unsigned FirstLoadAS = FirstLoad->getAddressSpace();
unsigned FirstLoadAlign = FirstLoad->getAlignment();
// Scan the memory operations on the chain and find the first
// non-consecutive load memory address. These variables hold the index in
// the store node array.
unsigned LastConsecutiveLoad = 1;
// This variable refers to the size and not index in the array.
unsigned LastLegalVectorType = 1;
unsigned LastLegalIntegerType = 1;
bool isDereferenceable = true;
bool DoIntegerTruncate = false;
StartAddress = LoadNodes[0].OffsetFromBase;
SDValue FirstChain = FirstLoad->getChain();
for (unsigned i = 1; i < LoadNodes.size(); ++i) {
// All loads must share the same chain.
if (LoadNodes[i].MemNode->getChain() != FirstChain)
break;
int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
break;
LastConsecutiveLoad = i;
if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
isDereferenceable = false;
// Find a legal type for the vector store.
unsigned Elts = (i + 1) * NumMemElts;
EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
// Break early when size is too large to be legal.
if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
break;
bool IsFastSt, IsFastLd;
if (TLI.isTypeLegal(StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFastSt) &&
IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
FirstLoadAlign, &IsFastLd) &&
IsFastLd) {
LastLegalVectorType = i + 1;
}
// Find a legal type for the integer store.
unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
StoreTy = EVT::getIntegerVT(Context, SizeInBits);
if (TLI.isTypeLegal(StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFastSt) &&
IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
FirstLoadAlign, &IsFastLd) &&
IsFastLd) {
LastLegalIntegerType = i + 1;
DoIntegerTruncate = false;
// Or check whether a truncstore and extload is legal.
} else if (TLI.getTypeAction(Context, StoreTy) ==
TargetLowering::TypePromoteInteger) {
EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy,
StoreTy) &&
TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy,
StoreTy) &&
TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFastSt) &&
IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
FirstLoadAlign, &IsFastLd) &&
IsFastLd) {
LastLegalIntegerType = i + 1;
DoIntegerTruncate = true;
}
}
}
// Only use vector types if the vector type is larger than the integer
// type. If they are the same, use integers.
bool UseVectorTy =
LastLegalVectorType > LastLegalIntegerType && !NoVectors;
unsigned LastLegalType =
std::max(LastLegalVectorType, LastLegalIntegerType);
// We add +1 here because the LastXXX variables refer to location while
// the NumElem refers to array/index size.
unsigned NumElem =
std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
NumElem = std::min(LastLegalType, NumElem);
if (NumElem < 2) {
// We know that candidate stores are in order and of correct
// shape. While there is no mergeable sequence from the
// beginning one may start later in the sequence. The only
// reason a merge of size N could have failed where another of
// the same size would not have is if the alignment or either
// the load or store has improved. Drop as many candidates as we
// can here.
unsigned NumSkip = 1;
while ((NumSkip < LoadNodes.size()) &&
(LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) &&
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
NumSkip++;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
NumConsecutiveStores -= NumSkip;
continue;
}
// Check that we can merge these candidates without causing a cycle.
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
RootNode)) {
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
continue;
}
// Find if it is better to use vectors or integers to load and store
// to memory.
EVT JointMemOpVT;
if (UseVectorTy) {
// Find a legal type for the vector store.
unsigned Elts = NumElem * NumMemElts;
JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
} else {
unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
}
SDLoc LoadDL(LoadNodes[0].MemNode);
SDLoc StoreDL(StoreNodes[0].MemNode);
// The merged loads are required to have the same incoming chain, so
// using the first's chain is acceptable.
SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
AddToWorklist(NewStoreChain.getNode());
MachineMemOperand::Flags MMOFlags =
isDereferenceable ? MachineMemOperand::MODereferenceable
: MachineMemOperand::MONone;
SDValue NewLoad, NewStore;
if (UseVectorTy || !DoIntegerTruncate) {
NewLoad =
DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
FirstLoadAlign, MMOFlags);
NewStore = DAG.getStore(
NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(), FirstStoreAlign);
} else { // This must be the truncstore/extload case
EVT ExtendedTy =
TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
FirstLoad->getChain(), FirstLoad->getBasePtr(),
FirstLoad->getPointerInfo(), JointMemOpVT,
FirstLoadAlign, MMOFlags);
NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad,
FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(),
JointMemOpVT, FirstInChain->getAlignment(),
FirstInChain->getMemOperand()->getFlags());
}
// Transfer chain users from old loads to the new load.
for (unsigned i = 0; i < NumElem; ++i) {
LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
SDValue(NewLoad.getNode(), 1));
}
// Replace the all stores with the new store. Recursively remove
// corresponding value if its no longer used.
for (unsigned i = 0; i < NumElem; ++i) {
SDValue Val = StoreNodes[i].MemNode->getOperand(1);
CombineTo(StoreNodes[i].MemNode, NewStore);
if (Val.getNode()->use_empty())
recursivelyDeleteUnusedNodes(Val.getNode());
}
RV = true;
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
NumConsecutiveStores -= NumElem;
}
}
return RV;
}
SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
SDLoc SL(ST);
SDValue ReplStore;
// Replace the chain to avoid dependency.
if (ST->isTruncatingStore()) {
ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
ST->getBasePtr(), ST->getMemoryVT(),
ST->getMemOperand());
} else {
ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
ST->getMemOperand());
}
// Create token to keep both nodes around.
SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
MVT::Other, ST->getChain(), ReplStore);
// Make sure the new and old chains are cleaned up.
AddToWorklist(Token.getNode());
// Don't add users to work list.
return CombineTo(ST, Token, false);
}
SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
SDValue Value = ST->getValue();
if (Value.getOpcode() == ISD::TargetConstantFP)
return SDValue();
SDLoc DL(ST);
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
// NOTE: If the original store is volatile, this transform must not increase
// the number of stores. For example, on x86-32 an f64 can be stored in one
// processor operation but an i64 (which is not legal) requires two. So the
// transform should not be done in this case.
SDValue Tmp;
switch (CFP->getSimpleValueType(0).SimpleTy) {
default:
llvm_unreachable("Unknown FP type");
case MVT::f16: // We don't do this for these yet.
case MVT::f80:
case MVT::f128:
case MVT::ppcf128:
return SDValue();
case MVT::f32:
if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
;
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
bitcastToAPInt().getZExtValue(), SDLoc(CFP),
MVT::i32);
return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
}
return SDValue();
case MVT::f64:
if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
!ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
;
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
getZExtValue(), SDLoc(CFP), MVT::i64);
return DAG.getStore(Chain, DL, Tmp,
Ptr, ST->getMemOperand());
}
if (!ST->isVolatile() &&
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
// Many FP stores are not made apparent until after legalize, e.g. for
// argument passing. Since this is so common, custom legalize the
// 64-bit integer store into two 32-bit stores.
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
unsigned Alignment = ST->getAlignment();
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
ST->getAlignment(), MMOFlags, AAInfo);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(4, DL, Ptr.getValueType()));
Alignment = MinAlign(Alignment, 4U);
SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
ST->getPointerInfo().getWithOffset(4),
Alignment, MMOFlags, AAInfo);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
St0, St1);
}
return SDValue();
}
}
SDValue DAGCombiner::visitSTORE(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
// If this is a store of a bit convert, store the input value if the
// resultant store does not need a higher alignment than the original.
if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
ST->isUnindexed()) {
EVT SVT = Value.getOperand(0).getValueType();
// If the store is volatile, we only want to change the store type if the
// resulting store is legal. Otherwise we might increase the number of
// memory accesses. We don't care if the original type was legal or not
// as we assume software couldn't rely on the number of accesses of an
// illegal type.
if (((!LegalOperations && !ST->isVolatile()) ||
TLI.isOperationLegal(ISD::STORE, SVT)) &&
TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) {
unsigned OrigAlign = ST->getAlignment();
bool Fast = false;
if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT,
ST->getAddressSpace(), OrigAlign, &Fast) &&
Fast) {
return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
ST->getPointerInfo(), OrigAlign,
ST->getMemOperand()->getFlags(), ST->getAAInfo());
}
}
}
// Turn 'store undef, Ptr' -> nothing.
if (Value.isUndef() && ST->isUnindexed())
return Chain;
// Try to infer better alignment information than the store already has.
if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) {
SDValue NewStore =
DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
ST->getMemoryVT(), Align,
ST->getMemOperand()->getFlags(), ST->getAAInfo());
// NewStore will always be N as we are only refining the alignment
assert(NewStore.getNode() == N);
(void)NewStore;
}
}
}
// Try transforming a pair floating point load / store ops to integer
// load / store ops.
if (SDValue NewST = TransformFPLoadStorePair(N))
return NewST;
if (ST->isUnindexed()) {
// Walk up chain skipping non-aliasing memory nodes, on this store and any
// adjacent stores.
if (findBetterNeighborChains(ST)) {
// replaceStoreChain uses CombineTo, which handled all of the worklist
// manipulation. Return the original node to not do anything else.
return SDValue(ST, 0);
}
Chain = ST->getChain();
}
// FIXME: is there such a thing as a truncating indexed store?
if (ST->isTruncatingStore() && ST->isUnindexed() &&
Value.getValueType().isInteger()) {
// See if we can simplify the input to this truncstore with knowledge that
// only the low bits are being used. For example:
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
SDValue Shorter = DAG.GetDemandedBits(
Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
ST->getMemoryVT().getScalarSizeInBits()));
AddToWorklist(Value.getNode());
if (Shorter.getNode())
return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
Ptr, ST->getMemoryVT(), ST->getMemOperand());
// Otherwise, see if we can simplify the operation with
// SimplifyDemandedBits, which only works if the value has a single use.
if (SimplifyDemandedBits(
Value,
APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
ST->getMemoryVT().getScalarSizeInBits()))) {
// Re-visit the store if anything changed and the store hasn't been merged
// with another node (N is deleted) SimplifyDemandedBits will add Value's
// node back to the worklist if necessary, but we also need to re-visit
// the Store node itself.
if (N->getOpcode() != ISD::DELETED_NODE)
AddToWorklist(N);
return SDValue(N, 0);
}
}
// If this is a load followed by a store to the same location, then the store
// is dead/noop.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
ST->isUnindexed() && !ST->isVolatile() &&
// There can't be any side effects between the load and store, such as
// a call or store.
Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
// The store is dead, remove it.
return Chain;
}
}
if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() &&
!ST1->isVolatile() && ST1->getBasePtr() == Ptr &&
ST->getMemoryVT() == ST1->getMemoryVT()) {
// If this is a store followed by a store with the same value to the same
// location, then the store is dead/noop.
if (ST1->getValue() == Value) {
// The store is dead, remove it.
return Chain;
}
// If this is a store who's preceeding store to the same location
// and no one other node is chained to that store we can effectively
// drop the store. Do not remove stores to undef as they may be used as
// data sinks.
if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
!ST1->getBasePtr().isUndef()) {
// ST1 is fully overwritten and can be elided. Combine with it's chain
// value.
CombineTo(ST1, ST1->getChain());
return SDValue();
}
}
}
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
// truncating store. We can do this even if this is already a truncstore.
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
&& Value.getNode()->hasOneUse() && ST->isUnindexed() &&
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
ST->getMemoryVT())) {
return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
Ptr, ST->getMemoryVT(), ST->getMemOperand());
}
// Always perform this optimization before types are legal. If the target
// prefers, also try this after legalization to catch stores that were created
// by intrinsics or other nodes.
if (!LegalTypes || (TLI.mergeStoresAfterLegalization())) {
while (true) {
// There can be multiple store sequences on the same chain.
// Keep trying to merge store sequences until we are unable to do so
// or until we merge the last store on the chain.
bool Changed = MergeConsecutiveStores(ST);
if (!Changed) break;
// Return N as merge only uses CombineTo and no worklist clean
// up is necessary.
if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
return SDValue(N, 0);
}
}
// Try transforming N to an indexed store.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
//
// Make sure to do this only after attempting to merge stores in order to
// avoid changing the types of some subset of stores due to visit order,
// preventing their merging.
if (isa<ConstantFPSDNode>(ST->getValue())) {
if (SDValue NewSt = replaceStoreOfFPConstant(ST))
return NewSt;
}
if (SDValue NewSt = splitMergedValStore(ST))
return NewSt;
return ReduceLoadOpStoreWidth(N);
}
/// For the instruction sequence of store below, F and I values
/// are bundled together as an i64 value before being stored into memory.
/// Sometimes it is more efficent to generate separate stores for F and I,
/// which can remove the bitwise instructions or sink them to colder places.
///
/// (store (or (zext (bitcast F to i32) to i64),
/// (shl (zext I to i64), 32)), addr) -->
/// (store F, addr) and (store I, addr+4)
///
/// Similarly, splitting for other merged store can also be beneficial, like:
/// For pair of {i32, i32}, i64 store --> two i32 stores.
/// For pair of {i32, i16}, i64 store --> two i32 stores.
/// For pair of {i16, i16}, i32 store --> two i16 stores.
/// For pair of {i16, i8}, i32 store --> two i16 stores.
/// For pair of {i8, i8}, i16 store --> two i8 stores.
///
/// We allow each target to determine specifically which kind of splitting is
/// supported.
///
/// The store patterns are commonly seen from the simple code snippet below
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
/// void goo(const std::pair<int, float> &);
/// hoo() {
/// ...
/// goo(std::make_pair(tmp, ftmp));
/// ...
/// }
///
SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
if (OptLevel == CodeGenOpt::None)
return SDValue();
SDValue Val = ST->getValue();
SDLoc DL(ST);
// Match OR operand.
if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
return SDValue();
// Match SHL operand and get Lower and Higher parts of Val.
SDValue Op1 = Val.getOperand(0);
SDValue Op2 = Val.getOperand(1);
SDValue Lo, Hi;
if (Op1.getOpcode() != ISD::SHL) {
std::swap(Op1, Op2);
if (Op1.getOpcode() != ISD::SHL)
return SDValue();
}
Lo = Op2;
Hi = Op1.getOperand(0);
if (!Op1.hasOneUse())
return SDValue();
// Match shift amount to HalfValBitSize.
unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
return SDValue();
// Lo and Hi are zero-extended from int with size less equal than 32
// to i64.
if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
!Lo.getOperand(0).getValueType().isScalarInteger() ||
Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
!Hi.getOperand(0).getValueType().isScalarInteger() ||
Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
return SDValue();
// Use the EVT of low and high parts before bitcast as the input
// of target query.
EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
? Lo.getOperand(0).getValueType()
: Lo.getValueType();
EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
? Hi.getOperand(0).getValueType()
: Hi.getValueType();
if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
return SDValue();
// Start to split store.
unsigned Alignment = ST->getAlignment();
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
// Change the sizes of Lo and Hi's value types to HalfValBitSize.
EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
// Lower value store.
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
ST->getAlignment(), MMOFlags, AAInfo);
Ptr =
DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
// Higher value store.
SDValue St1 =
DAG.getStore(St0, DL, Hi, Ptr,
ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
Alignment / 2, MMOFlags, AAInfo);
return St1;
}
/// Convert a disguised subvector insertion into a shuffle:
/// insert_vector_elt V, (bitcast X from vector type), IdxC -->
/// bitcast(shuffle (bitcast V), (extended X), Mask)
/// Note: We do not use an insert_subvector node because that requires a legal
/// subvector type.
SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
SDValue InsertVal = N->getOperand(1);
if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
!InsertVal.getOperand(0).getValueType().isVector())
return SDValue();
SDValue SubVec = InsertVal.getOperand(0);
SDValue DestVec = N->getOperand(0);
EVT SubVecVT = SubVec.getValueType();
EVT VT = DestVec.getValueType();
unsigned NumSrcElts = SubVecVT.getVectorNumElements();
unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
unsigned NumMaskVals = ExtendRatio * NumSrcElts;
// Step 1: Create a shuffle mask that implements this insert operation. The
// vector that we are inserting into will be operand 0 of the shuffle, so
// those elements are just 'i'. The inserted subvector is in the first
// positions of operand 1 of the shuffle. Example:
// insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
SmallVector<int, 16> Mask(NumMaskVals);
for (unsigned i = 0; i != NumMaskVals; ++i) {
if (i / NumSrcElts == InsIndex)
Mask[i] = (i % NumSrcElts) + NumMaskVals;
else
Mask[i] = i;
}
// Bail out if the target can not handle the shuffle we want to create.
EVT SubVecEltVT = SubVecVT.getVectorElementType();
EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
return SDValue();
// Step 2: Create a wide vector from the inserted source vector by appending
// undefined elements. This is the same size as our destination vector.
SDLoc DL(N);
SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
ConcatOps[0] = SubVec;
SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
// Step 3: Shuffle in the padded subvector.
SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
AddToWorklist(PaddedSubV.getNode());
AddToWorklist(DestVecBC.getNode());
AddToWorklist(Shuf.getNode());
return DAG.getBitcast(VT, Shuf);
}
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
SDValue InVec = N->getOperand(0);
SDValue InVal = N->getOperand(1);
SDValue EltNo = N->getOperand(2);
SDLoc DL(N);
// If the inserted element is an UNDEF, just use the input vector.
if (InVal.isUndef())
return InVec;
EVT VT = InVec.getValueType();
// Remove redundant insertions:
// (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
return InVec;
auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
if (!IndexC) {
// If this is variable insert to undef vector, it might be better to splat:
// inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal);
return DAG.getBuildVector(VT, DL, Ops);
}
return SDValue();
}
// We must know which element is being inserted for folds below here.
unsigned Elt = IndexC->getZExtValue();
if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
return Shuf;
// Canonicalize insert_vector_elt dag nodes.
// Example:
// (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
// -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
//
// Do this only if the child insert_vector node has one use; also
// do this only if indices are both constants and Idx1 < Idx0.
if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
&& isa<ConstantSDNode>(InVec.getOperand(2))) {
unsigned OtherElt = InVec.getConstantOperandVal(2);
if (Elt < OtherElt) {
// Swap nodes.
SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
InVec.getOperand(0), InVal, EltNo);
AddToWorklist(NewOp.getNode());
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
}
}
// If we can't generate a legal BUILD_VECTOR, exit
if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
return SDValue();
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the
// vector elements.
SmallVector<SDValue, 8> Ops;
// Do not combine these two vectors if the output vector will not replace
// the input vector.
if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
Ops.append(InVec.getNode()->op_begin(),
InVec.getNode()->op_end());
} else if (InVec.isUndef()) {
unsigned NElts = VT.getVectorNumElements();
Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
} else {
return SDValue();
}
// Insert the element
if (Elt < Ops.size()) {
// All the operands of BUILD_VECTOR must have the same type;
// we enforce that here.
EVT OpVT = Ops[0].getValueType();
Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
}
// Return the new vector
return DAG.getBuildVector(VT, DL, Ops);
}
SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
assert(!OriginalLoad->isVolatile());
EVT ResultVT = EVE->getValueType(0);
EVT VecEltVT = InVecVT.getVectorElementType();
unsigned Align = OriginalLoad->getAlignment();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
VecEltVT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
return SDValue();
ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
ISD::NON_EXTLOAD : ISD::EXTLOAD;
if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
return SDValue();
Align = NewAlign;
SDValue NewPtr = OriginalLoad->getBasePtr();
SDValue Offset;
EVT PtrType = NewPtr.getValueType();
MachinePointerInfo MPI;
SDLoc DL(EVE);
if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
int Elt = ConstEltNo->getZExtValue();
unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
Offset = DAG.getConstant(PtrOff, DL, PtrType);
MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
} else {
Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
Offset = DAG.getNode(
ISD::MUL, DL, PtrType, Offset,
DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
MPI = OriginalLoad->getPointerInfo();
}
NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
// The replacement we need to do here is a little tricky: we need to
// replace an extractelement of a load with a load.
// Use ReplaceAllUsesOfValuesWith to do the replacement.
// Note that this replacement assumes that the extractvalue is the only
// use of the load; that's okay because we don't want to perform this
// transformation in other cases anyway.
SDValue Load;
SDValue Chain;
if (ResultVT.bitsGT(VecEltVT)) {
// If the result type of vextract is wider than the load, then issue an
// extending load instead.
ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
VecEltVT)
? ISD::ZEXTLOAD
: ISD::EXTLOAD;
Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
Align, OriginalLoad->getMemOperand()->getFlags(),
OriginalLoad->getAAInfo());
Chain = Load.getValue(1);
} else {
Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
OriginalLoad->getAAInfo());
Chain = Load.getValue(1);
if (ResultVT.bitsLT(VecEltVT))
Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
else
Load = DAG.getBitcast(ResultVT, Load);
}
WorklistRemover DeadNodes(*this);
SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
SDValue To[] = { Load, Chain };
DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
// Since we're explicitly calling ReplaceAllUses, add the new node to the
// worklist explicitly as well.
AddToWorklist(Load.getNode());
AddUsersToWorklist(Load.getNode()); // Add users too
// Make sure to revisit this node to clean it up; it will usually be dead.
AddToWorklist(EVE);
++OpsNarrowed;
return SDValue(EVE, 0);
}
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
SDValue InVec = N->getOperand(0);
EVT VT = InVec.getValueType();
EVT NVT = N->getValueType(0);
if (InVec.isUndef())
return DAG.getUNDEF(NVT);
// (vextract (scalar_to_vector val, 0) -> val
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
// Check if the result type doesn't match the inserted element type. A
// SCALAR_TO_VECTOR may truncate the inserted element and the
// EXTRACT_VECTOR_ELT may widen the extracted vector.
SDValue InOp = InVec.getOperand(0);
if (InOp.getValueType() != NVT) {
assert(InOp.getValueType().isInteger() && NVT.isInteger());
return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
}
return InOp;
}
SDValue EltNo = N->getOperand(1);
ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
// extract_vector_elt of out-of-bounds element -> UNDEF
if (ConstEltNo && ConstEltNo->getAPIntValue().uge(VT.getVectorNumElements()))
return DAG.getUNDEF(NVT);
// extract_vector_elt (build_vector x, y), 1 -> y
if (ConstEltNo &&
InVec.getOpcode() == ISD::BUILD_VECTOR &&
TLI.isTypeLegal(VT) &&
(InVec.hasOneUse() ||
TLI.aggressivelyPreferBuildVectorSources(VT))) {
SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue());
EVT InEltVT = Elt.getValueType();
// Sometimes build_vector's scalar input types do not match result type.
if (NVT == InEltVT)
return Elt;
// TODO: It may be useful to truncate if free if the build_vector implicitly
// converts.
}
if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST) {
// The vector index of the LSBs of the source depend on the endian-ness.
bool IsLE = DAG.getDataLayout().isLittleEndian();
// extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
unsigned BCTruncElt = IsLE ? 0 : VT.getVectorNumElements() - 1;
SDValue BCSrc = InVec.getOperand(0);
if (InVec.hasOneUse() && ConstEltNo->getZExtValue() == BCTruncElt &&
VT.isInteger() && BCSrc.getValueType().isScalarInteger())
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc);
}
// extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
//
// This only really matters if the index is non-constant since other combines
// on the constant elements already work.
if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT &&
EltNo == InVec.getOperand(2)) {
SDValue Elt = InVec.getOperand(1);
return VT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, SDLoc(N), NVT) : Elt;
}
// Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
// We only perform this optimization before the op legalization phase because
// we may introduce new vector instructions which are not backed by TD
// patterns. For example on AVX, extracting elements from a wide vector
// without using extract_subvector. However, if we can find an underlying
// scalar value, then we can always use that.
if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) {
int NumElem = VT.getVectorNumElements();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
// Find the new index to extract from.
int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue());
// Extracting an undef index is undef.
if (OrigElt == -1)
return DAG.getUNDEF(NVT);
// Select the right vector half to extract from.
SDValue SVInVec;
if (OrigElt < NumElem) {
SVInVec = InVec->getOperand(0);
} else {
SVInVec = InVec->getOperand(1);
OrigElt -= NumElem;
}
if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
SDValue InOp = SVInVec.getOperand(OrigElt);
if (InOp.getValueType() != NVT) {
assert(InOp.getValueType().isInteger() && NVT.isInteger());
InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT);
}
return InOp;
}
// FIXME: We should handle recursing on other vector shuffles and
// scalar_to_vector here as well.
if (!LegalOperations ||
// FIXME: Should really be just isOperationLegalOrCustom.
TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VT) ||
TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VT)) {
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec,
DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy));
}
}
// If only EXTRACT_VECTOR_ELT nodes use the source vector we can
// simplify it based on the (valid) extraction indices.
if (llvm::all_of(InVec->uses(), [&](SDNode *Use) {
return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Use->getOperand(0) == InVec &&
isa<ConstantSDNode>(Use->getOperand(1));
})) {
APInt DemandedElts = APInt::getNullValue(VT.getVectorNumElements());
for (SDNode *Use : InVec->uses()) {
auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
if (CstElt->getAPIntValue().ult(VT.getVectorNumElements()))
DemandedElts.setBit(CstElt->getZExtValue());
}
if (SimplifyDemandedVectorElts(InVec, DemandedElts, true))
return SDValue(N, 0);
}
bool BCNumEltsChanged = false;
EVT ExtVT = VT.getVectorElementType();
EVT LVT = ExtVT;
// If the result of load has to be truncated, then it's not necessarily
// profitable.
if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
return SDValue();
if (InVec.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
EVT BCVT = InVec.getOperand(0).getValueType();
if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
return SDValue();
if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
BCNumEltsChanged = true;
InVec = InVec.getOperand(0);
ExtVT = BCVT.getVectorElementType();
}
// (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
ISD::isNormalLoad(InVec.getNode()) &&
!N->getOperand(1)->hasPredecessor(InVec.getNode())) {
SDValue Index = N->getOperand(1);
if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) {
if (!OrigLoad->isVolatile()) {
return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
OrigLoad);
}
}
}
// Perform only after legalization to ensure build_vector / vector_shuffle
// optimizations have already been done.
if (!LegalOperations) return SDValue();
// (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
if (ConstEltNo) {
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
LoadSDNode *LN0 = nullptr;
const ShuffleVectorSDNode *SVN = nullptr;
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
} else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
InVec.getOperand(0).getValueType() == ExtVT &&
ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
LN0 = cast<LoadSDNode>(InVec.getOperand(0));
} else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
// (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
// =>
// (load $addr+1*size)
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
// If the bit convert changed the number of elements, it is unsafe
// to examine the mask.
if (BCNumEltsChanged)
return SDValue();
// Select the input vector, guarding against out of range extract vector.
unsigned NumElems = VT.getVectorNumElements();
int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
if (InVec.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
InVec = InVec.getOperand(0);
}
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType());
}
}
// Make sure we found a non-volatile load and the extractelement is
// the only use.
if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
return SDValue();
// If Idx was -1 above, Elt is going to be -1, so just return undef.
if (Elt == -1)
return DAG.getUNDEF(LVT);
return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
}
return SDValue();
}
// Simplify (build_vec (ext )) to (bitcast (build_vec ))
SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
// We perform this optimization post type-legalization because
// the type-legalizer often scalarizes integer-promoted vectors.
// Performing this optimization before may create bit-casts which
// will be type-legalized to complex code sequences.
// We perform this optimization only before the operation legalizer because we
// may introduce illegal operations.
if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
return SDValue();
unsigned NumInScalars = N->getNumOperands();
SDLoc DL(N);
EVT VT = N->getValueType(0);
// Check to see if this is a BUILD_VECTOR of a bunch of values
// which come from any_extend or zero_extend nodes. If so, we can create
// a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
// optimizations. We do not handle sign-extend because we can't fill the sign
// using shuffles.
EVT SourceType = MVT::Other;
bool AllAnyExt = true;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue In = N->getOperand(i);
// Ignore undef inputs.
if (In.isUndef()) continue;
bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
// Abort if the element is not an extension.
if (!ZeroExt && !AnyExt) {
SourceType = MVT::Other;
break;
}
// The input is a ZeroExt or AnyExt. Check the original type.
