llvm-project/clang/lib/Parse/ParseDeclCXX.cpp

641 lines
21 KiB
C++

//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;
/// ParseNamespace - We know that the current token is a namespace keyword. This
/// may either be a top level namespace or a block-level namespace alias.
///
/// namespace-definition: [C++ 7.3: basic.namespace]
/// named-namespace-definition
/// unnamed-namespace-definition
///
/// unnamed-namespace-definition:
/// 'namespace' attributes[opt] '{' namespace-body '}'
///
/// named-namespace-definition:
/// original-namespace-definition
/// extension-namespace-definition
///
/// original-namespace-definition:
/// 'namespace' identifier attributes[opt] '{' namespace-body '}'
///
/// extension-namespace-definition:
/// 'namespace' original-namespace-name '{' namespace-body '}'
///
/// namespace-alias-definition: [C++ 7.3.2: namespace.alias]
/// 'namespace' identifier '=' qualified-namespace-specifier ';'
///
Parser::DeclTy *Parser::ParseNamespace(unsigned Context) {
assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'.
SourceLocation IdentLoc;
IdentifierInfo *Ident = 0;
if (Tok.is(tok::identifier)) {
Ident = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken(); // eat the identifier.
}
// Read label attributes, if present.
DeclTy *AttrList = 0;
if (Tok.is(tok::kw___attribute))
// FIXME: save these somewhere.
AttrList = ParseAttributes();
if (Tok.is(tok::equal)) {
// FIXME: Verify no attributes were present.
// FIXME: parse this.
} else if (Tok.is(tok::l_brace)) {
SourceLocation LBrace = ConsumeBrace();
// Enter a scope for the namespace.
EnterScope(Scope::DeclScope);
DeclTy *NamespcDecl =
Actions.ActOnStartNamespaceDef(CurScope, IdentLoc, Ident, LBrace);
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof))
ParseExternalDeclaration();
// Leave the namespace scope.
ExitScope();
SourceLocation RBrace = MatchRHSPunctuation(tok::r_brace, LBrace);
Actions.ActOnFinishNamespaceDef(NamespcDecl, RBrace);
return NamespcDecl;
} else {
unsigned D = Ident ? diag::err_expected_lbrace :
diag::err_expected_ident_lbrace;
Diag(Tok.getLocation(), D);
}
return 0;
}
/// ParseLinkage - We know that the current token is a string_literal
/// and just before that, that extern was seen.
///
/// linkage-specification: [C++ 7.5p2: dcl.link]
/// 'extern' string-literal '{' declaration-seq[opt] '}'
/// 'extern' string-literal declaration
///
Parser::DeclTy *Parser::ParseLinkage(unsigned Context) {
assert(Tok.is(tok::string_literal) && "Not a stringliteral!");
llvm::SmallVector<char, 8> LangBuffer;
// LangBuffer is guaranteed to be big enough.
LangBuffer.resize(Tok.getLength());
const char *LangBufPtr = &LangBuffer[0];
unsigned StrSize = PP.getSpelling(Tok, LangBufPtr);
SourceLocation Loc = ConsumeStringToken();
DeclTy *D = 0;
SourceLocation LBrace, RBrace;
if (Tok.isNot(tok::l_brace)) {
D = ParseDeclaration(Context);
} else {
LBrace = ConsumeBrace();
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// FIXME capture the decls.
D = ParseExternalDeclaration();
}
RBrace = MatchRHSPunctuation(tok::r_brace, LBrace);
}
if (!D)
return 0;
return Actions.ActOnLinkageSpec(Loc, LBrace, RBrace, LangBufPtr, StrSize, D);
}
/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
/// until we reach the start of a definition or see a token that
/// cannot start a definition.
