forked from OSchip/llvm-project
17072 lines
662 KiB
C++
17072 lines
662 KiB
C++
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TypeLocBuilder.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/CommentDiagnostic.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
|
|
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
|
|
#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
|
|
#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
|
|
#include "clang/Sema/CXXFieldCollector.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/DelayedDiagnostic.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <functional>
|
|
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
|
|
if (OwnedType) {
|
|
Decl *Group[2] = { OwnedType, Ptr };
|
|
return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
|
|
}
|
|
|
|
return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
|
|
public:
|
|
TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
|
|
bool AllowTemplates = false,
|
|
bool AllowNonTemplates = true)
|
|
: AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
|
|
AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
|
|
WantExpressionKeywords = false;
|
|
WantCXXNamedCasts = false;
|
|
WantRemainingKeywords = false;
|
|
}
|
|
|
|
bool ValidateCandidate(const TypoCorrection &candidate) override {
|
|
if (NamedDecl *ND = candidate.getCorrectionDecl()) {
|
|
if (!AllowInvalidDecl && ND->isInvalidDecl())
|
|
return false;
|
|
|
|
if (getAsTypeTemplateDecl(ND))
|
|
return AllowTemplates;
|
|
|
|
bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
|
|
if (!IsType)
|
|
return false;
|
|
|
|
if (AllowNonTemplates)
|
|
return true;
|
|
|
|
// An injected-class-name of a class template (specialization) is valid
|
|
// as a template or as a non-template.
|
|
if (AllowTemplates) {
|
|
auto *RD = dyn_cast<CXXRecordDecl>(ND);
|
|
if (!RD || !RD->isInjectedClassName())
|
|
return false;
|
|
RD = cast<CXXRecordDecl>(RD->getDeclContext());
|
|
return RD->getDescribedClassTemplate() ||
|
|
isa<ClassTemplateSpecializationDecl>(RD);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return !WantClassName && candidate.isKeyword();
|
|
}
|
|
|
|
std::unique_ptr<CorrectionCandidateCallback> clone() override {
|
|
return llvm::make_unique<TypeNameValidatorCCC>(*this);
|
|
}
|
|
|
|
private:
|
|
bool AllowInvalidDecl;
|
|
bool WantClassName;
|
|
bool AllowTemplates;
|
|
bool AllowNonTemplates;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Determine whether the token kind starts a simple-type-specifier.
|
|
bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
|
|
switch (Kind) {
|
|
// FIXME: Take into account the current language when deciding whether a
|
|
// token kind is a valid type specifier
|
|
case tok::kw_short:
|
|
case tok::kw_long:
|
|
case tok::kw___int64:
|
|
case tok::kw___int128:
|
|
case tok::kw_signed:
|
|
case tok::kw_unsigned:
|
|
case tok::kw_void:
|
|
case tok::kw_char:
|
|
case tok::kw_int:
|
|
case tok::kw_half:
|
|
case tok::kw_float:
|
|
case tok::kw_double:
|
|
case tok::kw__Float16:
|
|
case tok::kw___float128:
|
|
case tok::kw_wchar_t:
|
|
case tok::kw_bool:
|
|
case tok::kw___underlying_type:
|
|
case tok::kw___auto_type:
|
|
return true;
|
|
|
|
case tok::annot_typename:
|
|
case tok::kw_char16_t:
|
|
case tok::kw_char32_t:
|
|
case tok::kw_typeof:
|
|
case tok::annot_decltype:
|
|
case tok::kw_decltype:
|
|
return getLangOpts().CPlusPlus;
|
|
|
|
case tok::kw_char8_t:
|
|
return getLangOpts().Char8;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
enum class UnqualifiedTypeNameLookupResult {
|
|
NotFound,
|
|
FoundNonType,
|
|
FoundType
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Tries to perform unqualified lookup of the type decls in bases for
|
|
/// dependent class.
|
|
/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
|
|
/// type decl, \a FoundType if only type decls are found.
|
|
static UnqualifiedTypeNameLookupResult
|
|
lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
|
|
SourceLocation NameLoc,
|
|
const CXXRecordDecl *RD) {
|
|
if (!RD->hasDefinition())
|
|
return UnqualifiedTypeNameLookupResult::NotFound;
|
|
// Look for type decls in base classes.
|
|
UnqualifiedTypeNameLookupResult FoundTypeDecl =
|
|
UnqualifiedTypeNameLookupResult::NotFound;
|
|
for (const auto &Base : RD->bases()) {
|
|
const CXXRecordDecl *BaseRD = nullptr;
|
|
if (auto *BaseTT = Base.getType()->getAs<TagType>())
|
|
BaseRD = BaseTT->getAsCXXRecordDecl();
|
|
else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
|
|
// Look for type decls in dependent base classes that have known primary
|
|
// templates.
|
|
if (!TST || !TST->isDependentType())
|
|
continue;
|
|
auto *TD = TST->getTemplateName().getAsTemplateDecl();
|
|
if (!TD)
|
|
continue;
|
|
if (auto *BasePrimaryTemplate =
|
|
dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
|
|
if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
|
|
BaseRD = BasePrimaryTemplate;
|
|
else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
|
|
if (const ClassTemplatePartialSpecializationDecl *PS =
|
|
CTD->findPartialSpecialization(Base.getType()))
|
|
if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
|
|
BaseRD = PS;
|
|
}
|
|
}
|
|
}
|
|
if (BaseRD) {
|
|
for (NamedDecl *ND : BaseRD->lookup(&II)) {
|
|
if (!isa<TypeDecl>(ND))
|
|
return UnqualifiedTypeNameLookupResult::FoundNonType;
|
|
FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
|
|
}
|
|
if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
|
|
switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
|
|
case UnqualifiedTypeNameLookupResult::FoundNonType:
|
|
return UnqualifiedTypeNameLookupResult::FoundNonType;
|
|
case UnqualifiedTypeNameLookupResult::FoundType:
|
|
FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
|
|
break;
|
|
case UnqualifiedTypeNameLookupResult::NotFound:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return FoundTypeDecl;
|
|
}
|
|
|
|
static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
|
|
const IdentifierInfo &II,
|
|
SourceLocation NameLoc) {
|
|
// Lookup in the parent class template context, if any.
|
|
const CXXRecordDecl *RD = nullptr;
|
|
UnqualifiedTypeNameLookupResult FoundTypeDecl =
|
|
UnqualifiedTypeNameLookupResult::NotFound;
|
|
for (DeclContext *DC = S.CurContext;
|
|
DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
|
|
DC = DC->getParent()) {
|
|
// Look for type decls in dependent base classes that have known primary
|
|
// templates.
|
|
RD = dyn_cast<CXXRecordDecl>(DC);
|
|
if (RD && RD->getDescribedClassTemplate())
|
|
FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
|
|
}
|
|
if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
|
|
return nullptr;
|
|
|
|
// We found some types in dependent base classes. Recover as if the user
|
|
// wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
|
|
// lookup during template instantiation.
|
|
S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
|
|
|
|
ASTContext &Context = S.Context;
|
|
auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
|
|
cast<Type>(Context.getRecordType(RD)));
|
|
QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
|
|
|
|
CXXScopeSpec SS;
|
|
SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
|
|
|
|
TypeLocBuilder Builder;
|
|
DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
|
|
DepTL.setNameLoc(NameLoc);
|
|
DepTL.setElaboratedKeywordLoc(SourceLocation());
|
|
DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
/// If the identifier refers to a type name within this scope,
|
|
/// return the declaration of that type.
|
|
///
|
|
/// This routine performs ordinary name lookup of the identifier II
|
|
/// within the given scope, with optional C++ scope specifier SS, to
|
|
/// determine whether the name refers to a type. If so, returns an
|
|
/// opaque pointer (actually a QualType) corresponding to that
|
|
/// type. Otherwise, returns NULL.
|
|
ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
|
|
Scope *S, CXXScopeSpec *SS,
|
|
bool isClassName, bool HasTrailingDot,
|
|
ParsedType ObjectTypePtr,
|
|
bool IsCtorOrDtorName,
|
|
bool WantNontrivialTypeSourceInfo,
|
|
bool IsClassTemplateDeductionContext,
|
|
IdentifierInfo **CorrectedII) {
|
|
// FIXME: Consider allowing this outside C++1z mode as an extension.
|
|
bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
|
|
getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
|
|
!isClassName && !HasTrailingDot;
|
|
|
|
// Determine where we will perform name lookup.
|
|
DeclContext *LookupCtx = nullptr;
|
|
if (ObjectTypePtr) {
|
|
QualType ObjectType = ObjectTypePtr.get();
|
|
if (ObjectType->isRecordType())
|
|
LookupCtx = computeDeclContext(ObjectType);
|
|
} else if (SS && SS->isNotEmpty()) {
|
|
LookupCtx = computeDeclContext(*SS, false);
|
|
|
|
if (!LookupCtx) {
|
|
if (isDependentScopeSpecifier(*SS)) {
|
|
// C++ [temp.res]p3:
|
|
// A qualified-id that refers to a type and in which the
|
|
// nested-name-specifier depends on a template-parameter (14.6.2)
|
|
// shall be prefixed by the keyword typename to indicate that the
|
|
// qualified-id denotes a type, forming an
|
|
// elaborated-type-specifier (7.1.5.3).
|
|
//
|
|
// We therefore do not perform any name lookup if the result would
|
|
// refer to a member of an unknown specialization.
|
|
if (!isClassName && !IsCtorOrDtorName)
|
|
return nullptr;
|
|
|
|
// We know from the grammar that this name refers to a type,
|
|
// so build a dependent node to describe the type.
|
|
if (WantNontrivialTypeSourceInfo)
|
|
return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
|
|
QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
|
|
II, NameLoc);
|
|
return ParsedType::make(T);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
if (!LookupCtx->isDependentContext() &&
|
|
RequireCompleteDeclContext(*SS, LookupCtx))
|
|
return nullptr;
|
|
}
|
|
|
|
// FIXME: LookupNestedNameSpecifierName isn't the right kind of
|
|
// lookup for class-names.
|
|
LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
|
|
LookupOrdinaryName;
|
|
LookupResult Result(*this, &II, NameLoc, Kind);
|
|
if (LookupCtx) {
|
|
// Perform "qualified" name lookup into the declaration context we
|
|
// computed, which is either the type of the base of a member access
|
|
// expression or the declaration context associated with a prior
|
|
// nested-name-specifier.
|
|
LookupQualifiedName(Result, LookupCtx);
|
|
|
|
if (ObjectTypePtr && Result.empty()) {
|
|
// C++ [basic.lookup.classref]p3:
|
|
// If the unqualified-id is ~type-name, the type-name is looked up
|
|
// in the context of the entire postfix-expression. If the type T of
|
|
// the object expression is of a class type C, the type-name is also
|
|
// looked up in the scope of class C. At least one of the lookups shall
|
|
// find a name that refers to (possibly cv-qualified) T.
|
|
LookupName(Result, S);
|
|
}
|
|
} else {
|
|
// Perform unqualified name lookup.
|
|
LookupName(Result, S);
|
|
|
|
// For unqualified lookup in a class template in MSVC mode, look into
|
|
// dependent base classes where the primary class template is known.
|
|
if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
|
|
if (ParsedType TypeInBase =
|
|
recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
|
|
return TypeInBase;
|
|
}
|
|
}
|
|
|
|
NamedDecl *IIDecl = nullptr;
|
|
switch (Result.getResultKind()) {
|
|
case LookupResult::NotFound:
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
if (CorrectedII) {
|
|
TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
|
|
AllowDeducedTemplate);
|
|
TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
|
|
S, SS, CCC, CTK_ErrorRecovery);
|
|
IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
|
|
TemplateTy Template;
|
|
bool MemberOfUnknownSpecialization;
|
|
UnqualifiedId TemplateName;
|
|
TemplateName.setIdentifier(NewII, NameLoc);
|
|
NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
|
|
CXXScopeSpec NewSS, *NewSSPtr = SS;
|
|
if (SS && NNS) {
|
|
NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
|
|
NewSSPtr = &NewSS;
|
|
}
|
|
if (Correction && (NNS || NewII != &II) &&
|
|
// Ignore a correction to a template type as the to-be-corrected
|
|
// identifier is not a template (typo correction for template names
|
|
// is handled elsewhere).
|
|
!(getLangOpts().CPlusPlus && NewSSPtr &&
|
|
isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
|
|
Template, MemberOfUnknownSpecialization))) {
|
|
ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
|
|
isClassName, HasTrailingDot, ObjectTypePtr,
|
|
IsCtorOrDtorName,
|
|
WantNontrivialTypeSourceInfo,
|
|
IsClassTemplateDeductionContext);
|
|
if (Ty) {
|
|
diagnoseTypo(Correction,
|
|
PDiag(diag::err_unknown_type_or_class_name_suggest)
|
|
<< Result.getLookupName() << isClassName);
|
|
if (SS && NNS)
|
|
SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
|
|
*CorrectedII = NewII;
|
|
return Ty;
|
|
}
|
|
}
|
|
}
|
|
// If typo correction failed or was not performed, fall through
|
|
LLVM_FALLTHROUGH;
|
|
case LookupResult::FoundOverloaded:
|
|
case LookupResult::FoundUnresolvedValue:
|
|
Result.suppressDiagnostics();
|
|
return nullptr;
|
|
|
|
case LookupResult::Ambiguous:
|
|
// Recover from type-hiding ambiguities by hiding the type. We'll
|
|
// do the lookup again when looking for an object, and we can
|
|
// diagnose the error then. If we don't do this, then the error
|
|
// about hiding the type will be immediately followed by an error
|
|
// that only makes sense if the identifier was treated like a type.
|
|
if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
|
|
Result.suppressDiagnostics();
|
|
return nullptr;
|
|
}
|
|
|
|
// Look to see if we have a type anywhere in the list of results.
|
|
for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
|
|
Res != ResEnd; ++Res) {
|
|
if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
|
|
(AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
|
|
if (!IIDecl ||
|
|
(*Res)->getLocation().getRawEncoding() <
|
|
IIDecl->getLocation().getRawEncoding())
|
|
IIDecl = *Res;
|
|
}
|
|
}
|
|
|
|
if (!IIDecl) {
|
|
// None of the entities we found is a type, so there is no way
|
|
// to even assume that the result is a type. In this case, don't
|
|
// complain about the ambiguity. The parser will either try to
|
|
// perform this lookup again (e.g., as an object name), which
|
|
// will produce the ambiguity, or will complain that it expected
|
|
// a type name.
|
|
Result.suppressDiagnostics();
|
|
return nullptr;
|
|
}
|
|
|
|
// We found a type within the ambiguous lookup; diagnose the
|
|
// ambiguity and then return that type. This might be the right
|
|
// answer, or it might not be, but it suppresses any attempt to
|
|
// perform the name lookup again.
|
|
break;
|
|
|
|
case LookupResult::Found:
|
|
IIDecl = Result.getFoundDecl();
|
|
break;
|
|
}
|
|
|
|
assert(IIDecl && "Didn't find decl");
|
|
|
|
QualType T;
|
|
if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
|
|
// C++ [class.qual]p2: A lookup that would find the injected-class-name
|
|
// instead names the constructors of the class, except when naming a class.
|
|
// This is ill-formed when we're not actually forming a ctor or dtor name.
|
|
auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
|
|
auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
|
|
if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
|
|
FoundRD->isInjectedClassName() &&
|
|
declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
|
|
Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
|
|
<< &II << /*Type*/1;
|
|
|
|
DiagnoseUseOfDecl(IIDecl, NameLoc);
|
|
|
|
T = Context.getTypeDeclType(TD);
|
|
MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
|
|
} else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
|
|
(void)DiagnoseUseOfDecl(IDecl, NameLoc);
|
|
if (!HasTrailingDot)
|
|
T = Context.getObjCInterfaceType(IDecl);
|
|
} else if (AllowDeducedTemplate) {
|
|
if (auto *TD = getAsTypeTemplateDecl(IIDecl))
|
|
T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
|
|
QualType(), false);
|
|
}
|
|
|
|
if (T.isNull()) {
|
|
// If it's not plausibly a type, suppress diagnostics.
|
|
Result.suppressDiagnostics();
|
|
return nullptr;
|
|
}
|
|
|
|
// NOTE: avoid constructing an ElaboratedType(Loc) if this is a
|
|
// constructor or destructor name (in such a case, the scope specifier
|
|
// will be attached to the enclosing Expr or Decl node).
|
|
if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
|
|
!isa<ObjCInterfaceDecl>(IIDecl)) {
|
|
if (WantNontrivialTypeSourceInfo) {
|
|
// Construct a type with type-source information.
|
|
TypeLocBuilder Builder;
|
|
Builder.pushTypeSpec(T).setNameLoc(NameLoc);
|
|
|
|
T = getElaboratedType(ETK_None, *SS, T);
|
|
ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
|
|
ElabTL.setElaboratedKeywordLoc(SourceLocation());
|
|
ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
|
|
return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
|
|
} else {
|
|
T = getElaboratedType(ETK_None, *SS, T);
|
|
}
|
|
}
|
|
|
|
return ParsedType::make(T);
|
|
}
|
|
|
|
// Builds a fake NNS for the given decl context.
|
|
static NestedNameSpecifier *
|
|
synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
|
|
for (;; DC = DC->getLookupParent()) {
|
|
DC = DC->getPrimaryContext();
|
|
auto *ND = dyn_cast<NamespaceDecl>(DC);
|
|
if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
|
|
return NestedNameSpecifier::Create(Context, nullptr, ND);
|
|
else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
|
|
return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
|
|
RD->getTypeForDecl());
|
|
else if (isa<TranslationUnitDecl>(DC))
|
|
return NestedNameSpecifier::GlobalSpecifier(Context);
|
|
}
|
|
llvm_unreachable("something isn't in TU scope?");
|
|
}
|
|
|
|
/// Find the parent class with dependent bases of the innermost enclosing method
|
|
/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
|
|
/// up allowing unqualified dependent type names at class-level, which MSVC
|
|
/// correctly rejects.
|
|
static const CXXRecordDecl *
|
|
findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
|
|
for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
|
|
DC = DC->getPrimaryContext();
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
|
|
if (MD->getParent()->hasAnyDependentBases())
|
|
return MD->getParent();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
|
|
SourceLocation NameLoc,
|
|
bool IsTemplateTypeArg) {
|
|
assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
|
|
|
|
NestedNameSpecifier *NNS = nullptr;
|
|
if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
|
|
// If we weren't able to parse a default template argument, delay lookup
|
|
// until instantiation time by making a non-dependent DependentTypeName. We
|
|
// pretend we saw a NestedNameSpecifier referring to the current scope, and
|
|
// lookup is retried.
|
|
// FIXME: This hurts our diagnostic quality, since we get errors like "no
|
|
// type named 'Foo' in 'current_namespace'" when the user didn't write any
|
|
// name specifiers.
|
|
NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
|
|
Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
|
|
} else if (const CXXRecordDecl *RD =
|
|
findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
|
|
// Build a DependentNameType that will perform lookup into RD at
|
|
// instantiation time.
|
|
NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
|
|
RD->getTypeForDecl());
|
|
|
|
// Diagnose that this identifier was undeclared, and retry the lookup during
|
|
// template instantiation.
|
|
Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
|
|
<< RD;
|
|
} else {
|
|
// This is not a situation that we should recover from.
|
|
return ParsedType();
|
|
}
|
|
|
|
QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
|
|
|
|
// Build type location information. We synthesized the qualifier, so we have
|
|
// to build a fake NestedNameSpecifierLoc.
|
|
NestedNameSpecifierLocBuilder NNSLocBuilder;
|
|
NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
|
|
NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
|
|
|
|
TypeLocBuilder Builder;
|
|
DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
|
|
DepTL.setNameLoc(NameLoc);
|
|
DepTL.setElaboratedKeywordLoc(SourceLocation());
|
|
DepTL.setQualifierLoc(QualifierLoc);
|
|
return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
/// isTagName() - This method is called *for error recovery purposes only*
|
|
/// to determine if the specified name is a valid tag name ("struct foo"). If
|
|
/// so, this returns the TST for the tag corresponding to it (TST_enum,
|
|
/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
|
|
/// cases in C where the user forgot to specify the tag.
|
|
DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
|
|
// Do a tag name lookup in this scope.
|
|
LookupResult R(*this, &II, SourceLocation(), LookupTagName);
|
|
LookupName(R, S, false);
|
|
R.suppressDiagnostics();
|
|
if (R.getResultKind() == LookupResult::Found)
|
|
if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
|
|
switch (TD->getTagKind()) {
|
|
case TTK_Struct: return DeclSpec::TST_struct;
|
|
case TTK_Interface: return DeclSpec::TST_interface;
|
|
case TTK_Union: return DeclSpec::TST_union;
|
|
case TTK_Class: return DeclSpec::TST_class;
|
|
case TTK_Enum: return DeclSpec::TST_enum;
|
|
}
|
|
}
|
|
|
|
return DeclSpec::TST_unspecified;
|
|
}
|
|
|
|
/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
|
|
/// if a CXXScopeSpec's type is equal to the type of one of the base classes
|
|
/// then downgrade the missing typename error to a warning.
|
|
/// This is needed for MSVC compatibility; Example:
|
|
/// @code
|
|
/// template<class T> class A {
|
|
/// public:
|
|
/// typedef int TYPE;
|
|
/// };
|
|
/// template<class T> class B : public A<T> {
|
|
/// public:
|
|
/// A<T>::TYPE a; // no typename required because A<T> is a base class.
|
|
/// };
|
|
/// @endcode
|
|
bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
|
|
if (CurContext->isRecord()) {
|
|
if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
|
|
return true;
|
|
|
|
const Type *Ty = SS->getScopeRep()->getAsType();
|
|
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
|
|
for (const auto &Base : RD->bases())
|
|
if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
|
|
return true;
|
|
return S->isFunctionPrototypeScope();
|
|
}
|
|
return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
|
|
}
|
|
|
|
void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
|
|
SourceLocation IILoc,
|
|
Scope *S,
|
|
CXXScopeSpec *SS,
|
|
ParsedType &SuggestedType,
|
|
bool IsTemplateName) {
|
|
// Don't report typename errors for editor placeholders.
|
|
if (II->isEditorPlaceholder())
|
|
return;
|
|
// We don't have anything to suggest (yet).
|
|
SuggestedType = nullptr;
|
|
|
|
// There may have been a typo in the name of the type. Look up typo
|
|
// results, in case we have something that we can suggest.
|
|
TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
|
|
/*AllowTemplates=*/IsTemplateName,
|
|
/*AllowNonTemplates=*/!IsTemplateName);
|
|
if (TypoCorrection Corrected =
|
|
CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
|
|
CCC, CTK_ErrorRecovery)) {
|
|
// FIXME: Support error recovery for the template-name case.
|
|
bool CanRecover = !IsTemplateName;
|
|
if (Corrected.isKeyword()) {
|
|
// We corrected to a keyword.
|
|
diagnoseTypo(Corrected,
|
|
PDiag(IsTemplateName ? diag::err_no_template_suggest
|
|
: diag::err_unknown_typename_suggest)
|
|
<< II);
|
|
II = Corrected.getCorrectionAsIdentifierInfo();
|
|
} else {
|
|
// We found a similarly-named type or interface; suggest that.
|
|
if (!SS || !SS->isSet()) {
|
|
diagnoseTypo(Corrected,
|
|
PDiag(IsTemplateName ? diag::err_no_template_suggest
|
|
: diag::err_unknown_typename_suggest)
|
|
<< II, CanRecover);
|
|
} else if (DeclContext *DC = computeDeclContext(*SS, false)) {
|
|
std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
|
|
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
|
|
II->getName().equals(CorrectedStr);
|
|
diagnoseTypo(Corrected,
|
|
PDiag(IsTemplateName
|
|
? diag::err_no_member_template_suggest
|
|
: diag::err_unknown_nested_typename_suggest)
|
|
<< II << DC << DroppedSpecifier << SS->getRange(),
|
|
CanRecover);
|
|
} else {
|
|
llvm_unreachable("could not have corrected a typo here");
|
|
}
|
|
|
|
if (!CanRecover)
|
|
return;
|
|
|
|
CXXScopeSpec tmpSS;
|
|
if (Corrected.getCorrectionSpecifier())
|
|
tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
|
|
SourceRange(IILoc));
|
|
// FIXME: Support class template argument deduction here.
|
|
SuggestedType =
|
|
getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
|
|
tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
|
|
/*IsCtorOrDtorName=*/false,
|
|
/*NonTrivialTypeSourceInfo=*/true);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus && !IsTemplateName) {
|
|
// See if II is a class template that the user forgot to pass arguments to.
|
|
UnqualifiedId Name;
|
|
Name.setIdentifier(II, IILoc);
|
|
CXXScopeSpec EmptySS;
|
|
TemplateTy TemplateResult;
|
|
bool MemberOfUnknownSpecialization;
|
|
if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
|
|
Name, nullptr, true, TemplateResult,
|
|
MemberOfUnknownSpecialization) == TNK_Type_template) {
|
|
diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// FIXME: Should we move the logic that tries to recover from a missing tag
|
|
// (struct, union, enum) from Parser::ParseImplicitInt here, instead?
