llvm-project/lld/ELF/InputSection.cpp

1053 lines
38 KiB
C++

//===- InputSection.cpp ---------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InputSection.h"
#include "Config.h"
#include "EhFrame.h"
#include "InputFiles.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/xxhash.h"
#include <mutex>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::elf;
std::vector<InputSectionBase *> elf::InputSections;
// Returns a string to construct an error message.
std::string lld::toString(const InputSectionBase *Sec) {
return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
}
DenseMap<SectionBase *, int> elf::buildSectionOrder() {
DenseMap<SectionBase *, int> SectionOrder;
if (Config->SymbolOrderingFile.empty())
return SectionOrder;
// Build a map from symbols to their priorities. Symbols that didn't
// appear in the symbol ordering file have the lowest priority 0.
// All explicitly mentioned symbols have negative (higher) priorities.
DenseMap<StringRef, int> SymbolOrder;
int Priority = -Config->SymbolOrderingFile.size();
for (StringRef S : Config->SymbolOrderingFile)
SymbolOrder.insert({S, Priority++});
// Build a map from sections to their priorities.
for (InputFile *File : ObjectFiles) {
for (Symbol *Sym : File->getSymbols()) {
auto *D = dyn_cast<Defined>(Sym);
if (!D || !D->Section)
continue;
int &Priority = SectionOrder[D->Section];
Priority = std::min(Priority, SymbolOrder.lookup(D->getName()));
}
}
return SectionOrder;
}
template <class ELFT>
static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File,
const typename ELFT::Shdr *Hdr) {
if (!File || Hdr->sh_type == SHT_NOBITS)
return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
return check(File->getObj().getSectionContents(Hdr));
}
InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
uint32_t Type, uint64_t Entsize,
uint32_t Link, uint32_t Info,
uint32_t Alignment, ArrayRef<uint8_t> Data,
StringRef Name, Kind SectionKind)
: SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
Link),
File(File), Data(Data), Repl(this) {
NumRelocations = 0;
AreRelocsRela = false;
// The ELF spec states that a value of 0 means the section has
// no alignment constraits.
uint32_t V = std::max<uint64_t>(Alignment, 1);
if (!isPowerOf2_64(V))
fatal(toString(File) + ": section sh_addralign is not a power of 2");
this->Alignment = V;
}
// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
// SHF_GROUP is a marker that a section belongs to some comdat group.
// That flag doesn't make sense in an executable.
static uint64_t getFlags(uint64_t Flags) {
Flags &= ~(uint64_t)SHF_INFO_LINK;
if (!Config->Relocatable)
Flags &= ~(uint64_t)SHF_GROUP;
return Flags;
}
// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
// March 2017) fail to infer section types for sections starting with
// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
// SHF_INIT_ARRAY. As a result, the following assembler directive
// creates ".init_array.100" with SHT_PROGBITS, for example.
//
// .section .init_array.100, "aw"
//
// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
// incorrect inputs as if they were correct from the beginning.
static uint64_t getType(uint64_t Type, StringRef Name) {
if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
return SHT_INIT_ARRAY;
if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
return SHT_FINI_ARRAY;
return Type;
}
template <class ELFT>
InputSectionBase::InputSectionBase(ObjFile<ELFT> *File,
const typename ELFT::Shdr *Hdr,
StringRef Name, Kind SectionKind)
: InputSectionBase(File, getFlags(Hdr->sh_flags),
getType(Hdr->sh_type, Name), Hdr->sh_entsize,
Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign,
getSectionContents(File, Hdr), Name, SectionKind) {
// We reject object files having insanely large alignments even though
// they are allowed by the spec. I think 4GB is a reasonable limitation.