EVT InTy = In.getOperand(0).getValueType();
// Check that all of the widened source types are the same.
if (SourceType == MVT::Other)
// First time.
SourceType = InTy;
else if (InTy != SourceType) {
// Multiple income types. Abort.
SourceType = MVT::Other;
break;
}
// Check if all of the extends are ANY_EXTENDs.
AllAnyExt &= AnyExt;
}
// In order to have valid types, all of the inputs must be extended from the
// same source type and all of the inputs must be any or zero extend.
// Scalar sizes must be a power of two.
EVT OutScalarTy = VT.getScalarType();
bool ValidTypes = SourceType != MVT::Other &&
isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
isPowerOf2_32(SourceType.getSizeInBits());
// Create a new simpler BUILD_VECTOR sequence which other optimizations can
// turn into a single shuffle instruction.
if (!ValidTypes)
return SDValue();
bool isLE = DAG.getDataLayout().isLittleEndian();
unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
assert(ElemRatio > 1 && "Invalid element size ratio");
SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
DAG.getConstant(0, DL, SourceType);
unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
// Populate the new build_vector
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Cast = N->getOperand(i);
assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
Cast.getOpcode() == ISD::ZERO_EXTEND ||
Cast.isUndef()) && "Invalid cast opcode");
SDValue In;
if (Cast.isUndef())
In = DAG.getUNDEF(SourceType);
else
In = Cast->getOperand(0);
unsigned Index = isLE ? (i * ElemRatio) :
(i * ElemRatio + (ElemRatio - 1));
assert(Index < Ops.size() && "Invalid index");
Ops[Index] = In;
}
// The type of the new BUILD_VECTOR node.
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
"Invalid vector size");
// Check if the new vector type is legal.
if (!isTypeLegal(VecVT) ||
(!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
return SDValue();
// Make the new BUILD_VECTOR.
SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
// The new BUILD_VECTOR node has the potential to be further optimized.
AddToWorklist(BV.getNode());
// Bitcast to the desired type.
return DAG.getBitcast(VT, BV);
}
SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumInScalars = N->getNumOperands();
SDLoc DL(N);
EVT SrcVT = MVT::Other;
unsigned Opcode = ISD::DELETED_NODE;
unsigned NumDefs = 0;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue In = N->getOperand(i);
unsigned Opc = In.getOpcode();
if (Opc == ISD::UNDEF)
continue;
// If all scalar values are floats and converted from integers.
if (Opcode == ISD::DELETED_NODE &&
(Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
Opcode = Opc;
}
if (Opc != Opcode)
return SDValue();
EVT InVT = In.getOperand(0).getValueType();
// If all scalar values are typed differently, bail out. It's chosen to
// simplify BUILD_VECTOR of integer types.
if (SrcVT == MVT::Other)
SrcVT = InVT;
if (SrcVT != InVT)
return SDValue();
NumDefs++;
}
// If the vector has just one element defined, it's not worth to fold it into
// a vectorized one.
if (NumDefs < 2)
return SDValue();
assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
&& "Should only handle conversion from integer to float.");
assert(SrcVT != MVT::Other && "Cannot determine source type!");
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
return SDValue();
// Just because the floating-point vector type is legal does not necessarily
// mean that the corresponding integer vector type is.
if (!isTypeLegal(NVT))
return SDValue();
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue In = N->getOperand(i);
if (In.isUndef())
Opnds.push_back(DAG.getUNDEF(SrcVT));
else
Opnds.push_back(In.getOperand(0));
}
SDValue BV = DAG.getBuildVector(NVT, DL, Opnds);
AddToWorklist(BV.getNode());
return DAG.getNode(Opcode, DL, VT, BV);
}
SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
ArrayRef<int> VectorMask,
SDValue VecIn1, SDValue VecIn2,
unsigned LeftIdx) {
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
EVT VT = N->getValueType(0);
EVT InVT1 = VecIn1.getValueType();
EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
unsigned Vec2Offset = 0;
unsigned NumElems = VT.getVectorNumElements();
unsigned ShuffleNumElems = NumElems;
// In case both the input vectors are extracted from same base
// vector we do not need extra addend (Vec2Offset) while
// computing shuffle mask.
if (!VecIn2 || !(VecIn1.getOpcode() == ISD::EXTRACT_SUBVECTOR) ||
!(VecIn2.getOpcode() == ISD::EXTRACT_SUBVECTOR) ||
!(VecIn1.getOperand(0) == VecIn2.getOperand(0)))
Vec2Offset = InVT1.getVectorNumElements();
// We can't generate a shuffle node with mismatched input and output types.
// Try to make the types match the type of the output.
if (InVT1 != VT || InVT2 != VT) {
if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
// If the output vector length is a multiple of both input lengths,
// we can concatenate them and pad the rest with undefs.
unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
assert(NumConcats >= 2 && "Concat needs at least two inputs!");
SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
ConcatOps[0] = VecIn1;
ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
VecIn2 = SDValue();
} else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
return SDValue();
if (!VecIn2.getNode()) {
// If we only have one input vector, and it's twice the size of the
// output, split it in two.
VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
DAG.getConstant(NumElems, DL, IdxTy));
VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
// Since we now have shorter input vectors, adjust the offset of the
// second vector's start.
Vec2Offset = NumElems;
} else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
// VecIn1 is wider than the output, and we have another, possibly
// smaller input. Pad the smaller input with undefs, shuffle at the
// input vector width, and extract the output.
// The shuffle type is different than VT, so check legality again.
if (LegalOperations &&
!TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
return SDValue();
// Legalizing INSERT_SUBVECTOR is tricky - you basically have to
// lower it back into a BUILD_VECTOR. So if the inserted type is
// illegal, don't even try.
if (InVT1 != InVT2) {
if (!TLI.isTypeLegal(InVT2))
return SDValue();
VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
}
ShuffleNumElems = NumElems * 2;
} else {
// Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
// than VecIn1. We can't handle this for now - this case will disappear
// when we start sorting the vectors by type.
return SDValue();
}
} else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
InVT1.getSizeInBits() == VT.getSizeInBits()) {
SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
ConcatOps[0] = VecIn2;
VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
} else {
// TODO: Support cases where the length mismatch isn't exactly by a
// factor of 2.
// TODO: Move this check upwards, so that if we have bad type
// mismatches, we don't create any DAG nodes.
return SDValue();
}
}
// Initialize mask to undef.
SmallVector<int, 8> Mask(ShuffleNumElems, -1);
// Only need to run up to the number of elements actually used, not the
// total number of elements in the shuffle - if we are shuffling a wider
// vector, the high lanes should be set to undef.
for (unsigned i = 0; i != NumElems; ++i) {
if (VectorMask[i] <= 0)
continue;
unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
if (VectorMask[i] == (int)LeftIdx) {
Mask[i] = ExtIndex;
} else if (VectorMask[i] == (int)LeftIdx + 1) {
Mask[i] = Vec2Offset + ExtIndex;
}
}
// The type the input vectors may have changed above.
InVT1 = VecIn1.getValueType();
// If we already have a VecIn2, it should have the same type as VecIn1.
// If we don't, get an undef/zero vector of the appropriate type.
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
if (ShuffleNumElems > NumElems)
Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
return Shuffle;
}
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
// operations. If the types of the vectors we're extracting from allow it,
// turn this into a vector_shuffle node.
SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
// Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
if (!isTypeLegal(VT))
return SDValue();
// May only combine to shuffle after legalize if shuffle is legal.
if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
return SDValue();
bool UsesZeroVector = false;
unsigned NumElems = N->getNumOperands();
// Record, for each element of the newly built vector, which input vector
// that element comes from. -1 stands for undef, 0 for the zero vector,
// and positive values for the input vectors.
// VectorMask maps each element to its vector number, and VecIn maps vector
// numbers to their initial SDValues.
SmallVector<int, 8> VectorMask(NumElems, -1);
SmallVector<SDValue, 8> VecIn;
VecIn.push_back(SDValue());
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Op = N->getOperand(i);
if (Op.isUndef())
continue;
// See if we can use a blend with a zero vector.
// TODO: Should we generalize this to a blend with an arbitrary constant
// vector?
if (isNullConstant(Op) || isNullFPConstant(Op)) {
UsesZeroVector = true;
VectorMask[i] = 0;
continue;
}
// Not an undef or zero. If the input is something other than an
// EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
SDValue ExtractedFromVec = Op.getOperand(0);
APInt ExtractIdx = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue();
if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
return SDValue();
// All inputs must have the same element type as the output.
if (VT.getVectorElementType() !=
ExtractedFromVec.getValueType().getVectorElementType())
return SDValue();
// Have we seen this input vector before?
// The vectors are expected to be tiny (usually 1 or 2 elements), so using
// a map back from SDValues to numbers isn't worth it.
unsigned Idx = std::distance(
VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
if (Idx == VecIn.size())
VecIn.push_back(ExtractedFromVec);
VectorMask[i] = Idx;
}
// If we didn't find at least one input vector, bail out.
if (VecIn.size() < 2)
return SDValue();
// If all the Operands of BUILD_VECTOR extract from same
// vector, then split the vector efficiently based on the maximum
// vector access index and adjust the VectorMask and
// VecIn accordingly.
if (VecIn.size() == 2) {
unsigned MaxIndex = 0;
unsigned NearestPow2 = 0;
SDValue Vec = VecIn.back();
EVT InVT = Vec.getValueType();
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SmallVector<unsigned, 8> IndexVec(NumElems, 0);
for (unsigned i = 0; i < NumElems; i++) {
if (VectorMask[i] <= 0)
continue;
unsigned Index = N->getOperand(i).getConstantOperandVal(1);
IndexVec[i] = Index;
MaxIndex = std::max(MaxIndex, Index);
}
NearestPow2 = PowerOf2Ceil(MaxIndex);
if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
NumElems * 2 < NearestPow2) {
unsigned SplitSize = NearestPow2 / 2;
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
InVT.getVectorElementType(), SplitSize);
if (TLI.isTypeLegal(SplitVT)) {
SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
DAG.getConstant(SplitSize, DL, IdxTy));
SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
DAG.getConstant(0, DL, IdxTy));
VecIn.pop_back();
VecIn.push_back(VecIn1);
VecIn.push_back(VecIn2);
for (unsigned i = 0; i < NumElems; i++) {
if (VectorMask[i] <= 0)
continue;
VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
}
}
}
}
// TODO: We want to sort the vectors by descending length, so that adjacent
// pairs have similar length, and the longer vector is always first in the
// pair.
// TODO: Should this fire if some of the input vectors has illegal type (like
// it does now), or should we let legalization run its course first?
// Shuffle phase:
// Take pairs of vectors, and shuffle them so that the result has elements
// from these vectors in the correct places.
// For example, given:
// t10: i32 = extract_vector_elt t1, Constant:i64<0>
// t11: i32 = extract_vector_elt t2, Constant:i64<0>
// t12: i32 = extract_vector_elt t3, Constant:i64<0>
// t13: i32 = extract_vector_elt t1, Constant:i64<1>
// t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
// We will generate:
// t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
// t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
SmallVector<SDValue, 4> Shuffles;
for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
unsigned LeftIdx = 2 * In + 1;
SDValue VecLeft = VecIn[LeftIdx];
SDValue VecRight =
(LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
VecRight, LeftIdx))
Shuffles.push_back(Shuffle);
else
return SDValue();
}
// If we need the zero vector as an "ingredient" in the blend tree, add it
// to the list of shuffles.
if (UsesZeroVector)
Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT));
// If we only have one shuffle, we're done.
if (Shuffles.size() == 1)
return Shuffles[0];
// Update the vector mask to point to the post-shuffle vectors.
for (int &Vec : VectorMask)
if (Vec == 0)
Vec = Shuffles.size() - 1;
else
Vec = (Vec - 1) / 2;
// More than one shuffle. Generate a binary tree of blends, e.g. if from
// the previous step we got the set of shuffles t10, t11, t12, t13, we will
// generate:
// t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
// t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
// t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
// t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
// t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
// t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
// t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
// Make sure the initial size of the shuffle list is even.
if (Shuffles.size() % 2)
Shuffles.push_back(DAG.getUNDEF(VT));
for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
if (CurSize % 2) {
Shuffles[CurSize] = DAG.getUNDEF(VT);
CurSize++;
}
for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
int Left = 2 * In;
int Right = 2 * In + 1;
SmallVector<int, 8> Mask(NumElems, -1);
for (unsigned i = 0; i != NumElems; ++i) {
if (VectorMask[i] == Left) {
Mask[i] = i;
VectorMask[i] = In;
} else if (VectorMask[i] == Right) {
Mask[i] = i + NumElems;
VectorMask[i] = In;
}
}
Shuffles[In] =
DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
}
}
return Shuffles[0];
}
// Try to turn a build vector of zero extends of extract vector elts into a
// a vector zero extend and possibly an extract subvector.
// TODO: Support sign extend or any extend?
// TODO: Allow undef elements?
// TODO: Don't require the extracts to start at element 0.
SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
if (LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
auto checkElem = [&](SDValue Op) -> int64_t {
if (Op.getOpcode() == ISD::ZERO_EXTEND &&
Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
return C->getZExtValue();
return -1;
};
// Make sure the first element matches
// (zext (extract_vector_elt X, C))
int64_t Offset = checkElem(Op0);
if (Offset < 0)
return SDValue();
unsigned NumElems = N->getNumOperands();
SDValue In = Op0.getOperand(0).getOperand(0);
EVT InSVT = In.getValueType().getScalarType();
EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
// Don't create an illegal input type after type legalization.
if (LegalTypes && !TLI.isTypeLegal(InVT))
return SDValue();
// Ensure all the elements come from the same vector and are adjacent.
for (unsigned i = 1; i != NumElems; ++i) {
if ((Offset + i) != checkElem(N->getOperand(i)))
return SDValue();
}
SDLoc DL(N);
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
Op0.getOperand(0).getOperand(1));
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, In);
}
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
EVT VT = N->getValueType(0);
// A vector built entirely of undefs is undef.
if (ISD::allOperandsUndef(N))
return DAG.getUNDEF(VT);
// If this is a splat of a bitcast from another vector, change to a
// concat_vector.