|
|
|
|
if (!SS || (!SS->isSet() && !SS->isInvalid()))
|
|
Diag(IILoc, IsTemplateName ? diag::err_no_template
|
|
: diag::err_unknown_typename)
|
|
<< II;
|
|
else if (DeclContext *DC = computeDeclContext(*SS, false))
|
|
Diag(IILoc, IsTemplateName ? diag::err_no_member_template
|
|
: diag::err_typename_nested_not_found)
|
|
<< II << DC << SS->getRange();
|
|
else if (isDependentScopeSpecifier(*SS)) {
|
|
unsigned DiagID = diag::err_typename_missing;
|
|
if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
|
|
DiagID = diag::ext_typename_missing;
|
|
|
|
Diag(SS->getRange().getBegin(), DiagID)
|
|
<< SS->getScopeRep() << II->getName()
|
|
<< SourceRange(SS->getRange().getBegin(), IILoc)
|
|
<< FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
|
|
SuggestedType = ActOnTypenameType(S, SourceLocation(),
|
|
*SS, *II, IILoc).get();
|
|
} else {
|
|
assert(SS && SS->isInvalid() &&
|
|
"Invalid scope specifier has already been diagnosed");
|
|
}
|
|
}
|
|
|
|
/// Determine whether the given result set contains either a type name
|
|
/// or
|
|
static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
|
|
bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
|
|
NextToken.is(tok::less);
|
|
|
|
for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
|
|
if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
|
|
return true;
|
|
|
|
if (CheckTemplate && isa<TemplateDecl>(*I))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
|
|
Scope *S, CXXScopeSpec &SS,
|
|
IdentifierInfo *&Name,
|
|
SourceLocation NameLoc) {
|
|
LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
|
|
SemaRef.LookupParsedName(R, S, &SS);
|
|
if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
|
|
StringRef FixItTagName;
|
|
switch (Tag->getTagKind()) {
|
|
case TTK_Class:
|
|
FixItTagName = "class ";
|
|
break;
|
|
|
|
case TTK_Enum:
|
|
FixItTagName = "enum ";
|
|
break;
|
|
|
|
case TTK_Struct:
|
|
FixItTagName = "struct ";
|
|
break;
|
|
|
|
case TTK_Interface:
|
|
FixItTagName = "__interface ";
|
|
break;
|
|
|
|
case TTK_Union:
|
|
FixItTagName = "union ";
|
|
break;
|
|
}
|
|
|
|
StringRef TagName = FixItTagName.drop_back();
|
|
SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
|
|
<< Name << TagName << SemaRef.getLangOpts().CPlusPlus
|
|
<< FixItHint::CreateInsertion(NameLoc, FixItTagName);
|
|
|
|
for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
|
|
I != IEnd; ++I)
|
|
SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
|
|
<< Name << TagName;
|
|
|
|
// Replace lookup results with just the tag decl.
|
|
Result.clear(Sema::LookupTagName);
|
|
SemaRef.LookupParsedName(Result, S, &SS);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
|
|
static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
|
|
QualType T, SourceLocation NameLoc) {
|
|
ASTContext &Context = S.Context;
|
|
|
|
TypeLocBuilder Builder;
|
|
Builder.pushTypeSpec(T).setNameLoc(NameLoc);
|
|
|
|
T = S.getElaboratedType(ETK_None, SS, T);
|
|
ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
|
|
ElabTL.setElaboratedKeywordLoc(SourceLocation());
|
|
ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
Sema::NameClassification
|
|
Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
|
|
SourceLocation NameLoc, const Token &NextToken,
|
|
bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) {
|
|
DeclarationNameInfo NameInfo(Name, NameLoc);
|
|
ObjCMethodDecl *CurMethod = getCurMethodDecl();
|
|
|
|
if (NextToken.is(tok::coloncolon)) {
|
|
NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
|
|
BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
|
|
} else if (getLangOpts().CPlusPlus && SS.isSet() &&
|
|
isCurrentClassName(*Name, S, &SS)) {
|
|
// Per [class.qual]p2, this names the constructors of SS, not the
|
|
// injected-class-name. We don't have a classification for that.
|
|
// There's not much point caching this result, since the parser
|
|
// will reject it later.
|
|
return NameClassification::Unknown();
|
|
}
|
|
|
|
LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
|
|
LookupParsedName(Result, S, &SS, !CurMethod);
|
|
|
|
// For unqualified lookup in a class template in MSVC mode, look into
|
|
// dependent base classes where the primary class template is known.
|
|
if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
|
|
if (ParsedType TypeInBase =
|
|
recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
|
|
return TypeInBase;
|
|
}
|
|
|
|
// Perform lookup for Objective-C instance variables (including automatically
|
|
// synthesized instance variables), if we're in an Objective-C method.
|
|
// FIXME: This lookup really, really needs to be folded in to the normal
|
|
// unqualified lookup mechanism.
|
|
if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
|
|
ExprResult E = LookupInObjCMethod(Result, S, Name, true);
|
|
if (E.get() || E.isInvalid())
|
|
return E;
|
|
}
|
|
|
|
bool SecondTry = false;
|
|
bool IsFilteredTemplateName = false;
|
|
|
|
Corrected:
|
|
switch (Result.getResultKind()) {
|
|
case LookupResult::NotFound:
|
|
// If an unqualified-id is followed by a '(', then we have a function
|
|
// call.
|
|
if (!SS.isSet() && NextToken.is(tok::l_paren)) {
|
|
// In C++, this is an ADL-only call.
|
|
// FIXME: Reference?
|
|
if (getLangOpts().CPlusPlus)
|
|
return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
|
|
|
|
// C90 6.3.2.2:
|
|
// If the expression that precedes the parenthesized argument list in a
|
|
// function call consists solely of an identifier, and if no
|
|
// declaration is visible for this identifier, the identifier is
|
|
// implicitly declared exactly as if, in the innermost block containing
|
|
// the function call, the declaration
|
|
//
|
|
// extern int identifier ();
|
|
//
|
|
// appeared.
|
|
//
|
|
// We also allow this in C99 as an extension.
|
|
if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
|
|
Result.addDecl(D);
|
|
Result.resolveKind();
|
|
return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
|
|
}
|
|
}
|
|
|
|
// In C, we first see whether there is a tag type by the same name, in
|
|
// which case it's likely that the user just forgot to write "enum",
|
|
// "struct", or "union".
|
|
if (!getLangOpts().CPlusPlus && !SecondTry &&
|
|
isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
|
|
break;
|
|
}
|
|
|
|
// Perform typo correction to determine if there is another name that is
|
|
// close to this name.
|
|
if (!SecondTry && CCC) {
|
|
SecondTry = true;
|
|
if (TypoCorrection Corrected =
|
|
CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
|
|
&SS, *CCC, CTK_ErrorRecovery)) {
|
|
unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
|
|
unsigned QualifiedDiag = diag::err_no_member_suggest;
|
|
|
|
NamedDecl *FirstDecl = Corrected.getFoundDecl();
|
|
NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
|
|
if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
|
|
UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
|
|
UnqualifiedDiag = diag::err_no_template_suggest;
|
|
QualifiedDiag = diag::err_no_member_template_suggest;
|
|
} else if (UnderlyingFirstDecl &&
|
|
(isa<TypeDecl>(UnderlyingFirstDecl) ||
|
|
isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
|
|
isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
|
|
UnqualifiedDiag = diag::err_unknown_typename_suggest;
|
|
QualifiedDiag = diag::err_unknown_nested_typename_suggest;
|
|
}
|
|
|
|
if (SS.isEmpty()) {
|
|
diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
|
|
} else {// FIXME: is this even reachable? Test it.
|
|
std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
|
|
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
|
|
Name->getName().equals(CorrectedStr);
|
|
diagnoseTypo(Corrected, PDiag(QualifiedDiag)
|
|
<< Name << computeDeclContext(SS, false)
|
|
<< DroppedSpecifier << SS.getRange());
|
|
}
|
|
|
|
// Update the name, so that the caller has the new name.
|
|
Name = Corrected.getCorrectionAsIdentifierInfo();
|
|
|
|
// Typo correction corrected to a keyword.
|
|
if (Corrected.isKeyword())
|
|
return Name;
|
|
|
|
// Also update the LookupResult...
|
|
// FIXME: This should probably go away at some point
|
|
Result.clear();
|
|
Result.setLookupName(Corrected.getCorrection());
|
|
if (FirstDecl)
|
|
Result.addDecl(FirstDecl);
|
|
|
|
// If we found an Objective-C instance variable, let
|
|
// LookupInObjCMethod build the appropriate expression to
|
|
// reference the ivar.
|
|
// FIXME: This is a gross hack.
|
|
if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
|
|
Result.clear();
|
|
ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
|
|
return E;
|
|
}
|
|
|
|
goto Corrected;
|
|
}
|
|
}
|
|
|
|
// We failed to correct; just fall through and let the parser deal with it.
|
|
Result.suppressDiagnostics();
|
|
return NameClassification::Unknown();
|
|
|
|
case LookupResult::NotFoundInCurrentInstantiation: {
|
|
// We performed name lookup into the current instantiation, and there were
|
|
// dependent bases, so we treat this result the same way as any other
|
|
// dependent nested-name-specifier.
|
|
|
|
// C++ [temp.res]p2:
|
|
// A name used in a template declaration or definition and that is
|
|
// dependent on a template-parameter is assumed not to name a type
|
|
// unless the applicable name lookup finds a type name or the name is
|
|
// qualified by the keyword typename.
|
|
//
|
|
// FIXME: If the next token is '<', we might want to ask the parser to
|
|
// perform some heroics to see if we actually have a
|
|
// template-argument-list, which would indicate a missing 'template'
|
|
// keyword here.
|
|
return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
|
|
NameInfo, IsAddressOfOperand,
|
|
/*TemplateArgs=*/nullptr);
|
|
}
|
|
|
|
case LookupResult::Found:
|
|
case LookupResult::FoundOverloaded:
|
|
case LookupResult::FoundUnresolvedValue:
|
|
break;
|
|
|
|
case LookupResult::Ambiguous:
|
|
if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
|
|
hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
|
|
/*AllowDependent=*/false)) {
|
|
// C++ [temp.local]p3:
|
|
// A lookup that finds an injected-class-name (10.2) can result in an
|
|
// ambiguity in certain cases (for example, if it is found in more than
|
|
// one base class). If all of the injected-class-names that are found
|
|
// refer to specializations of the same class template, and if the name
|
|
// is followed by a template-argument-list, the reference refers to the
|
|
// class template itself and not a specialization thereof, and is not
|
|
// ambiguous.
|
|
//
|
|
// This filtering can make an ambiguous result into an unambiguous one,
|
|
// so try again after filtering out template names.
|
|
FilterAcceptableTemplateNames(Result);
|
|
if (!Result.isAmbiguous()) {
|
|
IsFilteredTemplateName = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Diagnose the ambiguity and return an error.
|
|
return NameClassification::Error();
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
|
|
(IsFilteredTemplateName ||
|
|
hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
|
|
/*AllowDependent=*/false))) {
|
|
// C++ [temp.names]p3:
|
|
// After name lookup (3.4) finds that a name is a template-name or that
|
|
// an operator-function-id or a literal- operator-id refers to a set of
|
|
// overloaded functions any member of which is a function template if
|
|
// this is followed by a <, the < is always taken as the delimiter of a
|
|
// template-argument-list and never as the less-than operator.
|
|
if (!IsFilteredTemplateName)
|
|
FilterAcceptableTemplateNames(Result);
|
|
|
|
if (!Result.empty()) {
|
|
bool IsFunctionTemplate;
|
|
bool IsVarTemplate;
|
|
TemplateName Template;
|
|
if (Result.end() - Result.begin() > 1) {
|
|
IsFunctionTemplate = true;
|
|
Template = Context.getOverloadedTemplateName(Result.begin(),
|
|
Result.end());
|
|
} else {
|
|
auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
|
|
*Result.begin(), /*AllowFunctionTemplates=*/true,
|
|
/*AllowDependent=*/false));
|
|
IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
|
|
IsVarTemplate = isa<VarTemplateDecl>(TD);
|
|
|
|
if (SS.isSet() && !SS.isInvalid())
|
|
Template =
|
|
Context.getQualifiedTemplateName(SS.getScopeRep(),
|
|
/*TemplateKeyword=*/false, TD);
|
|
else
|
|
Template = TemplateName(TD);
|
|
}
|
|
|
|
if (IsFunctionTemplate) {
|
|
// Function templates always go through overload resolution, at which
|
|
// point we'll perform the various checks (e.g., accessibility) we need
|
|
// to based on which function we selected.
|
|
Result.suppressDiagnostics();
|
|
|
|
return NameClassification::FunctionTemplate(Template);
|
|
}
|
|
|
|
return IsVarTemplate ? NameClassification::VarTemplate(Template)
|
|
: NameClassification::TypeTemplate(Template);
|
|
}
|
|
}
|
|
|
|
NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
|
|
if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
|
|
DiagnoseUseOfDecl(Type, NameLoc);
|
|
MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
|
|
QualType T = Context.getTypeDeclType(Type);
|
|
if (SS.isNotEmpty())
|
|
return buildNestedType(*this, SS, T, NameLoc);
|
|
return ParsedType::make(T);
|
|
}
|
|
|
|
ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
|
|
if (!Class) {
|
|
// FIXME: It's unfortunate that we don't have a Type node for handling this.
|
|
if (ObjCCompatibleAliasDecl *Alias =
|
|
dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
|
|
Class = Alias->getClassInterface();
|
|
}
|
|
|
|
if (Class) {
|
|
DiagnoseUseOfDecl(Class, NameLoc);
|
|
|
|
if (NextToken.is(tok::period)) {
|
|
// Interface. <something> is parsed as a property reference expression.
|
|
// Just return "unknown" as a fall-through for now.
|
|
Result.suppressDiagnostics();
|
|
return NameClassification::Unknown();
|
|
}
|
|
|
|
QualType T = Context.getObjCInterfaceType(Class);
|
|
return ParsedType::make(T);
|
|
}
|
|
|
|
// We can have a type template here if we're classifying a template argument.
|
|
if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
|
|
!isa<VarTemplateDecl>(FirstDecl))
|
|
return NameClassification::TypeTemplate(
|
|
TemplateName(cast<TemplateDecl>(FirstDecl)));
|
|
|
|
// Check for a tag type hidden by a non-type decl in a few cases where it
|
|
// seems likely a type is wanted instead of the non-type that was found.
|
|
bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
|
|
if ((NextToken.is(tok::identifier) ||
|
|
(NextIsOp &&
|
|
FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
|
|
isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
|
|
TypeDecl *Type = Result.getAsSingle<TypeDecl>();
|
|
DiagnoseUseOfDecl(Type, NameLoc);
|
|
QualType T = Context.getTypeDeclType(Type);
|
|
if (SS.isNotEmpty())
|
|
return buildNestedType(*this, SS, T, NameLoc);
|
|
return ParsedType::make(T);
|
|
}
|
|
|
|
if (FirstDecl->isCXXClassMember())
|
|
return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
|
|
nullptr, S);
|
|
|
|
bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
|
|
return BuildDeclarationNameExpr(SS, Result, ADL);
|
|
}
|
|
|
|
Sema::TemplateNameKindForDiagnostics
|
|
Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
|
|
auto *TD = Name.getAsTemplateDecl();
|
|
if (!TD)
|
|
return TemplateNameKindForDiagnostics::DependentTemplate;
|
|
if (isa<ClassTemplateDecl>(TD))
|
|
return TemplateNameKindForDiagnostics::ClassTemplate;
|
|
if (isa<FunctionTemplateDecl>(TD))
|
|
return TemplateNameKindForDiagnostics::FunctionTemplate;
|
|
if (isa<VarTemplateDecl>(TD))
|
|
return TemplateNameKindForDiagnostics::VarTemplate;
|
|
if (isa<TypeAliasTemplateDecl>(TD))
|
|
return TemplateNameKindForDiagnostics::AliasTemplate;
|
|
if (isa<TemplateTemplateParmDecl>(TD))
|
|
return TemplateNameKindForDiagnostics::TemplateTemplateParam;
|
|
return TemplateNameKindForDiagnostics::DependentTemplate;
|
|
}
|
|
|
|
// Determines the context to return to after temporarily entering a
|
|
// context. This depends in an unnecessarily complicated way on the
|
|
// exact ordering of callbacks from the parser.
|
|
DeclContext *Sema::getContainingDC(DeclContext *DC) {
|
|
|
|
// Functions defined inline within classes aren't parsed until we've
|
|
// finished parsing the top-level class, so the top-level class is
|
|
// the context we'll need to return to.
|
|
// A Lambda call operator whose parent is a class must not be treated
|
|
// as an inline member function. A Lambda can be used legally
|
|
// either as an in-class member initializer or a default argument. These
|
|
// are parsed once the class has been marked complete and so the containing
|
|
// context would be the nested class (when the lambda is defined in one);
|
|
// If the class is not complete, then the lambda is being used in an
|
|
// ill-formed fashion (such as to specify the width of a bit-field, or
|
|
// in an array-bound) - in which case we still want to return the
|
|
// lexically containing DC (which could be a nested class).
|
|
if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
|
|
DC = DC->getLexicalParent();
|
|
|
|
// A function not defined within a class will always return to its
|
|
// lexical context.
|
|
if (!isa<CXXRecordDecl>(DC))
|
|
return DC;
|
|
|
|
// A C++ inline method/friend is parsed *after* the topmost class
|
|
// it was declared in is fully parsed ("complete"); the topmost
|
|
// class is the context we need to return to.
|
|
while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
|
|
DC = RD;
|
|
|
|
// Return the declaration context of the topmost class the inline method is
|
|
// declared in.
|
|
return DC;
|
|
}
|
|
|
|
return DC->getLexicalParent();
|
|
}
|
|
|
|
void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
|
|
assert(getContainingDC(DC) == CurContext &&
|
|
"The next DeclContext should be lexically contained in the current one.");
|
|
CurContext = DC;
|
|
S->setEntity(DC);
|
|
}
|
|
|
|
void Sema::PopDeclContext() {
|
|
assert(CurContext && "DeclContext imbalance!");
|
|
|
|
CurContext = getContainingDC(CurContext);
|
|
assert(CurContext && "Popped translation unit!");
|
|
}
|
|
|
|
Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
|
|
Decl *D) {
|
|
// Unlike PushDeclContext, the context to which we return is not necessarily
|
|
// the containing DC of TD, because the new context will be some pre-existing
|
|
// TagDecl definition instead of a fresh one.
|
|
auto Result = static_cast<SkippedDefinitionContext>(CurContext);
|
|
CurContext = cast<TagDecl>(D)->getDefinition();
|
|
assert(CurContext && "skipping definition of undefined tag");
|
|
// Start lookups from the parent of the current context; we don't want to look
|
|
// into the pre-existing complete definition.
|
|
S->setEntity(CurContext->getLookupParent());
|
|
return Result;
|
|
}
|
|
|
|
void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
|
|
CurContext = static_cast<decltype(CurContext)>(Context);
|
|
}
|
|
|
|
/// EnterDeclaratorContext - Used when we must lookup names in the context
|
|
/// of a declarator's nested name specifier.
|
|
///
|
|
void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
|
|
// C++0x [basic.lookup.unqual]p13:
|
|
// A name used in the definition of a static data member of class
|
|
// X (after the qualified-id of the static member) is looked up as
|
|
// if the name was used in a member function of X.
|
|
// C++0x [basic.lookup.unqual]p14:
|
|
// If a variable member of a namespace is defined outside of the
|
|
// scope of its namespace then any name used in the definition of
|
|
// the variable member (after the declarator-id) is looked up as
|
|
// if the definition of the variable member occurred in its
|
|
// namespace.
|
|
// Both of these imply that we should push a scope whose context
|
|
// is the semantic context of the declaration. We can't use
|
|
// PushDeclContext here because that context is not necessarily
|
|
// lexically contained in the current context. Fortunately,
|
|
// the containing scope should have the appropriate information.
|
|
|
|
assert(!S->getEntity() && "scope already has entity");
|
|
|
|
#ifndef NDEBUG
|
|
Scope *Ancestor = S->getParent();
|
|
while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
|
|
assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
|
|
#endif
|
|
|
|
CurContext = DC;
|
|
S->setEntity(DC);
|
|
}
|
|
|
|
void Sema::ExitDeclaratorContext(Scope *S) {
|
|
assert(S->getEntity() == CurContext && "Context imbalance!");
|
|
|
|
// Switch back to the lexical context. The safety of this is
|
|
// enforced by an assert in EnterDeclaratorContext.
|
|
Scope *Ancestor = S->getParent();
|
|
while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
|
|
CurContext = Ancestor->getEntity();
|
|
|
|
// We don't need to do anything with the scope, which is going to
|
|
// disappear.
|
|
}
|
|
|
|
void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
|
|
// We assume that the caller has already called
|
|
// ActOnReenterTemplateScope so getTemplatedDecl() works.
|
|
FunctionDecl *FD = D->getAsFunction();
|
|
if (!FD)
|
|
return;
|
|
|
|
// Same implementation as PushDeclContext, but enters the context
|
|
// from the lexical parent, rather than the top-level class.
|
|
assert(CurContext == FD->getLexicalParent() &&
|
|
"The next DeclContext should be lexically contained in the current one.");
|
|
CurContext = FD;
|
|
S->setEntity(CurContext);
|
|
|
|
for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
|
|
ParmVarDecl *Param = FD->getParamDecl(P);
|
|
// If the parameter has an identifier, then add it to the scope
|
|
if (Param->getIdentifier()) {
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnExitFunctionContext() {
|
|
// Same implementation as PopDeclContext, but returns to the lexical parent,
|
|
// rather than the top-level class.
|
|
assert(CurContext && "DeclContext imbalance!");
|
|
CurContext = CurContext->getLexicalParent();
|
|
assert(CurContext && "Popped translation unit!");
|
|
}
|
|
|
|
/// Determine whether we allow overloading of the function
|
|
/// PrevDecl with another declaration.
|
|
///
|
|
/// This routine determines whether overloading is possible, not
|
|
/// whether some new function is actually an overload. It will return
|
|
/// true in C++ (where we can always provide overloads) or, as an
|
|
/// extension, in C when the previous function is already an
|
|
/// overloaded function declaration or has the "overloadable"
|
|
/// attribute.
|
|
static bool AllowOverloadingOfFunction(LookupResult &Previous,
|
|
ASTContext &Context,
|
|
const FunctionDecl *New) {
|
|
if (Context.getLangOpts().CPlusPlus)
|
|
return true;
|
|
|
|
if (Previous.getResultKind() == LookupResult::FoundOverloaded)
|
|
return true;
|
|
|
|
return Previous.getResultKind() == LookupResult::Found &&
|
|
(Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
|
|
New->hasAttr<OverloadableAttr>());
|
|
}
|
|
|
|
/// Add this decl to the scope shadowed decl chains.
|
|
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
|
|
// Move up the scope chain until we find the nearest enclosing
|
|
// non-transparent context. The declaration will be introduced into this
|
|
// scope.
|
|
while (S->getEntity() && S->getEntity()->isTransparentContext())
|
|
S = S->getParent();
|
|
|
|
// Add scoped declarations into their context, so that they can be
|
|
// found later. Declarations without a context won't be inserted
|
|
// into any context.
|
|
if (AddToContext)
|
|
CurContext->addDecl(D);
|
|
|
|
// Out-of-line definitions shouldn't be pushed into scope in C++, unless they
|
|
// are function-local declarations.
|
|
if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
|
|
!D->getDeclContext()->getRedeclContext()->Equals(
|
|
D->getLexicalDeclContext()->getRedeclContext()) &&
|
|
!D->getLexicalDeclContext()->isFunctionOrMethod())
|
|
return;
|
|
|
|
// Template instantiations should also not be pushed into scope.
|
|
if (isa<FunctionDecl>(D) &&
|
|
cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
|
|
return;
|
|
|
|
// If this replaces anything in the current scope,
|
|
IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
|
|
IEnd = IdResolver.end();
|
|
for (; I != IEnd; ++I) {
|
|
if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
|
|
S->RemoveDecl(*I);
|
|
IdResolver.RemoveDecl(*I);
|
|
|
|
// Should only need to replace one decl.
|
|
break;
|
|
}
|
|
}
|
|
|
|
S->AddDecl(D);
|
|
|
|
if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
|
|
// Implicitly-generated labels may end up getting generated in an order that
|
|
// isn't strictly lexical, which breaks name lookup. Be careful to insert
|
|
// the label at the appropriate place in the identifier chain.
|
|
for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
|
|
DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
|
|
if (IDC == CurContext) {
|
|
if (!S->isDeclScope(*I))
|
|
continue;
|
|
} else if (IDC->Encloses(CurContext))
|
|
break;
|
|
}
|
|
|
|
IdResolver.InsertDeclAfter(I, D);
|
|
} else {
|
|
IdResolver.AddDecl(D);
|
|
}
|
|
}
|
|
|
|
bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
|
|
bool AllowInlineNamespace) {
|
|
return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
|
|
}
|
|
|
|
Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
|
|
DeclContext *TargetDC = DC->getPrimaryContext();
|
|
do {
|
|
if (DeclContext *ScopeDC = S->getEntity())
|
|
if (ScopeDC->getPrimaryContext() == TargetDC)
|
|
return S;
|
|
} while ((S = S->getParent()));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isOutOfScopePreviousDeclaration(NamedDecl *,
|
|
DeclContext*,
|
|
ASTContext&);
|
|
|
|
/// Filters out lookup results that don't fall within the given scope
|
|
/// as determined by isDeclInScope.
|
|
void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
|
|
bool ConsiderLinkage,
|
|
bool AllowInlineNamespace) {
|
|
LookupResult::Filter F = R.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
|
|
if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
|
|
continue;
|
|
|
|
if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
|
|
continue;
|
|
|
|
F.erase();
|
|
}
|
|
|
|
F.done();
|
|
}
|
|
|
|
/// We've determined that \p New is a redeclaration of \p Old. Check that they
|
|
/// have compatible owning modules.
|
|
bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
|
|
// FIXME: The Modules TS is not clear about how friend declarations are
|
|
// to be treated. It's not meaningful to have different owning modules for
|
|
// linkage in redeclarations of the same entity, so for now allow the
|
|
// redeclaration and change the owning modules to match.
