llvm-project/lld/lib/ReaderWriter/PECOFF/ReaderImportHeader.cpp

350 lines
14 KiB
C++

//===- lib/ReaderWriter/PECOFF/ReaderImportHeader.cpp ---------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file \brief This file provides a way to read an import library member in a
/// .lib file.
///
/// Archive Files in Windows
/// ========================
///
/// In Windows, archive files with .lib file extension serve two different
/// purposes.
///
/// - For static linking: An archive file in this use case contains multiple
/// regular .obj files and is used for static linking. This is the same
/// usage as .a file in Unix.
///
/// - For dynamic linking: An archive file in this use case contains pseudo
/// .obj files to describe exported symbols of a DLL. Each pseudo .obj file
/// in an archive has a name of an exported symbol and a DLL filename from
/// which the symbol can be imported. When you link a DLL on Windows, you
/// pass the name of the .lib file for the DLL instead of the DLL filename
/// itself. That is the Windows way of linking against a shared library.
///
/// This file contains a function to handle the pseudo object file.
///
/// Windows Loader and Import Address Table
/// =======================================
///
/// Windows supports a GOT-like mechanism for DLLs. The executable using DLLs
/// contains a list of DLL names and list of symbols that need to be resolved by
/// the loader. Windows loader maps the executable and all the DLLs to memory,
/// resolves the symbols referencing items in DLLs, and updates the import
/// address table (IAT) in memory. The IAT is an array of pointers to all of the
/// data or functions in DLL referenced by the executable. You cannot access
/// items in DLLs directly. They have to be accessed through an extra level of
/// indirection.
///
/// So, if you want to access an item in DLL, you have to go through a
/// pointer. How do you actually do that? You need a symbol for a pointer in the
/// IAT. For each symbol defined in a DLL, a symbol with "__imp_" prefix is
/// exported from the DLL for an IAT entry. For example, if you have a global
/// variable "foo" in a DLL, a pointer to the variable is available as
/// "_imp__foo". The IAT is an array of _imp__ symbols.
///
/// Is this OK? That's not that complicated. Because items in a DLL are not
/// directly accessible, you need to access through a pointer, and the pointer
/// is available as a symbol with _imp__ prefix.
///
/// Note 1: Although you can write code with _imp__ prefix, today's compiler and
/// linker let you write code as if there's no extra level of indirection.
/// That's why you haven't seen lots of _imp__ in your code. A variable or a
/// function declared with "dllimport" attribute is treated as an item in a DLL,
/// and the compiler automatically mangles its name and inserts the extra level
/// of indirection when accessing the item. Here are some examples:
///
/// __declspec(dllimport) int var_in_dll;
/// var_in_dll = 3; // is equivalent to *_imp__var_in_dll = 3;
///
/// __declspec(dllimport) int fn_in_dll(void);
/// fn_in_dll(); // is equivalent to (*_imp__fn_in_dll)();
///
/// It's just the compiler rewrites code for you so that you don't need to
/// handle the indirection yourself.
///
/// Note 2: __declspec(dllimport) is mandatory for data but optional for
/// function. For a function, the linker creates a jump table with the original
/// symbol name, so that the function is accessible without _imp__ prefix. The
/// same function in a DLL can be called through two different symbols if it's
/// not dllimport'ed.
///
/// (*_imp__fn)()
/// fn()
///
/// The above functions do the same thing. fn's content is a JMP instruction to
/// branch to the address pointed by _imp__fn. The latter may be a little bit
/// slower than the former because it will execute the extra JMP instruction,
/// but that's usually negligible.
///
/// If a function is dllimport'ed, which is usually done in a header file,
/// mangled name will be used at compile time so the jump table will not be
/// used.
///
/// Because there's no way to hide the indirection for data access at link time,
/// data has to be accessed through dllimport'ed symbols or explicit _imp__
/// prefix.
///
/// Idata Sections in the Pseudo Object File
/// ========================================
///
/// The object file created by cl.exe has several sections whose name starts
/// with ".idata$" followed by a number. The contents of the sections seem the
/// fragments of a complete ".idata" section. These sections has relocations for
/// the data referenced from the idata secton. Generally, the linker discards
/// "$" and all characters that follow from the section name and merges their
/// contents to one section. So, it looks like if everything would work fine,
/// the idata section would naturally be constructed without having any special
/// code for doing that.