// We might want to relax this in the future.
if (Hdr->sh_addralign > UINT32_MAX)
fatal(toString(File) + ": section sh_addralign is too large");
}
size_t InputSectionBase::getSize() const {
if (auto *S = dyn_cast<SyntheticSection>(this))
return S->getSize();
return Data.size();
}
uint64_t InputSectionBase::getOffsetInFile() const {
const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
const uint8_t *SecStart = Data.begin();
return SecStart - FileStart;
}
uint64_t SectionBase::getOffset(uint64_t Offset) const {
switch (kind()) {
case Output: {
auto *OS = cast<OutputSection>(this);
// For output sections we treat offset -1 as the end of the section.
return Offset == uint64_t(-1) ? OS->Size : Offset;
}
case Regular:
return cast<InputSection>(this)->OutSecOff + Offset;
case Synthetic: {
auto *IS = cast<InputSection>(this);
// For synthetic sections we treat offset -1 as the end of the section.
return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset);
}
case EHFrame:
// The file crtbeginT.o has relocations pointing to the start of an empty
// .eh_frame that is known to be the first in the link. It does that to
// identify the start of the output .eh_frame.
return Offset;
case Merge:
const MergeInputSection *MS = cast<MergeInputSection>(this);
if (InputSection *IS = MS->getParent())
return IS->OutSecOff + MS->getOffset(Offset);
return MS->getOffset(Offset);
}
llvm_unreachable("invalid section kind");
}
OutputSection *SectionBase::getOutputSection() {
InputSection *Sec;
if (auto *IS = dyn_cast<InputSection>(this))
Sec = cast<InputSection>(IS->Repl);
else if (auto *MS = dyn_cast<MergeInputSection>(this))
Sec = MS->getParent();
else if (auto *EH = dyn_cast<EhInputSection>(this))
Sec = EH->getParent();
else
return cast<OutputSection>(this);
return Sec ? Sec->getParent() : nullptr;
}
// Uncompress section contents if required. Note that this function
// is called from parallelForEach, so it must be thread-safe.
void InputSectionBase::maybeUncompress() {
if (UncompressBuf || !Decompressor::isCompressedELFSection(Flags, Name))
return;
Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data),
Config->IsLE, Config->Is64));
size_t Size = Dec.getDecompressedSize();
UncompressBuf.reset(new char[Size]());
if (Error E = Dec.decompress({UncompressBuf.get(), Size}))
fatal(toString(this) +
": decompress failed: " + llvm::toString(std::move(E)));
this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size);
this->Flags &= ~(uint64_t)SHF_COMPRESSED;
}
InputSection *InputSectionBase::getLinkOrderDep() const {
if ((Flags & SHF_LINK_ORDER) && Link != 0) {
InputSectionBase *L = File->getSections()[Link];
if (auto *IS = dyn_cast<InputSection>(L))
return IS;
error("a section with SHF_LINK_ORDER should not refer a non-regular "
"section: " +
toString(L));
}
return nullptr;
}
// Returns a source location string. Used to construct an error message.
template <class ELFT>
std::string InputSectionBase::getLocation(uint64_t Offset) {
// We don't have file for synthetic sections.
if (getFile<ELFT>() == nullptr)
return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")")
.str();
// First check if we can get desired values from debugging information.
std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset);
if (!LineInfo.empty())
return LineInfo;
// File->SourceFile contains STT_FILE symbol that contains a
// source file name. If it's missing, we use an object file name.
std::string SrcFile = getFile<ELFT>()->SourceFile;
if (SrcFile.empty())
SrcFile = toString(File);
// Find a function symbol that encloses a given location.
for (Symbol *B : File->getSymbols())
if (auto *D = dyn_cast<Defined>(B))
if (D->Section == this && D->Type == STT_FUNC)
if (D->Value <= Offset && Offset < D->Value + D->Size)
return SrcFile + ":(function " + toString(*D) + ")";
// If there's no symbol, print out the offset in the section.
return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
}
// Concatenates arguments to construct a string representing an error location.
static std::string createFileLineMsg(StringRef Path, unsigned Line) {
std::string Filename = path::filename(Path);
std::string Lineno = ":" + std::to_string(Line);
if (Filename == Path)
return Filename + Lineno;
return Filename + Lineno + " (" + Path.str() + Lineno + ")";
}
// This function is intended to be used for constructing an error message.