// For example:
// (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
// (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
//
// If X is a build_vector itself, the concat can become a larger build_vector.
// TODO: Maybe this is useful for non-splat too?
if (!LegalOperations) {
if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
Splat = peekThroughBitcasts(Splat);
EVT SrcVT = Splat.getValueType();
if (SrcVT.isVector()) {
unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
SrcVT.getVectorElementType(), NumElts);
if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
NewVT, Ops);
return DAG.getBitcast(VT, Concat);
}
}
}
}
// Check if we can express BUILD VECTOR via subvector extract.
if (!LegalTypes && (N->getNumOperands() > 1)) {
SDValue Op0 = N->getOperand(0);
auto checkElem = [&](SDValue Op) -> uint64_t {
if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
(Op0.getOperand(0) == Op.getOperand(0)))
if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return CNode->getZExtValue();
return -1;
};
int Offset = checkElem(Op0);
for (unsigned i = 0; i < N->getNumOperands(); ++i) {
if (Offset + i != checkElem(N->getOperand(i))) {
Offset = -1;
break;
}
}
if ((Offset == 0) &&
(Op0.getOperand(0).getValueType() == N->getValueType(0)))
return Op0.getOperand(0);
if ((Offset != -1) &&
((Offset % N->getValueType(0).getVectorNumElements()) ==
0)) // IDX must be multiple of output size.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
Op0.getOperand(0), Op0.getOperand(1));
}
if (SDValue V = convertBuildVecZextToZext(N))
return V;
if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
return V;
if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
return V;
if (SDValue V = reduceBuildVecToShuffle(N))
return V;
return SDValue();
}
static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT OpVT = N->getOperand(0).getValueType();
// If the operands are legal vectors, leave them alone.
if (TLI.isTypeLegal(OpVT))
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
SmallVector<SDValue, 8> Ops;
EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
// Keep track of what we encounter.
bool AnyInteger = false;
bool AnyFP = false;
for (const SDValue &Op : N->ops()) {
if (ISD::BITCAST == Op.getOpcode() &&
!Op.getOperand(0).getValueType().isVector())
Ops.push_back(Op.getOperand(0));
else if (ISD::UNDEF == Op.getOpcode())
Ops.push_back(ScalarUndef);
else
return SDValue();
// Note whether we encounter an integer or floating point scalar.
// If it's neither, bail out, it could be something weird like x86mmx.
EVT LastOpVT = Ops.back().getValueType();
if (LastOpVT.isFloatingPoint())
AnyFP = true;
else if (LastOpVT.isInteger())
AnyInteger = true;
else
return SDValue();
}
// If any of the operands is a floating point scalar bitcast to a vector,
// use floating point types throughout, and bitcast everything.
// Replace UNDEFs by another scalar UNDEF node, of the final desired type.
if (AnyFP) {
SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
if (AnyInteger) {
for (SDValue &Op : Ops) {
if (Op.getValueType() == SVT)
continue;
if (Op.isUndef())
Op = ScalarUndef;
else
Op = DAG.getBitcast(SVT, Op);
}
}
}
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
VT.getSizeInBits() / SVT.getSizeInBits());
return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
}
// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
// most two distinct vectors the same size as the result, attempt to turn this
// into a legal shuffle.
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
EVT OpVT = N->getOperand(0).getValueType();
int NumElts = VT.getVectorNumElements();
int NumOpElts = OpVT.getVectorNumElements();
SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
SmallVector<int, 8> Mask;
for (SDValue Op : N->ops()) {
Op = peekThroughBitcasts(Op);
// UNDEF nodes convert to UNDEF shuffle mask values.
if (Op.isUndef()) {
Mask.append((unsigned)NumOpElts, -1);
continue;
}
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
// What vector are we extracting the subvector from and at what index?
SDValue ExtVec = Op.getOperand(0);
// We want the EVT of the original extraction to correctly scale the
// extraction index.
EVT ExtVT = ExtVec.getValueType();
ExtVec = peekThroughBitcasts(ExtVec);
// UNDEF nodes convert to UNDEF shuffle mask values.
if (ExtVec.isUndef()) {
Mask.append((unsigned)NumOpElts, -1);
continue;
}
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
int ExtIdx = Op.getConstantOperandVal(1);
// Ensure that we are extracting a subvector from a vector the same
// size as the result.
if (ExtVT.getSizeInBits() != VT.getSizeInBits())
return SDValue();
// Scale the subvector index to account for any bitcast.
int NumExtElts = ExtVT.getVectorNumElements();
if (0 == (NumExtElts % NumElts))
ExtIdx /= (NumExtElts / NumElts);
else if (0 == (NumElts % NumExtElts))
ExtIdx *= (NumElts / NumExtElts);
else
return SDValue();
// At most we can reference 2 inputs in the final shuffle.
if (SV0.isUndef() || SV0 == ExtVec) {
SV0 = ExtVec;
for (int i = 0; i != NumOpElts; ++i)
Mask.push_back(i + ExtIdx);
} else if (SV1.isUndef() || SV1 == ExtVec) {
SV1 = ExtVec;
for (int i = 0; i != NumOpElts; ++i)
Mask.push_back(i + ExtIdx + NumElts);
} else {
return SDValue();
}
}
if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
return SDValue();
return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
DAG.getBitcast(VT, SV1), Mask);
}
SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
// If we only have one input vector, we don't need to do any concatenation.
if (N->getNumOperands() == 1)
return N->getOperand(0);
// Check if all of the operands are undefs.
EVT VT = N->getValueType(0);
if (ISD::allOperandsUndef(N))
return DAG.getUNDEF(VT);
// Optimize concat_vectors where all but the first of the vectors are undef.
if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
return Op.isUndef();
})) {
SDValue In = N->getOperand(0);
assert(In.getValueType().isVector() && "Must concat vectors");
// Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
if (In->getOpcode() == ISD::BITCAST &&
!In->getOperand(0).getValueType().isVector()) {
SDValue Scalar = In->getOperand(0);
// If the bitcast type isn't legal, it might be a trunc of a legal type;
// look through the trunc so we can still do the transform:
// concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
if (Scalar->getOpcode() == ISD::TRUNCATE &&
!TLI.isTypeLegal(Scalar.getValueType()) &&
TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
Scalar = Scalar->getOperand(0);
EVT SclTy = Scalar->getValueType(0);
if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
return SDValue();
// Bail out if the vector size is not a multiple of the scalar size.
if (VT.getSizeInBits() % SclTy.getSizeInBits())
return SDValue();
unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
if (VNTNumElms < 2)
return SDValue();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
return SDValue();
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
return DAG.getBitcast(VT, Res);
}
}
// Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
// We have already tested above for an UNDEF only concatenation.
// fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
// -> (BUILD_VECTOR A, B, ..., C, D, ...)
auto IsBuildVectorOrUndef = [](const SDValue &Op) {
return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
};
if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
SmallVector<SDValue, 8> Opnds;
EVT SVT = VT.getScalarType();
EVT MinVT = SVT;
if (!SVT.isFloatingPoint()) {
// If BUILD_VECTOR are from built from integer, they may have different
// operand types. Get the smallest type and truncate all operands to it.
bool FoundMinVT = false;
for (const SDValue &Op : N->ops())
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
EVT OpSVT = Op.getOperand(0).getValueType();
MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
FoundMinVT = true;
}
assert(FoundMinVT && "Concat vector type mismatch");
}
for (const SDValue &Op : N->ops()) {
EVT OpVT = Op.getValueType();
unsigned NumElts = OpVT.getVectorNumElements();
if (ISD::UNDEF == Op.getOpcode())
Opnds.append(NumElts, DAG.getUNDEF(MinVT));
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
if (SVT.isFloatingPoint()) {
assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
} else {
for (unsigned i = 0; i != NumElts; ++i)
Opnds.push_back(
DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
}
}
}
assert(VT.getVectorNumElements() == Opnds.size() &&
"Concat vector type mismatch");
return DAG.getBuildVector(VT, SDLoc(N), Opnds);
}
// Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
if (SDValue V = combineConcatVectorOfScalars(N, DAG))
return V;
// Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
return V;
// Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
// nodes often generate nop CONCAT_VECTOR nodes.
// Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
// place the incoming vectors at the exact same location.
SDValue SingleSource = SDValue();
unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Op = N->getOperand(i);
if (Op.isUndef())
continue;
// Check if this is the identity extract:
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
// Find the single incoming vector for the extract_subvector.
if (SingleSource.getNode()) {
if (Op.getOperand(0) != SingleSource)
return SDValue();
} else {
SingleSource = Op.getOperand(0);
// Check the source type is the same as the type of the result.
// If not, this concat may extend the vector, so we can not
// optimize it away.
if (SingleSource.getValueType() != N->getValueType(0))
return SDValue();
}
unsigned IdentityIndex = i * PartNumElem;
ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
// The extract index must be constant.
if (!CS)
return SDValue();
// Check that we are reading from the identity index.
if (CS->getZExtValue() != IdentityIndex)
return SDValue();
}
if (SingleSource.getNode())
return SingleSource;
return SDValue();
}
/// If we are extracting a subvector produced by a wide binary operator with at
/// at least one operand that was the result of a vector concatenation, then try
/// to use the narrow vector operands directly to avoid the concatenation and
/// extraction.
static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) {
// TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
// some of these bailouts with other transforms.
// The extract index must be a constant, so we can map it to a concat operand.
auto *ExtractIndex = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
if (!ExtractIndex)
return SDValue();
// Only handle the case where we are doubling and then halving. A larger ratio
// may require more than two narrow binops to replace the wide binop.
EVT VT = Extract->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
assert((ExtractIndex->getZExtValue() % NumElems) == 0 &&
"Extract index is not a multiple of the vector length.");
if (Extract->getOperand(0).getValueSizeInBits() != VT.getSizeInBits() * 2)
return SDValue();
// We are looking for an optionally bitcasted wide vector binary operator
// feeding an extract subvector.
SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
// TODO: The motivating case for this transform is an x86 AVX1 target. That
// target has temptingly almost legal versions of bitwise logic ops in 256-bit
// flavors, but no other 256-bit integer support. This could be extended to
// handle any binop, but that may require fixing/adding other folds to avoid
// codegen regressions.
unsigned BOpcode = BinOp.getOpcode();
if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
return SDValue();
// The binop must be a vector type, so we can chop it in half.
EVT WideBVT = BinOp.getValueType();
if (!WideBVT.isVector())
return SDValue();
// Bail out if the target does not support a narrower version of the binop.
EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
WideBVT.getVectorNumElements() / 2);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
return SDValue();
SDValue LHS = peekThroughBitcasts(BinOp.getOperand(0));
SDValue RHS = peekThroughBitcasts(BinOp.getOperand(1));
// We need at least one concatenation operation of a binop operand to make
// this transform worthwhile. The concat must double the input vector sizes.
// TODO: Should we also handle INSERT_SUBVECTOR patterns?
bool ConcatL =
LHS.getOpcode() == ISD::CONCAT_VECTORS && LHS.getNumOperands() == 2;
bool ConcatR =
RHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getNumOperands() == 2;
if (!ConcatL && !ConcatR)
return SDValue();
// If one of the binop operands was not the result of a concat, we must
// extract a half-sized operand for our new narrow binop. We can't just reuse
// the original extract index operand because we may have bitcasted.
unsigned ConcatOpNum = ExtractIndex->getZExtValue() / NumElems;
unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
EVT ExtBOIdxVT = Extract->getOperand(1).getValueType();
SDLoc DL(Extract);
// extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
// extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, N)
// extract (binop X, (concat Y1, Y2)), N --> binop (extract X, N), YN
SDValue X = ConcatL ? DAG.getBitcast(NarrowBVT, LHS.getOperand(ConcatOpNum))
: DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
BinOp.getOperand(0),
DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT));
SDValue Y = ConcatR ? DAG.getBitcast(NarrowBVT, RHS.getOperand(ConcatOpNum))
: DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
BinOp.getOperand(1),
DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT));
SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
return DAG.getBitcast(VT, NarrowBinOp);
}
/// If we are extracting a subvector from a wide vector load, convert to a
/// narrow load to eliminate the extraction:
/// (extract_subvector (load wide vector)) --> (load narrow vector)
static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
// TODO: Add support for big-endian. The offset calculation must be adjusted.
if (DAG.getDataLayout().isBigEndian())
return SDValue();
// TODO: The one-use check is overly conservative. Check the cost of the
// extract instead or remove that condition entirely.
auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
if (!Ld || !Ld->hasOneUse() || Ld->getExtensionType() || Ld->isVolatile() ||
!ExtIdx)
return SDValue();
// The narrow load will be offset from the base address of the old load if
// we are extracting from something besides index 0 (little-endian).
EVT VT = Extract->getValueType(0);
SDLoc DL(Extract);
SDValue BaseAddr = Ld->getOperand(1);
unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize();
// TODO: Use "BaseIndexOffset" to make this more effective.
SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset,
VT.getStoreSize());
SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
return NewLd;
}
SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
EVT NVT = N->getValueType(0);
SDValue V = N->getOperand(0);
// Extract from UNDEF is UNDEF.
if (V.isUndef())
return DAG.getUNDEF(NVT);
if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
return NarrowLoad;
// Combine:
// (extract_subvec (concat V1, V2, ...), i)
// Into:
// Vi if possible
// Only operand 0 is checked as 'concat' assumes all inputs of the same
// type.
if (V->getOpcode() == ISD::CONCAT_VECTORS &&
isa<ConstantSDNode>(N->getOperand(1)) &&
V->getOperand(0).getValueType() == NVT) {
unsigned Idx = N->getConstantOperandVal(1);
unsigned NumElems = NVT.getVectorNumElements();
assert((Idx % NumElems) == 0 &&
"IDX in concat is not a multiple of the result vector length.");
return V->getOperand(Idx / NumElems);
}
V = peekThroughBitcasts(V);
// If the input is a build vector. Try to make a smaller build vector.
if (V->getOpcode() == ISD::BUILD_VECTOR) {
if (auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
EVT InVT = V->getValueType(0);
unsigned ExtractSize = NVT.getSizeInBits();
unsigned EltSize = InVT.getScalarSizeInBits();
// Only do this if we won't split any elements.
if (ExtractSize % EltSize == 0) {
unsigned NumElems = ExtractSize / EltSize;
EVT EltVT = InVT.getVectorElementType();
EVT ExtractVT = NumElems == 1 ? EltVT :
EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
if ((Level < AfterLegalizeDAG ||
(NumElems == 1 ||
TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
(!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
unsigned IdxVal = (Idx->getZExtValue() * NVT.getScalarSizeInBits()) /
EltSize;
if (NumElems == 1) {
SDValue Src = V->getOperand(IdxVal);
if (EltVT != Src.getValueType())
Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
return DAG.getBitcast(NVT, Src);
}
// Extract the pieces from the original build_vector.
SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
makeArrayRef(V->op_begin() + IdxVal,
NumElems));
return DAG.getBitcast(NVT, BuildVec);
}
}
}
}
if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
// Handle only simple case where vector being inserted and vector
// being extracted are of same size.
EVT SmallVT = V->getOperand(1).getValueType();
if (!NVT.bitsEq(SmallVT))
return SDValue();
// Only handle cases where both indexes are constants.
ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
if (InsIdx && ExtIdx) {
// Combine:
// (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
// Into:
// indices are equal or bit offsets are equal => V1
// otherwise => (extract_subvec V1, ExtIdx)
if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
return DAG.getBitcast(NVT, V->getOperand(1));
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)),
N->getOperand(1));
}
}
if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG))
return NarrowBOp;
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
// or turn a shuffle of a single concat into simpler shuffle then concat.
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
SmallVector<SDValue, 4> Ops;
EVT ConcatVT = N0.getOperand(0).getValueType();
unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
unsigned NumConcats = NumElts / NumElemsPerConcat;
// Special case: shuffle(concat(A,B)) can be more efficiently represented
// as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
// half vector elements.
if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
SVN->getMask().end(), [](int i) { return i == -1; })) {
N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat));
N1 = DAG.getUNDEF(ConcatVT);
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
}
// Look at every vector that's inserted. We're looking for exact
// subvector-sized copies from a concatenated vector
for (unsigned I = 0; I != NumConcats; ++I) {
// Make sure we're dealing with a copy.
unsigned Begin = I * NumElemsPerConcat;
bool AllUndef = true, NoUndef = true;
for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
if (SVN->getMaskElt(J) >= 0)
AllUndef = false;
else
NoUndef = false;
}
if (NoUndef) {
if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
return SDValue();
for (unsigned J = 1; J != NumElemsPerConcat; ++J)
if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
return SDValue();
unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
if (FirstElt < N0.getNumOperands())
Ops.push_back(N0.getOperand(FirstElt));
else
Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
} else if (AllUndef) {
Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
} else { // Mixed with general masks and undefs, can't do optimization.
return SDValue();
}
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
//
// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
// a simplification in some sense, but it isn't appropriate in general: some
// BUILD_VECTORs are substantially cheaper than others. The general case
// of a BUILD_VECTOR requires inserting each element individually (or
// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
// all constants is a single constant pool load. A BUILD_VECTOR where each
// element is identical is a splat. A BUILD_VECTOR where most of the operands
// are undef lowers to a small number of element insertions.
//
// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
// We don't fold shuffles where one side is a non-zero constant, and we don't
// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
// non-constant operands. This seems to work out reasonably well in practice.
static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG,
const TargetLowering &TLI) {
EVT VT = SVN->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = SVN->getOperand(0);
SDValue N1 = SVN->getOperand(1);
if (!N0->hasOneUse() || !N1->hasOneUse())
return SDValue();
// If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
// discussed above.
if (!N1.isUndef()) {
bool N0AnyConst = isAnyConstantBuildVector(N0.getNode());
bool N1AnyConst = isAnyConstantBuildVector(N1.getNode());
if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
return SDValue();
if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
return SDValue();
}
// If both inputs are splats of the same value then we can safely merge this
// to a single BUILD_VECTOR with undef elements based on the shuffle mask.
bool IsSplat = false;
auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
if (BV0 && BV1)
if (SDValue Splat0 = BV0->getSplatValue())
IsSplat = (Splat0 == BV1->getSplatValue());
SmallVector<SDValue, 8> Ops;
SmallSet<SDValue, 16> DuplicateOps;
for (int M : SVN->getMask()) {
SDValue Op = DAG.getUNDEF(VT.getScalarType());
if (M >= 0) {
int Idx = M < (int)NumElts ? M : M - NumElts;
SDValue &S = (M < (int)NumElts ? N0 : N1);
if (S.getOpcode() == ISD::BUILD_VECTOR) {
Op = S.getOperand(Idx);
} else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
assert(Idx == 0 && "Unexpected SCALAR_TO_VECTOR operand index.");
Op = S.getOperand(0);
} else {
// Operand can't be combined - bail out.
return SDValue();
}
}
// Don't duplicate a non-constant BUILD_VECTOR operand unless we're
// generating a splat; semantically, this is fine, but it's likely to
// generate low-quality code if the target can't reconstruct an appropriate
// shuffle.
if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
if (!IsSplat && !DuplicateOps.insert(Op).second)
return SDValue();
Ops.push_back(Op);
}
// BUILD_VECTOR requires all inputs to be of the same type, find the
// maximum type and extend them all.
EVT SVT = VT.getScalarType();
if (SVT.isInteger())
for (SDValue &Op : Ops)
SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
if (SVT != VT.getScalarType())
for (SDValue &Op : Ops)
Op = TLI.isZExtFree(Op.getValueType(), SVT)
? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
: DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
}
// Match shuffles that can be converted to any_vector_extend_in_reg.
// This is often generated during legalization.
// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG,
const TargetLowering &TLI,
bool LegalOperations,
bool LegalTypes) {
EVT VT = SVN->getValueType(0);
bool IsBigEndian = DAG.getDataLayout().isBigEndian();
// TODO Add support for big-endian when we have a test case.
if (!VT.isInteger() || IsBigEndian)
return SDValue();
unsigned NumElts = VT.getVectorNumElements();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
ArrayRef<int> Mask = SVN->getMask();
SDValue N0 = SVN->getOperand(0);
// shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
for (unsigned i = 0; i != NumElts; ++i) {
if (Mask[i] < 0)
continue;
if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
continue;
return false;
}
return true;
};
// Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
// power-of-2 extensions as they are the most likely.
for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
// Check for non power of 2 vector sizes
if (NumElts % Scale != 0)
continue;
if (!isAnyExtend(Scale))
continue;
EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
if (!LegalTypes || TLI.isTypeLegal(OutVT))
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
return DAG.getBitcast(VT,
DAG.getAnyExtendVectorInReg(N0, SDLoc(SVN), OutVT));
}
return SDValue();
}
// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
// each source element of a large type into the lowest elements of a smaller
// destination type. This is often generated during legalization.
// If the source node itself was a '*_extend_vector_inreg' node then we should
// then be able to remove it.
static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG) {
EVT VT = SVN->getValueType(0);
bool IsBigEndian = DAG.getDataLayout().isBigEndian();
// TODO Add support for big-endian when we have a test case.
if (!VT.isInteger() || IsBigEndian)
return SDValue();
SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
unsigned Opcode = N0.getOpcode();
if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
return SDValue();
SDValue N00 = N0.getOperand(0);
ArrayRef<int> Mask = SVN->getMask();
unsigned NumElts = VT.getVectorNumElements();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
return SDValue();
unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
// (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
// (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
// (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
for (unsigned i = 0; i != NumElts; ++i) {
if (Mask[i] < 0)
continue;
if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
continue;
return false;
}
return true;
};
// At the moment we just handle the case where we've truncated back to the
// same size as before the extension.
// TODO: handle more extension/truncation cases as cases arise.
if (EltSizeInBits != ExtSrcSizeInBits)
return SDValue();
// We can remove *extend_vector_inreg only if the truncation happens at
// the same scale as the extension.
if (isTruncate(ExtScale))
return DAG.getBitcast(VT, N00);
return SDValue();
}
// Combine shuffles of splat-shuffles of the form:
// shuffle (shuffle V, undef, splat-mask), undef, M
// If splat-mask contains undef elements, we need to be careful about
// introducing undef's in the folded mask which are not the result of composing
// the masks of the shuffles.
static SDValue combineShuffleOfSplat(ArrayRef<int> UserMask,
ShuffleVectorSDNode *Splat,
SelectionDAG &DAG) {
ArrayRef<int> SplatMask = Splat->getMask();
assert(UserMask.size() == SplatMask.size() && "Mask length mismatch");
// Prefer simplifying to the splat-shuffle, if possible. This is legal if
// every undef mask element in the splat-shuffle has a corresponding undef
// element in the user-shuffle's mask or if the composition of mask elements
// would result in undef.
// Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
// * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
// In this case it is not legal to simplify to the splat-shuffle because we
// may be exposing the users of the shuffle an undef element at index 1
// which was not there before the combine.
// * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
// In this case the composition of masks yields SplatMask, so it's ok to
// simplify to the splat-shuffle.
// * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
// In this case the composed mask includes all undef elements of SplatMask
// and in addition sets element zero to undef. It is safe to simplify to
// the splat-shuffle.
auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
ArrayRef<int> SplatMask) {
for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
if (UserMask[i] != -1 && SplatMask[i] == -1 &&
SplatMask[UserMask[i]] != -1)
return false;
return true;
};
if (CanSimplifyToExistingSplat(UserMask, SplatMask))
return SDValue(Splat, 0);
// Create a new shuffle with a mask that is composed of the two shuffles'
// masks.
SmallVector<int, 32> NewMask;
for (int Idx : UserMask)
NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
Splat->getOperand(0), Splat->getOperand(1),
NewMask);
}
/// If the shuffle mask is taking exactly one element from the first vector
/// operand and passing through all other elements from the second vector
/// operand, return the index of the mask element that is choosing an element
/// from the first operand. Otherwise, return -1.
static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
int MaskSize = Mask.size();
int EltFromOp0 = -1;
// TODO: This does not match if there are undef elements in the shuffle mask.
// Should we ignore undefs in the shuffle mask instead? The trade-off is
// removing an instruction (a shuffle), but losing the knowledge that some
// vector lanes are not needed.
for (int i = 0; i != MaskSize; ++i) {
if (Mask[i] >= 0 && Mask[i] < MaskSize) {
// We're looking for a shuffle of exactly one element from operand 0.
if (EltFromOp0 != -1)
return -1;
EltFromOp0 = i;
} else if (Mask[i] != i + MaskSize) {
// Nothing from operand 1 can change lanes.
return -1;
}
}
return EltFromOp0;
}
/// If a shuffle inserts exactly one element from a source vector operand into
/// another vector operand and we can access the specified element as a scalar,
/// then we can eliminate the shuffle.
static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
SelectionDAG &DAG) {
// First, check if we are taking one element of a vector and shuffling that
// element into another vector.
ArrayRef<int> Mask = Shuf->getMask();
SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
SDValue Op0 = Shuf->getOperand(0);
SDValue Op1 = Shuf->getOperand(1);
int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
if (ShufOp0Index == -1) {
// Commute mask and check again.
ShuffleVectorSDNode::commuteMask(CommutedMask);
ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
if (ShufOp0Index == -1)
return SDValue();
// Commute operands to match the commuted shuffle mask.
std::swap(Op0, Op1);
Mask = CommutedMask;
}
// The shuffle inserts exactly one element from operand 0 into operand 1.
// Now see if we can access that element as a scalar via a real insert element
// instruction.
// TODO: We can try harder to locate the element as a scalar. Examples: it
// could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
"Shuffle mask value must be from operand 0");
if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
return SDValue();
auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
return SDValue();
// There's an existing insertelement with constant insertion index, so we
// don't need to check the legality/profitability of a replacement operation
// that differs at most in the constant value. The target should be able to
// lower any of those in a similar way. If not, legalization will expand this
// to a scalar-to-vector plus shuffle.
//
// Note that the shuffle may move the scalar from the position that the insert
// element used. Therefore, our new insert element occurs at the shuffle's
// mask index value, not the insert's index value.
// shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf),
Op0.getOperand(2).getValueType());
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
Op1, Op0.getOperand(1), NewInsIndex);
}
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
// Canonicalize shuffle undef, undef -> undef
if (N0.isUndef() && N1.isUndef())
return DAG.getUNDEF(VT);
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
// Canonicalize shuffle v, v -> v, undef
if (N0 == N1) {
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= (int)NumElts) Idx -= NumElts;
NewMask.push_back(Idx);
}
return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
}
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
if (N0.isUndef())
return DAG.getCommutedVectorShuffle(*SVN);
// Remove references to rhs if it is undef
if (N1.isUndef()) {
bool Changed = false;
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= (int)NumElts) {
Idx = -1;
Changed = true;
}
NewMask.push_back(Idx);
}
if (Changed)
return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
}
if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
return InsElt;
// A shuffle of a single vector that is a splat can always be folded.
if (auto *N0Shuf = dyn_cast<ShuffleVectorSDNode>(N0))
if (N1->isUndef() && N0Shuf->isSplat())
return combineShuffleOfSplat(SVN->getMask(), N0Shuf, DAG);
// If it is a splat, check if the argument vector is another splat or a
// build_vector.
if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
SDNode *V = N0.getNode();
// If this is a bit convert that changes the element type of the vector but
// not the number of vector elements, look through it. Be careful not to
// look though conversions that change things like v4f32 to v2f64.
if (V->getOpcode() == ISD::BITCAST) {
SDValue ConvInput = V->getOperand(0);
if (ConvInput.getValueType().isVector() &&
ConvInput.getValueType().getVectorNumElements() == NumElts)
V = ConvInput.getNode();
}
if (V->getOpcode() == ISD::BUILD_VECTOR) {
assert(V->getNumOperands() == NumElts &&
"BUILD_VECTOR has wrong number of operands");
SDValue Base;
bool AllSame = true;
for (unsigned i = 0; i != NumElts; ++i) {
if (!V->getOperand(i).isUndef()) {
Base = V->getOperand(i);
break;
}
}
// Splat of <u, u, u, u>, return <u, u, u, u>
if (!Base.getNode())
return N0;
for (unsigned i = 0; i != NumElts; ++i) {
if (V->getOperand(i) != Base) {
AllSame = false;
break;
}
}
// Splat of <x, x, x, x>, return <x, x, x, x>
if (AllSame)
return N0;
// Canonicalize any other splat as a build_vector.
const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
SmallVector<SDValue, 8> Ops(NumElts, Splatted);
SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
// We may have jumped through bitcasts, so the type of the
// BUILD_VECTOR may not match the type of the shuffle.
if (V->getValueType(0) != VT)
NewBV = DAG.getBitcast(VT, NewBV);
return NewBV;
}
}
// Simplify source operands based on shuffle mask.
