llvm-project/lld/lib/ReaderWriter/PECOFF/IdataPass.cpp

345 lines
14 KiB
C++

//===- lib/ReaderWriter/PECOFF/IdataPass.cpp ------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "IdataPass.h"
#include "Pass.h"
#include "lld/Core/File.h"
#include "lld/Core/Pass.h"
#include "lld/Core/Simple.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include <algorithm>
#include <cstddef>
#include <cstring>
#include <map>
#include <vector>
using llvm::object::delay_import_directory_table_entry;
namespace lld {
namespace pecoff {
namespace idata {
IdataAtom::IdataAtom(IdataContext &context, std::vector<uint8_t> data)
: COFFLinkerInternalAtom(context.dummyFile,
context.dummyFile.getNextOrdinal(), data) {
context.file.addAtom(*this);
}
HintNameAtom::HintNameAtom(IdataContext &context, uint16_t hint,
StringRef importName)
: IdataAtom(context, assembleRawContent(hint, importName)),
_importName(importName) {}
std::vector<uint8_t> HintNameAtom::assembleRawContent(uint16_t hint,
StringRef importName) {
size_t size =
llvm::RoundUpToAlignment(sizeof(hint) + importName.size() + 1, 2);
std::vector<uint8_t> ret(size);
ret[importName.size()] = 0;
ret[importName.size() - 1] = 0;
*reinterpret_cast<llvm::support::ulittle16_t *>(&ret[0]) = hint;
std::memcpy(&ret[2], importName.data(), importName.size());
return ret;
}
std::vector<uint8_t>
ImportTableEntryAtom::assembleRawContent(uint64_t rva, bool is64) {
// The element size of the import table is 32 bit in PE and 64 bit
// in PE+. In PE+, bits 62-31 are filled with zero.
if (is64) {
std::vector<uint8_t> ret(8);
*reinterpret_cast<llvm::support::ulittle64_t *>(&ret[0]) = rva;
return ret;
}
std::vector<uint8_t> ret(4);
*reinterpret_cast<llvm::support::ulittle32_t *>(&ret[0]) = rva;
return ret;
}
static std::vector<ImportTableEntryAtom *>
createImportTableAtoms(IdataContext &context,
const std::vector<COFFSharedLibraryAtom *> &sharedAtoms,
bool shouldAddReference, StringRef sectionName,
llvm::BumpPtrAllocator &alloc) {
std::vector<ImportTableEntryAtom *> ret;
for (COFFSharedLibraryAtom *atom : sharedAtoms) {
ImportTableEntryAtom *entry = nullptr;
if (atom->importName().empty()) {
// Import by ordinal
uint64_t hint = atom->hint();
hint |= context.ctx.is64Bit() ? (uint64_t(1) << 63) : (uint64_t(1) << 31);
entry = new (alloc) ImportTableEntryAtom(context, hint, sectionName);
} else {
// Import by name
entry = new (alloc) ImportTableEntryAtom(context, 0, sectionName);
HintNameAtom *hintName =
new (alloc) HintNameAtom(context, atom->hint(), atom->importName());
addDir32NBReloc(entry, hintName, context.ctx.getMachineType(), 0);
}
ret.push_back(entry);
if (shouldAddReference)
atom->setImportTableEntry(entry);
}
// Add the NULL entry.
ret.push_back(new (alloc) ImportTableEntryAtom(context, 0, sectionName));
return ret;
}
// Creates atoms for an import lookup table. The import lookup table is an
// array of pointers to hint/name atoms. The array needs to be terminated with
// the NULL entry.
void ImportDirectoryAtom::addRelocations(
IdataContext &context, StringRef loadName,
const std::vector<COFFSharedLibraryAtom *> &sharedAtoms) {
// Create parallel arrays. The contents of the two are initially the
// same. The PE/COFF loader overwrites the import address tables with the
// pointers to the referenced items after loading the executable into
// memory.