// The returned message looks like this:
//
// foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
//
// Returns an empty string if there's no way to get line info.
template <class ELFT>
std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
// Synthetic sections don't have input files.
ObjFile<ELFT> *File = getFile<ELFT>();
if (!File)
return "";
// In DWARF, functions and variables are stored to different places.
// First, lookup a function for a given offset.
if (Optional<DILineInfo> Info = File->getDILineInfo(this, Offset))
return createFileLineMsg(Info->FileName, Info->Line);
// If it failed, lookup again as a variable.
if (Optional<std::pair<std::string, unsigned>> FileLine =
File->getVariableLoc(Sym.getName()))
return createFileLineMsg(FileLine->first, FileLine->second);
// File->SourceFile contains STT_FILE symbol, and that is a last resort.
return File->SourceFile;
}
// Returns a filename string along with an optional section name. This
// function is intended to be used for constructing an error
// message. The returned message looks like this:
//
// path/to/foo.o:(function bar)
//
// or
//
// path/to/foo.o:(function bar) in archive path/to/bar.a
std::string InputSectionBase::getObjMsg(uint64_t Off) {
// Synthetic sections don't have input files.
if (!File)
return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str();
std::string Filename = File->getName();
std::string Archive;
if (!File->ArchiveName.empty())
Archive = (" in archive " + File->ArchiveName).str();
// Find a symbol that encloses a given location.
for (Symbol *B : File->getSymbols())
if (auto *D = dyn_cast<Defined>(B))
if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
return Filename + ":(" + toString(*D) + ")" + Archive;
// If there's no symbol, print out the offset in the section.
return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
.str();
}
InputSectionBase InputSectionBase::Discarded;
InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment,
ArrayRef<uint8_t> Data, StringRef Name, Kind K)
: InputSectionBase(nullptr, Flags, Type,
/*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
Name, K) {}
template <class ELFT>
InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header,
StringRef Name)
: InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
bool InputSection::classof(const SectionBase *S) {
return S->kind() == SectionBase::Regular ||
S->kind() == SectionBase::Synthetic;
}
OutputSection *InputSection::getParent() const {
return cast_or_null<OutputSection>(Parent);
}
// Copy SHT_GROUP section contents. Used only for the -r option.
template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
// ELFT::Word is the 32-bit integral type in the target endianness.
typedef typename ELFT::Word u32;
ArrayRef<u32> From = getDataAs<u32>();
auto *To = reinterpret_cast<u32 *>(Buf);
// The first entry is not a section number but a flag.
*To++ = From[0];
// Adjust section numbers because section numbers in an input object
// files are different in the output.
ArrayRef<InputSectionBase *> Sections = this->File->getSections();
for (uint32_t Idx : From.slice(1))
*To++ = Sections[Idx]->getOutputSection()->SectionIndex;
}
InputSectionBase *InputSection::getRelocatedSection() {
assert(this->Type == SHT_RELA || this->Type == SHT_REL);
ArrayRef<InputSectionBase *> Sections = this->File->getSections();
return Sections[this->Info];
}
// This is used for -r and --emit-relocs. We can't use memcpy to copy
// relocations because we need to update symbol table offset and section index
// for each relocation. So we copy relocations one by one.
template <class ELFT, class RelTy>
void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
InputSectionBase *Sec = getRelocatedSection();
for (const RelTy &Rel : Rels) {
RelType Type = Rel.getType(Config->IsMips64EL);
Symbol &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel);
auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
Buf += sizeof(RelTy);
if (Config->IsRela)
P->r_addend = getAddend<ELFT>(Rel);
// Output section VA is zero for -r, so r_offset is an offset within the
// section, but for --emit-relocs it is an virtual address.
P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset);
P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type,
Config->IsMips64EL);
if (Sym.Type == STT_SECTION) {
// We combine multiple section symbols into only one per
// section. This means we have to update the addend. That is
// trivial for Elf_Rela, but for Elf_Rel we have to write to the
// section data. We do that by adding to the Relocation vector.