///
/// class-specifier: [C++ class]
/// class-head '{' member-specification[opt] '}'
/// class-head '{' member-specification[opt] '}' attributes[opt]
/// class-head:
/// class-key identifier[opt] base-clause[opt]
/// class-key nested-name-specifier identifier base-clause[opt]
/// class-key nested-name-specifier[opt] simple-template-id
/// base-clause[opt]
/// [GNU] class-key attributes[opt] identifier[opt] base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier
/// identifier base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier[opt]
/// simple-template-id base-clause[opt]
/// class-key:
/// 'class'
/// 'struct'
/// 'union'
///
/// elaborated-type-specifier: [C++ dcl.type.elab]
/// class-key ::[opt] nested-name-specifier[opt] identifier
/// class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
/// simple-template-id
///
/// Note that the C++ class-specifier and elaborated-type-specifier,
/// together, subsume the C99 struct-or-union-specifier:
///
/// struct-or-union-specifier: [C99 6.7.2.1]
/// struct-or-union identifier[opt] '{' struct-contents '}'
/// struct-or-union identifier
/// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents
/// '}' attributes[opt]
/// [GNU] struct-or-union attributes[opt] identifier
/// struct-or-union:
/// 'struct'
/// 'union'
void Parser::ParseClassSpecifier(DeclSpec &DS) {
assert((Tok.is(tok::kw_class) ||
Tok.is(tok::kw_struct) ||
Tok.is(tok::kw_union)) &&
"Not a class specifier");
DeclSpec::TST TagType =
Tok.is(tok::kw_class) ? DeclSpec::TST_class :
Tok.is(tok::kw_struct) ? DeclSpec::TST_struct :
DeclSpec::TST_union;
SourceLocation StartLoc = ConsumeToken();
AttributeList *Attr = 0;
// If attributes exist after tag, parse them.
if (Tok.is(tok::kw___attribute))
Attr = ParseAttributes();
// FIXME: Parse the (optional) nested-name-specifier.
// Parse the (optional) class name.
// FIXME: Alternatively, parse a simple-template-id.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
}
// There are three options here. If we have 'struct foo;', then
// this is a forward declaration. If we have 'struct foo {...' or
// 'struct fo :...' then this is a definition. Otherwise we have
// something like 'struct foo xyz', a reference.
Action::TagKind TK;
if (Tok.is(tok::l_brace) || (getLang().CPlusPlus && Tok.is(tok::colon)))
TK = Action::TK_Definition;
else if (Tok.is(tok::semi))
TK = Action::TK_Declaration;
else
TK = Action::TK_Reference;
if (!Name && TK != Action::TK_Definition) {
// We have a declaration or reference to an anonymous class.
Diag(StartLoc, diag::err_anon_type_definition,
DeclSpec::getSpecifierName(TagType));
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
// Parse the tag portion of this.
DeclTy *TagDecl = Actions.ActOnTag(CurScope, TagType, TK, StartLoc, Name,
NameLoc, Attr);
// Parse the optional base clause (C++ only).
if (getLang().CPlusPlus && Tok.is(tok::colon)) {
ParseBaseClause(TagDecl);
}
// If there is a body, parse it and inform the actions module.
if (Tok.is(tok::l_brace))
if (getLang().CPlusPlus)
ParseCXXMemberSpecification(StartLoc, TagType, TagDecl);
else
ParseStructUnionBody(StartLoc, TagType, TagDecl);
else if (TK == Action::TK_Definition) {
// FIXME: Complain that we have a base-specifier list but no
// definition.
Diag(Tok.getLocation(), diag::err_expected_lbrace);
}
const char *PrevSpec = 0;
if (DS.SetTypeSpecType(TagType, StartLoc, PrevSpec, TagDecl))
Diag(StartLoc, diag::err_invalid_decl_spec_combination, PrevSpec);
}
/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
///
/// base-clause : [C++ class.derived]
/// ':' base-specifier-list
/// base-specifier-list:
/// base-specifier '...'[opt]
/// base-specifier-list ',' base-specifier '...'[opt]
void Parser::ParseBaseClause(DeclTy *ClassDecl)
{
assert(Tok.is(tok::colon) && "Not a base clause");
ConsumeToken();
// Build up an array of parsed base specifiers.
llvm::SmallVector<BaseTy *, 8> BaseInfo;
while (true) {
// Parse a base-specifier.
BaseResult Result = ParseBaseSpecifier(ClassDecl);
if (Result.isInvalid) {
// Skip the rest of this base specifier, up until the comma or
// opening brace.
SkipUntil(tok::comma, tok::l_brace, true, true);
} else {
// Add this to our array of base specifiers.
BaseInfo.push_back(Result.Val);
}
// If the next token is a comma, consume it and keep reading
// base-specifiers.
if (Tok.isNot(tok::comma)) break;
// Consume the comma.
ConsumeToken();
}
// Attach the base specifiers
Actions.ActOnBaseSpecifiers(ClassDecl, &BaseInfo[0], BaseInfo.size());
}
/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
/// one entry in the base class list of a class specifier, for example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
///
/// base-specifier: [C++ class.derived]
/// ::[opt] nested-name-specifier[opt] class-name
/// 'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
/// class-name
/// access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
/// class-name
Parser::BaseResult Parser::ParseBaseSpecifier(DeclTy *ClassDecl)
{
bool IsVirtual = false;
SourceLocation StartLoc = Tok.getLocation();
// Parse the 'virtual' keyword.
if (Tok.is(tok::kw_virtual)) {
ConsumeToken();
IsVirtual = true;
}
// Parse an (optional) access specifier.