std::vector<ImportTableEntryAtom *> importLookupTables =
createImportTableAtoms(context, sharedAtoms, false, ".idata.t", _alloc);
std::vector<ImportTableEntryAtom *> importAddressTables =
createImportTableAtoms(context, sharedAtoms, true, ".idata.a", _alloc);
addDir32NBReloc(this, importLookupTables[0], context.ctx.getMachineType(),
offsetof(ImportDirectoryTableEntry, ImportLookupTableRVA));
addDir32NBReloc(this, importAddressTables[0], context.ctx.getMachineType(),
offsetof(ImportDirectoryTableEntry, ImportAddressTableRVA));
auto *atom = new (_alloc)
COFFStringAtom(context.dummyFile, context.dummyFile.getNextOrdinal(),
".idata", loadName);
context.file.addAtom(*atom);
addDir32NBReloc(this, atom, context.ctx.getMachineType(),
offsetof(ImportDirectoryTableEntry, NameRVA));
}
// Create the contents for the delay-import table.
std::vector<uint8_t> DelayImportDirectoryAtom::createContent() {
std::vector<uint8_t> r(sizeof(delay_import_directory_table_entry), 0);
auto entry = reinterpret_cast<delay_import_directory_table_entry *>(&r[0]);
// link.exe seems to set 1 to Attributes field, so do we.
entry->Attributes = 1;
return r;
}
// Find "___delayLoadHelper2@8" (or "__delayLoadHelper2" on x64).
// This is not efficient but should be OK for now.
static const Atom *
findDelayLoadHelper(MutableFile &file, const PECOFFLinkingContext &ctx) {
StringRef sym = ctx.getDelayLoadHelperName();
for (const DefinedAtom *atom : file.defined())
if (atom->name() == sym)
return atom;
std::string msg = (sym + " was not found").str();
llvm_unreachable(msg.c_str());
}
// Create the data referred by the delay-import table.
void DelayImportDirectoryAtom::addRelocations(
IdataContext &context, StringRef loadName,
const std::vector<COFFSharedLibraryAtom *> &sharedAtoms) {
// "ModuleHandle" field. This points to an array of pointer-size data
// in ".data" section. Initially the array is initialized with zero.
// The delay-load import helper will set DLL base address at runtime.
auto *hmodule = new (_alloc) DelayImportAddressAtom(context);
addDir32NBReloc(this, hmodule, context.ctx.getMachineType(),
offsetof(delay_import_directory_table_entry, ModuleHandle));
// "NameTable" field. The data structure of this field is the same
// as (non-delay) import table's Import Lookup Table. Contains
// imported function names. This is a parallel array of AddressTable
// field.
std::vector<ImportTableEntryAtom *> nameTable =
createImportTableAtoms(context, sharedAtoms, false, ".didat", _alloc);
addDir32NBReloc(
this, nameTable[0], context.ctx.getMachineType(),
offsetof(delay_import_directory_table_entry, DelayImportNameTable));
// "Name" field. This points to the NUL-terminated DLL name string.
auto *name = new (_alloc)
COFFStringAtom(context.dummyFile, context.dummyFile.getNextOrdinal(),
".didat", loadName);
context.file.addAtom(*name);
addDir32NBReloc(this, name, context.ctx.getMachineType(),
offsetof(delay_import_directory_table_entry, Name));
// "AddressTable" field. This points to an array of pointers, which
// in turn pointing to delay-load functions.