// .eh_frame is horribly special and can reference discarded sections. To
// avoid having to parse and recreate .eh_frame, we just replace any
// relocation in it pointing to discarded sections with R_*_NONE, which
// hopefully creates a frame that is ignored at runtime.
auto *D = dyn_cast<Defined>(&Sym);
if (!D) {
error("STT_SECTION symbol should be defined");
continue;
}
SectionBase *Section = D->Section;
if (Section == &InputSection::Discarded) {
P->setSymbolAndType(0, 0, false);
continue;
}
if (Config->IsRela) {
P->r_addend =
Sym.getVA(getAddend<ELFT>(Rel)) - Section->getOutputSection()->Addr;
} else if (Config->Relocatable) {
const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset;
Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset,
Target->getImplicitAddend(BufLoc, Type),
&Sym});
}
}
}
}
// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
// references specially. The general rule is that the value of the symbol in
// this context is the address of the place P. A further special case is that
// branch relocations to an undefined weak reference resolve to the next
// instruction.
static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
uint32_t P) {
switch (Type) {
// Unresolved branch relocations to weak references resolve to next
// instruction, this will be either 2 or 4 bytes on from P.
case R_ARM_THM_JUMP11:
return P + 2 + A;
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_PREL31:
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
return P + 4 + A;
case R_ARM_THM_CALL:
// We don't want an interworking BLX to ARM
return P + 5 + A;
// Unresolved non branch pc-relative relocations
// R_ARM_TARGET2 which can be resolved relatively is not present as it never
// targets a weak-reference.
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_REL32:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
return P + A;
}
llvm_unreachable("ARM pc-relative relocation expected\n");
}
// The comment above getARMUndefinedRelativeWeakVA applies to this function.
static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
uint64_t P) {
switch (Type) {
// Unresolved branch relocations to weak references resolve to next
// instruction, this is 4 bytes on from P.
case R_AARCH64_CALL26:
case R_AARCH64_CONDBR19:
case R_AARCH64_JUMP26:
case R_AARCH64_TSTBR14:
return P + 4 + A;
// Unresolved non branch pc-relative relocations
case R_AARCH64_PREL16:
case R_AARCH64_PREL32:
case R_AARCH64_PREL64:
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_LD_PREL_LO19:
return P + A;
}
llvm_unreachable("AArch64 pc-relative relocation expected\n");
}
// ARM SBREL relocations are of the form S + A - B where B is the static base
// The ARM ABI defines base to be "addressing origin of the output segment
// defining the symbol S". We defined the "addressing origin"/static base to be
// the base of the PT_LOAD segment containing the Sym.
// The procedure call standard only defines a Read Write Position Independent
// RWPI variant so in practice we should expect the static base to be the base
// of the RW segment.
static uint64_t getARMStaticBase(const Symbol &Sym) {
OutputSection *OS = Sym.getOutputSection();
if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
fatal("SBREL relocation to " + Sym.getName() + " without static base");
return OS->PtLoad->FirstSec->Addr;
}
static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P,
const Symbol &Sym, RelExpr Expr) {
switch (Expr) {
case R_INVALID:
return 0;
case R_ABS:
case R_RELAX_GOT_PC_NOPIC:
return Sym.getVA(A);
case R_ARM_SBREL:
return Sym.getVA(A) - getARMStaticBase(Sym);
case R_GOT:
case R_RELAX_TLS_GD_TO_IE_ABS:
return Sym.getGotVA() + A;
case R_GOTONLY_PC:
return InX::Got->getVA() + A - P;
case R_GOTONLY_PC_FROM_END:
return InX::Got->getVA() + A - P + InX::Got->getSize();
case R_GOTREL:
return Sym.getVA(A) - InX::Got->getVA();
case R_GOTREL_FROM_END:
return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize();
case R_GOT_FROM_END:
case R_RELAX_TLS_GD_TO_IE_END:
return Sym.getGotOffset() + A - InX::Got->getSize();
case R_GOT_OFF:
return Sym.getGotOffset() + A;
case R_GOT_PAGE_PC:
case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
case R_GOT_PC:
case R_RELAX_TLS_GD_TO_IE:
return Sym.getGotVA() + A - P;
case R_HINT:
case R_NONE:
case R_TLSDESC_CALL:
llvm_unreachable("cannot relocate hint relocs");
case R_MIPS_GOTREL:
return Sym.getVA(A) - InX::MipsGot->getGp();
case R_MIPS_GOT_GP:
return InX::MipsGot->getGp() + A;
case R_MIPS_GOT_GP_PC: {
// R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
// is _gp_disp symbol. In that case we should use the following
// formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
// microMIPS variants of these relocations use slightly different
// expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
// to correctly handle less-sugnificant bit of the microMIPS symbol.