|
|
if (New->getFriendObjectKind() &&
|
|
Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
|
|
New->setLocalOwningModule(Old->getOwningModule());
|
|
makeMergedDefinitionVisible(New);
|
|
return false;
|
|
}
|
|
|
|
Module *NewM = New->getOwningModule();
|
|
Module *OldM = Old->getOwningModule();
|
|
|
|
if (NewM && NewM->Kind == Module::PrivateModuleFragment)
|
|
NewM = NewM->Parent;
|
|
if (OldM && OldM->Kind == Module::PrivateModuleFragment)
|
|
OldM = OldM->Parent;
|
|
|
|
if (NewM == OldM)
|
|
return false;
|
|
|
|
bool NewIsModuleInterface = NewM && NewM->isModulePurview();
|
|
bool OldIsModuleInterface = OldM && OldM->isModulePurview();
|
|
if (NewIsModuleInterface || OldIsModuleInterface) {
|
|
// C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
|
|
// if a declaration of D [...] appears in the purview of a module, all
|
|
// other such declarations shall appear in the purview of the same module
|
|
Diag(New->getLocation(), diag::err_mismatched_owning_module)
|
|
<< New
|
|
<< NewIsModuleInterface
|
|
<< (NewIsModuleInterface ? NewM->getFullModuleName() : "")
|
|
<< OldIsModuleInterface
|
|
<< (OldIsModuleInterface ? OldM->getFullModuleName() : "");
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
New->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isUsingDecl(NamedDecl *D) {
|
|
return isa<UsingShadowDecl>(D) ||
|
|
isa<UnresolvedUsingTypenameDecl>(D) ||
|
|
isa<UnresolvedUsingValueDecl>(D);
|
|
}
|
|
|
|
/// Removes using shadow declarations from the lookup results.
|
|
static void RemoveUsingDecls(LookupResult &R) {
|
|
LookupResult::Filter F = R.makeFilter();
|
|
while (F.hasNext())
|
|
if (isUsingDecl(F.next()))
|
|
F.erase();
|
|
|
|
F.done();
|
|
}
|
|
|
|
/// Check for this common pattern:
|
|
/// @code
|
|
/// class S {
|
|
/// S(const S&); // DO NOT IMPLEMENT
|
|
/// void operator=(const S&); // DO NOT IMPLEMENT
|
|
/// };
|
|
/// @endcode
|
|
static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
|
|
// FIXME: Should check for private access too but access is set after we get
|
|
// the decl here.
|
|
if (D->doesThisDeclarationHaveABody())
|
|
return false;
|
|
|
|
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
|
|
return CD->isCopyConstructor();
|
|
return D->isCopyAssignmentOperator();
|
|
}
|
|
|
|
// We need this to handle
|
|
//
|
|
// typedef struct {
|
|
// void *foo() { return 0; }
|
|
// } A;
|
|
//
|
|
// When we see foo we don't know if after the typedef we will get 'A' or '*A'
|
|
// for example. If 'A', foo will have external linkage. If we have '*A',
|
|
// foo will have no linkage. Since we can't know until we get to the end
|
|
// of the typedef, this function finds out if D might have non-external linkage.
|
|
// Callers should verify at the end of the TU if it D has external linkage or
|
|
// not.
|
|
bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
|
|
const DeclContext *DC = D->getDeclContext();
|
|
while (!DC->isTranslationUnit()) {
|
|
if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
|
|
if (!RD->hasNameForLinkage())
|
|
return true;
|
|
}
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
return !D->isExternallyVisible();
|
|
}
|
|
|
|
// FIXME: This needs to be refactored; some other isInMainFile users want
|
|
// these semantics.
|
|
static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
|
|
if (S.TUKind != TU_Complete)
|
|
return false;
|
|
return S.SourceMgr.isInMainFile(Loc);
|
|
}
|
|
|
|
bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
|
|
assert(D);
|
|
|
|
if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
|
|
return false;
|
|
|
|
// Ignore all entities declared within templates, and out-of-line definitions
|
|
// of members of class templates.
|
|
if (D->getDeclContext()->isDependentContext() ||
|
|
D->getLexicalDeclContext()->isDependentContext())
|
|
return false;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
return false;
|
|
// A non-out-of-line declaration of a member specialization was implicitly
|
|
// instantiated; it's the out-of-line declaration that we're interested in.
|
|
if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
|
|
FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
|
|
return false;
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
|
|
return false;
|
|
} else {
|
|
// 'static inline' functions are defined in headers; don't warn.
|
|
if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
|
|
return false;
|
|
}
|
|
|
|
if (FD->doesThisDeclarationHaveABody() &&
|
|
Context.DeclMustBeEmitted(FD))
|
|
return false;
|
|
} else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// Constants and utility variables are defined in headers with internal
|
|
// linkage; don't warn. (Unlike functions, there isn't a convenient marker
|
|
// like "inline".)
|
|
if (!isMainFileLoc(*this, VD->getLocation()))
|
|
return false;
|
|
|
|
if (Context.DeclMustBeEmitted(VD))
|
|
return false;
|
|
|
|
if (VD->isStaticDataMember() &&
|
|
VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
return false;
|
|
if (VD->isStaticDataMember() &&
|
|
VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
|
|
VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
|
|
return false;
|
|
|
|
if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Only warn for unused decls internal to the translation unit.
|
|
// FIXME: This seems like a bogus check; it suppresses -Wunused-function
|
|
// for inline functions defined in the main source file, for instance.
|
|
return mightHaveNonExternalLinkage(D);
|
|
}
|
|
|
|
void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
|
|
if (!D)
|
|
return;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
const FunctionDecl *First = FD->getFirstDecl();
|
|
if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
|
|
return; // First should already be in the vector.
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
const VarDecl *First = VD->getFirstDecl();
|
|
if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
|
|
return; // First should already be in the vector.
|
|
}
|
|
|
|
if (ShouldWarnIfUnusedFileScopedDecl(D))
|
|
UnusedFileScopedDecls.push_back(D);
|
|
}
|
|
|
|
static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
|
|
if (D->isInvalidDecl())
|
|
return false;
|
|
|
|
bool Referenced = false;
|
|
if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
|
|
// For a decomposition declaration, warn if none of the bindings are
|
|
// referenced, instead of if the variable itself is referenced (which
|
|
// it is, by the bindings' expressions).
|
|
for (auto *BD : DD->bindings()) {
|
|
if (BD->isReferenced()) {
|
|
Referenced = true;
|
|
break;
|
|
}
|
|
}
|
|
} else if (!D->getDeclName()) {
|
|
return false;
|
|
} else if (D->isReferenced() || D->isUsed()) {
|
|
Referenced = true;
|
|
}
|
|
|
|
if (Referenced || D->hasAttr<UnusedAttr>() ||
|
|
D->hasAttr<ObjCPreciseLifetimeAttr>())
|
|
return false;
|
|
|
|
if (isa<LabelDecl>(D))
|
|
return true;
|
|
|
|
// Except for labels, we only care about unused decls that are local to
|
|
// functions.
|
|
bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
|
|
if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
|
|
// For dependent types, the diagnostic is deferred.
|
|
WithinFunction =
|
|
WithinFunction || (R->isLocalClass() && !R->isDependentType());
|
|
if (!WithinFunction)
|
|
return false;
|
|
|
|
if (isa<TypedefNameDecl>(D))
|
|
return true;
|
|
|
|
// White-list anything that isn't a local variable.
|
|
if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
|
|
return false;
|
|
|
|
// Types of valid local variables should be complete, so this should succeed.
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
|
|
// White-list anything with an __attribute__((unused)) type.
|
|
const auto *Ty = VD->getType().getTypePtr();
|
|
|
|
// Only look at the outermost level of typedef.
|
|
if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
|
|
if (TT->getDecl()->hasAttr<UnusedAttr>())
|
|
return false;
|
|
}
|
|
|
|
// If we failed to complete the type for some reason, or if the type is
|
|
// dependent, don't diagnose the variable.
|
|
if (Ty->isIncompleteType() || Ty->isDependentType())
|
|
return false;
|
|
|
|
// Look at the element type to ensure that the warning behaviour is
|
|
// consistent for both scalars and arrays.
|
|
Ty = Ty->getBaseElementTypeUnsafe();
|
|
|
|
if (const TagType *TT = Ty->getAs<TagType>()) {
|
|
const TagDecl *Tag = TT->getDecl();
|
|
if (Tag->hasAttr<UnusedAttr>())
|
|
return false;
|
|
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
|
|
if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
|
|
return false;
|
|
|
|
if (const Expr *Init = VD->getInit()) {
|
|
if (const ExprWithCleanups *Cleanups =
|
|
dyn_cast<ExprWithCleanups>(Init))
|
|
Init = Cleanups->getSubExpr();
|
|
const CXXConstructExpr *Construct =
|
|
dyn_cast<CXXConstructExpr>(Init);
|
|
if (Construct && !Construct->isElidable()) {
|
|
CXXConstructorDecl *CD = Construct->getConstructor();
|
|
if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
|
|
(VD->getInit()->isValueDependent() || !VD->evaluateValue()))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: __attribute__((unused)) templates?
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
|
|
FixItHint &Hint) {
|
|
if (isa<LabelDecl>(D)) {
|
|
SourceLocation AfterColon = Lexer::findLocationAfterToken(
|
|
D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
|
|
true);
|
|
if (AfterColon.isInvalid())
|
|
return;
|
|
Hint = FixItHint::CreateRemoval(
|
|
CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
|
|
}
|
|
}
|
|
|
|
void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
|
|
if (D->getTypeForDecl()->isDependentType())
|
|
return;
|
|
|
|
for (auto *TmpD : D->decls()) {
|
|
if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
|
|
DiagnoseUnusedDecl(T);
|
|
else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
|
|
DiagnoseUnusedNestedTypedefs(R);
|
|
}
|
|
}
|
|
|
|
/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
|
|
/// unless they are marked attr(unused).
|
|
void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
|
|
if (!ShouldDiagnoseUnusedDecl(D))
|
|
return;
|
|
|
|
if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
|
|
// typedefs can be referenced later on, so the diagnostics are emitted
|
|
// at end-of-translation-unit.
|
|
UnusedLocalTypedefNameCandidates.insert(TD);
|
|
return;
|
|
}
|
|
|
|
FixItHint Hint;
|
|
GenerateFixForUnusedDecl(D, Context, Hint);
|
|
|
|
unsigned DiagID;
|
|
if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
|
|
DiagID = diag::warn_unused_exception_param;
|
|
else if (isa<LabelDecl>(D))
|
|
DiagID = diag::warn_unused_label;
|
|
else
|
|
DiagID = diag::warn_unused_variable;
|
|
|
|
Diag(D->getLocation(), DiagID) << D << Hint;
|
|
}
|
|
|
|
static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
|
|
// Verify that we have no forward references left. If so, there was a goto
|
|
// or address of a label taken, but no definition of it. Label fwd
|
|
// definitions are indicated with a null substmt which is also not a resolved
|
|
// MS inline assembly label name.
|
|
bool Diagnose = false;
|
|
if (L->isMSAsmLabel())
|
|
Diagnose = !L->isResolvedMSAsmLabel();
|
|
else
|
|
Diagnose = L->getStmt() == nullptr;
|
|
if (Diagnose)
|
|
S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
|
|
}
|
|
|
|
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
|
|
S->mergeNRVOIntoParent();
|
|
|
|
if (S->decl_empty()) return;
|
|
assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
|
|
"Scope shouldn't contain decls!");
|
|
|
|
for (auto *TmpD : S->decls()) {
|
|
assert(TmpD && "This decl didn't get pushed??");
|
|
|
|
assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
|
|
NamedDecl *D = cast<NamedDecl>(TmpD);
|
|
|
|
// Diagnose unused variables in this scope.
|
|
if (!S->hasUnrecoverableErrorOccurred()) {
|
|
DiagnoseUnusedDecl(D);
|
|
if (const auto *RD = dyn_cast<RecordDecl>(D))
|
|
DiagnoseUnusedNestedTypedefs(RD);
|
|
}
|
|
|
|
if (!D->getDeclName()) continue;
|
|
|
|
// If this was a forward reference to a label, verify it was defined.
|
|
if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
|
|
CheckPoppedLabel(LD, *this);
|
|
|
|
// Remove this name from our lexical scope, and warn on it if we haven't
|
|
// already.
|
|
IdResolver.RemoveDecl(D);
|
|
auto ShadowI = ShadowingDecls.find(D);
|
|
if (ShadowI != ShadowingDecls.end()) {
|
|
if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
|
|
Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
|
|
<< D << FD << FD->getParent();
|
|
Diag(FD->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
ShadowingDecls.erase(ShadowI);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look for an Objective-C class in the translation unit.
|
|
///
|
|
/// \param Id The name of the Objective-C class we're looking for. If
|
|
/// typo-correction fixes this name, the Id will be updated
|
|
/// to the fixed name.
|
|
///
|
|
/// \param IdLoc The location of the name in the translation unit.
|
|
///
|
|
/// \param DoTypoCorrection If true, this routine will attempt typo correction
|
|
/// if there is no class with the given name.
|
|
///
|
|
/// \returns The declaration of the named Objective-C class, or NULL if the
|
|
/// class could not be found.
|
|
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
|
|
SourceLocation IdLoc,
|
|
bool DoTypoCorrection) {
|
|
// The third "scope" argument is 0 since we aren't enabling lazy built-in
|
|
// creation from this context.
|
|
NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
|
|
|
|
if (!IDecl && DoTypoCorrection) {
|
|
// Perform typo correction at the given location, but only if we
|
|
// find an Objective-C class name.
|
|
DeclFilterCCC<ObjCInterfaceDecl> CCC{};
|
|
if (TypoCorrection C =
|
|
CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
|
|
TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
|
|
diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
|
|
IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
|
|
Id = IDecl->getIdentifier();
|
|
}
|
|
}
|
|
ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
|
|
// This routine must always return a class definition, if any.
|
|
if (Def && Def->getDefinition())
|
|
Def = Def->getDefinition();
|
|
return Def;
|
|
}
|
|
|
|
/// getNonFieldDeclScope - Retrieves the innermost scope, starting
|
|
/// from S, where a non-field would be declared. This routine copes
|
|
/// with the difference between C and C++ scoping rules in structs and
|
|
/// unions. For example, the following code is well-formed in C but
|
|
/// ill-formed in C++:
|
|
/// @code
|
|
/// struct S6 {
|
|
/// enum { BAR } e;
|
|
/// };
|
|
///
|
|
/// void test_S6() {
|
|
/// struct S6 a;
|
|
/// a.e = BAR;
|
|
/// }
|
|
/// @endcode
|
|
/// For the declaration of BAR, this routine will return a different
|
|
/// scope. The scope S will be the scope of the unnamed enumeration
|
|
/// within S6. In C++, this routine will return the scope associated
|
|
/// with S6, because the enumeration's scope is a transparent
|
|
/// context but structures can contain non-field names. In C, this
|
|
/// routine will return the translation unit scope, since the
|
|
/// enumeration's scope is a transparent context and structures cannot
|
|
/// contain non-field names.
|
|
Scope *Sema::getNonFieldDeclScope(Scope *S) {
|
|
while (((S->getFlags() & Scope::DeclScope) == 0) ||
|
|
(S->getEntity() && S->getEntity()->isTransparentContext()) ||
|
|
(S->isClassScope() && !getLangOpts().CPlusPlus))
|
|
S = S->getParent();
|
|
return S;
|
|
}
|
|
|
|
/// Looks up the declaration of "struct objc_super" and
|
|
/// saves it for later use in building builtin declaration of
|
|
/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
|
|
/// pre-existing declaration exists no action takes place.
|
|
static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
|
|
IdentifierInfo *II) {
|
|
if (!II->isStr("objc_msgSendSuper"))
|
|
return;
|
|
ASTContext &Context = ThisSema.Context;
|
|
|
|
LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
|
|
SourceLocation(), Sema::LookupTagName);
|
|
ThisSema.LookupName(Result, S);
|
|
if (Result.getResultKind() == LookupResult::Found)
|
|
if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
|
|
Context.setObjCSuperType(Context.getTagDeclType(TD));
|
|
}
|
|
|
|
static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
|
|
ASTContext::GetBuiltinTypeError Error) {
|
|
switch (Error) {
|
|
case ASTContext::GE_None:
|
|
return "";
|
|
case ASTContext::GE_Missing_type:
|
|
return BuiltinInfo.getHeaderName(ID);
|
|
case ASTContext::GE_Missing_stdio:
|
|
return "stdio.h";
|
|
case ASTContext::GE_Missing_setjmp:
|
|
return "setjmp.h";
|
|
case ASTContext::GE_Missing_ucontext:
|
|
return "ucontext.h";
|
|
}
|
|
llvm_unreachable("unhandled error kind");
|
|
}
|
|
|
|
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
|
|
/// file scope. lazily create a decl for it. ForRedeclaration is true
|
|
/// if we're creating this built-in in anticipation of redeclaring the
|
|
/// built-in.
|
|
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
|
|
Scope *S, bool ForRedeclaration,
|
|
SourceLocation Loc) {
|
|
LookupPredefedObjCSuperType(*this, S, II);
|
|
|
|
ASTContext::GetBuiltinTypeError Error;
|
|
QualType R = Context.GetBuiltinType(ID, Error);
|
|
if (Error) {
|
|
if (ForRedeclaration)
|
|
Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
|
|
<< getHeaderName(Context.BuiltinInfo, ID, Error)
|
|
<< Context.BuiltinInfo.getName(ID);
|
|
return nullptr;
|
|
}
|
|
|
|
if (!ForRedeclaration &&
|
|
(Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
|
|
Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
|
|
Diag(Loc, diag::ext_implicit_lib_function_decl)
|
|
<< Context.BuiltinInfo.getName(ID) << R;
|
|
if (Context.BuiltinInfo.getHeaderName(ID) &&
|
|
!Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
|
|
Diag(Loc, diag::note_include_header_or_declare)
|
|
<< Context.BuiltinInfo.getHeaderName(ID)
|
|
<< Context.BuiltinInfo.getName(ID);
|
|
}
|
|
|
|
if (R.isNull())
|
|
return nullptr;
|
|
|
|
DeclContext *Parent = Context.getTranslationUnitDecl();
|
|
if (getLangOpts().CPlusPlus) {
|
|
LinkageSpecDecl *CLinkageDecl =
|
|
LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
|
|
LinkageSpecDecl::lang_c, false);
|
|
CLinkageDecl->setImplicit();
|
|
Parent->addDecl(CLinkageDecl);
|
|
Parent = CLinkageDecl;
|
|
}
|
|
|
|
FunctionDecl *New = FunctionDecl::Create(Context,
|
|
Parent,
|
|
Loc, Loc, II, R, /*TInfo=*/nullptr,
|
|
SC_Extern,
|
|
false,
|
|
R->isFunctionProtoType());
|
|
New->setImplicit();
|
|
|
|
// Create Decl objects for each parameter, adding them to the
|
|
// FunctionDecl.
|
|
if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
|
|
SmallVector<ParmVarDecl*, 16> Params;
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
|
|
ParmVarDecl *parm =
|
|
ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
|
|
nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
|
|
SC_None, nullptr);
|
|
parm->setScopeInfo(0, i);
|
|
Params.push_back(parm);
|
|
}
|
|
New->setParams(Params);
|
|
}
|
|
|
|
AddKnownFunctionAttributes(New);
|
|
RegisterLocallyScopedExternCDecl(New, S);
|
|
|
|
// TUScope is the translation-unit scope to insert this function into.
|
|
// FIXME: This is hideous. We need to teach PushOnScopeChains to
|
|
// relate Scopes to DeclContexts, and probably eliminate CurContext
|
|
// entirely, but we're not there yet.
|
|
DeclContext *SavedContext = CurContext;
|
|
CurContext = Parent;
|
|
PushOnScopeChains(New, TUScope);
|
|
CurContext = SavedContext;
|
|
return New;
|
|
}
|
|
|
|
/// Typedef declarations don't have linkage, but they still denote the same
|
|
/// entity if their types are the same.
|
|
/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
|
|
/// isSameEntity.
|
|
static void filterNonConflictingPreviousTypedefDecls(Sema &S,
|
|
TypedefNameDecl *Decl,
|
|
LookupResult &Previous) {
|
|
// This is only interesting when modules are enabled.
|
|
if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
|
|
return;
|
|
|
|
// Empty sets are uninteresting.
|
|
if (Previous.empty())
|
|
return;
|
|
|
|
LookupResult::Filter Filter = Previous.makeFilter();
|
|
while (Filter.hasNext()) {
|
|
NamedDecl *Old = Filter.next();
|
|
|
|
// Non-hidden declarations are never ignored.
|
|
if (S.isVisible(Old))
|
|
continue;
|
|
|
|
// Declarations of the same entity are not ignored, even if they have
|
|
// different linkages.
|
|
if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
|
|
if (S.Context.hasSameType(OldTD->getUnderlyingType(),
|
|
Decl->getUnderlyingType()))
|
|
continue;
|
|
|
|
// If both declarations give a tag declaration a typedef name for linkage
|
|
// purposes, then they declare the same entity.
|
|
if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
|
|
Decl->getAnonDeclWithTypedefName())
|
|
continue;
|
|
}
|
|
|
|
Filter.erase();
|
|
}
|
|
|
|
Filter.done();
|
|
}
|
|
|
|
bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
|
|
QualType OldType;
|
|
if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
|
|
OldType = OldTypedef->getUnderlyingType();
|
|
else
|
|
OldType = Context.getTypeDeclType(Old);
|
|
QualType NewType = New->getUnderlyingType();
|
|
|
|
if (NewType->isVariablyModifiedType()) {
|
|
// Must not redefine a typedef with a variably-modified type.
|
|
int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
|
|
Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
|
|
<< Kind << NewType;
|
|
if (Old->getLocation().isValid())
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
New->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
if (OldType != NewType &&
|
|
!OldType->isDependentType() &&
|
|
!NewType->isDependentType() &&
|
|
!Context.hasSameType(OldType, NewType)) {
|
|
int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
|
|
Diag(New->getLocation(), diag::err_redefinition_different_typedef)
|
|
<< Kind << NewType << OldType;
|
|
if (Old->getLocation().isValid())
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
New->setInvalidDecl();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
|
|
/// same name and scope as a previous declaration 'Old'. Figure out
|
|
/// how to resolve this situation, merging decls or emitting
|
|
/// diagnostics as appropriate. If there was an error, set New to be invalid.
|
|
///
|
|
void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
|
|
LookupResult &OldDecls) {
|
|
// If the new decl is known invalid already, don't bother doing any
|
|
// merging checks.
|
|
if (New->isInvalidDecl()) return;
|
|
|
|
// Allow multiple definitions for ObjC built-in typedefs.
|
|
// FIXME: Verify the underlying types are equivalent!
|
|
if (getLangOpts().ObjC) {
|
|
const IdentifierInfo *TypeID = New->getIdentifier();
|
|
switch (TypeID->getLength()) {
|
|
default: break;
|
|
case 2:
|
|
{
|
|
if (!TypeID->isStr("id"))
|
|
break;
|
|
QualType T = New->getUnderlyingType();
|
|
if (!T->isPointerType())
|
|
break;
|
|
if (!T->isVoidPointerType()) {
|
|
QualType PT = T->getAs<PointerType>()->getPointeeType();
|
|
if (!PT->isStructureType())
|
|
break;
|
|
}
|
|
Context.setObjCIdRedefinitionType(T);
|
|
// Install the built-in type for 'id', ignoring the current definition.
|
|
New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
|
|
return;
|
|
}
|
|
case 5:
|
|
if (!TypeID->isStr("Class"))
|
|
break;
|
|
Context.setObjCClassRedefinitionType(New->getUnderlyingType());
|
|
// Install the built-in type for 'Class', ignoring the current definition.
|
|
New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
|
|
return;
|
|
case 3:
|
|
if (!TypeID->isStr("SEL"))
|
|
break;
|
|
Context.setObjCSelRedefinitionType(New->getUnderlyingType());
|
|
// Install the built-in type for 'SEL', ignoring the current definition.
|
|
New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
|
|
return;
|
|
}
|
|
// Fall through - the typedef name was not a builtin type.
|
|
}
|
|
|
|
// Verify the old decl was also a type.
|
|
TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
|
<< New->getDeclName();
|
|
|
|
NamedDecl *OldD = OldDecls.getRepresentativeDecl();
|
|
if (OldD->getLocation().isValid())
|
|
notePreviousDefinition(OldD, New->getLocation());
|
|
|
|
return New->setInvalidDecl();
|
|
}
|
|
|
|
// If the old declaration is invalid, just give up here.
|
|
if (Old->isInvalidDecl())
|
|
return New->setInvalidDecl();
|
|
|
|
if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
|
|
auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
|
|
auto *NewTag = New->getAnonDeclWithTypedefName();
|
|
NamedDecl *Hidden = nullptr;
|
|
if (OldTag && NewTag &&
|
|
OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
|
|
!hasVisibleDefinition(OldTag, &Hidden)) {
|
|
// There is a definition of this tag, but it is not visible. Use it
|
|
// instead of our tag.
|
|
New->setTypeForDecl(OldTD->getTypeForDecl());
|
|
if (OldTD->isModed())
|
|
New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
|
|
OldTD->getUnderlyingType());
|
|
else
|
|
New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
|
|
|
|
// Make the old tag definition visible.
|
|
makeMergedDefinitionVisible(Hidden);
|
|
|
|
// If this was an unscoped enumeration, yank all of its enumerators
|
|
// out of the scope.
|
|
if (isa<EnumDecl>(NewTag)) {
|
|
Scope *EnumScope = getNonFieldDeclScope(S);
|
|
for (auto *D : NewTag->decls()) {
|
|
auto *ED = cast<EnumConstantDecl>(D);
|
|
assert(EnumScope->isDeclScope(ED));
|
|
EnumScope->RemoveDecl(ED);
|
|
IdResolver.RemoveDecl(ED);
|
|
ED->getLexicalDeclContext()->removeDecl(ED);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the typedef types are not identical, reject them in all languages and
|
|
// with any extensions enabled.