std::vector<DelayImportAddressAtom *> addrTable;
for (int i = 0, e = sharedAtoms.size() + 1; i < e; ++i)
addrTable.push_back(new (_alloc) DelayImportAddressAtom(context));
for (int i = 0, e = sharedAtoms.size(); i < e; ++i)
sharedAtoms[i]->setImportTableEntry(addrTable[i]);
addDir32NBReloc(
this, addrTable[0], context.ctx.getMachineType(),
offsetof(delay_import_directory_table_entry, DelayImportAddressTable));
const Atom *delayLoadHelper = findDelayLoadHelper(context.file, context.ctx);
for (int i = 0, e = sharedAtoms.size(); i < e; ++i) {
const DefinedAtom *loader = new (_alloc) DelayLoaderAtom(
context, addrTable[i], this, delayLoadHelper);
if (context.ctx.is64Bit())
addDir64Reloc(addrTable[i], loader, context.ctx.getMachineType(), 0);
else
addDir32Reloc(addrTable[i], loader, context.ctx.getMachineType(), 0);
}
}
DelayLoaderAtom::DelayLoaderAtom(IdataContext &context, const Atom *impAtom,
const Atom *descAtom, const Atom *delayLoadHelperAtom)
: IdataAtom(context, createContent(context.ctx.getMachineType())) {
MachineTypes machine = context.ctx.getMachineType();
switch (machine) {
case llvm::COFF::IMAGE_FILE_MACHINE_I386:
addDir32Reloc(this, impAtom, machine, 3);
addDir32Reloc(this, descAtom, machine, 8);
addRel32Reloc(this, delayLoadHelperAtom, machine, 13);
break;
case llvm::COFF::IMAGE_FILE_MACHINE_AMD64:
addRel32Reloc(this, impAtom, machine, 36);
addRel32Reloc(this, descAtom, machine, 43);
addRel32Reloc(this, delayLoadHelperAtom, machine, 48);
break;
default:
llvm::report_fatal_error("unsupported machine type");
}
}
// DelayLoaderAtom contains a wrapper function for __delayLoadHelper2.
//
// __delayLoadHelper2 takes two pointers: a pointer to the delay-load
// table descripter and a pointer to _imp_ symbol for the function
// to be resolved.
//
// __delayLoadHelper2 looks at the table descriptor to know the DLL
// name, calls dlopen()-like function to load it, resolves all
// imported symbols, and then writes the resolved addresses to the
// import address table. It returns a pointer to the resolved
// function.
//
// __delayLoadHelper2 is defined in delayimp.lib.
std::vector<uint8_t>
DelayLoaderAtom::createContent(MachineTypes machine) const {
static const uint8_t x86[] = {
0x51, // push ecx
0x52, // push edx
0x68, 0, 0, 0, 0, // push offset ___imp__<FUNCNAME>
0x68, 0, 0, 0, 0, // push offset ___DELAY_IMPORT_DESCRIPTOR_<DLLNAME>_dll
0xE8, 0, 0, 0, 0, // call ___delayLoadHelper2@8
0x5A, // pop edx
0x59, // pop ecx
0xFF, 0xE0, // jmp eax
};
static const uint8_t x64[] = {
0x51, // push rcx
0x52, // push rdx
0x41, 0x50, // push r8
0x41, 0x51, // push r9
0x48, 0x83, 0xEC, 0x48, // sub rsp, 48h
0x66, 0x0F, 0x7F, 0x04, 0x24, // movdqa xmmword ptr [rsp], xmm0
0x66, 0x0F, 0x7F, 0x4C, 0x24, 0x10, // movdqa xmmword ptr [rsp+10h], xmm1
0x66, 0x0F, 0x7F, 0x54, 0x24, 0x20, // movdqa xmmword ptr [rsp+20h], xmm2
0x66, 0x0F, 0x7F, 0x5C, 0x24, 0x30, // movdqa xmmword ptr [rsp+30h], xmm3
0x48, 0x8D, 0x15, 0, 0, 0, 0, // lea rdx, [__imp_<FUNCNAME>]
0x48, 0x8D, 0x0D, 0, 0, 0, 0, // lea rcx, [___DELAY_IMPORT_...]