uint64_t V = InX::MipsGot->getGp() + A - P;
if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
V += 4;
if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
V -= 1;
return V;
}
case R_MIPS_GOT_LOCAL_PAGE:
// If relocation against MIPS local symbol requires GOT entry, this entry
// should be initialized by 'page address'. This address is high 16-bits
// of sum the symbol's value and the addend.
return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Sym, A) -
InX::MipsGot->getGp();
case R_MIPS_GOT_OFF:
case R_MIPS_GOT_OFF32:
// In case of MIPS if a GOT relocation has non-zero addend this addend
// should be applied to the GOT entry content not to the GOT entry offset.
// That is why we use separate expression type.
return InX::MipsGot->getVA() + InX::MipsGot->getSymEntryOffset(Sym, A) -
InX::MipsGot->getGp();
case R_MIPS_TLSGD:
return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() +
InX::MipsGot->getGlobalDynOffset(Sym) - InX::MipsGot->getGp();
case R_MIPS_TLSLD:
return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() +
InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp();
case R_PAGE_PC:
case R_PLT_PAGE_PC: {
uint64_t Dest;
if (Sym.isUndefWeak())
Dest = getAArch64Page(A);
else
Dest = getAArch64Page(Sym.getVA(A));
return Dest - getAArch64Page(P);
}
case R_PC: {
uint64_t Dest;
if (Sym.isUndefWeak()) {
// On ARM and AArch64 a branch to an undefined weak resolves to the
// next instruction, otherwise the place.
if (Config->EMachine == EM_ARM)
Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
else if (Config->EMachine == EM_AARCH64)
Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
else
Dest = Sym.getVA(A);
} else {
Dest = Sym.getVA(A);
}
return Dest - P;
}
case R_PLT:
return Sym.getPltVA() + A;
case R_PLT_PC:
case R_PPC_PLT_OPD:
return Sym.getPltVA() + A - P;
case R_PPC_OPD: {
uint64_t SymVA = Sym.getVA(A);
// If we have an undefined weak symbol, we might get here with a symbol
// address of zero. That could overflow, but the code must be unreachable,
// so don't bother doing anything at all.
if (!SymVA)
return 0;
if (Out::Opd) {
// If this is a local call, and we currently have the address of a
// function-descriptor, get the underlying code address instead.
uint64_t OpdStart = Out::Opd->Addr;
uint64_t OpdEnd = OpdStart + Out::Opd->Size;
bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
if (InOpd)
SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]);
}
return SymVA - P;
}
case R_PPC_TOC:
return getPPC64TocBase() + A;
case R_RELAX_GOT_PC:
return Sym.getVA(A) - P;
case R_RELAX_TLS_GD_TO_LE:
case R_RELAX_TLS_IE_TO_LE:
case R_RELAX_TLS_LD_TO_LE:
case R_TLS:
// A weak undefined TLS symbol resolves to the base of the TLS
// block, i.e. gets a value of zero. If we pass --gc-sections to
// lld and .tbss is not referenced, it gets reclaimed and we don't
// create a TLS program header. Therefore, we resolve this
// statically to zero.