|
|
if (isIncompatibleTypedef(Old, New))
|
|
return;
|
|
|
|
// The types match. Link up the redeclaration chain and merge attributes if
|
|
// the old declaration was a typedef.
|
|
if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
|
|
New->setPreviousDecl(Typedef);
|
|
mergeDeclAttributes(New, Old);
|
|
}
|
|
|
|
if (getLangOpts().MicrosoftExt)
|
|
return;
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++ [dcl.typedef]p2:
|
|
// In a given non-class scope, a typedef specifier can be used to
|
|
// redefine the name of any type declared in that scope to refer
|
|
// to the type to which it already refers.
|
|
if (!isa<CXXRecordDecl>(CurContext))
|
|
return;
|
|
|
|
// C++0x [dcl.typedef]p4:
|
|
// In a given class scope, a typedef specifier can be used to redefine
|
|
// any class-name declared in that scope that is not also a typedef-name
|
|
// to refer to the type to which it already refers.
|
|
//
|
|
// This wording came in via DR424, which was a correction to the
|
|
// wording in DR56, which accidentally banned code like:
|
|
//
|
|
// struct S {
|
|
// typedef struct A { } A;
|
|
// };
|
|
//
|
|
// in the C++03 standard. We implement the C++0x semantics, which
|
|
// allow the above but disallow
|
|
//
|
|
// struct S {
|
|
// typedef int I;
|
|
// typedef int I;
|
|
// };
|
|
//
|
|
// since that was the intent of DR56.
|
|
if (!isa<TypedefNameDecl>(Old))
|
|
return;
|
|
|
|
Diag(New->getLocation(), diag::err_redefinition)
|
|
<< New->getDeclName();
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
return New->setInvalidDecl();
|
|
}
|
|
|
|
// Modules always permit redefinition of typedefs, as does C11.
|
|
if (getLangOpts().Modules || getLangOpts().C11)
|
|
return;
|
|
|
|
// If we have a redefinition of a typedef in C, emit a warning. This warning
|
|
// is normally mapped to an error, but can be controlled with
|
|
// -Wtypedef-redefinition. If either the original or the redefinition is
|
|
// in a system header, don't emit this for compatibility with GCC.
|
|
if (getDiagnostics().getSuppressSystemWarnings() &&
|
|
// Some standard types are defined implicitly in Clang (e.g. OpenCL).
|
|
(Old->isImplicit() ||
|
|
Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
|
|
Context.getSourceManager().isInSystemHeader(New->getLocation())))
|
|
return;
|
|
|
|
Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
|
|
<< New->getDeclName();
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
}
|
|
|
|
/// DeclhasAttr - returns true if decl Declaration already has the target
|
|
/// attribute.
|
|
static bool DeclHasAttr(const Decl *D, const Attr *A) {
|
|
const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
|
|
const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
|
|
for (const auto *i : D->attrs())
|
|
if (i->getKind() == A->getKind()) {
|
|
if (Ann) {
|
|
if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
|
|
return true;
|
|
continue;
|
|
}
|
|
// FIXME: Don't hardcode this check
|
|
if (OA && isa<OwnershipAttr>(i))
|
|
return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isAttributeTargetADefinition(Decl *D) {
|
|
if (VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
return VD->isThisDeclarationADefinition();
|
|
if (TagDecl *TD = dyn_cast<TagDecl>(D))
|
|
return TD->isCompleteDefinition() || TD->isBeingDefined();
|
|
return true;
|
|
}
|
|
|
|
/// Merge alignment attributes from \p Old to \p New, taking into account the
|
|
/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
|
|
///
|
|
/// \return \c true if any attributes were added to \p New.
|
|
static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
|
|
// Look for alignas attributes on Old, and pick out whichever attribute
|
|
// specifies the strictest alignment requirement.
|
|
AlignedAttr *OldAlignasAttr = nullptr;
|
|
AlignedAttr *OldStrictestAlignAttr = nullptr;
|
|
unsigned OldAlign = 0;
|
|
for (auto *I : Old->specific_attrs<AlignedAttr>()) {
|
|
// FIXME: We have no way of representing inherited dependent alignments
|
|
// in a case like:
|
|
// template<int A, int B> struct alignas(A) X;
|
|
// template<int A, int B> struct alignas(B) X {};
|
|
// For now, we just ignore any alignas attributes which are not on the
|
|
// definition in such a case.
|
|
if (I->isAlignmentDependent())
|
|
return false;
|
|
|
|
if (I->isAlignas())
|
|
OldAlignasAttr = I;
|
|
|
|
unsigned Align = I->getAlignment(S.Context);
|
|
if (Align > OldAlign) {
|
|
OldAlign = Align;
|
|
OldStrictestAlignAttr = I;
|
|
}
|
|
}
|
|
|
|
// Look for alignas attributes on New.
|
|
AlignedAttr *NewAlignasAttr = nullptr;
|
|
unsigned NewAlign = 0;
|
|
for (auto *I : New->specific_attrs<AlignedAttr>()) {
|
|
if (I->isAlignmentDependent())
|
|
return false;
|
|
|
|
if (I->isAlignas())
|
|
NewAlignasAttr = I;
|
|
|
|
unsigned Align = I->getAlignment(S.Context);
|
|
if (Align > NewAlign)
|
|
NewAlign = Align;
|
|
}
|
|
|
|
if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
|
|
// Both declarations have 'alignas' attributes. We require them to match.
|
|
// C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
|
|
// fall short. (If two declarations both have alignas, they must both match
|
|
// every definition, and so must match each other if there is a definition.)
|
|
|
|
// If either declaration only contains 'alignas(0)' specifiers, then it
|
|
// specifies the natural alignment for the type.
|
|
if (OldAlign == 0 || NewAlign == 0) {
|
|
QualType Ty;
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
|
|
Ty = VD->getType();
|
|
else
|
|
Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
|
|
|
|
if (OldAlign == 0)
|
|
OldAlign = S.Context.getTypeAlign(Ty);
|
|
if (NewAlign == 0)
|
|
NewAlign = S.Context.getTypeAlign(Ty);
|
|
}
|
|
|
|
if (OldAlign != NewAlign) {
|
|
S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
|
|
<< (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
|
|
<< (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
|
|
S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
|
|
if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
|
|
// C++11 [dcl.align]p6:
|
|
// if any declaration of an entity has an alignment-specifier,
|
|
// every defining declaration of that entity shall specify an
|
|
// equivalent alignment.
|
|
// C11 6.7.5/7:
|
|
// If the definition of an object does not have an alignment
|
|
// specifier, any other declaration of that object shall also
|
|
// have no alignment specifier.
|
|
S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
|
|
<< OldAlignasAttr;
|
|
S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
|
|
<< OldAlignasAttr;
|
|
}
|
|
|
|
bool AnyAdded = false;
|
|
|
|
// Ensure we have an attribute representing the strictest alignment.
|
|
if (OldAlign > NewAlign) {
|
|
AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
|
|
Clone->setInherited(true);
|
|
New->addAttr(Clone);
|
|
AnyAdded = true;
|
|
}
|
|
|
|
// Ensure we have an alignas attribute if the old declaration had one.
|
|
if (OldAlignasAttr && !NewAlignasAttr &&
|
|
!(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
|
|
AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
|
|
Clone->setInherited(true);
|
|
New->addAttr(Clone);
|
|
AnyAdded = true;
|
|
}
|
|
|
|
return AnyAdded;
|
|
}
|
|
|
|
static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
|
|
const InheritableAttr *Attr,
|
|
Sema::AvailabilityMergeKind AMK) {
|
|
// This function copies an attribute Attr from a previous declaration to the
|
|
// new declaration D if the new declaration doesn't itself have that attribute
|
|
// yet or if that attribute allows duplicates.
|
|
// If you're adding a new attribute that requires logic different from
|
|
// "use explicit attribute on decl if present, else use attribute from
|
|
// previous decl", for example if the attribute needs to be consistent
|
|
// between redeclarations, you need to call a custom merge function here.
|
|
InheritableAttr *NewAttr = nullptr;
|
|
unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
|
|
if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
|
|
NewAttr = S.mergeAvailabilityAttr(
|
|
D, AA->getRange(), AA->getPlatform(), AA->isImplicit(),
|
|
AA->getIntroduced(), AA->getDeprecated(), AA->getObsoleted(),
|
|
AA->getUnavailable(), AA->getMessage(), AA->getStrict(),
|
|
AA->getReplacement(), AMK, AA->getPriority(), AttrSpellingListIndex);
|
|
else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
|
|
NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
|
|
AttrSpellingListIndex);
|
|
else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
|
|
NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
|
|
AttrSpellingListIndex);
|
|
else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
|
|
NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
|
|
AttrSpellingListIndex);
|
|
else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
|
|
NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
|
|
AttrSpellingListIndex);
|
|
else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
|
|
NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
|
|
FA->getFormatIdx(), FA->getFirstArg(),
|
|
AttrSpellingListIndex);
|
|
else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
|
|
NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
|
|
AttrSpellingListIndex);
|
|
else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
|
|
NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
|
|
AttrSpellingListIndex);
|
|
else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
|
|
NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
|
|
AttrSpellingListIndex,
|
|
IA->getSemanticSpelling());
|
|
else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
|
|
NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
|
|
&S.Context.Idents.get(AA->getSpelling()),
|
|
AttrSpellingListIndex);
|
|
else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
|
|
(isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
|
|
isa<CUDAGlobalAttr>(Attr))) {
|
|
// CUDA target attributes are part of function signature for
|
|
// overloading purposes and must not be merged.
|
|
return false;
|
|
} else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
|
|
NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
|
|
else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
|
|
NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
|
|
else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
|
|
NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
|
|
else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
|
|
NewAttr = S.mergeCommonAttr(D, *CommonA);
|
|
else if (isa<AlignedAttr>(Attr))
|
|
// AlignedAttrs are handled separately, because we need to handle all
|
|
// such attributes on a declaration at the same time.
|
|
NewAttr = nullptr;
|
|
else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
|
|
(AMK == Sema::AMK_Override ||
|
|
AMK == Sema::AMK_ProtocolImplementation))
|
|
NewAttr = nullptr;
|
|
else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
|
|
NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
|
|
UA->getGuid());
|
|
else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
|
|
NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
|
|
else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
|
|
NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
|
|
else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
|
|
NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
|
|
|
|
if (NewAttr) {
|
|
NewAttr->setInherited(true);
|
|
D->addAttr(NewAttr);
|
|
if (isa<MSInheritanceAttr>(NewAttr))
|
|
S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const NamedDecl *getDefinition(const Decl *D) {
|
|
if (const TagDecl *TD = dyn_cast<TagDecl>(D))
|
|
return TD->getDefinition();
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
const VarDecl *Def = VD->getDefinition();
|
|
if (Def)
|
|
return Def;
|
|
return VD->getActingDefinition();
|
|
}
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
return FD->getDefinition();
|
|
return nullptr;
|
|
}
|
|
|
|
static bool hasAttribute(const Decl *D, attr::Kind Kind) {
|
|
for (const auto *Attribute : D->attrs())
|
|
if (Attribute->getKind() == Kind)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// checkNewAttributesAfterDef - If we already have a definition, check that
|
|
/// there are no new attributes in this declaration.
|
|
static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
|
|
if (!New->hasAttrs())
|
|
return;
|
|
|
|
const NamedDecl *Def = getDefinition(Old);
|
|
if (!Def || Def == New)
|
|
return;
|
|
|
|
AttrVec &NewAttributes = New->getAttrs();
|
|
for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
|
|
const Attr *NewAttribute = NewAttributes[I];
|
|
|
|
if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
|
|
Sema::SkipBodyInfo SkipBody;
|
|
S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
|
|
|
|
// If we're skipping this definition, drop the "alias" attribute.
|
|
if (SkipBody.ShouldSkip) {
|
|
NewAttributes.erase(NewAttributes.begin() + I);
|
|
--E;
|
|
continue;
|
|
}
|
|
} else {
|
|
VarDecl *VD = cast<VarDecl>(New);
|
|
unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
|
|
VarDecl::TentativeDefinition
|
|
? diag::err_alias_after_tentative
|
|
: diag::err_redefinition;
|
|
S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
|
|
if (Diag == diag::err_redefinition)
|
|
S.notePreviousDefinition(Def, VD->getLocation());
|
|
else
|
|
S.Diag(Def->getLocation(), diag::note_previous_definition);
|
|
VD->setInvalidDecl();
|
|
}
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
|
|
// Tentative definitions are only interesting for the alias check above.
|
|
if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
|
|
++I;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (hasAttribute(Def, NewAttribute->getKind())) {
|
|
++I;
|
|
continue; // regular attr merging will take care of validating this.
|
|
}
|
|
|
|
if (isa<C11NoReturnAttr>(NewAttribute)) {
|
|
// C's _Noreturn is allowed to be added to a function after it is defined.
|
|
++I;
|
|
continue;
|
|
} else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
|
|
if (AA->isAlignas()) {
|
|
// C++11 [dcl.align]p6:
|
|
// if any declaration of an entity has an alignment-specifier,
|
|
// every defining declaration of that entity shall specify an
|
|
// equivalent alignment.
|
|
// C11 6.7.5/7:
|
|
// If the definition of an object does not have an alignment
|
|
// specifier, any other declaration of that object shall also
|
|
// have no alignment specifier.
|
|
S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
|
|
<< AA;
|
|
S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
|
|
<< AA;
|
|
NewAttributes.erase(NewAttributes.begin() + I);
|
|
--E;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
S.Diag(NewAttribute->getLocation(),
|
|
diag::warn_attribute_precede_definition);
|
|
S.Diag(Def->getLocation(), diag::note_previous_definition);
|
|
NewAttributes.erase(NewAttributes.begin() + I);
|
|
--E;
|
|
}
|
|
}
|
|
|
|
/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
|
|
void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
|
|
AvailabilityMergeKind AMK) {
|
|
if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
|
|
UsedAttr *NewAttr = OldAttr->clone(Context);
|
|
NewAttr->setInherited(true);
|
|
New->addAttr(NewAttr);
|
|
}
|
|
|
|
if (!Old->hasAttrs() && !New->hasAttrs())
|
|
return;
|
|
|
|
// Attributes declared post-definition are currently ignored.
|
|
checkNewAttributesAfterDef(*this, New, Old);
|
|
|
|
if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
|
|
if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
|
|
if (OldA->getLabel() != NewA->getLabel()) {
|
|
// This redeclaration changes __asm__ label.
|
|
Diag(New->getLocation(), diag::err_different_asm_label);
|
|
Diag(OldA->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
} else if (Old->isUsed()) {
|
|
// This redeclaration adds an __asm__ label to a declaration that has
|
|
// already been ODR-used.
|
|
Diag(New->getLocation(), diag::err_late_asm_label_name)
|
|
<< isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
|
|
}
|
|
}
|
|
|
|
// Re-declaration cannot add abi_tag's.
|
|
if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
|
|
if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
|
|
for (const auto &NewTag : NewAbiTagAttr->tags()) {
|
|
if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
|
|
NewTag) == OldAbiTagAttr->tags_end()) {
|
|
Diag(NewAbiTagAttr->getLocation(),
|
|
diag::err_new_abi_tag_on_redeclaration)
|
|
<< NewTag;
|
|
Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
} else {
|
|
Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
|
|
// This redeclaration adds a section attribute.
|
|
if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
|
|
if (auto *VD = dyn_cast<VarDecl>(New)) {
|
|
if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
|
|
Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Redeclaration adds code-seg attribute.
|
|
const auto *NewCSA = New->getAttr<CodeSegAttr>();
|
|
if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
|
|
!NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
|
|
Diag(New->getLocation(), diag::warn_mismatched_section)
|
|
<< 0 /*codeseg*/;
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
|
|
if (!Old->hasAttrs())
|
|
return;
|
|
|
|
bool foundAny = New->hasAttrs();
|
|
|
|
// Ensure that any moving of objects within the allocated map is done before
|
|
// we process them.
|
|
if (!foundAny) New->setAttrs(AttrVec());
|
|
|
|
for (auto *I : Old->specific_attrs<InheritableAttr>()) {
|
|
// Ignore deprecated/unavailable/availability attributes if requested.
|
|
AvailabilityMergeKind LocalAMK = AMK_None;
|
|
if (isa<DeprecatedAttr>(I) ||
|
|
isa<UnavailableAttr>(I) ||
|
|
isa<AvailabilityAttr>(I)) {
|
|
switch (AMK) {
|
|
case AMK_None:
|
|
continue;
|
|
|
|
case AMK_Redeclaration:
|
|
case AMK_Override:
|
|
case AMK_ProtocolImplementation:
|
|
LocalAMK = AMK;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Already handled.
|
|
if (isa<UsedAttr>(I))
|
|
continue;
|
|
|
|
if (mergeDeclAttribute(*this, New, I, LocalAMK))
|
|
foundAny = true;
|
|
}
|
|
|
|
if (mergeAlignedAttrs(*this, New, Old))
|
|
foundAny = true;
|
|
|
|
if (!foundAny) New->dropAttrs();
|
|
}
|
|
|
|
/// mergeParamDeclAttributes - Copy attributes from the old parameter
|
|
/// to the new one.
|
|
static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
|
|
const ParmVarDecl *oldDecl,
|
|
Sema &S) {
|
|
// C++11 [dcl.attr.depend]p2:
|
|
// The first declaration of a function shall specify the
|
|
// carries_dependency attribute for its declarator-id if any declaration
|
|
// of the function specifies the carries_dependency attribute.
|
|
const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
|
|
if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
|
|
S.Diag(CDA->getLocation(),
|
|
diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
|
|
// Find the first declaration of the parameter.
|
|
// FIXME: Should we build redeclaration chains for function parameters?
|
|
const FunctionDecl *FirstFD =
|
|
cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
|
|
const ParmVarDecl *FirstVD =
|
|
FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
|
|
S.Diag(FirstVD->getLocation(),
|
|
diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
|
|
}
|
|
|
|
if (!oldDecl->hasAttrs())
|
|
return;
|
|
|
|
bool foundAny = newDecl->hasAttrs();
|
|
|
|
// Ensure that any moving of objects within the allocated map is
|
|
// done before we process them.
|
|
if (!foundAny) newDecl->setAttrs(AttrVec());
|
|
|
|
for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
|
|
if (!DeclHasAttr(newDecl, I)) {
|
|
InheritableAttr *newAttr =
|
|
cast<InheritableParamAttr>(I->clone(S.Context));
|
|
newAttr->setInherited(true);
|
|
newDecl->addAttr(newAttr);
|
|
foundAny = true;
|
|
}
|
|
}
|
|
|
|
if (!foundAny) newDecl->dropAttrs();
|
|
}
|
|
|
|
static void mergeParamDeclTypes(ParmVarDecl *NewParam,
|
|
const ParmVarDecl *OldParam,
|
|
Sema &S) {
|
|
if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
|
|
if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
|
|
if (*Oldnullability != *Newnullability) {
|
|
S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
|
|
<< DiagNullabilityKind(
|
|
*Newnullability,
|
|
((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
|
|
!= 0))
|
|
<< DiagNullabilityKind(
|
|
*Oldnullability,
|
|
((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
|
|
!= 0));
|
|
S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
} else {
|
|
QualType NewT = NewParam->getType();
|
|
NewT = S.Context.getAttributedType(
|
|
AttributedType::getNullabilityAttrKind(*Oldnullability),
|
|
NewT, NewT);
|
|
NewParam->setType(NewT);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Used in MergeFunctionDecl to keep track of function parameters in
|
|
/// C.
|
|
struct GNUCompatibleParamWarning {
|
|
ParmVarDecl *OldParm;
|
|
ParmVarDecl *NewParm;
|
|
QualType PromotedType;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// getSpecialMember - get the special member enum for a method.
|
|
Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
|
|
if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
|
|
if (Ctor->isDefaultConstructor())
|
|
return Sema::CXXDefaultConstructor;
|
|
|
|
if (Ctor->isCopyConstructor())
|
|
return Sema::CXXCopyConstructor;
|
|
|
|
if (Ctor->isMoveConstructor())
|
|
return Sema::CXXMoveConstructor;
|
|
} else if (isa<CXXDestructorDecl>(MD)) {
|
|
return Sema::CXXDestructor;
|
|
} else if (MD->isCopyAssignmentOperator()) {
|
|
return Sema::CXXCopyAssignment;
|
|
} else if (MD->isMoveAssignmentOperator()) {
|
|
return Sema::CXXMoveAssignment;
|
|
}
|
|
|
|
return Sema::CXXInvalid;
|
|
}
|
|
|
|
// Determine whether the previous declaration was a definition, implicit
|
|
// declaration, or a declaration.
|
|
template <typename T>
|
|
static std::pair<diag::kind, SourceLocation>
|
|
getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
|
|
diag::kind PrevDiag;
|
|
SourceLocation OldLocation = Old->getLocation();
|
|
if (Old->isThisDeclarationADefinition())
|
|
PrevDiag = diag::note_previous_definition;
|
|
else if (Old->isImplicit()) {
|
|
PrevDiag = diag::note_previous_implicit_declaration;
|
|
if (OldLocation.isInvalid())
|
|
OldLocation = New->getLocation();
|
|
} else
|
|
PrevDiag = diag::note_previous_declaration;
|
|
return std::make_pair(PrevDiag, OldLocation);
|
|
}
|
|
|
|
/// canRedefineFunction - checks if a function can be redefined. Currently,
|
|
/// only extern inline functions can be redefined, and even then only in
|
|
/// GNU89 mode.
|
|
static bool canRedefineFunction(const FunctionDecl *FD,
|
|
const LangOptions& LangOpts) {
|
|
return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
|
|
!LangOpts.CPlusPlus &&
|
|
FD->isInlineSpecified() &&
|
|
FD->getStorageClass() == SC_Extern);
|
|
}
|
|
|
|
const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
|
|
const AttributedType *AT = T->getAs<AttributedType>();
|
|
while (AT && !AT->isCallingConv())
|
|
AT = AT->getModifiedType()->getAs<AttributedType>();
|
|
return AT;
|
|
}
|
|
|
|
template <typename T>
|
|
static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
|
|
const DeclContext *DC = Old->getDeclContext();
|
|
if (DC->isRecord())
|
|
return false;
|
|
|
|
LanguageLinkage OldLinkage = Old->getLanguageLinkage();
|
|
if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
|
|
return true;
|
|
if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
|
|
static bool isExternC(VarTemplateDecl *) { return false; }
|
|
|
|
/// Check whether a redeclaration of an entity introduced by a
|
|
/// using-declaration is valid, given that we know it's not an overload
|
|
/// (nor a hidden tag declaration).
|
|
template<typename ExpectedDecl>
|
|
static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
|
|
ExpectedDecl *New) {
|
|
// C++11 [basic.scope.declarative]p4:
|
|
// Given a set of declarations in a single declarative region, each of
|
|
// which specifies the same unqualified name,
|
|
// -- they shall all refer to the same entity, or all refer to functions
|
|
// and function templates; or
|
|
// -- exactly one declaration shall declare a class name or enumeration
|
|
// name that is not a typedef name and the other declarations shall all
|
|
// refer to the same variable or enumerator, or all refer to functions
|
|
// and function templates; in this case the class name or enumeration
|
|
// name is hidden (3.3.10).
|
|
|
|
// C++11 [namespace.udecl]p14:
|
|
// If a function declaration in namespace scope or block scope has the
|
|
// same name and the same parameter-type-list as a function introduced
|
|
// by a using-declaration, and the declarations do not declare the same
|
|
// function, the program is ill-formed.
|
|
|
|
auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
|
|
if (Old &&
|
|
!Old->getDeclContext()->getRedeclContext()->Equals(
|
|
New->getDeclContext()->getRedeclContext()) &&
|
|
!(isExternC(Old) && isExternC(New)))
|
|
Old = nullptr;
|
|
|
|
if (!Old) {
|
|
S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
|
|
S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
|
|
S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
|
|
const FunctionDecl *B) {
|
|
assert(A->getNumParams() == B->getNumParams());
|
|
|
|
auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
|
|
const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
|
|
const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
|
|
if (AttrA == AttrB)
|
|
return true;
|
|
return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
|
|
AttrA->isDynamic() == AttrB->isDynamic();
|
|
};
|
|
|
|
return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
|
|
}
|
|
|
|
/// If necessary, adjust the semantic declaration context for a qualified
|
|
/// declaration to name the correct inline namespace within the qualifier.
|
|
static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
|
|
DeclaratorDecl *OldD) {
|
|
// The only case where we need to update the DeclContext is when
|
|
// redeclaration lookup for a qualified name finds a declaration
|
|
// in an inline namespace within the context named by the qualifier:
|
|
//
|
|
// inline namespace N { int f(); }
|
|
// int ::f(); // Sema DC needs adjusting from :: to N::.
|
|
//
|
|
// For unqualified declarations, the semantic context *can* change
|
|
// along the redeclaration chain (for local extern declarations,
|
|
// extern "C" declarations, and friend declarations in particular).
|
|
if (!NewD->getQualifier())
|
|
return;
|
|
|
|
// NewD is probably already in the right context.
|
|
auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
|
|
auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
|
|
if (NamedDC->Equals(SemaDC))
|
|
return;
|
|
|
|
assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
|
|
NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
|
|
"unexpected context for redeclaration");
|
|
|
|
auto *LexDC = NewD->getLexicalDeclContext();
|
|
auto FixSemaDC = [=](NamedDecl *D) {
|
|
if (!D)
|
|
return;
|
|
D->setDeclContext(SemaDC);
|
|
D->setLexicalDeclContext(LexDC);
|
|
};
|
|
|
|
FixSemaDC(NewD);
|
|
if (auto *FD = dyn_cast<FunctionDecl>(NewD))
|
|
FixSemaDC(FD->getDescribedFunctionTemplate());
|
|
else if (auto *VD = dyn_cast<VarDecl>(NewD))
|
|
FixSemaDC(VD->getDescribedVarTemplate());
|
|
}
|
|
|
|
/// MergeFunctionDecl - We just parsed a function 'New' from
|
|
/// declarator D which has the same name and scope as a previous
|
|
/// declaration 'Old'. Figure out how to resolve this situation,
|
|
/// merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
/// In C++, New and Old must be declarations that are not
|
|
/// overloaded. Use IsOverload to determine whether New and Old are
|
|
/// overloaded, and to select the Old declaration that New should be
|
|
/// merged with.