AccessSpecifier Access = getAccessSpecifierIfPresent();
if (Access)
ConsumeToken();
// Parse the 'virtual' keyword (again!), in case it came after the
// access specifier.
if (Tok.is(tok::kw_virtual)) {
SourceLocation VirtualLoc = ConsumeToken();
if (IsVirtual) {
// Complain about duplicate 'virtual'
Diag(VirtualLoc, diag::err_dup_virtual,
SourceRange(VirtualLoc, VirtualLoc));
}
IsVirtual = true;
}
// FIXME: Parse optional '::' and optional nested-name-specifier.
// Parse the class-name.
// FIXME: Alternatively, parse a simple-template-id.
if (Tok.isNot(tok::identifier)) {
Diag(Tok.getLocation(), diag::err_expected_class_name);
return true;
}
// We have an identifier; check whether it is actually a type.
TypeTy *BaseType = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope);
if (!BaseType) {
Diag(Tok.getLocation(), diag::err_expected_class_name);
return true;
}
// The location of the base class itself.
SourceLocation BaseLoc = Tok.getLocation();
// Find the complete source range for the base-specifier.
SourceRange Range(StartLoc, BaseLoc);
// Consume the identifier token (finally!).
ConsumeToken();
// Notify semantic analysis that we have parsed a complete
// base-specifier.
return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access, BaseType,
BaseLoc);
}
/// getAccessSpecifierIfPresent - Determine whether the next token is
/// a C++ access-specifier.
///
/// access-specifier: [C++ class.derived]
/// 'private'
/// 'protected'
/// 'public'
AccessSpecifier Parser::getAccessSpecifierIfPresent() const
{
switch (Tok.getKind()) {
default: return AS_none;
case tok::kw_private: return AS_private;
case tok::kw_protected: return AS_protected;
case tok::kw_public: return AS_public;
}
}
/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
///
/// member-declaration:
/// decl-specifier-seq[opt] member-declarator-list[opt] ';'
/// function-definition ';'[opt]
/// ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
/// using-declaration [TODO]
/// [C++0x] static_assert-declaration [TODO]
/// template-declaration [TODO]
///
/// member-declarator-list:
/// member-declarator
/// member-declarator-list ',' member-declarator
///
/// member-declarator:
/// declarator pure-specifier[opt]
/// declarator constant-initializer[opt]
/// identifier[opt] ':' constant-expression
///
/// pure-specifier: [TODO]
/// '= 0'
///
/// constant-initializer:
/// '=' constant-expression
///
Parser::DeclTy *Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS) {
SourceLocation DSStart = Tok.getLocation();
// decl-specifier-seq:
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseDeclarationSpecifiers(DS);
if (Tok.is(tok::semi)) {
ConsumeToken();
// C++ 9.2p7: The member-declarator-list can be omitted only after a
// class-specifier or an enum-specifier or in a friend declaration.
// FIXME: Friend declarations.
switch (DS.getTypeSpecType()) {
case DeclSpec::TST_struct:
case DeclSpec::TST_union:
case DeclSpec::TST_class:
case DeclSpec::TST_enum:
return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
default:
Diag(DSStart, diag::err_no_declarators);
return 0;
}
}
Declarator DeclaratorInfo(DS, Declarator::MemberContext);
if (Tok.isNot(tok::colon)) {
// Parse the first declarator.
ParseDeclarator(DeclaratorInfo);
// Error parsing the declarator?
if (DeclaratorInfo.getIdentifier() == 0) {
// If so, skip until the semi-colon or a }.
SkipUntil(tok::r_brace, true);
if (Tok.is(tok::semi))
ConsumeToken();
return 0;
}
// function-definition:
if (Tok.is(tok::l_brace)) {
if (!DeclaratorInfo.isFunctionDeclarator()) {
Diag(Tok, diag::err_func_def_no_params);
ConsumeBrace();
SkipUntil(tok::r_brace, true);
return 0;
}
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(Tok, diag::err_function_declared_typedef);
// This recovery skips the entire function body. It would be nice
// to simply call ParseCXXInlineMethodDef() below, however Sema
// assumes the declarator represents a function, not a typedef.