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
return SDValue(N, 0);
// Match shuffles that can be converted to any_vector_extend_in_reg.
if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations, LegalTypes))
return V;
// Combine "truncate_vector_in_reg" style shuffles.
if (SDValue V = combineTruncationShuffle(SVN, DAG))
return V;
if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
Level < AfterLegalizeVectorOps &&
(N1.isUndef() ||
(N1.getOpcode() == ISD::CONCAT_VECTORS &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
if (SDValue V = partitionShuffleOfConcats(N, DAG))
return V;
}
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
return Res;
// If this shuffle only has a single input that is a bitcasted shuffle,
// attempt to merge the 2 shuffles and suitably bitcast the inputs/output
// back to their original types.
if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
N1.isUndef() && Level < AfterLegalizeVectorOps &&
TLI.isTypeLegal(VT)) {
auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
if (Scale == 1)
return SmallVector<int, 8>(Mask.begin(), Mask.end());
SmallVector<int, 8> NewMask;
for (int M : Mask)
for (int s = 0; s != Scale; ++s)
NewMask.push_back(M < 0 ? -1 : Scale * M + s);
return NewMask;
};
SDValue BC0 = peekThroughOneUseBitcasts(N0);
if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
EVT SVT = VT.getScalarType();
EVT InnerVT = BC0->getValueType(0);
EVT InnerSVT = InnerVT.getScalarType();
// Determine which shuffle works with the smaller scalar type.
EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
EVT ScaleSVT = ScaleVT.getScalarType();
if (TLI.isTypeLegal(ScaleVT) &&
0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
// Scale the shuffle masks to the smaller scalar type.
ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
SmallVector<int, 8> InnerMask =
ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
SmallVector<int, 8> OuterMask =
ScaleShuffleMask(SVN->getMask(), OuterScale);
// Merge the shuffle masks.
SmallVector<int, 8> NewMask;
for (int M : OuterMask)
NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
// Test for shuffle mask legality over both commutations.
SDValue SV0 = BC0->getOperand(0);
SDValue SV1 = BC0->getOperand(1);
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
if (!LegalMask) {
std::swap(SV0, SV1);
ShuffleVectorSDNode::commuteMask(NewMask);
LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
}
if (LegalMask) {
SV0 = DAG.getBitcast(ScaleVT, SV0);
SV1 = DAG.getBitcast(ScaleVT, SV1);
return DAG.getBitcast(
VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
}
}
}
}
// Canonicalize shuffles according to rules:
// shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
// shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
// shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
TLI.isTypeLegal(VT)) {
// The incoming shuffle must be of the same type as the result of the
// current shuffle.
assert(N1->getOperand(0).getValueType() == VT &&
"Shuffle types don't match");
SDValue SV0 = N1->getOperand(0);
SDValue SV1 = N1->getOperand(1);
bool HasSameOp0 = N0 == SV0;
bool IsSV1Undef = SV1.isUndef();
if (HasSameOp0 || IsSV1Undef || N0 == SV1)
// Commute the operands of this shuffle so that next rule
// will trigger.
return DAG.getCommutedVectorShuffle(*SVN);
}
// Try to fold according to rules:
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
// Don't try to fold shuffles with illegal type.
// Only fold if this shuffle is the only user of the other shuffle.
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
// Don't try to fold splats; they're likely to simplify somehow, or they
// might be free.
if (OtherSV->isSplat())
return SDValue();
// The incoming shuffle must be of the same type as the result of the
// current shuffle.
assert(OtherSV->getOperand(0).getValueType() == VT &&
"Shuffle types don't match");
SDValue SV0, SV1;
SmallVector<int, 4> Mask;
// Compute the combined shuffle mask for a shuffle with SV0 as the first
// operand, and SV1 as the second operand.
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx < 0) {
// Propagate Undef.
Mask.push_back(Idx);
continue;
}
SDValue CurrentVec;
if (Idx < (int)NumElts) {
// This shuffle index refers to the inner shuffle N0. Lookup the inner
// shuffle mask to identify which vector is actually referenced.
Idx = OtherSV->getMaskElt(Idx);
if (Idx < 0) {
// Propagate Undef.
Mask.push_back(Idx);
continue;
}
CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
: OtherSV->getOperand(1);
} else {
// This shuffle index references an element within N1.
CurrentVec = N1;
}
// Simple case where 'CurrentVec' is UNDEF.
if (CurrentVec.isUndef()) {
Mask.push_back(-1);
continue;
}
// Canonicalize the shuffle index. We don't know yet if CurrentVec
// will be the first or second operand of the combined shuffle.
Idx = Idx % NumElts;
if (!SV0.getNode() || SV0 == CurrentVec) {
// Ok. CurrentVec is the left hand side.
// Update the mask accordingly.
SV0 = CurrentVec;
Mask.push_back(Idx);
continue;
}
// Bail out if we cannot convert the shuffle pair into a single shuffle.
if (SV1.getNode() && SV1 != CurrentVec)
return SDValue();
// Ok. CurrentVec is the right hand side.
// Update the mask accordingly.
SV1 = CurrentVec;
Mask.push_back(Idx + NumElts);
}
// Check if all indices in Mask are Undef. In case, propagate Undef.
bool isUndefMask = true;
for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
isUndefMask &= Mask[i] < 0;
if (isUndefMask)
return DAG.getUNDEF(VT);
if (!SV0.getNode())
SV0 = DAG.getUNDEF(VT);
if (!SV1.getNode())
SV1 = DAG.getUNDEF(VT);
// Avoid introducing shuffles with illegal mask.
if (!TLI.isShuffleMaskLegal(Mask, VT)) {
ShuffleVectorSDNode::commuteMask(Mask);
if (!TLI.isShuffleMaskLegal(Mask, VT))
return SDValue();
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
std::swap(SV0, SV1);
}
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask);
}
return SDValue();
}
SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
SDValue InVal = N->getOperand(0);
EVT VT = N->getValueType(0);
// Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
// with a VECTOR_SHUFFLE and possible truncate.
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue InVec = InVal->getOperand(0);
SDValue EltNo = InVal->getOperand(1);
auto InVecT = InVec.getValueType();
if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
int Elt = C0->getZExtValue();
NewMask[0] = Elt;
SDValue Val;
// If we have an implict truncate do truncate here as long as it's legal.
// if it's not legal, this should
if (VT.getScalarType() != InVal.getValueType() &&
InVal.getValueType().isScalarInteger() &&
isTypeLegal(VT.getScalarType())) {
Val =
DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
}
if (VT.getScalarType() == InVecT.getScalarType() &&
VT.getVectorNumElements() <= InVecT.getVectorNumElements() &&
TLI.isShuffleMaskLegal(NewMask, VT)) {
Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec,
DAG.getUNDEF(InVecT), NewMask);
// If the initial vector is the correct size this shuffle is a
// valid result.
if (VT == InVecT)
return Val;
// If not we must truncate the vector.
if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy);
EVT SubVT =
EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(),
VT.getVectorNumElements());
Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val,
ZeroIdx);
return Val;
}
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
// If inserting an UNDEF, just return the original vector.
if (N1.isUndef())
return N0;
// For nested INSERT_SUBVECTORs, attempt to combine inner node first to allow
// us to pull BITCASTs from input to output.
if (N0.hasOneUse() && N0->getOpcode() == ISD::INSERT_SUBVECTOR)
if (SDValue NN0 = visitINSERT_SUBVECTOR(N0.getNode()))
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, NN0, N1, N2);
// If this is an insert of an extracted vector into an undef vector, we can
// just use the input to the extract.
if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
return N1.getOperand(0);
// If we are inserting a bitcast value into an undef, with the same
// number of elements, just use the bitcast input of the extract.
// i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
// BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N1.getOperand(0).getOperand(1) == N2 &&
N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
VT.getVectorNumElements() &&
N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
VT.getSizeInBits()) {
return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
}
// If both N1 and N2 are bitcast values on which insert_subvector
// would makes sense, pull the bitcast through.
// i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
// BITCAST (INSERT_SUBVECTOR N0 N1 N2)
if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
SDValue CN0 = N0.getOperand(0);
SDValue CN1 = N1.getOperand(0);
EVT CN0VT = CN0.getValueType();
EVT CN1VT = CN1.getValueType();
if (CN0VT.isVector() && CN1VT.isVector() &&
CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
CN0.getValueType(), CN0, CN1, N2);
return DAG.getBitcast(VT, NewINSERT);
}
}
// Combine INSERT_SUBVECTORs where we are inserting to the same index.
// INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
// --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
N0.getOperand(1).getValueType() == N1.getValueType() &&
N0.getOperand(2) == N2)
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
N1, N2);
if (!isa<ConstantSDNode>(N2))
return SDValue();
unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue();
// Canonicalize insert_subvector dag nodes.
// Example:
// (insert_subvector (insert_subvector A, Idx0), Idx1)
// -> (insert_subvector (insert_subvector A, Idx1), Idx0)
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
N1.getValueType() == N0.getOperand(1).getValueType() &&
isa<ConstantSDNode>(N0.getOperand(2))) {
unsigned OtherIdx = N0.getConstantOperandVal(2);
if (InsIdx < OtherIdx) {
// Swap nodes.
SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
N0.getOperand(0), N1, N2);
AddToWorklist(NewOp.getNode());
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
VT, NewOp, N0.getOperand(1), N0.getOperand(2));
}
}
// If the input vector is a concatenation, and the insert replaces
// one of the pieces, we can optimize into a single concat_vectors.
if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
N0.getOperand(0).getValueType() == N1.getValueType()) {
unsigned Factor = N1.getValueType().getVectorNumElements();
SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1;
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
SDValue N0 = N->getOperand(0);
// fold (fp_to_fp16 (fp16_to_fp op)) -> op
if (N0->getOpcode() == ISD::FP16_TO_FP)
return N0->getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
// fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
if (N0->getOpcode() == ISD::AND) {
ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
if (AndConst && AndConst->getAPIntValue() == 0xffff) {
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
N0.getOperand(0));
}
}
return SDValue();
}
/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
/// with the destination vector and a zero vector.
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
/// vector_shuffle V, Zero, <0, 4, 2, 4>
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = peekThroughBitcasts(N->getOperand(1));
SDLoc DL(N);
// Make sure we're not running after operation legalization where it
// may have custom lowered the vector shuffles.
if (LegalOperations)
return SDValue();
if (RHS.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
EVT RVT = RHS.getValueType();
unsigned NumElts = RHS.getNumOperands();
// Attempt to create a valid clear mask, splitting the mask into
// sub elements and checking to see if each is
// all zeros or all ones - suitable for shuffle masking.
auto BuildClearMask = [&](int Split) {
int NumSubElts = NumElts * Split;
int NumSubBits = RVT.getScalarSizeInBits() / Split;
SmallVector<int, 8> Indices;
for (int i = 0; i != NumSubElts; ++i) {
int EltIdx = i / Split;
int SubIdx = i % Split;
SDValue Elt = RHS.getOperand(EltIdx);
if (Elt.isUndef()) {
Indices.push_back(-1);
continue;
}
APInt Bits;
if (isa<ConstantSDNode>(Elt))
Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
else if (isa<ConstantFPSDNode>(Elt))
Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
else
return SDValue();
// Extract the sub element from the constant bit mask.
if (DAG.getDataLayout().isBigEndian()) {
Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits);
} else {
Bits.lshrInPlace(SubIdx * NumSubBits);
}
if (Split > 1)
Bits = Bits.trunc(NumSubBits);
if (Bits.isAllOnesValue())
Indices.push_back(i);
else if (Bits == 0)
Indices.push_back(i + NumSubElts);
else
return SDValue();
}
// Let's see if the target supports this vector_shuffle.
EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
return SDValue();
SDValue Zero = DAG.getConstant(0, DL, ClearVT);
return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
DAG.getBitcast(ClearVT, LHS),
Zero, Indices));
};
// Determine maximum split level (byte level masking).
int MaxSplit = 1;
if (RVT.getScalarSizeInBits() % 8 == 0)
MaxSplit = RVT.getScalarSizeInBits() / 8;
for (int Split = 1; Split <= MaxSplit; ++Split)
if (RVT.getScalarSizeInBits() % Split == 0)
if (SDValue S = BuildClearMask(Split))
return S;
return SDValue();
}
/// Visit a binary vector operation, like ADD.
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
assert(N->getValueType(0).isVector() &&
"SimplifyVBinOp only works on vectors!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Ops[] = {LHS, RHS};
// See if we can constant fold the vector operation.
if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
return Fold;
// Type legalization might introduce new shuffles in the DAG.
// Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
// -> (shuffle (VBinOp (A, B)), Undef, Mask).
if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
LHS.getOperand(1).isUndef() &&
RHS.getOperand(1).isUndef()) {
ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
if (SVN0->getMask().equals(SVN1->getMask())) {
EVT VT = N->getValueType(0);
SDValue UndefVector = LHS.getOperand(1);
SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
LHS.getOperand(0), RHS.getOperand(0),
N->getFlags());
AddUsersToWorklist(N);
return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
SVN0->getMask());
}
}
return SDValue();
}
SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2) {
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If we got a simplified select_cc node back from SimplifySelectCC, then
// break it down into a new SETCC node, and a new SELECT node, and then return
// the SELECT node, since we were called with a SELECT node.
if (SCC.getNode()) {
// Check to see if we got a select_cc back (to turn into setcc/select).