|
|
///
|
|
/// Returns true if there was an error, false otherwise.
|
|
bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
|
|
Scope *S, bool MergeTypeWithOld) {
|
|
// Verify the old decl was also a function.
|
|
FunctionDecl *Old = OldD->getAsFunction();
|
|
if (!Old) {
|
|
if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
|
|
if (New->getFriendObjectKind()) {
|
|
Diag(New->getLocation(), diag::err_using_decl_friend);
|
|
Diag(Shadow->getTargetDecl()->getLocation(),
|
|
diag::note_using_decl_target);
|
|
Diag(Shadow->getUsingDecl()->getLocation(),
|
|
diag::note_using_decl) << 0;
|
|
return true;
|
|
}
|
|
|
|
// Check whether the two declarations might declare the same function.
|
|
if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
|
|
return true;
|
|
OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
|
|
} else {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
|
<< New->getDeclName();
|
|
notePreviousDefinition(OldD, New->getLocation());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If the old declaration is invalid, just give up here.
|
|
if (Old->isInvalidDecl())
|
|
return true;
|
|
|
|
// Disallow redeclaration of some builtins.
|
|
if (!getASTContext().canBuiltinBeRedeclared(Old)) {
|
|
Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
|
|
Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
|
|
<< Old << Old->getType();
|
|
return true;
|
|
}
|
|
|
|
diag::kind PrevDiag;
|
|
SourceLocation OldLocation;
|
|
std::tie(PrevDiag, OldLocation) =
|
|
getNoteDiagForInvalidRedeclaration(Old, New);
|
|
|
|
// Don't complain about this if we're in GNU89 mode and the old function
|
|
// is an extern inline function.
|
|
// Don't complain about specializations. They are not supposed to have
|
|
// storage classes.
|
|
if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
|
|
New->getStorageClass() == SC_Static &&
|
|
Old->hasExternalFormalLinkage() &&
|
|
!New->getTemplateSpecializationInfo() &&
|
|
!canRedefineFunction(Old, getLangOpts())) {
|
|
if (getLangOpts().MicrosoftExt) {
|
|
Diag(New->getLocation(), diag::ext_static_non_static) << New;
|
|
Diag(OldLocation, PrevDiag);
|
|
} else {
|
|
Diag(New->getLocation(), diag::err_static_non_static) << New;
|
|
Diag(OldLocation, PrevDiag);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (New->hasAttr<InternalLinkageAttr>() &&
|
|
!Old->hasAttr<InternalLinkageAttr>()) {
|
|
Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
|
|
<< New->getDeclName();
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
New->dropAttr<InternalLinkageAttr>();
|
|
}
|
|
|
|
if (CheckRedeclarationModuleOwnership(New, Old))
|
|
return true;
|
|
|
|
if (!getLangOpts().CPlusPlus) {
|
|
bool OldOvl = Old->hasAttr<OverloadableAttr>();
|
|
if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
|
|
Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
|
|
<< New << OldOvl;
|
|
|
|
// Try our best to find a decl that actually has the overloadable
|
|
// attribute for the note. In most cases (e.g. programs with only one
|
|
// broken declaration/definition), this won't matter.
|
|
//
|
|
// FIXME: We could do this if we juggled some extra state in
|
|
// OverloadableAttr, rather than just removing it.
|
|
const Decl *DiagOld = Old;
|
|
if (OldOvl) {
|
|
auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
|
|
const auto *A = D->getAttr<OverloadableAttr>();
|
|
return A && !A->isImplicit();
|
|
});
|
|
// If we've implicitly added *all* of the overloadable attrs to this
|
|
// chain, emitting a "previous redecl" note is pointless.
|
|
DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
|
|
}
|
|
|
|
if (DiagOld)
|
|
Diag(DiagOld->getLocation(),
|
|
diag::note_attribute_overloadable_prev_overload)
|
|
<< OldOvl;
|
|
|
|
if (OldOvl)
|
|
New->addAttr(OverloadableAttr::CreateImplicit(Context));
|
|
else
|
|
New->dropAttr<OverloadableAttr>();
|
|
}
|
|
}
|
|
|
|
// If a function is first declared with a calling convention, but is later
|
|
// declared or defined without one, all following decls assume the calling
|
|
// convention of the first.
|
|
//
|
|
// It's OK if a function is first declared without a calling convention,
|
|
// but is later declared or defined with the default calling convention.
|
|
//
|
|
// To test if either decl has an explicit calling convention, we look for
|
|
// AttributedType sugar nodes on the type as written. If they are missing or
|
|
// were canonicalized away, we assume the calling convention was implicit.
|
|
//
|
|
// Note also that we DO NOT return at this point, because we still have
|
|
// other tests to run.
|
|
QualType OldQType = Context.getCanonicalType(Old->getType());
|
|
QualType NewQType = Context.getCanonicalType(New->getType());
|
|
const FunctionType *OldType = cast<FunctionType>(OldQType);
|
|
const FunctionType *NewType = cast<FunctionType>(NewQType);
|
|
FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
|
|
FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
|
|
bool RequiresAdjustment = false;
|
|
|
|
if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
|
|
FunctionDecl *First = Old->getFirstDecl();
|
|
const FunctionType *FT =
|
|
First->getType().getCanonicalType()->castAs<FunctionType>();
|
|
FunctionType::ExtInfo FI = FT->getExtInfo();
|
|
bool NewCCExplicit = getCallingConvAttributedType(New->getType());
|
|
if (!NewCCExplicit) {
|
|
// Inherit the CC from the previous declaration if it was specified
|
|
// there but not here.
|
|
NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
|
|
RequiresAdjustment = true;
|
|
} else if (New->getBuiltinID()) {
|
|
// Calling Conventions on a Builtin aren't really useful and setting a
|
|
// default calling convention and cdecl'ing some builtin redeclarations is
|
|
// common, so warn and ignore the calling convention on the redeclaration.
|
|
Diag(New->getLocation(), diag::warn_cconv_ignored)
|
|
<< FunctionType::getNameForCallConv(NewTypeInfo.getCC())
|
|
<< (int)CallingConventionIgnoredReason::BuiltinFunction;
|
|
NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
|
|
RequiresAdjustment = true;
|
|
} else {
|
|
// Calling conventions aren't compatible, so complain.
|
|
bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
|
|
Diag(New->getLocation(), diag::err_cconv_change)
|
|
<< FunctionType::getNameForCallConv(NewTypeInfo.getCC())
|
|
<< !FirstCCExplicit
|
|
<< (!FirstCCExplicit ? "" :
|
|
FunctionType::getNameForCallConv(FI.getCC()));
|
|
|
|
// Put the note on the first decl, since it is the one that matters.
|
|
Diag(First->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// FIXME: diagnose the other way around?
|
|
if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
|
|
NewTypeInfo = NewTypeInfo.withNoReturn(true);
|
|
RequiresAdjustment = true;
|
|
}
|
|
|
|
// Merge regparm attribute.
|
|
if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
|
|
OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
|
|
if (NewTypeInfo.getHasRegParm()) {
|
|
Diag(New->getLocation(), diag::err_regparm_mismatch)
|
|
<< NewType->getRegParmType()
|
|
<< OldType->getRegParmType();
|
|
Diag(OldLocation, diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
|
|
RequiresAdjustment = true;
|
|
}
|
|
|
|
// Merge ns_returns_retained attribute.
|
|
if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
|
|
if (NewTypeInfo.getProducesResult()) {
|
|
Diag(New->getLocation(), diag::err_function_attribute_mismatch)
|
|
<< "'ns_returns_retained'";
|
|
Diag(OldLocation, diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
NewTypeInfo = NewTypeInfo.withProducesResult(true);
|
|
RequiresAdjustment = true;
|
|
}
|
|
|
|
if (OldTypeInfo.getNoCallerSavedRegs() !=
|
|
NewTypeInfo.getNoCallerSavedRegs()) {
|
|
if (NewTypeInfo.getNoCallerSavedRegs()) {
|
|
AnyX86NoCallerSavedRegistersAttr *Attr =
|
|
New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
|
|
Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
|
|
Diag(OldLocation, diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
|
|
RequiresAdjustment = true;
|
|
}
|
|
|
|
if (RequiresAdjustment) {
|
|
const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
|
|
AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
|
|
New->setType(QualType(AdjustedType, 0));
|
|
NewQType = Context.getCanonicalType(New->getType());
|
|
NewType = cast<FunctionType>(NewQType);
|
|
}
|
|
|
|
// If this redeclaration makes the function inline, we may need to add it to
|
|
// UndefinedButUsed.
|
|
if (!Old->isInlined() && New->isInlined() &&
|
|
!New->hasAttr<GNUInlineAttr>() &&
|
|
!getLangOpts().GNUInline &&
|
|
Old->isUsed(false) &&
|
|
!Old->isDefined() && !New->isThisDeclarationADefinition())
|
|
UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
|
|
SourceLocation()));
|
|
|
|
// If this redeclaration makes it newly gnu_inline, we don't want to warn
|
|
// about it.
|
|
if (New->hasAttr<GNUInlineAttr>() &&
|
|
Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
|
|
UndefinedButUsed.erase(Old->getCanonicalDecl());
|
|
}
|
|
|
|
// If pass_object_size params don't match up perfectly, this isn't a valid
|
|
// redeclaration.
|
|
if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
|
|
!hasIdenticalPassObjectSizeAttrs(Old, New)) {
|
|
Diag(New->getLocation(), diag::err_different_pass_object_size_params)
|
|
<< New->getDeclName();
|
|
Diag(OldLocation, PrevDiag) << Old << Old->getType();
|
|
return true;
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++1z [over.load]p2
|
|
// Certain function declarations cannot be overloaded:
|
|
// -- Function declarations that differ only in the return type,
|
|
// the exception specification, or both cannot be overloaded.
|
|
|
|
// Check the exception specifications match. This may recompute the type of
|
|
// both Old and New if it resolved exception specifications, so grab the
|
|
// types again after this. Because this updates the type, we do this before
|
|
// any of the other checks below, which may update the "de facto" NewQType
|
|
// but do not necessarily update the type of New.
|
|
if (CheckEquivalentExceptionSpec(Old, New))
|
|
return true;
|
|
OldQType = Context.getCanonicalType(Old->getType());
|
|
NewQType = Context.getCanonicalType(New->getType());
|
|
|
|
// Go back to the type source info to compare the declared return types,
|
|
// per C++1y [dcl.type.auto]p13:
|
|
// Redeclarations or specializations of a function or function template
|
|
// with a declared return type that uses a placeholder type shall also
|
|
// use that placeholder, not a deduced type.
|
|
QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
|
|
QualType NewDeclaredReturnType = New->getDeclaredReturnType();
|
|
if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
|
|
canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
|
|
OldDeclaredReturnType)) {
|
|
QualType ResQT;
|
|
if (NewDeclaredReturnType->isObjCObjectPointerType() &&
|
|
OldDeclaredReturnType->isObjCObjectPointerType())
|
|
// FIXME: This does the wrong thing for a deduced return type.
|
|
ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
|
|
if (ResQT.isNull()) {
|
|
if (New->isCXXClassMember() && New->isOutOfLine())
|
|
Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
|
|
<< New << New->getReturnTypeSourceRange();
|
|
else
|
|
Diag(New->getLocation(), diag::err_ovl_diff_return_type)
|
|
<< New->getReturnTypeSourceRange();
|
|
Diag(OldLocation, PrevDiag) << Old << Old->getType()
|
|
<< Old->getReturnTypeSourceRange();
|
|
return true;
|
|
}
|
|
else
|
|
NewQType = ResQT;
|
|
}
|
|
|
|
QualType OldReturnType = OldType->getReturnType();
|
|
QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
|
|
if (OldReturnType != NewReturnType) {
|
|
// If this function has a deduced return type and has already been
|
|
// defined, copy the deduced value from the old declaration.
|
|
AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
|
|
if (OldAT && OldAT->isDeduced()) {
|
|
New->setType(
|
|
SubstAutoType(New->getType(),
|
|
OldAT->isDependentType() ? Context.DependentTy
|
|
: OldAT->getDeducedType()));
|
|
NewQType = Context.getCanonicalType(
|
|
SubstAutoType(NewQType,
|
|
OldAT->isDependentType() ? Context.DependentTy
|
|
: OldAT->getDeducedType()));
|
|
}
|
|
}
|
|
|
|
const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
|
|
CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
|
|
if (OldMethod && NewMethod) {
|
|
// Preserve triviality.
|
|
NewMethod->setTrivial(OldMethod->isTrivial());
|
|
|
|
// MSVC allows explicit template specialization at class scope:
|
|
// 2 CXXMethodDecls referring to the same function will be injected.
|
|
// We don't want a redeclaration error.
|
|
bool IsClassScopeExplicitSpecialization =
|
|
OldMethod->isFunctionTemplateSpecialization() &&
|
|
NewMethod->isFunctionTemplateSpecialization();
|
|
bool isFriend = NewMethod->getFriendObjectKind();
|
|
|
|
if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
|
|
!IsClassScopeExplicitSpecialization) {
|
|
// -- Member function declarations with the same name and the
|
|
// same parameter types cannot be overloaded if any of them
|
|
// is a static member function declaration.
|
|
if (OldMethod->isStatic() != NewMethod->isStatic()) {
|
|
Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
|
|
Diag(OldLocation, PrevDiag) << Old << Old->getType();
|
|
return true;
|
|
}
|
|
|
|
// C++ [class.mem]p1:
|
|
// [...] A member shall not be declared twice in the
|
|
// member-specification, except that a nested class or member
|
|
// class template can be declared and then later defined.
|
|
if (!inTemplateInstantiation()) {
|
|
unsigned NewDiag;
|
|
if (isa<CXXConstructorDecl>(OldMethod))
|
|
NewDiag = diag::err_constructor_redeclared;
|
|
else if (isa<CXXDestructorDecl>(NewMethod))
|
|
NewDiag = diag::err_destructor_redeclared;
|
|
else if (isa<CXXConversionDecl>(NewMethod))
|
|
NewDiag = diag::err_conv_function_redeclared;
|
|
else
|
|
NewDiag = diag::err_member_redeclared;
|
|
|
|
Diag(New->getLocation(), NewDiag);
|
|
} else {
|
|
Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
|
|
<< New << New->getType();
|
|
}
|
|
Diag(OldLocation, PrevDiag) << Old << Old->getType();
|
|
return true;
|
|
|
|
// Complain if this is an explicit declaration of a special
|
|
// member that was initially declared implicitly.
|
|
//
|
|
// As an exception, it's okay to befriend such methods in order
|
|
// to permit the implicit constructor/destructor/operator calls.
|
|
} else if (OldMethod->isImplicit()) {
|
|
if (isFriend) {
|
|
NewMethod->setImplicit();
|
|
} else {
|
|
Diag(NewMethod->getLocation(),
|
|
diag::err_definition_of_implicitly_declared_member)
|
|
<< New << getSpecialMember(OldMethod);
|
|
return true;
|
|
}
|
|
} else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
|
|
Diag(NewMethod->getLocation(),
|
|
diag::err_definition_of_explicitly_defaulted_member)
|
|
<< getSpecialMember(OldMethod);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// C++11 [dcl.attr.noreturn]p1:
|
|
// The first declaration of a function shall specify the noreturn
|
|
// attribute if any declaration of that function specifies the noreturn
|
|
// attribute.
|
|
const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
|
|
if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
|
|
Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
|
|
Diag(Old->getFirstDecl()->getLocation(),
|
|
diag::note_noreturn_missing_first_decl);
|
|
}
|
|
|
|
// C++11 [dcl.attr.depend]p2:
|
|
// The first declaration of a function shall specify the
|
|
// carries_dependency attribute for its declarator-id if any declaration
|
|
// of the function specifies the carries_dependency attribute.
|
|
const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
|
|
if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
|
|
Diag(CDA->getLocation(),
|
|
diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
|
|
Diag(Old->getFirstDecl()->getLocation(),
|
|
diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
|
|
}
|
|
|
|
// (C++98 8.3.5p3):
|
|
// All declarations for a function shall agree exactly in both the
|
|
// return type and the parameter-type-list.
|
|
// We also want to respect all the extended bits except noreturn.
|
|
|
|
// noreturn should now match unless the old type info didn't have it.
|
|
QualType OldQTypeForComparison = OldQType;
|
|
if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
|
|
auto *OldType = OldQType->castAs<FunctionProtoType>();
|
|
const FunctionType *OldTypeForComparison
|
|
= Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
|
|
OldQTypeForComparison = QualType(OldTypeForComparison, 0);
|
|
assert(OldQTypeForComparison.isCanonical());
|
|
}
|
|
|
|
if (haveIncompatibleLanguageLinkages(Old, New)) {
|
|
// As a special case, retain the language linkage from previous
|
|
// declarations of a friend function as an extension.
|
|
//
|
|
// This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
|
|
// and is useful because there's otherwise no way to specify language
|
|
// linkage within class scope.
|
|
//
|
|
// Check cautiously as the friend object kind isn't yet complete.
|
|
if (New->getFriendObjectKind() != Decl::FOK_None) {
|
|
Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
|
|
Diag(OldLocation, PrevDiag);
|
|
} else {
|
|
Diag(New->getLocation(), diag::err_different_language_linkage) << New;
|
|
Diag(OldLocation, PrevDiag);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (OldQTypeForComparison == NewQType)
|
|
return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
|
|
|
|
// If the types are imprecise (due to dependent constructs in friends or
|
|
// local extern declarations), it's OK if they differ. We'll check again
|
|
// during instantiation.
|
|
if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
|
|
return false;
|
|
|
|
// Fall through for conflicting redeclarations and redefinitions.
|
|
}
|
|
|
|
// C: Function types need to be compatible, not identical. This handles
|
|
// duplicate function decls like "void f(int); void f(enum X);" properly.
|
|
if (!getLangOpts().CPlusPlus &&
|
|
Context.typesAreCompatible(OldQType, NewQType)) {
|
|
const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
|
|
const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
|
|
const FunctionProtoType *OldProto = nullptr;
|
|
if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
|
|
(OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
|
|
// The old declaration provided a function prototype, but the
|
|
// new declaration does not. Merge in the prototype.
|
|
assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
|
|
SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
|
|
NewQType =
|
|
Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
|
|
OldProto->getExtProtoInfo());
|
|
New->setType(NewQType);
|
|
New->setHasInheritedPrototype();
|
|
|
|
// Synthesize parameters with the same types.
|
|
SmallVector<ParmVarDecl*, 16> Params;
|
|
for (const auto &ParamType : OldProto->param_types()) {
|
|
ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
|
|
SourceLocation(), nullptr,
|
|
ParamType, /*TInfo=*/nullptr,
|
|
SC_None, nullptr);
|
|
Param->setScopeInfo(0, Params.size());
|
|
Param->setImplicit();
|
|
Params.push_back(Param);
|
|
}
|
|
|
|
New->setParams(Params);
|
|
}
|
|
|
|
return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
|
|
}
|
|
|
|
// GNU C permits a K&R definition to follow a prototype declaration
|
|
// if the declared types of the parameters in the K&R definition
|
|
// match the types in the prototype declaration, even when the
|
|
// promoted types of the parameters from the K&R definition differ
|
|
// from the types in the prototype. GCC then keeps the types from
|
|
// the prototype.
|
|
//
|
|
// If a variadic prototype is followed by a non-variadic K&R definition,
|
|
// the K&R definition becomes variadic. This is sort of an edge case, but
|
|
// it's legal per the standard depending on how you read C99 6.7.5.3p15 and
|
|
// C99 6.9.1p8.
|
|
if (!getLangOpts().CPlusPlus &&
|
|
Old->hasPrototype() && !New->hasPrototype() &&
|
|
New->getType()->getAs<FunctionProtoType>() &&
|
|
Old->getNumParams() == New->getNumParams()) {
|
|
SmallVector<QualType, 16> ArgTypes;
|
|
SmallVector<GNUCompatibleParamWarning, 16> Warnings;
|
|
const FunctionProtoType *OldProto
|
|
= Old->getType()->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *NewProto
|
|
= New->getType()->getAs<FunctionProtoType>();
|
|
|
|
// Determine whether this is the GNU C extension.
|
|
QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
|
|
NewProto->getReturnType());
|
|
bool LooseCompatible = !MergedReturn.isNull();
|
|
for (unsigned Idx = 0, End = Old->getNumParams();
|
|
LooseCompatible && Idx != End; ++Idx) {
|
|
ParmVarDecl *OldParm = Old->getParamDecl(Idx);
|
|
ParmVarDecl *NewParm = New->getParamDecl(Idx);
|
|
if (Context.typesAreCompatible(OldParm->getType(),
|
|
NewProto->getParamType(Idx))) {
|
|
ArgTypes.push_back(NewParm->getType());
|
|
} else if (Context.typesAreCompatible(OldParm->getType(),
|
|
NewParm->getType(),
|
|
/*CompareUnqualified=*/true)) {
|
|
GNUCompatibleParamWarning Warn = { OldParm, NewParm,
|
|
NewProto->getParamType(Idx) };
|
|
Warnings.push_back(Warn);
|
|
ArgTypes.push_back(NewParm->getType());
|
|
} else
|
|
LooseCompatible = false;
|
|
}
|
|
|
|
if (LooseCompatible) {
|
|
for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
|
|
Diag(Warnings[Warn].NewParm->getLocation(),
|
|
diag::ext_param_promoted_not_compatible_with_prototype)
|
|
<< Warnings[Warn].PromotedType
|
|
<< Warnings[Warn].OldParm->getType();
|
|
if (Warnings[Warn].OldParm->getLocation().isValid())
|
|
Diag(Warnings[Warn].OldParm->getLocation(),
|
|
diag::note_previous_declaration);
|
|
}
|
|
|
|
if (MergeTypeWithOld)
|
|
New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
|
|
OldProto->getExtProtoInfo()));
|
|
return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
|
|
}
|
|
|
|
// Fall through to diagnose conflicting types.
|
|
}
|
|
|
|
// A function that has already been declared has been redeclared or
|
|
// defined with a different type; show an appropriate diagnostic.
|
|
|
|
// If the previous declaration was an implicitly-generated builtin
|
|
// declaration, then at the very least we should use a specialized note.
|
|
unsigned BuiltinID;
|
|
if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
|
|
// If it's actually a library-defined builtin function like 'malloc'
|
|
// or 'printf', just warn about the incompatible redeclaration.
|
|
if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
|
|
Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
|
|
Diag(OldLocation, diag::note_previous_builtin_declaration)
|
|
<< Old << Old->getType();
|
|
|
|
// If this is a global redeclaration, just forget hereafter
|
|
// about the "builtin-ness" of the function.
|
|
//
|
|
// Doing this for local extern declarations is problematic. If
|
|
// the builtin declaration remains visible, a second invalid
|
|
// local declaration will produce a hard error; if it doesn't
|
|
// remain visible, a single bogus local redeclaration (which is
|
|
// actually only a warning) could break all the downstream code.
|
|
if (!New->getLexicalDeclContext()->isFunctionOrMethod())
|
|
New->getIdentifier()->revertBuiltin();
|
|
|
|
return false;
|
|
}
|
|
|
|
PrevDiag = diag::note_previous_builtin_declaration;
|
|
}
|
|
|
|
Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
|
|
Diag(OldLocation, PrevDiag) << Old << Old->getType();
|
|
return true;
|
|
}
|
|
|
|
/// Completes the merge of two function declarations that are
|
|
/// known to be compatible.
|
|
///
|
|
/// This routine handles the merging of attributes and other
|
|
/// properties of function declarations from the old declaration to
|
|
/// the new declaration, once we know that New is in fact a
|
|
/// redeclaration of Old.
|
|
///
|
|
/// \returns false
|
|
bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
|
|
Scope *S, bool MergeTypeWithOld) {
|
|
// Merge the attributes
|
|
mergeDeclAttributes(New, Old);
|
|
|
|
// Merge "pure" flag.
|
|
if (Old->isPure())
|
|
New->setPure();
|
|
|
|
// Merge "used" flag.
|
|
if (Old->getMostRecentDecl()->isUsed(false))
|
|
New->setIsUsed();
|
|
|
|
// Merge attributes from the parameters. These can mismatch with K&R
|
|
// declarations.
|
|
if (New->getNumParams() == Old->getNumParams())
|
|
for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
|
|
ParmVarDecl *NewParam = New->getParamDecl(i);
|
|
ParmVarDecl *OldParam = Old->getParamDecl(i);
|
|
mergeParamDeclAttributes(NewParam, OldParam, *this);
|
|
mergeParamDeclTypes(NewParam, OldParam, *this);
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus)
|
|
return MergeCXXFunctionDecl(New, Old, S);
|
|
|
|
// Merge the function types so the we get the composite types for the return
|
|
// and argument types. Per C11 6.2.7/4, only update the type if the old decl
|
|
// was visible.
|
|
QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
|
|
if (!Merged.isNull() && MergeTypeWithOld)
|
|
New->setType(Merged);
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
|
|
ObjCMethodDecl *oldMethod) {
|
|
// Merge the attributes, including deprecated/unavailable
|
|
AvailabilityMergeKind MergeKind =
|
|
isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
|
|
? AMK_ProtocolImplementation
|
|
: isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
|
|
: AMK_Override;
|
|
|
|
mergeDeclAttributes(newMethod, oldMethod, MergeKind);
|
|
|
|
// Merge attributes from the parameters.