ConsumeBrace();
SkipUntil(tok::r_brace, true);
return 0;
}
return ParseCXXInlineMethodDef(AS, DeclaratorInfo);
}
}
// member-declarator-list:
// member-declarator
// member-declarator-list ',' member-declarator
DeclTy *LastDeclInGroup = 0;
ExprTy *BitfieldSize = 0;
ExprTy *Init = 0;
while (1) {
// member-declarator:
// declarator pure-specifier[opt]
// declarator constant-initializer[opt]
// identifier[opt] ':' constant-expression
if (Tok.is(tok::colon)) {
ConsumeToken();
ExprResult Res = ParseConstantExpression();
if (Res.isInvalid)
SkipUntil(tok::comma, true, true);
else
BitfieldSize = Res.Val;
}
// pure-specifier:
// '= 0'
//
// constant-initializer:
// '=' constant-expression
if (Tok.is(tok::equal)) {
ConsumeToken();
ExprResult Res = ParseInitializer();
if (Res.isInvalid)
SkipUntil(tok::comma, true, true);
else
Init = Res.Val;
}
// If attributes exist after the declarator, parse them.
if (Tok.is(tok::kw___attribute))
DeclaratorInfo.AddAttributes(ParseAttributes());
// NOTE: If Sema is the Action module and declarator is an instance field,
// this call will *not* return the created decl; LastDeclInGroup will be
// returned instead.
// See Sema::ActOnCXXMemberDeclarator for details.
LastDeclInGroup = Actions.ActOnCXXMemberDeclarator(CurScope, AS,
DeclaratorInfo,
BitfieldSize, Init,
LastDeclInGroup);
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
break;
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
DeclaratorInfo.clear();
BitfieldSize = Init = 0;
// Attributes are only allowed on the second declarator.
if (Tok.is(tok::kw___attribute))
DeclaratorInfo.AddAttributes(ParseAttributes());
if (Tok.isNot(tok::colon))
ParseDeclarator(DeclaratorInfo);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
// Reverse the chain list.
return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
}
Diag(Tok, diag::err_expected_semi_decl_list);
// Skip to end of block or statement
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
return 0;
}
/// ParseCXXMemberSpecification - Parse the class definition.
///
/// member-specification:
/// member-declaration member-specification[opt]
/// access-specifier ':' member-specification[opt]
///
void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
unsigned TagType, DeclTy *TagDecl) {
assert(TagType == DeclSpec::TST_struct ||
TagType == DeclSpec::TST_union ||
TagType == DeclSpec::TST_class && "Invalid TagType!");
SourceLocation LBraceLoc = ConsumeBrace();
if (!CurScope->isCXXClassScope() && // Not about to define a nested class.
CurScope->isInCXXInlineMethodScope()) {
// We will define a local class of an inline method.
// Push a new LexedMethodsForTopClass for its inline methods.
PushTopClassStack();
}
// Enter a scope for the class.
EnterScope(Scope::CXXClassScope|Scope::DeclScope);
Actions.ActOnStartCXXClassDef(CurScope, TagDecl, LBraceLoc);
// C++ 11p3: Members of a class defined with the keyword class are private
// by default. Members of a class defined with the keywords struct or union
// are public by default.
AccessSpecifier CurAS;
if (TagType == DeclSpec::TST_class)
CurAS = AS_private;
else
CurAS = AS_public;
// While we still have something to read, read the member-declarations.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one member-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi);
ConsumeToken();
continue;
}
AccessSpecifier AS = getAccessSpecifierIfPresent();
if (AS != AS_none) {
// Current token is a C++ access specifier.
CurAS = AS;
ConsumeToken();
ExpectAndConsume(tok::colon, diag::err_expected_colon);
continue;
}
// Parse all the comma separated declarators.
ParseCXXClassMemberDeclaration(CurAS);
}
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
AttributeList *AttrList = 0;
// If attributes exist after class contents, parse them.
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes(); // FIXME: where should I put them?
Actions.ActOnFinishCXXMemberSpecification(CurScope, RecordLoc, TagDecl,
LBraceLoc, RBraceLoc);
// C++ 9.2p2: Within the class member-specification, the class is regarded as
// complete within function bodies, default arguments,
// exception-specifications, and constructor ctor-initializers (including
// such things in nested classes).
//
// FIXME: Only function bodies are parsed correctly, fix the rest.
if (!CurScope->getParent()->isCXXClassScope()) {
// We are not inside a nested class. This class and its nested classes
// are complete and we can parse the lexed inline method definitions.
ParseLexedMethodDefs();
// For a local class of inline method, pop the LexedMethodsForTopClass that
// was previously pushed.
assert(CurScope->isInCXXInlineMethodScope() ||
TopClassStacks.size() == 1 &&
"MethodLexers not getting popped properly!");
if (CurScope->isInCXXInlineMethodScope())
PopTopClassStack();
}
// Leave the class scope.
ExitScope();
Actions.ActOnFinishCXXClassDef(TagDecl);
}