// Otherwise, just return whatever node we got back, like fabs.
if (SCC.getOpcode() == ISD::SELECT_CC) {
SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
N0.getValueType(),
SCC.getOperand(0), SCC.getOperand(1),
SCC.getOperand(4));
AddToWorklist(SETCC.getNode());
return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
SCC.getOperand(2), SCC.getOperand(3));
}
return SCC;
}
return SDValue();
}
/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
/// being selected between, see if we can simplify the select. Callers of this
/// should assume that TheSelect is deleted if this returns true. As such, they
/// should return the appropriate thing (e.g. the node) back to the top-level of
/// the DAG combiner loop to avoid it being looked at.
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
SDValue RHS) {
// fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
// The select + setcc is redundant, because fsqrt returns NaN for X < 0.
if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
// We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
SDValue Sqrt = RHS;
ISD::CondCode CC;
SDValue CmpLHS;
const ConstantFPSDNode *Zero = nullptr;
if (TheSelect->getOpcode() == ISD::SELECT_CC) {
CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
CmpLHS = TheSelect->getOperand(0);
Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
} else {
// SELECT or VSELECT
SDValue Cmp = TheSelect->getOperand(0);
if (Cmp.getOpcode() == ISD::SETCC) {
CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
CmpLHS = Cmp.getOperand(0);
Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
}
}
if (Zero && Zero->isZero() &&
Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
CC == ISD::SETULT || CC == ISD::SETLT)) {
// We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
CombineTo(TheSelect, Sqrt);
return true;
}
}
}
// Cannot simplify select with vector condition
if (TheSelect->getOperand(0).getValueType().isVector()) return false;
// If this is a select from two identical things, try to pull the operation
// through the select.
if (LHS.getOpcode() != RHS.getOpcode() ||
!LHS.hasOneUse() || !RHS.hasOneUse())
return false;
// If this is a load and the token chain is identical, replace the select
// of two loads with a load through a select of the address to load from.
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
// constants have been dropped into the constant pool.
if (LHS.getOpcode() == ISD::LOAD) {
LoadSDNode *LLD = cast<LoadSDNode>(LHS);
LoadSDNode *RLD = cast<LoadSDNode>(RHS);
// Token chains must be identical.
if (LHS.getOperand(0) != RHS.getOperand(0) ||
// Do not let this transformation reduce the number of volatile loads.
LLD->isVolatile() || RLD->isVolatile() ||
// FIXME: If either is a pre/post inc/dec load,
// we'd need to split out the address adjustment.
LLD->isIndexed() || RLD->isIndexed() ||
// If this is an EXTLOAD, the VT's must match.
LLD->getMemoryVT() != RLD->getMemoryVT() ||
// If this is an EXTLOAD, the kind of extension must match.
(LLD->getExtensionType() != RLD->getExtensionType() &&
// The only exception is if one of the extensions is anyext.
LLD->getExtensionType() != ISD::EXTLOAD &&
RLD->getExtensionType() != ISD::EXTLOAD) ||
// FIXME: this discards src value information. This is
// over-conservative. It would be beneficial to be able to remember
// both potential memory locations. Since we are discarding
// src value info, don't do the transformation if the memory
// locations are not in the default address space.
LLD->getPointerInfo().getAddrSpace() != 0 ||
RLD->getPointerInfo().getAddrSpace() != 0 ||
!TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
LLD->getBasePtr().getValueType()))
return false;
// The loads must not depend on one another.
if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
return false;
// Check that the select condition doesn't reach either load. If so,
// folding this will induce a cycle into the DAG. If not, this is safe to
// xform, so create a select of the addresses.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
// Always fail if LLD and RLD are not independent. TheSelect is a
// predecessor to all Nodes in question so we need not search past it.
Visited.insert(TheSelect);
Worklist.push_back(LLD);
Worklist.push_back(RLD);
if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
return false;
SDValue Addr;
if (TheSelect->getOpcode() == ISD::SELECT) {
// We cannot do this optimization if any pair of {RLD, LLD} is a
// predecessor to {RLD, LLD, CondNode}. As we've already compared the
// Loads, we only need to check if CondNode is a successor to one of the
// loads. We can further avoid this if there's no use of their chain
// value.
SDNode *CondNode = TheSelect->getOperand(0).getNode();
Worklist.push_back(CondNode);
if ((LLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
(RLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
return false;
Addr = DAG.getSelect(SDLoc(TheSelect),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0), LLD->getBasePtr(),
RLD->getBasePtr());
} else { // Otherwise SELECT_CC
// We cannot do this optimization if any pair of {RLD, LLD} is a
// predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
// the Loads, we only need to check if CondLHS/CondRHS is a successor to
// one of the loads. We can further avoid this if there's no use of their
// chain value.
SDNode *CondLHS = TheSelect->getOperand(0).getNode();
SDNode *CondRHS = TheSelect->getOperand(1).getNode();
Worklist.push_back(CondLHS);
Worklist.push_back(CondRHS);
if ((LLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
(RLD->hasAnyUseOfValue(1) &&
SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
return false;
Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0),
TheSelect->getOperand(1),
LLD->getBasePtr(), RLD->getBasePtr(),
TheSelect->getOperand(4));
}
SDValue Load;
// It is safe to replace the two loads if they have different alignments,
// but the new load must be the minimum (most restrictive) alignment of the
// inputs.
unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
if (!RLD->isInvariant())
MMOFlags &= ~MachineMemOperand::MOInvariant;
if (!RLD->isDereferenceable())
MMOFlags &= ~MachineMemOperand::MODereferenceable;
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
// FIXME: Discards pointer and AA info.
Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
MMOFlags);
} else {
// FIXME: Discards pointer and AA info.
Load = DAG.getExtLoad(
LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
: LLD->getExtensionType(),
SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
}
// Users of the select now use the result of the load.
CombineTo(TheSelect, Load);
// Users of the old loads now use the new load's chain. We know the
// old-load value is dead now.
CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
return true;
}
return false;
}
/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
/// bitwise 'and'.
SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
SDValue N1, SDValue N2, SDValue N3,
ISD::CondCode CC) {
// If this is a select where the false operand is zero and the compare is a
// check of the sign bit, see if we can perform the "gzip trick":
// select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
// select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
EVT XType = N0.getValueType();
EVT AType = N2.getValueType();
if (!isNullConstant(N3) || !XType.bitsGE(AType))
return SDValue();
// If the comparison is testing for a positive value, we have to invert
// the sign bit mask, so only do that transform if the target has a bitwise
// 'and not' instruction (the invert is free).
if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
// (X > -1) ? A : 0
// (X > 0) ? X : 0 <-- This is canonical signed max.
if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
return SDValue();
} else if (CC == ISD::SETLT) {
// (X < 0) ? A : 0
// (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
return SDValue();
} else {
return SDValue();
}
// and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
// constant.
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
AddToWorklist(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorklist(Shift.getNode());
}
if (CC == ISD::SETGT)
Shift = DAG.getNOT(DL, Shift, AType);
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
AddToWorklist(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorklist(Shift.getNode());
}
if (CC == ISD::SETGT)
Shift = DAG.getNOT(DL, Shift, AType);
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
/// where 'cond' is the comparison specified by CC.
SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC,
bool NotExtCompare) {
// (x ? y : y) -> y.
if (N2 == N3) return N2;
EVT VT = N2.getValueType();
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
// Determine if the condition we're dealing with is constant
SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
N0, N1, CC, DL, false);
if (SCC.getNode()) AddToWorklist(SCC.getNode());
if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
// fold select_cc true, x, y -> x
// fold select_cc false, x, y -> y
return !SCCC->isNullValue() ? N2 : N3;
}
// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
// in it. This is a win when the constant is not otherwise available because
// it replaces two constant pool loads with one. We only do this if the FP
// type is known to be legal, because if it isn't, then we are before legalize
// types an we want the other legalization to happen first (e.g. to avoid
// messing with soft float) and if the ConstantFP is not legal, because if
// it is legal, we may not need to store the FP constant in a constant pool.
if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
if (TLI.isTypeLegal(N2.getValueType()) &&
(TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
TargetLowering::Legal &&
!TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) &&
!TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) &&
// If both constants have multiple uses, then we won't need to do an
// extra load, they are likely around in registers for other users.
(TV->hasOneUse() || FV->hasOneUse())) {
Constant *Elts[] = {
const_cast<ConstantFP*>(FV->getConstantFPValue()),
const_cast<ConstantFP*>(TV->getConstantFPValue())
};
Type *FPTy = Elts[0]->getType();
const DataLayout &TD = DAG.getDataLayout();
// Create a ConstantArray of the two constants.
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
SDValue CPIdx =
DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
TD.getPrefTypeAlignment(FPTy));
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
// Get the offsets to the 0 and 1 element of the array so that we can
// select between them.
SDValue Zero = DAG.getIntPtrConstant(0, DL);
unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
SDValue Cond = DAG.getSetCC(DL,
getSetCCResultType(N0.getValueType()),
N0, N1, CC);
AddToWorklist(Cond.getNode());
SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
Cond, One, Zero);
AddToWorklist(CstOffset.getNode());
CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
CstOffset);
AddToWorklist(CPIdx.getNode());
return DAG.getLoad(
TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
}
}
if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
return V;
// fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
// where y is has a single bit set.
// A plaintext description would be, we can turn the SELECT_CC into an AND
// when the condition can be materialized as an all-ones register. Any
// single bit-test can be materialized as an all-ones register with
// shift-left and shift-right-arith.
if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
SDValue AndLHS = N0->getOperand(0);
ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
// Shift the tested bit over the sign bit.
const APInt &AndMask = ConstAndRHS->getAPIntValue();
SDValue ShlAmt =
DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
getShiftAmountTy(AndLHS.getValueType()));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
// Now arithmetic right shift it all the way over, so the result is either
// all-ones, or zero.
SDValue ShrAmt =
DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
getShiftAmountTy(Shl.getValueType()));
SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
}
}
// fold select C, 16, 0 -> shl C, 4
if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() &&
TLI.getBooleanContents(N0.getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent) {
// If the caller doesn't want us to simplify this into a zext of a compare,
// don't do it.
if (NotExtCompare && N2C->isOne())
return SDValue();
// Get a SetCC of the condition
// NOTE: Don't create a SETCC if it's not legal on this target.
if (!LegalOperations ||
TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) {
SDValue Temp, SCC;
// cast from setcc result type to select result type
if (LegalTypes) {
SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
N0, N1, CC);
if (N2.getValueType().bitsLT(SCC.getValueType()))
Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
N2.getValueType());
else
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
N2.getValueType(), SCC);
} else {
SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
N2.getValueType(), SCC);
}
AddToWorklist(SCC.getNode());
AddToWorklist(Temp.getNode());
if (N2C->isOne())
return Temp;
// shl setcc result by log2 n2c
return DAG.getNode(
ISD::SHL, DL, N2.getValueType(), Temp,
DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp),
getShiftAmountTy(Temp.getValueType())));
}
}
// Check to see if this is an integer abs.
// select_cc setg[te] X, 0, X, -X ->
// select_cc setgt X, -1, X, -X ->
// select_cc setl[te] X, 0, -X, X ->
// select_cc setlt X, 1, -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N1C) {
ConstantSDNode *SubC = nullptr;
if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
(N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
(N1C->isOne() && CC == ISD::SETLT)) &&
N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
EVT XType = N0.getValueType();
if (SubC && SubC->isNullValue() && XType.isInteger()) {
SDLoc DL(N0);
SDValue Shift = DAG.getNode(ISD::SRA, DL, XType,
N0,
DAG.getConstant(XType.getSizeInBits() - 1, DL,
getShiftAmountTy(N0.getValueType())));
SDValue Add = DAG.getNode(ISD::ADD, DL,
XType, N0, Shift);
AddToWorklist(Shift.getNode());
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
}
}
// select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
// select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
// select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
// select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
// select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
// select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
// select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
// select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
SDValue ValueOnZero = N2;
SDValue Count = N3;
// If the condition is NE instead of E, swap the operands.
if (CC == ISD::SETNE)
std::swap(ValueOnZero, Count);
// Check if the value on zero is a constant equal to the bits in the type.
if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
// If the other operand is cttz/cttz_zero_undef of N0, and cttz is
// legal, combine to just cttz.
if ((Count.getOpcode() == ISD::CTTZ ||
Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
N0 == Count.getOperand(0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
return DAG.getNode(ISD::CTTZ, DL, VT, N0);
// If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
// legal, combine to just ctlz.
if ((Count.getOpcode() == ISD::CTLZ ||
Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
N0 == Count.getOperand(0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
return DAG.getNode(ISD::CTLZ, DL, VT, N0);
}
}
}
return SDValue();
}
/// This is a stub for TargetLowering::SimplifySetCC.
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode Cond, const SDLoc &DL,
bool foldBooleans) {
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level, false, this);
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
}
/// Given an ISD::SDIV node expressing a divide by constant, return
/// a DAG expression to select that will generate the same value by multiplying
/// by a magic number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
// when optimising for minimum size, we don't want to expand a div to a mul
// and a shift.
if (DAG.getMachineFunction().getFunction().optForMinSize())
return SDValue();
SmallVector<SDNode *, 8> Built;
if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
return SDValue();
}
/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
/// DAG expression that will generate the same value by right shifting.
SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
if (!C)
return SDValue();
// Avoid division by zero.
if (C->isNullValue())
return SDValue();
SmallVector<SDNode *, 8> Built;
if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
return SDValue();
}
/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
/// expression that will generate the same value by multiplying by a magic
/// number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
// when optimising for minimum size, we don't want to expand a div to a mul
// and a shift.
if (DAG.getMachineFunction().getFunction().optForMinSize())
return SDValue();
SmallVector<SDNode *, 8> Built;
if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
return SDValue();
}
/// Determines the LogBase2 value for a non-null input value using the
/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
EVT VT = V.getValueType();
unsigned EltBits = VT.getScalarSizeInBits();
SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
return LogBase2;
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal, we need to find the zero of the function:
/// F(X) = A X - 1 [which has a zero at X = 1/A]
/// =>
/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
/// does not require additional intermediate precision]
SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) {
if (Level >= AfterLegalizeDAG)
return SDValue();
// TODO: Handle half and/or extended types?