0xE8, 0, 0, 0, 0, // call __delayLoadHelper2
0x66, 0x0F, 0x6F, 0x04, 0x24, // movdqa xmm0, xmmword ptr [rsp]
0x66, 0x0F, 0x6F, 0x4C, 0x24, 0x10, // movdqa xmm1, xmmword ptr [rsp+10h]
0x66, 0x0F, 0x6F, 0x54, 0x24, 0x20, // movdqa xmm2, xmmword ptr [rsp+20h]
0x66, 0x0F, 0x6F, 0x5C, 0x24, 0x30, // movdqa xmm3, xmmword ptr [rsp+30h]
0x48, 0x83, 0xC4, 0x48, // add rsp, 48h
0x41, 0x59, // pop r9
0x41, 0x58, // pop r8
0x5A, // pop rdx
0x59, // pop rcx
0xFF, 0xE0, // jmp rax
};
switch (machine) {
case llvm::COFF::IMAGE_FILE_MACHINE_I386:
return std::vector<uint8_t>(x86, x86 + sizeof(x86));
case llvm::COFF::IMAGE_FILE_MACHINE_AMD64:
return std::vector<uint8_t>(x64, x64 + sizeof(x64));
default:
llvm::report_fatal_error("unsupported machine type");
}
}
} // namespace idata
void IdataPass::perform(std::unique_ptr<MutableFile> &file) {
if (file->sharedLibrary().empty())
return;
idata::IdataContext context(*file, _dummyFile, _ctx);
std::map<StringRef, std::vector<COFFSharedLibraryAtom *>> sharedAtoms =
groupByLoadName(*file);
bool hasImports = false;
bool hasDelayImports = false;
// Create the import table and terminate it with the null entry.
for (auto i : sharedAtoms) {
StringRef loadName = i.first;
if (_ctx.isDelayLoadDLL(loadName))
continue;
hasImports = true;
std::vector<COFFSharedLibraryAtom *> &atoms = i.second;
new (_alloc) idata::ImportDirectoryAtom(context, loadName, atoms);
}
if (hasImports)
new (_alloc) idata::NullImportDirectoryAtom(context);
// Create the delay import table and terminate it with the null entry.
for (auto i : sharedAtoms) {
StringRef loadName = i.first;
if (!_ctx.isDelayLoadDLL(loadName))
continue;
hasDelayImports = true;
std::vector<COFFSharedLibraryAtom *> &atoms = i.second;
new (_alloc) idata::DelayImportDirectoryAtom(context, loadName, atoms);
}
if (hasDelayImports)
new (_alloc) idata::DelayNullImportDirectoryAtom(context);
replaceSharedLibraryAtoms(*file);
}
std::map<StringRef, std::vector<COFFSharedLibraryAtom *> >
IdataPass::groupByLoadName(MutableFile &file) {
std::map<StringRef, COFFSharedLibraryAtom *> uniqueAtoms;
for (const SharedLibraryAtom *atom : file.sharedLibrary())
uniqueAtoms[atom->name()] =
(COFFSharedLibraryAtom *)const_cast<SharedLibraryAtom *>(atom);
std::map<StringRef, std::vector<COFFSharedLibraryAtom *> > ret;
for (auto i : uniqueAtoms) {
COFFSharedLibraryAtom *atom = i.second;
ret[atom->loadName()].push_back(atom);
}
return ret;
}
/// Transforms a reference to a COFFSharedLibraryAtom to a real reference.
void IdataPass::replaceSharedLibraryAtoms(MutableFile &file) {
for (const DefinedAtom *atom : file.defined()) {
for (const Reference *ref : *atom) {
const Atom *target = ref->target();
auto *sharedAtom = dyn_cast<SharedLibraryAtom>(target);
if (!sharedAtom)
continue;
const auto *coffSharedAtom = (const COFFSharedLibraryAtom *)sharedAtom;
const DefinedAtom *entry = coffSharedAtom->getImportTableEntry();
const_cast<Reference *>(ref)->setTarget(entry);
}
}
}
} // namespace pecoff
} // namespace lld