|
|
ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
|
|
oe = oldMethod->param_end();
|
|
for (ObjCMethodDecl::param_iterator
|
|
ni = newMethod->param_begin(), ne = newMethod->param_end();
|
|
ni != ne && oi != oe; ++ni, ++oi)
|
|
mergeParamDeclAttributes(*ni, *oi, *this);
|
|
|
|
CheckObjCMethodOverride(newMethod, oldMethod);
|
|
}
|
|
|
|
static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
|
|
assert(!S.Context.hasSameType(New->getType(), Old->getType()));
|
|
|
|
S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
|
|
? diag::err_redefinition_different_type
|
|
: diag::err_redeclaration_different_type)
|
|
<< New->getDeclName() << New->getType() << Old->getType();
|
|
|
|
diag::kind PrevDiag;
|
|
SourceLocation OldLocation;
|
|
std::tie(PrevDiag, OldLocation)
|
|
= getNoteDiagForInvalidRedeclaration(Old, New);
|
|
S.Diag(OldLocation, PrevDiag);
|
|
New->setInvalidDecl();
|
|
}
|
|
|
|
/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
|
|
/// scope as a previous declaration 'Old'. Figure out how to merge their types,
|
|
/// emitting diagnostics as appropriate.
|
|
///
|
|
/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
|
|
/// to here in AddInitializerToDecl. We can't check them before the initializer
|
|
/// is attached.
|
|
void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
|
|
bool MergeTypeWithOld) {
|
|
if (New->isInvalidDecl() || Old->isInvalidDecl())
|
|
return;
|
|
|
|
QualType MergedT;
|
|
if (getLangOpts().CPlusPlus) {
|
|
if (New->getType()->isUndeducedType()) {
|
|
// We don't know what the new type is until the initializer is attached.
|
|
return;
|
|
} else if (Context.hasSameType(New->getType(), Old->getType())) {
|
|
// These could still be something that needs exception specs checked.
|
|
return MergeVarDeclExceptionSpecs(New, Old);
|
|
}
|
|
// C++ [basic.link]p10:
|
|
// [...] the types specified by all declarations referring to a given
|
|
// object or function shall be identical, except that declarations for an
|
|
// array object can specify array types that differ by the presence or
|
|
// absence of a major array bound (8.3.4).
|
|
else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
|
|
const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
|
|
const ArrayType *NewArray = Context.getAsArrayType(New->getType());
|
|
|
|
// We are merging a variable declaration New into Old. If it has an array
|
|
// bound, and that bound differs from Old's bound, we should diagnose the
|
|
// mismatch.
|
|
if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
|
|
for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
|
|
PrevVD = PrevVD->getPreviousDecl()) {
|
|
const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
|
|
if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
|
|
continue;
|
|
|
|
if (!Context.hasSameType(NewArray, PrevVDTy))
|
|
return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
|
|
}
|
|
}
|
|
|
|
if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
|
|
if (Context.hasSameType(OldArray->getElementType(),
|
|
NewArray->getElementType()))
|
|
MergedT = New->getType();
|
|
}
|
|
// FIXME: Check visibility. New is hidden but has a complete type. If New
|
|
// has no array bound, it should not inherit one from Old, if Old is not
|
|
// visible.
|
|
else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
|
|
if (Context.hasSameType(OldArray->getElementType(),
|
|
NewArray->getElementType()))
|
|
MergedT = Old->getType();
|
|
}
|
|
}
|
|
else if (New->getType()->isObjCObjectPointerType() &&
|
|
Old->getType()->isObjCObjectPointerType()) {
|
|
MergedT = Context.mergeObjCGCQualifiers(New->getType(),
|
|
Old->getType());
|
|
}
|
|
} else {
|
|
// C 6.2.7p2:
|
|
// All declarations that refer to the same object or function shall have
|
|
// compatible type.
|
|
MergedT = Context.mergeTypes(New->getType(), Old->getType());
|
|
}
|
|
if (MergedT.isNull()) {
|
|
// It's OK if we couldn't merge types if either type is dependent, for a
|
|
// block-scope variable. In other cases (static data members of class
|
|
// templates, variable templates, ...), we require the types to be
|
|
// equivalent.
|
|
// FIXME: The C++ standard doesn't say anything about this.
|
|
if ((New->getType()->isDependentType() ||
|
|
Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
|
|
// If the old type was dependent, we can't merge with it, so the new type
|
|
// becomes dependent for now. We'll reproduce the original type when we
|
|
// instantiate the TypeSourceInfo for the variable.
|
|
if (!New->getType()->isDependentType() && MergeTypeWithOld)
|
|
New->setType(Context.DependentTy);
|
|
return;
|
|
}
|
|
return diagnoseVarDeclTypeMismatch(*this, New, Old);
|
|
}
|
|
|
|
// Don't actually update the type on the new declaration if the old
|
|
// declaration was an extern declaration in a different scope.
|
|
if (MergeTypeWithOld)
|
|
New->setType(MergedT);
|
|
}
|
|
|
|
static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
|
|
LookupResult &Previous) {
|
|
// C11 6.2.7p4:
|
|
// For an identifier with internal or external linkage declared
|
|
// in a scope in which a prior declaration of that identifier is
|
|
// visible, if the prior declaration specifies internal or
|
|
// external linkage, the type of the identifier at the later
|
|
// declaration becomes the composite type.
|
|
//
|
|
// If the variable isn't visible, we do not merge with its type.
|
|
if (Previous.isShadowed())
|
|
return false;
|
|
|
|
if (S.getLangOpts().CPlusPlus) {
|
|
// C++11 [dcl.array]p3:
|
|
// If there is a preceding declaration of the entity in the same
|
|
// scope in which the bound was specified, an omitted array bound
|
|
// is taken to be the same as in that earlier declaration.
|
|
return NewVD->isPreviousDeclInSameBlockScope() ||
|
|
(!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
|
|
!NewVD->getLexicalDeclContext()->isFunctionOrMethod());
|
|
} else {
|
|
// If the old declaration was function-local, don't merge with its
|
|
// type unless we're in the same function.
|
|
return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
|
|
OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
|
|
}
|
|
}
|
|
|
|
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
|
|
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
|
/// situation, merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
/// Tentative definition rules (C99 6.9.2p2) are checked by
|
|
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
|
|
/// definitions here, since the initializer hasn't been attached.
|
|
///
|
|
void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
|
|
// If the new decl is already invalid, don't do any other checking.
|
|
if (New->isInvalidDecl())
|
|
return;
|
|
|
|
if (!shouldLinkPossiblyHiddenDecl(Previous, New))
|
|
return;
|
|
|
|
VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
|
|
|
|
// Verify the old decl was also a variable or variable template.
|
|
VarDecl *Old = nullptr;
|
|
VarTemplateDecl *OldTemplate = nullptr;
|
|
if (Previous.isSingleResult()) {
|
|
if (NewTemplate) {
|
|
OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
|
|
Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
|
|
|
|
if (auto *Shadow =
|
|
dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
|
|
if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
|
|
return New->setInvalidDecl();
|
|
} else {
|
|
Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
|
|
|
|
if (auto *Shadow =
|
|
dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
|
|
if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
|
|
return New->setInvalidDecl();
|
|
}
|
|
}
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
|
<< New->getDeclName();
|
|
notePreviousDefinition(Previous.getRepresentativeDecl(),
|
|
New->getLocation());
|
|
return New->setInvalidDecl();
|
|
}
|
|
|
|
// Ensure the template parameters are compatible.
|
|
if (NewTemplate &&
|
|
!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
|
|
OldTemplate->getTemplateParameters(),
|
|
/*Complain=*/true, TPL_TemplateMatch))
|
|
return New->setInvalidDecl();
|
|
|
|
// C++ [class.mem]p1:
|
|
// A member shall not be declared twice in the member-specification [...]
|
|
//
|
|
// Here, we need only consider static data members.
|
|
if (Old->isStaticDataMember() && !New->isOutOfLine()) {
|
|
Diag(New->getLocation(), diag::err_duplicate_member)
|
|
<< New->getIdentifier();
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
New->setInvalidDecl();
|
|
}
|
|
|
|
mergeDeclAttributes(New, Old);
|
|
// Warn if an already-declared variable is made a weak_import in a subsequent
|
|
// declaration
|
|
if (New->hasAttr<WeakImportAttr>() &&
|
|
Old->getStorageClass() == SC_None &&
|
|
!Old->hasAttr<WeakImportAttr>()) {
|
|
Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
// Remove weak_import attribute on new declaration.
|
|
New->dropAttr<WeakImportAttr>();
|
|
}
|
|
|
|
if (New->hasAttr<InternalLinkageAttr>() &&
|
|
!Old->hasAttr<InternalLinkageAttr>()) {
|
|
Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
|
|
<< New->getDeclName();
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
New->dropAttr<InternalLinkageAttr>();
|
|
}
|
|
|
|
// Merge the types.
|
|
VarDecl *MostRecent = Old->getMostRecentDecl();
|
|
if (MostRecent != Old) {
|
|
MergeVarDeclTypes(New, MostRecent,
|
|
mergeTypeWithPrevious(*this, New, MostRecent, Previous));
|
|
if (New->isInvalidDecl())
|
|
return;
|
|
}
|
|
|
|
MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
|
|
if (New->isInvalidDecl())
|
|
return;
|
|
|
|
diag::kind PrevDiag;
|
|
SourceLocation OldLocation;
|
|
std::tie(PrevDiag, OldLocation) =
|
|
getNoteDiagForInvalidRedeclaration(Old, New);
|
|
|
|
// [dcl.stc]p8: Check if we have a non-static decl followed by a static.
|
|
if (New->getStorageClass() == SC_Static &&
|
|
!New->isStaticDataMember() &&
|
|
Old->hasExternalFormalLinkage()) {
|
|
if (getLangOpts().MicrosoftExt) {
|
|
Diag(New->getLocation(), diag::ext_static_non_static)
|
|
<< New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
} else {
|
|
Diag(New->getLocation(), diag::err_static_non_static)
|
|
<< New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
return New->setInvalidDecl();
|
|
}
|
|
}
|
|
// C99 6.2.2p4:
|
|
// For an identifier declared with the storage-class specifier
|
|
// extern in a scope in which a prior declaration of that
|
|
// identifier is visible,23) if the prior declaration specifies
|
|
// internal or external linkage, the linkage of the identifier at
|
|
// the later declaration is the same as the linkage specified at
|
|
// the prior declaration. If no prior declaration is visible, or
|
|
// if the prior declaration specifies no linkage, then the
|
|
// identifier has external linkage.
|
|
if (New->hasExternalStorage() && Old->hasLinkage())
|
|
/* Okay */;
|
|
else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
|
|
!New->isStaticDataMember() &&
|
|
Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
|
|
Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
return New->setInvalidDecl();
|
|
}
|
|
|
|
// Check if extern is followed by non-extern and vice-versa.
|
|
if (New->hasExternalStorage() &&
|
|
!Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
|
|
Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
return New->setInvalidDecl();
|
|
}
|
|
if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
|
|
!New->hasExternalStorage()) {
|
|
Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
return New->setInvalidDecl();
|
|
}
|
|
|
|
if (CheckRedeclarationModuleOwnership(New, Old))
|
|
return;
|
|
|
|
// Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
|
|
|
|
// FIXME: The test for external storage here seems wrong? We still
|
|
// need to check for mismatches.
|
|
if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
|
|
// Don't complain about out-of-line definitions of static members.
|
|
!(Old->getLexicalDeclContext()->isRecord() &&
|
|
!New->getLexicalDeclContext()->isRecord())) {
|
|
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
return New->setInvalidDecl();
|
|
}
|
|
|
|
if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
|
|
if (VarDecl *Def = Old->getDefinition()) {
|
|
// C++1z [dcl.fcn.spec]p4:
|
|
// If the definition of a variable appears in a translation unit before
|
|
// its first declaration as inline, the program is ill-formed.
|
|
Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
}
|
|
}
|
|
|
|
// If this redeclaration makes the variable inline, we may need to add it to
|
|
// UndefinedButUsed.
|
|
if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
|
|
!Old->getDefinition() && !New->isThisDeclarationADefinition())
|
|
UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
|
|
SourceLocation()));
|
|
|
|
if (New->getTLSKind() != Old->getTLSKind()) {
|
|
if (!Old->getTLSKind()) {
|
|
Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
} else if (!New->getTLSKind()) {
|
|
Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
|
|
Diag(OldLocation, PrevDiag);
|
|
} else {
|
|
// Do not allow redeclaration to change the variable between requiring
|
|
// static and dynamic initialization.
|
|
// FIXME: GCC allows this, but uses the TLS keyword on the first
|
|
// declaration to determine the kind. Do we need to be compatible here?
|
|
Diag(New->getLocation(), diag::err_thread_thread_different_kind)
|
|
<< New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
|
|
Diag(OldLocation, PrevDiag);
|
|
}
|
|
}
|
|
|
|
// C++ doesn't have tentative definitions, so go right ahead and check here.
|
|
if (getLangOpts().CPlusPlus &&
|
|
New->isThisDeclarationADefinition() == VarDecl::Definition) {
|
|
if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
|
|
Old->getCanonicalDecl()->isConstexpr()) {
|
|
// This definition won't be a definition any more once it's been merged.
|
|
Diag(New->getLocation(),
|
|
diag::warn_deprecated_redundant_constexpr_static_def);
|
|
} else if (VarDecl *Def = Old->getDefinition()) {
|
|
if (checkVarDeclRedefinition(Def, New))
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (haveIncompatibleLanguageLinkages(Old, New)) {
|
|
Diag(New->getLocation(), diag::err_different_language_linkage) << New;
|
|
Diag(OldLocation, PrevDiag);
|
|
New->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Merge "used" flag.
|
|
if (Old->getMostRecentDecl()->isUsed(false))
|
|
New->setIsUsed();
|
|
|
|
// Keep a chain of previous declarations.
|
|
New->setPreviousDecl(Old);
|
|
if (NewTemplate)
|
|
NewTemplate->setPreviousDecl(OldTemplate);
|
|
adjustDeclContextForDeclaratorDecl(New, Old);
|
|
|
|
// Inherit access appropriately.
|
|
New->setAccess(Old->getAccess());
|
|
if (NewTemplate)
|
|
NewTemplate->setAccess(New->getAccess());
|
|
|
|
if (Old->isInline())
|
|
New->setImplicitlyInline();
|
|
}
|
|
|
|
void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
|
|
SourceManager &SrcMgr = getSourceManager();
|
|
auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
|
|
auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
|
|
auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
|
|
auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
|
|
auto &HSI = PP.getHeaderSearchInfo();
|
|
StringRef HdrFilename =
|
|
SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
|
|
|
|
auto noteFromModuleOrInclude = [&](Module *Mod,
|
|
SourceLocation IncLoc) -> bool {
|
|
// Redefinition errors with modules are common with non modular mapped
|
|
// headers, example: a non-modular header H in module A that also gets
|
|
// included directly in a TU. Pointing twice to the same header/definition
|
|
// is confusing, try to get better diagnostics when modules is on.
|
|
if (IncLoc.isValid()) {
|
|
if (Mod) {
|
|
Diag(IncLoc, diag::note_redefinition_modules_same_file)
|
|
<< HdrFilename.str() << Mod->getFullModuleName();
|
|
if (!Mod->DefinitionLoc.isInvalid())
|
|
Diag(Mod->DefinitionLoc, diag::note_defined_here)
|
|
<< Mod->getFullModuleName();
|
|
} else {
|
|
Diag(IncLoc, diag::note_redefinition_include_same_file)
|
|
<< HdrFilename.str();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Is it the same file and same offset? Provide more information on why
|
|
// this leads to a redefinition error.
|
|
bool EmittedDiag = false;
|
|
if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
|
|
SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
|
|
SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
|
|
EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
|
|
EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
|
|
|
|
// If the header has no guards, emit a note suggesting one.
|
|
if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
|
|
Diag(Old->getLocation(), diag::note_use_ifdef_guards);
|
|
|
|
if (EmittedDiag)
|
|
return;
|
|
}
|
|
|
|
// Redefinition coming from different files or couldn't do better above.
|
|
if (Old->getLocation().isValid())
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
}
|
|
|
|
/// We've just determined that \p Old and \p New both appear to be definitions
|
|
/// of the same variable. Either diagnose or fix the problem.
|
|
bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
|
|
if (!hasVisibleDefinition(Old) &&
|
|
(New->getFormalLinkage() == InternalLinkage ||
|
|
New->isInline() ||
|
|
New->getDescribedVarTemplate() ||
|
|
New->getNumTemplateParameterLists() ||
|
|
New->getDeclContext()->isDependentContext())) {
|
|
// The previous definition is hidden, and multiple definitions are
|
|
// permitted (in separate TUs). Demote this to a declaration.
|
|
New->demoteThisDefinitionToDeclaration();
|
|
|
|
// Make the canonical definition visible.
|
|
if (auto *OldTD = Old->getDescribedVarTemplate())
|
|
makeMergedDefinitionVisible(OldTD);
|
|
makeMergedDefinitionVisible(Old);
|
|
return false;
|
|
} else {
|
|
Diag(New->getLocation(), diag::err_redefinition) << New;
|
|
notePreviousDefinition(Old, New->getLocation());
|
|
New->setInvalidDecl();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
|
|
/// no declarator (e.g. "struct foo;") is parsed.
|
|
Decl *
|
|
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
|
|
RecordDecl *&AnonRecord) {
|
|
return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
|
|
AnonRecord);
|
|
}
|
|
|
|
// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
|
|
// disambiguate entities defined in different scopes.
|
|
// While the VS2015 ABI fixes potential miscompiles, it is also breaks
|
|
// compatibility.
|
|
// We will pick our mangling number depending on which version of MSVC is being
|
|
// targeted.
|
|
static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
|
|
return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
|
|
? S->getMSCurManglingNumber()
|
|
: S->getMSLastManglingNumber();
|
|
}
|
|
|
|
void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
|
|
if (!Context.getLangOpts().CPlusPlus)
|
|
return;
|
|
|
|
if (isa<CXXRecordDecl>(Tag->getParent())) {
|
|
// If this tag is the direct child of a class, number it if
|
|
// it is anonymous.
|
|
if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
|
|
return;
|
|
MangleNumberingContext &MCtx =
|
|
Context.getManglingNumberContext(Tag->getParent());
|
|
Context.setManglingNumber(
|
|
Tag, MCtx.getManglingNumber(
|
|
Tag, getMSManglingNumber(getLangOpts(), TagScope)));
|
|
return;
|
|
}
|
|
|
|
// If this tag isn't a direct child of a class, number it if it is local.
|
|
Decl *ManglingContextDecl;
|
|
if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
|
|
Tag->getDeclContext(), ManglingContextDecl)) {
|
|
Context.setManglingNumber(
|
|
Tag, MCtx->getManglingNumber(
|
|
Tag, getMSManglingNumber(getLangOpts(), TagScope)));
|
|
}
|
|
}
|
|
|
|
void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
|
|
TypedefNameDecl *NewTD) {
|
|
if (TagFromDeclSpec->isInvalidDecl())
|
|
return;
|
|
|
|
// Do nothing if the tag already has a name for linkage purposes.
|
|
if (TagFromDeclSpec->hasNameForLinkage())
|
|
return;
|
|
|
|
// A well-formed anonymous tag must always be a TUK_Definition.
|
|
assert(TagFromDeclSpec->isThisDeclarationADefinition());
|
|
|
|
// The type must match the tag exactly; no qualifiers allowed.
|
|
if (!Context.hasSameType(NewTD->getUnderlyingType(),
|
|
Context.getTagDeclType(TagFromDeclSpec))) {
|
|
if (getLangOpts().CPlusPlus)
|
|
Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
|
|
return;
|
|
}
|
|
|
|
// If we've already computed linkage for the anonymous tag, then
|
|
// adding a typedef name for the anonymous decl can change that
|
|
// linkage, which might be a serious problem. Diagnose this as
|
|
// unsupported and ignore the typedef name. TODO: we should
|
|
// pursue this as a language defect and establish a formal rule
|
|
// for how to handle it.
|
|
if (TagFromDeclSpec->hasLinkageBeenComputed()) {
|
|
Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
|
|
|
|
SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
|
|
tagLoc = getLocForEndOfToken(tagLoc);
|
|
|
|
llvm::SmallString<40> textToInsert;
|
|
textToInsert += ' ';
|
|
textToInsert += NewTD->getIdentifier()->getName();
|
|
Diag(tagLoc, diag::note_typedef_changes_linkage)
|
|
<< FixItHint::CreateInsertion(tagLoc, textToInsert);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, set this is the anon-decl typedef for the tag.
|
|
TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
|
|
}
|
|
|
|
static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
|
|
switch (T) {
|
|
case DeclSpec::TST_class:
|
|
return 0;
|
|
case DeclSpec::TST_struct:
|
|
return 1;
|
|
case DeclSpec::TST_interface:
|
|
return 2;
|
|
case DeclSpec::TST_union:
|
|
return 3;
|
|
case DeclSpec::TST_enum:
|
|
return 4;
|
|
default:
|
|
llvm_unreachable("unexpected type specifier");
|
|
}
|
|
}
|
|
|
|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
|
|
/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
|
|
/// parameters to cope with template friend declarations.
|
|
Decl *
|
|
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
|
|
MultiTemplateParamsArg TemplateParams,
|
|
bool IsExplicitInstantiation,
|
|
RecordDecl *&AnonRecord) {
|
|
Decl *TagD = nullptr;
|
|
TagDecl *Tag = nullptr;
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_class ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_struct ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_interface ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_union ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_enum) {
|
|
TagD = DS.getRepAsDecl();
|
|
|
|
if (!TagD) // We probably had an error
|
|
return nullptr;
|
|
|
|
// Note that the above type specs guarantee that the
|
|
// type rep is a Decl, whereas in many of the others
|
|
// it's a Type.
|
|
if (isa<TagDecl>(TagD))
|
|
Tag = cast<TagDecl>(TagD);
|
|
else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
|
|
Tag = CTD->getTemplatedDecl();
|
|
}
|
|
|
|
if (Tag) {
|
|
handleTagNumbering(Tag, S);
|
|
Tag->setFreeStanding();
|
|
if (Tag->isInvalidDecl())
|
|
return Tag;
|
|
}
|
|
|
|
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from object
|
|
// or incomplete types shall not be restrict-qualified."
|
|
if (TypeQuals & DeclSpec::TQ_restrict)
|
|
Diag(DS.getRestrictSpecLoc(),
|
|
diag::err_typecheck_invalid_restrict_not_pointer_noarg)
|
|
<< DS.getSourceRange();
|
|
}
|
|
|
|
if (DS.isInlineSpecified())
|
|
Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
|
|
<< getLangOpts().CPlusPlus17;
|
|
|
|
if (DS.isConstexprSpecified()) {
|
|
// C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
|
|
// and definitions of functions and variables.
|
|
if (Tag)
|
|
Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
|
|
<< GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
|
|
else
|
|
Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
|
|
// Don't emit warnings after this error.
|
|
return TagD;
|
|
}
|
|
|
|
DiagnoseFunctionSpecifiers(DS);
|
|
|
|
if (DS.isFriendSpecified()) {
|
|
// If we're dealing with a decl but not a TagDecl, assume that
|
|
// whatever routines created it handled the friendship aspect.
|
|
if (TagD && !Tag)
|
|
return nullptr;
|
|
return ActOnFriendTypeDecl(S, DS, TemplateParams);
|
|
}
|
|
|
|
const CXXScopeSpec &SS = DS.getTypeSpecScope();
|
|
bool IsExplicitSpecialization =
|
|
!TemplateParams.empty() && TemplateParams.back()->size() == 0;
|
|
if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
|
|
!IsExplicitInstantiation && !IsExplicitSpecialization &&
|
|
!isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
|
|
// Per C++ [dcl.type.elab]p1, a class declaration cannot have a
|
|
// nested-name-specifier unless it is an explicit instantiation
|
|
// or an explicit specialization.
|
|
//
|
|
// FIXME: We allow class template partial specializations here too, per the
|
|
// obvious intent of DR1819.
|
|
//
|
|
// Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
|
|
Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
|
|
<< GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
|
|
return nullptr;
|
|
}
|
|
|
|
// Track whether this decl-specifier declares anything.
|
|
bool DeclaresAnything = true;
|
|
|
|
// Handle anonymous struct definitions.
|
|
if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
|
|
if (!Record->getDeclName() && Record->isCompleteDefinition() &&
|
|
DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
|
|
if (getLangOpts().CPlusPlus ||
|
|
Record->getDeclContext()->isRecord()) {
|
|
// If CurContext is a DeclContext that can contain statements,
|
|
// RecursiveASTVisitor won't visit the decls that
|
|
// BuildAnonymousStructOrUnion() will put into CurContext.
|
|
// Also store them here so that they can be part of the
|
|
// DeclStmt that gets created in this case.
|
|
// FIXME: Also return the IndirectFieldDecls created by
|
|
// BuildAnonymousStructOr union, for the same reason?
|
|
if (CurContext->isFunctionOrMethod())
|
|
AnonRecord = Record;
|
|
return BuildAnonymousStructOrUnion(S, DS, AS, Record,
|
|
Context.getPrintingPolicy());
|
|
}
|
|
|
|
DeclaresAnything = false;
|
|
}
|
|
}
|
|
|
|
// C11 6.7.2.1p2:
|
|
// A struct-declaration that does not declare an anonymous structure or
|
|
// anonymous union shall contain a struct-declarator-list.
|
|
//
|
|
// This rule also existed in C89 and C99; the grammar for struct-declaration
|
|
// did not permit a struct-declaration without a struct-declarator-list.
|
|
if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
|
|
DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
|
|
// Check for Microsoft C extension: anonymous struct/union member.
|
|
// Handle 2 kinds of anonymous struct/union:
|
|
// struct STRUCT;
|
|
// union UNION;
|
|
// and
|
|
// STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
|
|
// UNION_TYPE; <- where UNION_TYPE is a typedef union.
|
|
if ((Tag && Tag->getDeclName()) ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_typename) {
|
|
RecordDecl *Record = nullptr;
|
|
if (Tag)
|
|
Record = dyn_cast<RecordDecl>(Tag);
|
|
else if (const RecordType *RT =
|
|
DS.getRepAsType().get()->getAsStructureType())
|
|
Record = RT->getDecl();
|
|
else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
|
|
Record = UT->getDecl();
|
|
|
|
if (Record && getLangOpts().MicrosoftExt) {
|
|
Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
|
|
<< Record->isUnion() << DS.getSourceRange();
|
|
return BuildMicrosoftCAnonymousStruct(S, DS, Record);
|
|
}
|
|
|
|
DeclaresAnything = false;
|
|
}
|
|
}
|
|
|
|
// Skip all the checks below if we have a type error.