EVT VT = Op.getValueType();
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
return SDValue();
// If estimates are explicitly disabled for this function, we're done.
MachineFunction &MF = DAG.getMachineFunction();
int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
if (Enabled == TLI.ReciprocalEstimate::Disabled)
return SDValue();
// Estimates may be explicitly enabled for this type with a custom number of
// refinement steps.
int Iterations = TLI.getDivRefinementSteps(VT, MF);
if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
AddToWorklist(Est.getNode());
if (Iterations) {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
// Newton iterations: Est = Est + Est (1 - Arg * Est)
for (int i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
AddToWorklist(NewEst.getNode());
Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
AddToWorklist(Est.getNode());
}
}
return Est;
}
return SDValue();
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
/// =>
/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
/// As a result, we precompute A/2 prior to the iteration loop.
SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal) {
EVT VT = Arg.getValueType();
SDLoc DL(Arg);
SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
// We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
// this entire sequence requires only one FP constant.
SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
AddToWorklist(HalfArg.getNode());
HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
AddToWorklist(HalfArg.getNode());
// Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
for (unsigned i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
AddToWorklist(NewEst.getNode());
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
AddToWorklist(Est.getNode());
}
// If non-reciprocal square root is requested, multiply the result by Arg.
if (!Reciprocal) {
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
AddToWorklist(Est.getNode());
}
return Est;
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
/// =>
/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal) {
EVT VT = Arg.getValueType();
SDLoc DL(Arg);
SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
// This routine must enter the loop below to work correctly
// when (Reciprocal == false).
assert(Iterations > 0);
// Newton iterations for reciprocal square root:
// E = (E * -0.5) * ((A * E) * E + -3.0)
for (unsigned i = 0; i < Iterations; ++i) {
SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
AddToWorklist(AE.getNode());
SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
AddToWorklist(AEE.getNode());
SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
AddToWorklist(RHS.getNode());
// When calculating a square root at the last iteration build:
// S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
// (notice a common subexpression)
SDValue LHS;
if (Reciprocal || (i + 1) < Iterations) {
// RSQRT: LHS = (E * -0.5)
LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
} else {
// SQRT: LHS = (A * E) * -0.5
LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
}
AddToWorklist(LHS.getNode());
Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
AddToWorklist(Est.getNode());
}
return Est;
}
/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
/// Op can be zero.
SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
bool Reciprocal) {
if (Level >= AfterLegalizeDAG)
return SDValue();
// TODO: Handle half and/or extended types?
EVT VT = Op.getValueType();
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
return SDValue();
// If estimates are explicitly disabled for this function, we're done.
MachineFunction &MF = DAG.getMachineFunction();
int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
if (Enabled == TLI.ReciprocalEstimate::Disabled)
return SDValue();
// Estimates may be explicitly enabled for this type with a custom number of
// refinement steps.
int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
bool UseOneConstNR = false;
if (SDValue Est =
TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
Reciprocal)) {
AddToWorklist(Est.getNode());
if (Iterations) {
Est = UseOneConstNR
? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
: buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
if (!Reciprocal) {
// The estimate is now completely wrong if the input was exactly 0.0 or
// possibly a denormal. Force the answer to 0.0 for those cases.
EVT VT = Op.getValueType();
SDLoc DL(Op);
EVT CCVT = getSetCCResultType(VT);
ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
const Function &F = DAG.getMachineFunction().getFunction();
Attribute Denorms = F.getFnAttribute("denormal-fp-math");
if (Denorms.getValueAsString().equals("ieee")) {
// fabs(X) < SmallestNormal ? 0.0 : Est
const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
AddToWorklist(Fabs.getNode());
AddToWorklist(IsDenorm.getNode());
AddToWorklist(Est.getNode());
} else {
// X == 0.0 ? 0.0 : Est
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
AddToWorklist(IsZero.getNode());
AddToWorklist(Est.getNode());
}
}
}
return Est;
}
return SDValue();
}
SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
return buildSqrtEstimateImpl(Op, Flags, true);
}
SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
return buildSqrtEstimateImpl(Op, Flags, false);
}
/// Return true if there is any possibility that the two addresses overlap.
bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
// If they are the same then they must be aliases.
if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
// If they are both volatile then they cannot be reordered.
if (Op0->isVolatile() && Op1->isVolatile()) return true;
// If one operation reads from invariant memory, and the other may store, they
// cannot alias. These should really be checking the equivalent of mayWrite,
// but it only matters for memory nodes other than load /store.
if (Op0->isInvariant() && Op1->writeMem())
return false;
if (Op1->isInvariant() && Op0->writeMem())
return false;
unsigned NumBytes0 = Op0->getMemoryVT().getStoreSize();
unsigned NumBytes1 = Op1->getMemoryVT().getStoreSize();
// Check for BaseIndexOffset matching.
BaseIndexOffset BasePtr0 = BaseIndexOffset::match(Op0, DAG);
BaseIndexOffset BasePtr1 = BaseIndexOffset::match(Op1, DAG);
int64_t PtrDiff;
if (BasePtr0.getBase().getNode() && BasePtr1.getBase().getNode()) {
if (BasePtr0.equalBaseIndex(BasePtr1, DAG, PtrDiff))
return !((NumBytes0 <= PtrDiff) || (PtrDiff + NumBytes1 <= 0));
// If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
// able to calculate their relative offset if at least one arises
// from an alloca. However, these allocas cannot overlap and we
// can infer there is no alias.
if (auto *A = dyn_cast<FrameIndexSDNode>(BasePtr0.getBase()))
if (auto *B = dyn_cast<FrameIndexSDNode>(BasePtr1.getBase())) {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
// If the base are the same frame index but the we couldn't find a
// constant offset, (indices are different) be conservative.
if (A != B && (!MFI.isFixedObjectIndex(A->getIndex()) ||
!MFI.isFixedObjectIndex(B->getIndex())))
return false;
}
bool IsFI0 = isa<FrameIndexSDNode>(BasePtr0.getBase());
bool IsFI1 = isa<FrameIndexSDNode>(BasePtr1.getBase());
bool IsGV0 = isa<GlobalAddressSDNode>(BasePtr0.getBase());
bool IsGV1 = isa<GlobalAddressSDNode>(BasePtr1.getBase());
bool IsCV0 = isa<ConstantPoolSDNode>(BasePtr0.getBase());
bool IsCV1 = isa<ConstantPoolSDNode>(BasePtr1.getBase());
// If of mismatched base types or checkable indices we can check
// they do not alias.
if ((BasePtr0.getIndex() == BasePtr1.getIndex() || (IsFI0 != IsFI1) ||
(IsGV0 != IsGV1) || (IsCV0 != IsCV1)) &&
(IsFI0 || IsGV0 || IsCV0) && (IsFI1 || IsGV1 || IsCV1))
return false;
}
// If we know required SrcValue1 and SrcValue2 have relatively large
// alignment compared to the size and offset of the access, we may be able
// to prove they do not alias. This check is conservative for now to catch
// cases created by splitting vector types.
int64_t SrcValOffset0 = Op0->getSrcValueOffset();
int64_t SrcValOffset1 = Op1->getSrcValueOffset();
unsigned OrigAlignment0 = Op0->getOriginalAlignment();
unsigned OrigAlignment1 = Op1->getOriginalAlignment();
if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
NumBytes0 == NumBytes1 && OrigAlignment0 > NumBytes0) {
int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0;
int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1;
// There is no overlap between these relatively aligned accesses of
// similar size. Return no alias.
if ((OffAlign0 + NumBytes0) <= OffAlign1 ||
(OffAlign1 + NumBytes1) <= OffAlign0)
return false;
}
bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
? CombinerGlobalAA
: DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
UseAA = false;
#endif
if (UseAA && AA &&
Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
int64_t Overlap0 = NumBytes0 + SrcValOffset0 - MinOffset;
int64_t Overlap1 = NumBytes1 + SrcValOffset1 - MinOffset;
AliasResult AAResult =
AA->alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap0,
UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
MemoryLocation(Op1->getMemOperand()->getValue(), Overlap1,
UseTBAA ? Op1->getAAInfo() : AAMDNodes()) );
if (AAResult == NoAlias)
return false;
}
// Otherwise we have to assume they alias.
return true;
}
/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases) {
SmallVector<SDValue, 8> Chains; // List of chains to visit.
SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
// Get alias information for node.
bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
// Starting off.
Chains.push_back(OriginalChain);
unsigned Depth = 0;
// Look at each chain and determine if it is an alias. If so, add it to the
// aliases list. If not, then continue up the chain looking for the next
// candidate.
while (!Chains.empty()) {
SDValue Chain = Chains.pop_back_val();
// For TokenFactor nodes, look at each operand and only continue up the
// chain until we reach the depth limit.
//
// FIXME: The depth check could be made to return the last non-aliasing
// chain we found before we hit a tokenfactor rather than the original
// chain.
if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
Aliases.clear();
Aliases.push_back(OriginalChain);
return;
}
// Don't bother if we've been before.
if (!Visited.insert(Chain.getNode()).second)
continue;
switch (Chain.getOpcode()) {
case ISD::EntryToken:
// Entry token is ideal chain operand, but handled in FindBetterChain.
break;
case ISD::LOAD:
case ISD::STORE: {
// Get alias information for Chain.
bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
!cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
// If chain is alias then stop here.
if (!(IsLoad && IsOpLoad) &&
isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
Aliases.push_back(Chain);
} else {
// Look further up the chain.
Chains.push_back(Chain.getOperand(0));
++Depth;
}
break;
}
case ISD::TokenFactor:
// We have to check each of the operands of the token factor for "small"
// token factors, so we queue them up. Adding the operands to the queue
// (stack) in reverse order maintains the original order and increases the
// likelihood that getNode will find a matching token factor (CSE.)
if (Chain.getNumOperands() > 16) {
Aliases.push_back(Chain);
break;
}
for (unsigned n = Chain.getNumOperands(); n;)
Chains.push_back(Chain.getOperand(--n));
++Depth;
break;
case ISD::CopyFromReg:
// Forward past CopyFromReg.
Chains.push_back(Chain.getOperand(0));
++Depth;
break;
default:
// For all other instructions we will just have to take what we can get.
Aliases.push_back(Chain);
break;
}
}
}
/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
/// (aliasing node.)
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
if (OptLevel == CodeGenOpt::None)
return OldChain;
// Ops for replacing token factor.
SmallVector<SDValue, 8> Aliases;
// Accumulate all the aliases to this node.
GatherAllAliases(N, OldChain, Aliases);
// If no operands then chain to entry token.
if (Aliases.size() == 0)
return DAG.getEntryNode();
// If a single operand then chain to it. We don't need to revisit it.
if (Aliases.size() == 1)
return Aliases[0];
// Construct a custom tailored token factor.
return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
}
// This function tries to collect a bunch of potentially interesting
// nodes to improve the chains of, all at once. This might seem
// redundant, as this function gets called when visiting every store
// node, so why not let the work be done on each store as it's visited?
//
// I believe this is mainly important because MergeConsecutiveStores
// is unable to deal with merging stores of different sizes, so unless
// we improve the chains of all the potential candidates up-front
// before running MergeConsecutiveStores, it might only see some of
// the nodes that will eventually be candidates, and then not be able
// to go from a partially-merged state to the desired final
// fully-merged state.
bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
if (OptLevel == CodeGenOpt::None)
return false;
// This holds the base pointer, index, and the offset in bytes from the base
// pointer.
BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
// We must have a base and an offset.
if (!BasePtr.getBase().getNode())
return false;
// Do not handle stores to undef base pointers.
if (BasePtr.getBase().isUndef())
return false;
SmallVector<StoreSDNode *, 8> ChainedStores;
ChainedStores.push_back(St);
// Walk up the chain and look for nodes with offsets from the same
// base pointer. Stop when reaching an instruction with a different kind
// or instruction which has a different base pointer.
StoreSDNode *Index = St;
while (Index) {
// If the chain has more than one use, then we can't reorder the mem ops.
if (Index != St && !SDValue(Index, 0)->hasOneUse())
break;
if (Index->isVolatile() || Index->isIndexed())
break;
// Find the base pointer and offset for this memory node.
BaseIndexOffset Ptr = BaseIndexOffset::match(Index, DAG);
// Check that the base pointer is the same as the original one.
if (!BasePtr.equalBaseIndex(Ptr, DAG))
break;
// Walk up the chain to find the next store node, ignoring any
// intermediate loads. Any other kind of node will halt the loop.
SDNode *NextInChain = Index->getChain().getNode();
while (true) {
if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
// We found a store node. Use it for the next iteration.
if (STn->isVolatile() || STn->isIndexed()) {
Index = nullptr;
break;
}
ChainedStores.push_back(STn);
Index = STn;
break;
} else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
NextInChain = Ldn->getChain().getNode();
continue;
} else {
Index = nullptr;
break;
}
}// end while
}
// At this point, ChainedStores lists all of the Store nodes
// reachable by iterating up through chain nodes matching the above
// conditions. For each such store identified, try to find an
// earlier chain to attach the store to which won't violate the
// required ordering.
bool MadeChangeToSt = false;
SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains;
for (StoreSDNode *ChainedStore : ChainedStores) {
SDValue Chain = ChainedStore->getChain();
SDValue BetterChain = FindBetterChain(ChainedStore, Chain);
if (Chain != BetterChain) {
if (ChainedStore == St)
MadeChangeToSt = true;
BetterChains.push_back(std::make_pair(ChainedStore, BetterChain));
}
}
// Do all replacements after finding the replacements to make to avoid making
// the chains more complicated by introducing new TokenFactors.
for (auto Replacement : BetterChains)
replaceStoreChain(Replacement.first, Replacement.second);
return MadeChangeToSt;
}
/// This is the entry point for the file.
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
CodeGenOpt::Level OptLevel) {
/// This is the main entry point to this class.
DAGCombiner(*this, AA, OptLevel).Run(Level);
}