if (Sym.isTls() && Sym.isUndefWeak())
return 0;
if (Target->TcbSize)
return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align);
return Sym.getVA(A) - Out::TlsPhdr->p_memsz;
case R_RELAX_TLS_GD_TO_LE_NEG:
case R_NEG_TLS:
return Out::TlsPhdr->p_memsz - Sym.getVA(A);
case R_SIZE:
return A; // Sym.getSize was already folded into the addend.
case R_TLSDESC:
return InX::Got->getGlobalDynAddr(Sym) + A;
case R_TLSDESC_PAGE:
return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) -
getAArch64Page(P);
case R_TLSGD:
return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize();
case R_TLSGD_PC:
return InX::Got->getGlobalDynAddr(Sym) + A - P;
case R_TLSLD:
return InX::Got->getTlsIndexOff() + A - InX::Got->getSize();
case R_TLSLD_PC:
return InX::Got->getTlsIndexVA() + A - P;
}
llvm_unreachable("Invalid expression");
}
// This function applies relocations to sections without SHF_ALLOC bit.
// Such sections are never mapped to memory at runtime. Debug sections are
// an example. Relocations in non-alloc sections are much easier to
// handle than in allocated sections because it will never need complex
// treatement such as GOT or PLT (because at runtime no one refers them).
// So, we handle relocations for non-alloc sections directly in this
// function as a performance optimization.
template <class ELFT, class RelTy>
void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
const unsigned Bits = sizeof(typename ELFT::uint) * 8;
for (const RelTy &Rel : Rels) {
RelType Type = Rel.getType(Config->IsMips64EL);
uint64_t Offset = getOffset(Rel.r_offset);
uint8_t *BufLoc = Buf + Offset;
int64_t Addend = getAddend<ELFT>(Rel);
if (!RelTy::IsRela)
Addend += Target->getImplicitAddend(BufLoc, Type);
Symbol &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel);
RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
if (Expr == R_NONE)
continue;
if (Expr != R_ABS) {
// GCC 8.0 or earlier have a bug that it emits R_386_GOTPC relocations
// against _GLOBAL_OFFSET_TABLE for .debug_info. The bug seems to have
// been fixed in 2017: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630,
// but we need to keep this bug-compatible code for a while.
if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
continue;
error(this->getLocation<ELFT>(Offset) + ": has non-ABS relocation " +
toString(Type) + " against symbol '" + toString(Sym) + "'");
return;
}
if (Sym.isTls() && !Out::TlsPhdr)
Target->relocateOne(BufLoc, Type, 0);
else
Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
}
}
template <class ELFT>
void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
if (Flags & SHF_ALLOC) {
relocateAlloc(Buf, BufEnd);
return;
}
auto *Sec = cast<InputSection>(this);
if (Sec->AreRelocsRela)
Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
else
Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
}
void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
assert(Flags & SHF_ALLOC);
const unsigned Bits = Config->Wordsize * 8;
for (const Relocation &Rel : Relocations) {
uint64_t Offset = getOffset(Rel.Offset);
uint8_t *BufLoc = Buf + Offset;
RelType Type = Rel.Type;
uint64_t AddrLoc = getOutputSection()->Addr + Offset;
RelExpr Expr = Rel.Expr;
uint64_t TargetVA = SignExtend64(
getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits);
switch (Expr) {
case R_RELAX_GOT_PC:
case R_RELAX_GOT_PC_NOPIC:
Target->relaxGot(BufLoc, TargetVA);
break;
case R_RELAX_TLS_IE_TO_LE:
Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
break;
case R_RELAX_TLS_LD_TO_LE:
Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
break;
case R_RELAX_TLS_GD_TO_LE:
case R_RELAX_TLS_GD_TO_LE_NEG:
Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
break;
case R_RELAX_TLS_GD_TO_IE:
case R_RELAX_TLS_GD_TO_IE_ABS:
case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
case R_RELAX_TLS_GD_TO_IE_END:
Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
break;
case R_PPC_PLT_OPD:
// Patch a nop (0x60000000) to a ld.