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_error ||
|
|
(TagD && TagD->isInvalidDecl()))
|
|
return TagD;
|
|
|
|
if (getLangOpts().CPlusPlus &&
|
|
DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
|
|
if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
|
|
if (Enum->enumerator_begin() == Enum->enumerator_end() &&
|
|
!Enum->getIdentifier() && !Enum->isInvalidDecl())
|
|
DeclaresAnything = false;
|
|
|
|
if (!DS.isMissingDeclaratorOk()) {
|
|
// Customize diagnostic for a typedef missing a name.
|
|
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
|
|
Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
|
|
<< DS.getSourceRange();
|
|
else
|
|
DeclaresAnything = false;
|
|
}
|
|
|
|
if (DS.isModulePrivateSpecified() &&
|
|
Tag && Tag->getDeclContext()->isFunctionOrMethod())
|
|
Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
|
|
<< Tag->getTagKind()
|
|
<< FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
|
|
|
|
ActOnDocumentableDecl(TagD);
|
|
|
|
// C 6.7/2:
|
|
// A declaration [...] shall declare at least a declarator [...], a tag,
|
|
// or the members of an enumeration.
|
|
// C++ [dcl.dcl]p3:
|
|
// [If there are no declarators], and except for the declaration of an
|
|
// unnamed bit-field, the decl-specifier-seq shall introduce one or more
|
|
// names into the program, or shall redeclare a name introduced by a
|
|
// previous declaration.
|
|
if (!DeclaresAnything) {
|
|
// In C, we allow this as a (popular) extension / bug. Don't bother
|
|
// producing further diagnostics for redundant qualifiers after this.
|
|
Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
|
|
return TagD;
|
|
}
|
|
|
|
// C++ [dcl.stc]p1:
|
|
// If a storage-class-specifier appears in a decl-specifier-seq, [...] the
|
|
// init-declarator-list of the declaration shall not be empty.
|
|
// C++ [dcl.fct.spec]p1:
|
|
// If a cv-qualifier appears in a decl-specifier-seq, the
|
|
// init-declarator-list of the declaration shall not be empty.
|
|
//
|
|
// Spurious qualifiers here appear to be valid in C.
|
|
unsigned DiagID = diag::warn_standalone_specifier;
|
|
if (getLangOpts().CPlusPlus)
|
|
DiagID = diag::ext_standalone_specifier;
|
|
|
|
// Note that a linkage-specification sets a storage class, but
|
|
// 'extern "C" struct foo;' is actually valid and not theoretically
|
|
// useless.
|
|
if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
|
|
if (SCS == DeclSpec::SCS_mutable)
|
|
// Since mutable is not a viable storage class specifier in C, there is
|
|
// no reason to treat it as an extension. Instead, diagnose as an error.
|
|
Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
|
|
else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
|
|
Diag(DS.getStorageClassSpecLoc(), DiagID)
|
|
<< DeclSpec::getSpecifierName(SCS);
|
|
}
|
|
|
|
if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
|
|
Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
|
|
<< DeclSpec::getSpecifierName(TSCS);
|
|
if (DS.getTypeQualifiers()) {
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
|
|
Diag(DS.getConstSpecLoc(), DiagID) << "const";
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
|
|
Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
|
|
// Restrict is covered above.
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
|
|
Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
|
|
Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
|
|
}
|
|
|
|
// Warn about ignored type attributes, for example:
|
|
// __attribute__((aligned)) struct A;
|
|
// Attributes should be placed after tag to apply to type declaration.
|
|
if (!DS.getAttributes().empty()) {
|
|
DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
|
|
if (TypeSpecType == DeclSpec::TST_class ||
|
|
TypeSpecType == DeclSpec::TST_struct ||
|
|
TypeSpecType == DeclSpec::TST_interface ||
|
|
TypeSpecType == DeclSpec::TST_union ||
|
|
TypeSpecType == DeclSpec::TST_enum) {
|
|
for (const ParsedAttr &AL : DS.getAttributes())
|
|
Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
|
|
<< AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
|
|
}
|
|
}
|
|
|
|
return TagD;
|
|
}
|
|
|
|
/// We are trying to inject an anonymous member into the given scope;
|
|
/// check if there's an existing declaration that can't be overloaded.
|
|
///
|
|
/// \return true if this is a forbidden redeclaration
|
|
static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
|
|
Scope *S,
|
|
DeclContext *Owner,
|
|
DeclarationName Name,
|
|
SourceLocation NameLoc,
|
|
bool IsUnion) {
|
|
LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
|
|
Sema::ForVisibleRedeclaration);
|
|
if (!SemaRef.LookupName(R, S)) return false;
|
|
|
|
// Pick a representative declaration.
|
|
NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
|
|
assert(PrevDecl && "Expected a non-null Decl");
|
|
|
|
if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
|
|
return false;
|
|
|
|
SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
|
|
<< IsUnion << Name;
|
|
SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// InjectAnonymousStructOrUnionMembers - Inject the members of the
|
|
/// anonymous struct or union AnonRecord into the owning context Owner
|
|
/// and scope S. This routine will be invoked just after we realize
|
|
/// that an unnamed union or struct is actually an anonymous union or
|
|
/// struct, e.g.,
|
|
///
|
|
/// @code
|
|
/// union {
|
|
/// int i;
|
|
/// float f;
|
|
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
|
|
/// // f into the surrounding scope.x
|
|
/// @endcode
|
|
///
|
|
/// This routine is recursive, injecting the names of nested anonymous
|
|
/// structs/unions into the owning context and scope as well.
|
|
static bool
|
|
InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
|
|
RecordDecl *AnonRecord, AccessSpecifier AS,
|
|
SmallVectorImpl<NamedDecl *> &Chaining) {
|
|
bool Invalid = false;
|
|
|
|
// Look every FieldDecl and IndirectFieldDecl with a name.
|
|
for (auto *D : AnonRecord->decls()) {
|
|
if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
|
|
cast<NamedDecl>(D)->getDeclName()) {
|
|
ValueDecl *VD = cast<ValueDecl>(D);
|
|
if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
|
|
VD->getLocation(),
|
|
AnonRecord->isUnion())) {
|
|
// C++ [class.union]p2:
|
|
// The names of the members of an anonymous union shall be
|
|
// distinct from the names of any other entity in the
|
|
// scope in which the anonymous union is declared.
|
|
Invalid = true;
|
|
} else {
|
|
// C++ [class.union]p2:
|
|
// For the purpose of name lookup, after the anonymous union
|
|
// definition, the members of the anonymous union are
|
|
// considered to have been defined in the scope in which the
|
|
// anonymous union is declared.
|
|
unsigned OldChainingSize = Chaining.size();
|
|
if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
|
|
Chaining.append(IF->chain_begin(), IF->chain_end());
|
|
else
|
|
Chaining.push_back(VD);
|
|
|
|
assert(Chaining.size() >= 2);
|
|
NamedDecl **NamedChain =
|
|
new (SemaRef.Context)NamedDecl*[Chaining.size()];
|
|
for (unsigned i = 0; i < Chaining.size(); i++)
|
|
NamedChain[i] = Chaining[i];
|
|
|
|
IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
|
|
SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
|
|
VD->getType(), {NamedChain, Chaining.size()});
|
|
|
|
for (const auto *Attr : VD->attrs())
|
|
IndirectField->addAttr(Attr->clone(SemaRef.Context));
|
|
|
|
IndirectField->setAccess(AS);
|
|
IndirectField->setImplicit();
|
|
SemaRef.PushOnScopeChains(IndirectField, S);
|
|
|
|
// That includes picking up the appropriate access specifier.
|
|
if (AS != AS_none) IndirectField->setAccess(AS);
|
|
|
|
Chaining.resize(OldChainingSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
|
|
/// a VarDecl::StorageClass. Any error reporting is up to the caller:
|
|
/// illegal input values are mapped to SC_None.
|
|
static StorageClass
|
|
StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
|
|
DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
|
|
assert(StorageClassSpec != DeclSpec::SCS_typedef &&
|
|
"Parser allowed 'typedef' as storage class VarDecl.");
|
|
switch (StorageClassSpec) {
|
|
case DeclSpec::SCS_unspecified: return SC_None;
|
|
case DeclSpec::SCS_extern:
|
|
if (DS.isExternInLinkageSpec())
|
|
return SC_None;
|
|
return SC_Extern;
|
|
case DeclSpec::SCS_static: return SC_Static;
|
|
case DeclSpec::SCS_auto: return SC_Auto;
|
|
case DeclSpec::SCS_register: return SC_Register;
|
|
case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
|
|
// Illegal SCSs map to None: error reporting is up to the caller.
|
|
case DeclSpec::SCS_mutable: // Fall through.
|
|
case DeclSpec::SCS_typedef: return SC_None;
|
|
}
|
|
llvm_unreachable("unknown storage class specifier");
|
|
}
|
|
|
|
static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
|
|
assert(Record->hasInClassInitializer());
|
|
|
|
for (const auto *I : Record->decls()) {
|
|
const auto *FD = dyn_cast<FieldDecl>(I);
|
|
if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
|
|
FD = IFD->getAnonField();
|
|
if (FD && FD->hasInClassInitializer())
|
|
return FD->getLocation();
|
|
}
|
|
|
|
llvm_unreachable("couldn't find in-class initializer");
|
|
}
|
|
|
|
static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
|
|
SourceLocation DefaultInitLoc) {
|
|
if (!Parent->isUnion() || !Parent->hasInClassInitializer())
|
|
return;
|
|
|
|
S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
|
|
S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
|
|
}
|
|
|
|
static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
|
|
CXXRecordDecl *AnonUnion) {
|
|
if (!Parent->isUnion() || !Parent->hasInClassInitializer())
|
|
return;
|
|
|
|
checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
|
|
}
|
|
|
|
/// BuildAnonymousStructOrUnion - Handle the declaration of an
|
|
/// anonymous structure or union. Anonymous unions are a C++ feature
|
|
/// (C++ [class.union]) and a C11 feature; anonymous structures
|
|
/// are a C11 feature and GNU C++ extension.
|
|
Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
|
|
AccessSpecifier AS,
|
|
RecordDecl *Record,
|
|
const PrintingPolicy &Policy) {
|
|
DeclContext *Owner = Record->getDeclContext();
|
|
|
|
// Diagnose whether this anonymous struct/union is an extension.
|
|
if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
|
|
Diag(Record->getLocation(), diag::ext_anonymous_union);
|
|
else if (!Record->isUnion() && getLangOpts().CPlusPlus)
|
|
Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
|
|
else if (!Record->isUnion() && !getLangOpts().C11)
|
|
Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
|
|
|
|
// C and C++ require different kinds of checks for anonymous
|
|
// structs/unions.
|
|
bool Invalid = false;
|
|
if (getLangOpts().CPlusPlus) {
|
|
const char *PrevSpec = nullptr;
|
|
unsigned DiagID;
|
|
if (Record->isUnion()) {
|
|
// C++ [class.union]p6:
|
|
// C++17 [class.union.anon]p2:
|
|
// Anonymous unions declared in a named namespace or in the
|
|
// global namespace shall be declared static.
|
|
DeclContext *OwnerScope = Owner->getRedeclContext();
|
|
if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
|
|
(OwnerScope->isTranslationUnit() ||
|
|
(OwnerScope->isNamespace() &&
|
|
!cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
|
|
Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
|
|
<< FixItHint::CreateInsertion(Record->getLocation(), "static ");
|
|
|
|
// Recover by adding 'static'.
|
|
DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
|
|
PrevSpec, DiagID, Policy);
|
|
}
|
|
// C++ [class.union]p6:
|
|
// A storage class is not allowed in a declaration of an
|
|
// anonymous union in a class scope.
|
|
else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
|
|
isa<RecordDecl>(Owner)) {
|
|
Diag(DS.getStorageClassSpecLoc(),
|
|
diag::err_anonymous_union_with_storage_spec)
|
|
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
|
|
|
|
// Recover by removing the storage specifier.
|
|
DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
|
|
SourceLocation(),
|
|
PrevSpec, DiagID, Context.getPrintingPolicy());
|
|
}
|
|
}
|
|
|
|
// Ignore const/volatile/restrict qualifiers.
|
|
if (DS.getTypeQualifiers()) {
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
|
|
Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
|
|
<< Record->isUnion() << "const"
|
|
<< FixItHint::CreateRemoval(DS.getConstSpecLoc());
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
|
|
Diag(DS.getVolatileSpecLoc(),
|
|
diag::ext_anonymous_struct_union_qualified)
|
|
<< Record->isUnion() << "volatile"
|
|
<< FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
|
|
Diag(DS.getRestrictSpecLoc(),
|
|
diag::ext_anonymous_struct_union_qualified)
|
|
<< Record->isUnion() << "restrict"
|
|
<< FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
|
|
Diag(DS.getAtomicSpecLoc(),
|
|
diag::ext_anonymous_struct_union_qualified)
|
|
<< Record->isUnion() << "_Atomic"
|
|
<< FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
|
|
if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
|
|
Diag(DS.getUnalignedSpecLoc(),
|
|
diag::ext_anonymous_struct_union_qualified)
|
|
<< Record->isUnion() << "__unaligned"
|
|
<< FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
|
|
|
|
DS.ClearTypeQualifiers();
|
|
}
|
|
|
|
// C++ [class.union]p2:
|
|
// The member-specification of an anonymous union shall only
|
|
// define non-static data members. [Note: nested types and
|
|
// functions cannot be declared within an anonymous union. ]
|
|
for (auto *Mem : Record->decls()) {
|
|
if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
|
|
// C++ [class.union]p3:
|
|
// An anonymous union shall not have private or protected
|
|
// members (clause 11).
|
|
assert(FD->getAccess() != AS_none);
|
|
if (FD->getAccess() != AS_public) {
|
|
Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
|
|
<< Record->isUnion() << (FD->getAccess() == AS_protected);
|
|
Invalid = true;
|
|
}
|
|
|
|
// C++ [class.union]p1
|
|
// An object of a class with a non-trivial constructor, a non-trivial
|
|
// copy constructor, a non-trivial destructor, or a non-trivial copy
|
|
// assignment operator cannot be a member of a union, nor can an
|
|
// array of such objects.
|
|
if (CheckNontrivialField(FD))
|
|
Invalid = true;
|
|
} else if (Mem->isImplicit()) {
|
|
// Any implicit members are fine.
|
|
} else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
|
|
// This is a type that showed up in an
|
|
// elaborated-type-specifier inside the anonymous struct or
|
|
// union, but which actually declares a type outside of the
|
|
// anonymous struct or union. It's okay.
|
|
} else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
|
|
if (!MemRecord->isAnonymousStructOrUnion() &&
|
|
MemRecord->getDeclName()) {
|
|
// Visual C++ allows type definition in anonymous struct or union.
|
|
if (getLangOpts().MicrosoftExt)
|
|
Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
|
|
<< Record->isUnion();
|
|
else {
|
|
// This is a nested type declaration.
|
|
Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
|
|
<< Record->isUnion();
|
|
Invalid = true;
|
|
}
|
|
} else {
|
|
// This is an anonymous type definition within another anonymous type.
|
|
// This is a popular extension, provided by Plan9, MSVC and GCC, but
|
|
// not part of standard C++.
|
|
Diag(MemRecord->getLocation(),
|
|
diag::ext_anonymous_record_with_anonymous_type)
|
|
<< Record->isUnion();
|
|
}
|
|
} else if (isa<AccessSpecDecl>(Mem)) {
|
|
// Any access specifier is fine.
|
|
} else if (isa<StaticAssertDecl>(Mem)) {
|
|
// In C++1z, static_assert declarations are also fine.
|
|
} else {
|
|
// We have something that isn't a non-static data
|
|
// member. Complain about it.
|
|
unsigned DK = diag::err_anonymous_record_bad_member;
|
|
if (isa<TypeDecl>(Mem))
|
|
DK = diag::err_anonymous_record_with_type;
|
|
else if (isa<FunctionDecl>(Mem))
|
|
DK = diag::err_anonymous_record_with_function;
|
|
else if (isa<VarDecl>(Mem))
|
|
DK = diag::err_anonymous_record_with_static;
|
|
|
|
// Visual C++ allows type definition in anonymous struct or union.
|
|
if (getLangOpts().MicrosoftExt &&
|
|
DK == diag::err_anonymous_record_with_type)
|
|
Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
|
|
<< Record->isUnion();
|
|
else {
|
|
Diag(Mem->getLocation(), DK) << Record->isUnion();
|
|
Invalid = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++11 [class.union]p8 (DR1460):
|
|
// At most one variant member of a union may have a
|
|
// brace-or-equal-initializer.
|
|
if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
|
|
Owner->isRecord())
|
|
checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
|
|
cast<CXXRecordDecl>(Record));
|
|
}
|
|
|
|
if (!Record->isUnion() && !Owner->isRecord()) {
|
|
Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
|
|
<< getLangOpts().CPlusPlus;
|
|
Invalid = true;
|
|
}
|
|
|
|
// Mock up a declarator.
|
|
Declarator Dc(DS, DeclaratorContext::MemberContext);
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
|
|
assert(TInfo && "couldn't build declarator info for anonymous struct/union");
|
|
|
|
// Create a declaration for this anonymous struct/union.
|
|
NamedDecl *Anon = nullptr;
|
|
if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
|
|
Anon = FieldDecl::Create(
|
|
Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
|
|
/*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
|
|
/*BitWidth=*/nullptr, /*Mutable=*/false,
|
|
/*InitStyle=*/ICIS_NoInit);
|
|
Anon->setAccess(AS);
|
|
if (getLangOpts().CPlusPlus)
|
|
FieldCollector->Add(cast<FieldDecl>(Anon));
|
|
} else {
|
|
DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
|
|
StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
|
|
if (SCSpec == DeclSpec::SCS_mutable) {
|
|
// mutable can only appear on non-static class members, so it's always
|
|
// an error here
|
|
Diag(Record->getLocation(), diag::err_mutable_nonmember);
|
|
Invalid = true;
|
|
SC = SC_None;
|
|
}
|
|
|
|
Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
|
|
Record->getLocation(), /*IdentifierInfo=*/nullptr,
|
|
Context.getTypeDeclType(Record), TInfo, SC);
|
|
|
|
// Default-initialize the implicit variable. This initialization will be
|
|
// trivial in almost all cases, except if a union member has an in-class
|
|
// initializer:
|
|
// union { int n = 0; };
|
|
ActOnUninitializedDecl(Anon);
|
|
}
|
|
Anon->setImplicit();
|
|
|
|
// Mark this as an anonymous struct/union type.
|
|
Record->setAnonymousStructOrUnion(true);
|
|
|
|
// Add the anonymous struct/union object to the current
|
|
// context. We'll be referencing this object when we refer to one of
|
|
// its members.
|
|
Owner->addDecl(Anon);
|
|
|
|
// Inject the members of the anonymous struct/union into the owning
|
|
// context and into the identifier resolver chain for name lookup
|
|
// purposes.
|
|
SmallVector<NamedDecl*, 2> Chain;
|
|
Chain.push_back(Anon);
|
|
|
|
if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
|
|
Invalid = true;
|
|
|
|
if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
|
|
if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
|
|
Decl *ManglingContextDecl;
|
|
if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
|
|
NewVD->getDeclContext(), ManglingContextDecl)) {
|
|
Context.setManglingNumber(
|
|
NewVD, MCtx->getManglingNumber(
|
|
NewVD, getMSManglingNumber(getLangOpts(), S)));
|
|
Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Invalid)
|
|
Anon->setInvalidDecl();
|
|
|
|
return Anon;
|
|
}
|
|
|
|
/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
|
|
/// Microsoft C anonymous structure.
|
|
/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
|
|
/// Example:
|
|
///
|
|
/// struct A { int a; };
|
|
/// struct B { struct A; int b; };
|
|
///
|
|
/// void foo() {
|
|
/// B var;
|
|
/// var.a = 3;
|
|
/// }
|
|
///
|
|
Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
|
|
RecordDecl *Record) {
|
|
assert(Record && "expected a record!");
|
|
|
|
// Mock up a declarator.
|
|
Declarator Dc(DS, DeclaratorContext::TypeNameContext);
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
|
|
assert(TInfo && "couldn't build declarator info for anonymous struct");
|
|
|
|
auto *ParentDecl = cast<RecordDecl>(CurContext);
|
|
QualType RecTy = Context.getTypeDeclType(Record);
|
|
|
|
// Create a declaration for this anonymous struct.
|
|
NamedDecl *Anon =
|
|
FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
|
|
/*IdentifierInfo=*/nullptr, RecTy, TInfo,
|
|
/*BitWidth=*/nullptr, /*Mutable=*/false,
|
|
/*InitStyle=*/ICIS_NoInit);
|
|
Anon->setImplicit();
|
|
|
|
// Add the anonymous struct object to the current context.
|
|
CurContext->addDecl(Anon);
|
|
|
|
// Inject the members of the anonymous struct into the current
|
|
// context and into the identifier resolver chain for name lookup
|
|
// purposes.
|
|
SmallVector<NamedDecl*, 2> Chain;
|
|
Chain.push_back(Anon);
|
|
|
|
RecordDecl *RecordDef = Record->getDefinition();
|
|
if (RequireCompleteType(Anon->getLocation(), RecTy,
|
|
diag::err_field_incomplete) ||
|
|
InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
|
|
AS_none, Chain)) {
|
|
Anon->setInvalidDecl();
|
|
ParentDecl->setInvalidDecl();
|
|
}
|
|
|
|
return Anon;
|
|
}
|
|
|
|
/// GetNameForDeclarator - Determine the full declaration name for the
|
|
/// given Declarator.
|
|
DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
|
|
return GetNameFromUnqualifiedId(D.getName());
|
|
}
|
|
|
|
/// Retrieves the declaration name from a parsed unqualified-id.
|
|
DeclarationNameInfo
|
|
Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
|
|
DeclarationNameInfo NameInfo;
|
|
NameInfo.setLoc(Name.StartLocation);
|
|
|
|
switch (Name.getKind()) {
|
|
|
|
case UnqualifiedIdKind::IK_ImplicitSelfParam:
|
|
case UnqualifiedIdKind::IK_Identifier:
|
|
NameInfo.setName(Name.Identifier);
|
|
return NameInfo;
|
|
|
|
case UnqualifiedIdKind::IK_DeductionGuideName: {
|
|
// C++ [temp.deduct.guide]p3:
|
|
// The simple-template-id shall name a class template specialization.
|
|
// The template-name shall be the same identifier as the template-name
|
|
// of the simple-template-id.
|
|
// These together intend to imply that the template-name shall name a
|
|
// class template.
|
|
// FIXME: template<typename T> struct X {};
|
|
// template<typename T> using Y = X<T>;
|
|
// Y(int) -> Y<int>;
|
|
// satisfies these rules but does not name a class template.
|
|
TemplateName TN = Name.TemplateName.get().get();
|
|
auto *Template = TN.getAsTemplateDecl();
|
|
if (!Template || !isa<ClassTemplateDecl>(Template)) {
|
|
Diag(Name.StartLocation,
|
|
diag::err_deduction_guide_name_not_class_template)
|
|
<< (int)getTemplateNameKindForDiagnostics(TN) << TN;
|
|
if (Template)
|
|
Diag(Template->getLocation(), diag::note_template_decl_here);
|
|
return DeclarationNameInfo();
|
|
}
|
|
|
|
NameInfo.setName(
|
|
Context.DeclarationNames.getCXXDeductionGuideName(Template));
|
|
return NameInfo;
|
|
}
|
|
|
|
case UnqualifiedIdKind::IK_OperatorFunctionId:
|
|
NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
|
|
Name.OperatorFunctionId.Operator));
|
|
NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
|
|
= Name.OperatorFunctionId.SymbolLocations[0];
|
|
NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
|
|
= Name.EndLocation.getRawEncoding();
|
|
return NameInfo;
|
|
|
|
case UnqualifiedIdKind::IK_LiteralOperatorId:
|
|
NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
|
|
Name.Identifier));
|
|
NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
|
|
return NameInfo;
|
|
|
|
case UnqualifiedIdKind::IK_ConversionFunctionId: {
|
|
TypeSourceInfo *TInfo;
|
|
QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
|
|
if (Ty.isNull())
|
|
return DeclarationNameInfo();
|
|
NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
|
|
Context.getCanonicalType(Ty)));
|
|
NameInfo.setNamedTypeInfo(TInfo);
|
|
return NameInfo;
|
|
}
|
|
|
|
case UnqualifiedIdKind::IK_ConstructorName: {
|
|
TypeSourceInfo *TInfo;
|
|
QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
|
|
if (Ty.isNull())
|
|
return DeclarationNameInfo();
|
|
NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(Ty)));
|
|
NameInfo.setNamedTypeInfo(TInfo);
|
|
return NameInfo;
|
|
}
|
|
|
|
case UnqualifiedIdKind::IK_ConstructorTemplateId: {
|
|
// In well-formed code, we can only have a constructor
|
|
// template-id that refers to the current context, so go there
|
|
// to find the actual type being constructed.