///
/// However, the LLD linker cannot do that. An idata section constructed in that
/// way was never be in valid format. We don't know the reason yet. Our
/// assumption on the idata fragment could simply be wrong, or the LLD linker is
/// not powerful enough to do the job. Meanwhile, we construct the idata section
/// ourselves. All the "idata$" sections in the pseudo object file are currently
/// ignored.
///
/// Creating Atoms for the Import Address Table
/// ===========================================
///
/// The function in this file reads a pseudo object file and creates at most two
/// atoms. One is a shared library atom for _imp__ symbol. The another is a
/// defined atom for the JMP instruction if the symbol is for a function.
///
//===----------------------------------------------------------------------===//
#include "Atoms.h"
#include "lld/Core/Error.h"
#include "lld/Core/File.h"
#include "lld/Core/SharedLibraryAtom.h"
#include "lld/ReaderWriter/PECOFFLinkingContext.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cstring>
#include <map>
#include <system_error>
#include <vector>
using namespace lld;
using namespace lld::pecoff;
using namespace llvm;
#define DEBUG_TYPE "ReaderImportHeader"
namespace lld {
namespace {
// This code is valid both in x86 and x64.
const uint8_t FuncAtomContentX86[] = {
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // JMP *0x0
0xcc, 0xcc // INT 3; INT 3
};
static void setJumpInstTarget(COFFLinkerInternalAtom *src, const Atom *dst,
int off, MachineTypes machine) {
COFFReference *ref;
switch (machine) {
case llvm::COFF::IMAGE_FILE_MACHINE_I386:
ref = new COFFReference(dst, off, llvm::COFF::IMAGE_REL_I386_DIR32,
Reference::KindArch::x86);
break;
case llvm::COFF::IMAGE_FILE_MACHINE_AMD64:
ref = new COFFReference(dst, off, llvm::COFF::IMAGE_REL_AMD64_REL32,
Reference::KindArch::x86_64);
break;
default:
llvm::report_fatal_error("unsupported machine type");
}
src->addReference(std::unique_ptr<COFFReference>(ref));
}
/// The defined atom for jump table.
class FuncAtom : public COFFLinkerInternalAtom {
public:
FuncAtom(const File &file, StringRef symbolName,
const COFFSharedLibraryAtom *impAtom, MachineTypes machine)
: COFFLinkerInternalAtom(file, /*oridnal*/ 0, createContent(),
symbolName) {
setJumpInstTarget(this, impAtom, 2, machine);
}
uint64_t ordinal() const override { return 0; }
Scope scope() const override { return scopeGlobal; }
ContentType contentType() const override { return typeCode; }
Alignment alignment() const override { return Alignment(1); }
ContentPermissions permissions() const override { return permR_X; }
private:
std::vector<uint8_t> createContent() const {
return std::vector<uint8_t>(
FuncAtomContentX86, FuncAtomContentX86 + sizeof(FuncAtomContentX86));
}
};
class FileImportLibrary : public File {
public:
FileImportLibrary(std::unique_ptr<MemoryBuffer> mb, std::error_code &ec,
MachineTypes machine)
: File(mb->getBufferIdentifier(), kindSharedLibrary), _machine(machine) {
const char *buf = mb->getBufferStart();
const char *end = mb->getBufferEnd();
// The size of the string that follows the header.
uint32_t dataSize = *reinterpret_cast<const support::ulittle32_t *>(
buf + offsetof(COFF::ImportHeader, SizeOfData));
// Check if the total size is valid.
if (std::size_t(end - buf) != sizeof(COFF::ImportHeader) + dataSize) {
ec = make_error_code(NativeReaderError::unknown_file_format);
return;
}
uint16_t hint = *reinterpret_cast<const support::ulittle16_t *>(
buf + offsetof(COFF::ImportHeader, OrdinalHint));
StringRef symbolName(buf + sizeof(COFF::ImportHeader));
StringRef dllName(buf + sizeof(COFF::ImportHeader) + symbolName.size() + 1);
// TypeInfo is a bitfield. The least significant 2 bits are import
// type, followed by 3 bit import name type.
uint16_t typeInfo = *reinterpret_cast<const support::ulittle16_t *>(
buf + offsetof(COFF::ImportHeader, TypeInfo));
int type = typeInfo & 0x3;
int nameType = (typeInfo >> 2) & 0x7;
// Symbol name used by the linker may be different from the symbol name used
// by the loader. The latter may lack symbol decorations, or may not even
// have name if it's imported by ordinal.