if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
LLVM_FALLTHROUGH;
default:
Target->relocateOne(BufLoc, Type, TargetVA);
break;
}
}
}
template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
if (this->Type == SHT_NOBITS)
return;
if (auto *S = dyn_cast<SyntheticSection>(this)) {
S->writeTo(Buf + OutSecOff);
return;
}
// If -r or --emit-relocs is given, then an InputSection
// may be a relocation section.
if (this->Type == SHT_RELA) {
copyRelocations<ELFT>(Buf + OutSecOff,
this->template getDataAs<typename ELFT::Rela>());
return;
}
if (this->Type == SHT_REL) {
copyRelocations<ELFT>(Buf + OutSecOff,
this->template getDataAs<typename ELFT::Rel>());
return;
}
// If -r is given, we may have a SHT_GROUP section.
if (this->Type == SHT_GROUP) {
copyShtGroup<ELFT>(Buf + OutSecOff);
return;
}
// Copy section contents from source object file to output file
// and then apply relocations.
memcpy(Buf + OutSecOff, Data.data(), Data.size());
uint8_t *BufEnd = Buf + OutSecOff + Data.size();
this->relocate<ELFT>(Buf, BufEnd);
}
void InputSection::replace(InputSection *Other) {
this->Alignment = std::max(this->Alignment, Other->Alignment);
Other->Repl = this->Repl;
Other->Live = false;
}
template <class ELFT>
EhInputSection::EhInputSection(ObjFile<ELFT> *F,
const typename ELFT::Shdr *Header,
StringRef Name)
: InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
SyntheticSection *EhInputSection::getParent() const {
return cast_or_null<SyntheticSection>(Parent);
}
// Returns the index of the first relocation that points to a region between
// Begin and Begin+Size.
template <class IntTy, class RelTy>
static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
unsigned &RelocI) {
// Start search from RelocI for fast access. That works because the
// relocations are sorted in .eh_frame.
for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
const RelTy &Rel = Rels[RelocI];
if (Rel.r_offset < Begin)
continue;
if (Rel.r_offset < Begin + Size)
return RelocI;
return -1;
}
return -1;
}
// .eh_frame is a sequence of CIE or FDE records.
// This function splits an input section into records and returns them.
template <class ELFT> void EhInputSection::split() {
// Early exit if already split.
if (!this->Pieces.empty())
return;
if (this->AreRelocsRela)
split<ELFT>(this->relas<ELFT>());
else
split<ELFT>(this->rels<ELFT>());
}
template <class ELFT, class RelTy>
void EhInputSection::split(ArrayRef<RelTy> Rels) {
ArrayRef<uint8_t> Data = this->Data;
unsigned RelI = 0;
for (size_t Off = 0, End = Data.size(); Off != End;) {
size_t Size = readEhRecordSize(this, Off);
this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
// The empty record is the end marker.
if (Size == 4)
break;
Off += Size;
}
}
static size_t findNull(StringRef S, size_t EntSize) {
// Optimize the common case.
if (EntSize == 1)
return S.find(0);
for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
const char *B = S.begin() + I;
if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
return I;
}
return StringRef::npos;
}
SyntheticSection *MergeInputSection::getParent() const {
return cast_or_null<SyntheticSection>(Parent);
}
// Split SHF_STRINGS section. Such section is a sequence of
// null-terminated strings.
void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
size_t Off = 0;
bool IsAlloc = this->Flags & SHF_ALLOC;
StringRef S = toStringRef(Data);
while (!S.empty()) {
size_t End = findNull(S, EntSize);
if (End == StringRef::npos)
fatal(toString(this) + ": string is not null terminated");
size_t Size = End + EntSize;
Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
S = S.substr(Size);
Off += Size;
}
}
// Split non-SHF_STRINGS section. Such section is a sequence of
// fixed size records.
void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
size_t EntSize) {
size_t Size = Data.size();
assert((Size % EntSize) == 0);
bool IsAlloc = this->Flags & SHF_ALLOC;
for (size_t I = 0; I != Size; I += EntSize)
Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))),
!IsAlloc);
}
template <class ELFT>
MergeInputSection::MergeInputSection(ObjFile<ELFT> *F,
const typename ELFT::Shdr *Header,
StringRef Name)
: InputSectionBase(F, Header, Name, InputSectionBase::Merge) {
// In order to reduce memory allocation, we assume that mergeable
// sections are smaller than 4 GiB, which is not an unreasonable
// assumption as of 2017.
if (Data.size() > UINT32_MAX)
error(toString(this) + ": section too large");
}
// This function is called after we obtain a complete list of input sections
// that need to be linked. This is responsible to split section contents
// into small chunks for further processing.