StringRef importName = symbolNameToImportName(symbolName, nameType);
const COFFSharedLibraryAtom *dataAtom =
addSharedLibraryAtom(hint, symbolName, importName, dllName);
if (type == llvm::COFF::IMPORT_CODE)
addFuncAtom(symbolName, dllName, dataAtom);
ec = std::error_code();
}
const atom_collection<DefinedAtom> &defined() const override {
return _definedAtoms;
}
const atom_collection<UndefinedAtom> &undefined() const override {
return _noUndefinedAtoms;
}
const atom_collection<SharedLibraryAtom> &sharedLibrary() const override {
return _sharedLibraryAtoms;
}
const atom_collection<AbsoluteAtom> &absolute() const override {
return _noAbsoluteAtoms;
}
private:
const COFFSharedLibraryAtom *addSharedLibraryAtom(uint16_t hint,
StringRef symbolName,
StringRef importName,
StringRef dllName) {
auto *atom = new (_alloc)
COFFSharedLibraryAtom(*this, hint, symbolName, importName, dllName);
_sharedLibraryAtoms._atoms.push_back(atom);
return atom;
}
void addFuncAtom(StringRef symbolName, StringRef dllName,
const COFFSharedLibraryAtom *impAtom) {
auto *atom = new (_alloc) FuncAtom(*this, symbolName, impAtom, _machine);
_definedAtoms._atoms.push_back(atom);
}
atom_collection_vector<DefinedAtom> _definedAtoms;
atom_collection_vector<SharedLibraryAtom> _sharedLibraryAtoms;
mutable llvm::BumpPtrAllocator _alloc;
// Does the same thing as StringRef::ltrim() but removes at most one
// character.
StringRef ltrim1(StringRef str, const char *chars) const {
if (!str.empty() && strchr(chars, str[0]))
return str.substr(1);
return str;
}
// Convert the given symbol name to the import symbol name exported by the
// DLL.
StringRef symbolNameToImportName(StringRef symbolName, int nameType) const {
StringRef ret;
switch (nameType) {
case llvm::COFF::IMPORT_ORDINAL:
// The import is by ordinal. No symbol name will be used to identify the
// item in the DLL. Only its ordinal will be used.
return "";
case llvm::COFF::IMPORT_NAME:
// The import name in this case is identical to the symbol name.
return symbolName;
case llvm::COFF::IMPORT_NAME_NOPREFIX:
// The import name is the symbol name without leading ?, @ or _.
ret = ltrim1(symbolName, "?@_");
break;
case llvm::COFF::IMPORT_NAME_UNDECORATE:
// Similar to NOPREFIX, but we also need to truncate at the first @.
ret = ltrim1(symbolName, "?@_");
ret = ret.substr(0, ret.find('@'));
break;
}
std::string *str = new (_alloc) std::string(ret);
return *str;
}
MachineTypes _machine;
};
class COFFImportLibraryReader : public Reader {
public:
COFFImportLibraryReader(MachineTypes machine) : _machine(machine) {}
bool canParse(file_magic magic, StringRef,
const MemoryBuffer &mb) const override {
if (mb.getBufferSize() < sizeof(COFF::ImportHeader))
return false;
return (magic == llvm::sys::fs::file_magic::coff_import_library);
}
std::error_code
parseFile(std::unique_ptr<MemoryBuffer> &mb, const class Registry &,
std::vector<std::unique_ptr<File> > &result) const override {
std::error_code ec;
auto file = std::unique_ptr<File>(
new FileImportLibrary(std::move(mb), ec, _machine));
if (ec)
return ec;
result.push_back(std::move(file));
return std::error_code();
}
private:
MachineTypes _machine;
};
} // end anonymous namespace
void Registry::addSupportCOFFImportLibraries(PECOFFLinkingContext &ctx) {
MachineTypes machine = ctx.getMachineType();
add(llvm::make_unique<COFFImportLibraryReader>(machine));
}
} // end namespace lld