//
// Note that this function is called from parallelForEach. This must be
// thread-safe (i.e. no memory allocation from the pools).
void MergeInputSection::splitIntoPieces() {
assert(Pieces.empty());
if (this->Flags & SHF_STRINGS)
splitStrings(Data, Entsize);
else
splitNonStrings(Data, Entsize);
if (Config->GcSections && (this->Flags & SHF_ALLOC))
for (uint64_t Off : LiveOffsets)
this->getSectionPiece(Off)->Live = true;
}
// Do binary search to get a section piece at a given input offset.
SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
auto *This = static_cast<const MergeInputSection *>(this);
return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
}
template <class It, class T, class Compare>
static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
size_t Size = std::distance(First, Last);
assert(Size != 0);
while (Size != 1) {
size_t H = Size / 2;
const It MI = First + H;
Size -= H;
First = Comp(Value, *MI) ? First : First + H;
}
return Comp(Value, *First) ? First : First + 1;
}
const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const {
if (Data.size() <= Offset)
fatal(toString(this) + ": entry is past the end of the section");
// Find the element this offset points to.
auto I = fastUpperBound(
Pieces.begin(), Pieces.end(), Offset,
[](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; });
--I;
return &*I;
}
// Returns the offset in an output section for a given input offset.
// Because contents of a mergeable section is not contiguous in output,
// it is not just an addition to a base output offset.
uint64_t MergeInputSection::getOffset(uint64_t Offset) const {
if (!Live)
return 0;
// Initialize OffsetMap lazily.
llvm::call_once(InitOffsetMap, [&] {
OffsetMap.reserve(Pieces.size());
for (size_t I = 0; I < Pieces.size(); ++I)
OffsetMap[Pieces[I].InputOff] = I;
});
// Find a string starting at a given offset.
auto It = OffsetMap.find(Offset);
if (It != OffsetMap.end())
return Pieces[It->second].OutputOff;
// If Offset is not at beginning of a section piece, it is not in the map.
// In that case we need to search from the original section piece vector.
const SectionPiece &Piece = *this->getSectionPiece(Offset);
if (!Piece.Live)
return 0;
uint64_t Addend = Offset - Piece.InputOff;
return Piece.OutputOff + Addend;
}
template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *,
StringRef);
template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *,
StringRef);
template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *,
StringRef);
template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *,
StringRef);
template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF32LE>(const Symbol &,
uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF32BE>(const Symbol &,
uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF64LE>(const Symbol &,
uint64_t);
template std::string InputSectionBase::getSrcMsg<ELF64BE>(const Symbol &,
uint64_t);
template void InputSection::writeTo<ELF32LE>(uint8_t *);
template void InputSection::writeTo<ELF32BE>(uint8_t *);
template void InputSection::writeTo<ELF64LE>(uint8_t *);
template void InputSection::writeTo<ELF64BE>(uint8_t *);
template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *,
const ELF32LE::Shdr *, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *,
const ELF32BE::Shdr *, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *,
const ELF64LE::Shdr *, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *,
const ELF64BE::Shdr *, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF32LE> *,
const ELF32LE::Shdr *, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF32BE> *,
const ELF32BE::Shdr *, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF64LE> *,
const ELF64LE::Shdr *, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF64BE> *,
const ELF64BE::Shdr *, StringRef);
template void EhInputSection::split<ELF32LE>();
template void EhInputSection::split<ELF32BE>();
template void EhInputSection::split<ELF64LE>();
template void EhInputSection::split<ELF64BE>();