|
|
CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
|
|
if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
|
|
return DeclarationNameInfo();
|
|
|
|
// Determine the type of the class being constructed.
|
|
QualType CurClassType = Context.getTypeDeclType(CurClass);
|
|
|
|
// FIXME: Check two things: that the template-id names the same type as
|
|
// CurClassType, and that the template-id does not occur when the name
|
|
// was qualified.
|
|
|
|
NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(CurClassType)));
|
|
// FIXME: should we retrieve TypeSourceInfo?
|
|
NameInfo.setNamedTypeInfo(nullptr);
|
|
return NameInfo;
|
|
}
|
|
|
|
case UnqualifiedIdKind::IK_DestructorName: {
|
|
TypeSourceInfo *TInfo;
|
|
QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
|
|
if (Ty.isNull())
|
|
return DeclarationNameInfo();
|
|
NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
|
|
Context.getCanonicalType(Ty)));
|
|
NameInfo.setNamedTypeInfo(TInfo);
|
|
return NameInfo;
|
|
}
|
|
|
|
case UnqualifiedIdKind::IK_TemplateId: {
|
|
TemplateName TName = Name.TemplateId->Template.get();
|
|
SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
|
|
return Context.getNameForTemplate(TName, TNameLoc);
|
|
}
|
|
|
|
} // switch (Name.getKind())
|
|
|
|
llvm_unreachable("Unknown name kind");
|
|
}
|
|
|
|
static QualType getCoreType(QualType Ty) {
|
|
do {
|
|
if (Ty->isPointerType() || Ty->isReferenceType())
|
|
Ty = Ty->getPointeeType();
|
|
else if (Ty->isArrayType())
|
|
Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
|
|
else
|
|
return Ty.withoutLocalFastQualifiers();
|
|
} while (true);
|
|
}
|
|
|
|
/// hasSimilarParameters - Determine whether the C++ functions Declaration
|
|
/// and Definition have "nearly" matching parameters. This heuristic is
|
|
/// used to improve diagnostics in the case where an out-of-line function
|
|
/// definition doesn't match any declaration within the class or namespace.
|
|
/// Also sets Params to the list of indices to the parameters that differ
|
|
/// between the declaration and the definition. If hasSimilarParameters
|
|
/// returns true and Params is empty, then all of the parameters match.
|
|
static bool hasSimilarParameters(ASTContext &Context,
|
|
FunctionDecl *Declaration,
|
|
FunctionDecl *Definition,
|
|
SmallVectorImpl<unsigned> &Params) {
|
|
Params.clear();
|
|
if (Declaration->param_size() != Definition->param_size())
|
|
return false;
|
|
for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
|
|
QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
|
|
QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
|
|
|
|
// The parameter types are identical
|
|
if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
|
|
continue;
|
|
|
|
QualType DeclParamBaseTy = getCoreType(DeclParamTy);
|
|
QualType DefParamBaseTy = getCoreType(DefParamTy);
|
|
const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
|
|
const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
|
|
|
|
if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
|
|
(DeclTyName && DeclTyName == DefTyName))
|
|
Params.push_back(Idx);
|
|
else // The two parameters aren't even close
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
|
|
/// declarator needs to be rebuilt in the current instantiation.
|
|
/// Any bits of declarator which appear before the name are valid for
|
|
/// consideration here. That's specifically the type in the decl spec
|
|
/// and the base type in any member-pointer chunks.
|
|
static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
|
|
DeclarationName Name) {
|
|
// The types we specifically need to rebuild are:
|
|
// - typenames, typeofs, and decltypes
|
|
// - types which will become injected class names
|
|
// Of course, we also need to rebuild any type referencing such a
|
|
// type. It's safest to just say "dependent", but we call out a
|
|
// few cases here.
|
|
|
|
DeclSpec &DS = D.getMutableDeclSpec();
|
|
switch (DS.getTypeSpecType()) {
|
|
case DeclSpec::TST_typename:
|
|
case DeclSpec::TST_typeofType:
|
|
case DeclSpec::TST_underlyingType:
|
|
case DeclSpec::TST_atomic: {
|
|
// Grab the type from the parser.
|
|
TypeSourceInfo *TSI = nullptr;
|
|
QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
|
|
if (T.isNull() || !T->isDependentType()) break;
|
|
|
|
// Make sure there's a type source info. This isn't really much
|
|
// of a waste; most dependent types should have type source info
|
|
// attached already.
|
|
if (!TSI)
|
|
TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
|
|
|
|
// Rebuild the type in the current instantiation.
|
|
TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
|
|
if (!TSI) return true;
|
|
|
|
// Store the new type back in the decl spec.
|
|
ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
|
|
DS.UpdateTypeRep(LocType);
|
|
break;
|
|
}
|
|
|
|
case DeclSpec::TST_decltype:
|
|
case DeclSpec::TST_typeofExpr: {
|
|
Expr *E = DS.getRepAsExpr();
|
|
ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
|
|
if (Result.isInvalid()) return true;
|
|
DS.UpdateExprRep(Result.get());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// Nothing to do for these decl specs.
|
|
break;
|
|
}
|
|
|
|
// It doesn't matter what order we do this in.
|
|
for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
|
|
DeclaratorChunk &Chunk = D.getTypeObject(I);
|
|
|
|
// The only type information in the declarator which can come
|
|
// before the declaration name is the base type of a member
|
|
// pointer.
|
|
if (Chunk.Kind != DeclaratorChunk::MemberPointer)
|
|
continue;
|
|
|
|
// Rebuild the scope specifier in-place.
|
|
CXXScopeSpec &SS = Chunk.Mem.Scope();
|
|
if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
|
|
D.setFunctionDefinitionKind(FDK_Declaration);
|
|
Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
|
|
|
|
if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
|
|
Dcl && Dcl->getDeclContext()->isFileContext())
|
|
Dcl->setTopLevelDeclInObjCContainer();
|
|
|
|
if (getLangOpts().OpenCL)
|
|
setCurrentOpenCLExtensionForDecl(Dcl);
|
|
|
|
return Dcl;
|
|
}
|
|
|
|
/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
|
|
/// If T is the name of a class, then each of the following shall have a
|
|
/// name different from T:
|
|
/// - every static data member of class T;
|
|
/// - every member function of class T
|
|
/// - every member of class T that is itself a type;
|
|
/// \returns true if the declaration name violates these rules.
|
|
bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
|
|
DeclarationNameInfo NameInfo) {
|
|
DeclarationName Name = NameInfo.getName();
|
|
|
|
CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
|
|
while (Record && Record->isAnonymousStructOrUnion())
|
|
Record = dyn_cast<CXXRecordDecl>(Record->getParent());
|
|
if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
|
|
Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Diagnose a declaration whose declarator-id has the given
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param SS The nested-name-specifier of the declarator-id.
|
|
///
|
|
/// \param DC The declaration context to which the nested-name-specifier
|
|
/// resolves.
|
|
///
|
|
/// \param Name The name of the entity being declared.
|
|
///
|
|
/// \param Loc The location of the name of the entity being declared.
|
|
///
|
|
/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
|
|
/// we're declaring an explicit / partial specialization / instantiation.
|
|
///
|
|
/// \returns true if we cannot safely recover from this error, false otherwise.
|
|
bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
|
|
DeclarationName Name,
|
|
SourceLocation Loc, bool IsTemplateId) {
|
|
DeclContext *Cur = CurContext;
|
|
while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
|
|
Cur = Cur->getParent();
|
|
|
|
// If the user provided a superfluous scope specifier that refers back to the
|
|
// class in which the entity is already declared, diagnose and ignore it.
|
|
//
|
|
// class X {
|
|
// void X::f();
|
|
// };
|
|
//
|
|
// Note, it was once ill-formed to give redundant qualification in all
|
|
// contexts, but that rule was removed by DR482.
|
|
if (Cur->Equals(DC)) {
|
|
if (Cur->isRecord()) {
|
|
Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
|
|
: diag::err_member_extra_qualification)
|
|
<< Name << FixItHint::CreateRemoval(SS.getRange());
|
|
SS.clear();
|
|
} else {
|
|
Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check whether the qualifying scope encloses the scope of the original
|
|
// declaration. For a template-id, we perform the checks in
|
|
// CheckTemplateSpecializationScope.
|
|
if (!Cur->Encloses(DC) && !IsTemplateId) {
|
|
if (Cur->isRecord())
|
|
Diag(Loc, diag::err_member_qualification)
|
|
<< Name << SS.getRange();
|
|
else if (isa<TranslationUnitDecl>(DC))
|
|
Diag(Loc, diag::err_invalid_declarator_global_scope)
|
|
<< Name << SS.getRange();
|
|
else if (isa<FunctionDecl>(Cur))
|
|
Diag(Loc, diag::err_invalid_declarator_in_function)
|
|
<< Name << SS.getRange();
|
|
else if (isa<BlockDecl>(Cur))
|
|
Diag(Loc, diag::err_invalid_declarator_in_block)
|
|
<< Name << SS.getRange();
|
|
else
|
|
Diag(Loc, diag::err_invalid_declarator_scope)
|
|
<< Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
if (Cur->isRecord()) {
|
|
// Cannot qualify members within a class.
|
|
Diag(Loc, diag::err_member_qualification)
|
|
<< Name << SS.getRange();
|
|
SS.clear();
|
|
|
|
// C++ constructors and destructors with incorrect scopes can break
|
|
// our AST invariants by having the wrong underlying types. If
|
|
// that's the case, then drop this declaration entirely.
|
|
if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
|
|
Name.getNameKind() == DeclarationName::CXXDestructorName) &&
|
|
!Context.hasSameType(Name.getCXXNameType(),
|
|
Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// C++11 [dcl.meaning]p1:
|
|
// [...] "The nested-name-specifier of the qualified declarator-id shall
|
|
// not begin with a decltype-specifer"
|
|
NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
|
|
while (SpecLoc.getPrefix())
|
|
SpecLoc = SpecLoc.getPrefix();
|
|
if (dyn_cast_or_null<DecltypeType>(
|
|
SpecLoc.getNestedNameSpecifier()->getAsType()))
|
|
Diag(Loc, diag::err_decltype_in_declarator)
|
|
<< SpecLoc.getTypeLoc().getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParamLists) {
|
|
// TODO: consider using NameInfo for diagnostic.
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
|
|
// All of these full declarators require an identifier. If it doesn't have
|
|
// one, the ParsedFreeStandingDeclSpec action should be used.
|
|
if (D.isDecompositionDeclarator()) {
|
|
return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
|
|
} else if (!Name) {
|
|
if (!D.isInvalidType()) // Reject this if we think it is valid.
|
|
Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
|
|
<< D.getDeclSpec().getSourceRange() << D.getSourceRange();
|
|
return nullptr;
|
|
} else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
|
|
return nullptr;
|
|
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0 ||
|
|
(S->getFlags() & Scope::TemplateParamScope) != 0)
|
|
S = S->getParent();
|
|
|
|
DeclContext *DC = CurContext;
|
|
if (D.getCXXScopeSpec().isInvalid())
|
|
D.setInvalidType();
|
|
else if (D.getCXXScopeSpec().isSet()) {
|
|
if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
|
|
UPPC_DeclarationQualifier))
|
|
return nullptr;
|
|
|
|
bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
|
|
DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
|
|
if (!DC || isa<EnumDecl>(DC)) {
|
|
// If we could not compute the declaration context, it's because the
|
|
// declaration context is dependent but does not refer to a class,
|
|
// class template, or class template partial specialization. Complain
|
|
// and return early, to avoid the coming semantic disaster.
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_template_qualified_declarator_no_match)
|
|
<< D.getCXXScopeSpec().getScopeRep()
|
|
<< D.getCXXScopeSpec().getRange();
|
|
return nullptr;
|
|
}
|
|
bool IsDependentContext = DC->isDependentContext();
|
|
|
|
if (!IsDependentContext &&
|
|
RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
|
|
return nullptr;
|
|
|
|
// If a class is incomplete, do not parse entities inside it.
|
|
if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_member_def_undefined_record)
|
|
<< Name << DC << D.getCXXScopeSpec().getRange();
|
|
return nullptr;
|
|
}
|
|
if (!D.getDeclSpec().isFriendSpecified()) {
|
|
if (diagnoseQualifiedDeclaration(
|
|
D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
|
|
D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
|
|
if (DC->isRecord())
|
|
return nullptr;
|
|
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
|
|
// Check whether we need to rebuild the type of the given
|
|
// declaration in the current instantiation.
|
|
if (EnteringContext && IsDependentContext &&
|
|
TemplateParamLists.size() != 0) {
|
|
ContextRAII SavedContext(*this, DC);
|
|
if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType R = TInfo->getType();
|
|
|
|
if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
|
|
UPPC_DeclarationType))
|
|
D.setInvalidType();
|
|
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
forRedeclarationInCurContext());
|
|
|
|
// See if this is a redefinition of a variable in the same scope.
|
|
if (!D.getCXXScopeSpec().isSet()) {
|
|
bool IsLinkageLookup = false;
|
|
bool CreateBuiltins = false;
|
|
|
|
// If the declaration we're planning to build will be a function
|
|
// or object with linkage, then look for another declaration with
|
|
// linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
|
|
//
|
|
// If the declaration we're planning to build will be declared with
|
|
// external linkage in the translation unit, create any builtin with
|
|
// the same name.
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
|
|
/* Do nothing*/;
|
|
else if (CurContext->isFunctionOrMethod() &&
|
|
(D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
|
|
R->isFunctionType())) {
|
|
IsLinkageLookup = true;
|
|
CreateBuiltins =
|
|
CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
|
|
} else if (CurContext->getRedeclContext()->isTranslationUnit() &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
|
|
CreateBuiltins = true;
|
|
|
|
if (IsLinkageLookup) {
|
|
Previous.clear(LookupRedeclarationWithLinkage);
|
|
Previous.setRedeclarationKind(ForExternalRedeclaration);
|
|
}
|
|
|
|
LookupName(Previous, S, CreateBuiltins);
|
|
} else { // Something like "int foo::x;"
|
|
LookupQualifiedName(Previous, DC);
|
|
|
|
// C++ [dcl.meaning]p1:
|
|
// When the declarator-id is qualified, the declaration shall refer to a
|
|
// previously declared member of the class or namespace to which the
|
|
// qualifier refers (or, in the case of a namespace, of an element of the
|
|
// inline namespace set of that namespace (7.3.1)) or to a specialization
|
|
// thereof; [...]
|
|
//
|
|
// Note that we already checked the context above, and that we do not have
|
|
// enough information to make sure that Previous contains the declaration
|
|
// we want to match. For example, given:
|
|
//
|
|
// class X {
|
|
// void f();
|
|
// void f(float);
|
|
// };
|
|
//
|
|
// void X::f(int) { } // ill-formed
|
|
//
|
|
// In this case, Previous will point to the overload set
|
|
// containing the two f's declared in X, but neither of them
|
|
// matches.
|
|
|
|
// C++ [dcl.meaning]p1:
|
|
// [...] the member shall not merely have been introduced by a
|
|
// using-declaration in the scope of the class or namespace nominated by
|
|
// the nested-name-specifier of the declarator-id.
|
|
RemoveUsingDecls(Previous);
|
|
}
|
|
|
|
if (Previous.isSingleResult() &&
|
|
Previous.getFoundDecl()->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
if (!D.isInvalidType())
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
|
|
Previous.getFoundDecl());
|
|
|
|
// Just pretend that we didn't see the previous declaration.
|
|
Previous.clear();
|
|
}
|
|
|
|
if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
|
|
// Forget that the previous declaration is the injected-class-name.
|
|
Previous.clear();
|
|
|
|
// In C++, the previous declaration we find might be a tag type
|
|
// (class or enum). In this case, the new declaration will hide the
|
|
// tag type. Note that this applies to functions, function templates, and
|
|
// variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
|
|
if (Previous.isSingleTagDecl() &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
|
|
(TemplateParamLists.size() == 0 || R->isFunctionType()))
|
|
Previous.clear();
|
|
|
|
// Check that there are no default arguments other than in the parameters
|
|
// of a function declaration (C++ only).
|
|
if (getLangOpts().CPlusPlus)
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
NamedDecl *New;
|
|
|
|
bool AddToScope = true;
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
|
|
if (TemplateParamLists.size()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_template_typedef);
|
|
return nullptr;
|
|
}
|
|
|
|
New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
|
|
} else if (R->isFunctionType()) {
|
|
New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
|
|
TemplateParamLists,
|
|
AddToScope);
|
|
} else {
|
|
New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
|
|
AddToScope);
|
|
}
|
|
|
|
if (!New)
|
|
return nullptr;
|
|
|
|
// If this has an identifier and is not a function template specialization,
|
|
// add it to the scope stack.
|
|
if (New->getDeclName() && AddToScope)
|
|
PushOnScopeChains(New, S);
|
|
|
|
if (isInOpenMPDeclareTargetContext())
|
|
checkDeclIsAllowedInOpenMPTarget(nullptr, New);
|
|
|
|
return New;
|
|
}
|
|
|
|
/// Helper method to turn variable array types into constant array
|
|
/// types in certain situations which would otherwise be errors (for
|
|
/// GCC compatibility).
|
|
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
|
|
ASTContext &Context,
|
|
bool &SizeIsNegative,
|
|
llvm::APSInt &Oversized) {
|
|
// This method tries to turn a variable array into a constant
|
|
// array even when the size isn't an ICE. This is necessary
|
|
// for compatibility with code that depends on gcc's buggy
|
|
// constant expression folding, like struct {char x[(int)(char*)2];}
|
|
SizeIsNegative = false;
|
|
Oversized = 0;
|
|
|
|
if (T->isDependentType())
|
|
return QualType();
|
|
|
|
QualifierCollector Qs;
|
|
const Type *Ty = Qs.strip(T);
|
|
|
|
if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
|
|
QualType Pointee = PTy->getPointeeType();
|
|
QualType FixedType =
|
|
TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
|
|
Oversized);
|
|
if (FixedType.isNull()) return FixedType;
|
|
FixedType = Context.getPointerType(FixedType);
|
|
return Qs.apply(Context, FixedType);
|
|
}
|
|
if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
|
|
QualType Inner = PTy->getInnerType();
|
|
QualType FixedType =
|
|
TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
|
|
Oversized);
|
|
if (FixedType.isNull()) return FixedType;
|
|
FixedType = Context.getParenType(FixedType);
|
|
return Qs.apply(Context, FixedType);
|
|
}
|
|
|
|
const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
|
|
if (!VLATy)
|
|
return QualType();
|
|
// FIXME: We should probably handle this case
|
|
if (VLATy->getElementType()->isVariablyModifiedType())
|
|
return QualType();
|
|
|
|
Expr::EvalResult Result;
|
|
if (!VLATy->getSizeExpr() ||
|
|
!VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
|
|
return QualType();
|
|
|
|
llvm::APSInt Res = Result.Val.getInt();
|
|
|
|
// Check whether the array size is negative.
|
|
if (Res.isSigned() && Res.isNegative()) {
|
|
SizeIsNegative = true;
|
|
return QualType();
|
|
}
|
|
|
|
// Check whether the array is too large to be addressed.
|
|
unsigned ActiveSizeBits
|
|
= ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
|
|
Res);
|
|
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
|
|
Oversized = Res;
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getConstantArrayType(VLATy->getElementType(),
|
|
Res, ArrayType::Normal, 0);
|
|
}
|
|
|
|
static void
|
|
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
|
|
SrcTL = SrcTL.getUnqualifiedLoc();
|
|
DstTL = DstTL.getUnqualifiedLoc();
|
|
if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
|
|
PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
|
|
FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
|
|
DstPTL.getPointeeLoc());
|
|
DstPTL.setStarLoc(SrcPTL.getStarLoc());
|
|
return;
|
|
}
|
|
if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
|
|
ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
|
|
FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
|
|
DstPTL.getInnerLoc());
|
|
DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
|
|
DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
|
|
return;
|
|
}
|
|
ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
|
|
ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
|
|
TypeLoc SrcElemTL = SrcATL.getElementLoc();
|
|
TypeLoc DstElemTL = DstATL.getElementLoc();
|
|
DstElemTL.initializeFullCopy(SrcElemTL);
|
|
DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
|
|
DstATL.setSizeExpr(SrcATL.getSizeExpr());
|
|
DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
|
|
}
|
|
|
|
/// Helper method to turn variable array types into constant array
|
|
/// types in certain situations which would otherwise be errors (for
|
|
/// GCC compatibility).
|
|
static TypeSourceInfo*
|
|
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
|
|
ASTContext &Context,
|
|
bool &SizeIsNegative,
|
|
llvm::APSInt &Oversized) {
|
|
QualType FixedTy
|
|
= TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
|
|
SizeIsNegative, Oversized);
|
|
if (FixedTy.isNull())
|
|
return nullptr;
|
|
TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
|
|
FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
|
|
FixedTInfo->getTypeLoc());
|
|
return FixedTInfo;
|
|
}
|
|
|
|
/// Register the given locally-scoped extern "C" declaration so
|
|
/// that it can be found later for redeclarations. We include any extern "C"
|
|
/// declaration that is not visible in the translation unit here, not just
|
|
/// function-scope declarations.
|
|
void
|
|
Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
|
|
if (!getLangOpts().CPlusPlus &&
|
|
ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
|
|
// Don't need to track declarations in the TU in C.
|
|
return;
|
|
|
|
// Note that we have a locally-scoped external with this name.
|
|
Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
|
|
}
|
|
|
|
NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
|
|
// FIXME: We can have multiple results via __attribute__((overloadable)).
|
|
auto Result = Context.getExternCContextDecl()->lookup(Name);
|
|
return Result.empty() ? nullptr : *Result.begin();
|
|
}
|
|
|
|
/// Diagnose function specifiers on a declaration of an identifier that
|
|
/// does not identify a function.
|
|
void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
|
|
// FIXME: We should probably indicate the identifier in question to avoid
|
|
// confusion for constructs like "virtual int a(), b;"
|
|
if (DS.isVirtualSpecified())
|
|
Diag(DS.getVirtualSpecLoc(),
|
|
diag::err_virtual_non_function);
|
|
|
|
if (DS.isExplicitSpecified())
|
|
Diag(DS.getExplicitSpecLoc(),
|
|
diag::err_explicit_non_function);
|
|
|
|
if (DS.isNoreturnSpecified())
|
|
Diag(DS.getNoreturnSpecLoc(),
|
|
diag::err_noreturn_non_function);
|
|
}
|
|
|
|
NamedDecl*
|
|
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
|
|
TypeSourceInfo *TInfo, LookupResult &Previous) {
|
|
// Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
|
|
if (D.getCXXScopeSpec().isSet()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
D.setInvalidType();
|
|
// Pretend we didn't see the scope specifier.
|
|
DC = CurContext;
|
|
Previous.clear();
|
|
}
|
|
|
|
DiagnoseFunctionSpecifiers(D.getDeclSpec());
|
|
|
|
if (D.getDeclSpec().isInlineSpecified())
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
|
|
<< getLangOpts().CPlusPlus17;
|
|
if (D.getDeclSpec().isConstexprSpecified())
|
|
Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
|
|
<< 1;
|
|
|
|
if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
|
|
if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
|
|
Diag(D.getName().StartLocation,
|
|
diag::err_deduction_guide_invalid_specifier)
|
|
<< "typedef";
|
|
else
|
|
Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
|
|
<< D.getName().getSourceRange();
|
|
return nullptr;
|
|
}
|
|
|
|
TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
|
|
if (!NewTD) return nullptr;
|
|
|
|
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
|
ProcessDeclAttributes(S, NewTD, D);
|
|
|
|
CheckTypedefForVariablyModifiedType(S, NewTD);
|
|
|
|
bool Redeclaration = D.isRedeclaration();
|
|
NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
|
|
D.setRedeclaration(Redeclaration);
|
|
return ND;
|
|
}
|
|
|
|
void
|
|
Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
|
|
// C99 6.7.7p2: If a typedef name specifies a variably modified type
|
|
// then it shall have block scope.
|
|
// Note that variably modified types must be fixed before merging the decl so
|
|
// that redeclarations will match.
|
|
TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
|
|
QualType T = TInfo->getType();
|
|
if (T->isVariablyModifiedType()) {
|
|
setFunctionHasBranchProtectedScope();
|
|
|
|
if (S->getFnParent() == nullptr) {
|
|
bool SizeIsNegative;
|
|
llvm::APSInt Oversized;
|
|
TypeSourceInfo *FixedTInfo =
|
|
TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
|
|
SizeIsNegative,
|
|
Oversized);
|
|
if (FixedTInfo) {
|
|
Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
|
|
NewTD->setTypeSourceInfo(FixedTInfo);
|
|
} else {
|
|
if (SizeIsNegative)
|
|
Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
|
|
else if (T->isVariableArrayType())
|
|
Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
|
|
else if (Oversized.getBoolValue())
|
|
Diag(NewTD->getLocation(), diag::err_array_too_large)
|
|
<< Oversized.toString(10);
|
|
else
|
|
Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
|
|
NewTD->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
|
|
/// declares a typedef-name, either using the 'typedef' type specifier or via
|
|
/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
|
|
NamedDecl*
|
|
Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
|
|
LookupResult &Previous, bool &Redeclaration) {
|
|
|
|
// Find the shadowed declaration before filtering for scope.
|
|
NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
|
|
|
|
// Merge the decl with the existing one if appropriate. If the decl is
|
|
// in an outer scope, it isn't the same thing.
|
|
FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
|
|
/*AllowInlineNamespace*/false);
|
|
filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
|
|
if (!Previous.empty()) {
|
|
Redeclaration = true;
|
|
MergeTypedefNameDecl(S, NewTD, Previous);
|
|
}
|
|
|
|
if (ShadowedDecl && !Redeclaration)
|
|
CheckShadow(NewTD, ShadowedDecl, Previous);
|
|
|
|
// If this is the C FILE type, notify the AST context.
|
|
if (IdentifierInfo *II = NewTD->getIdentifier())
|
|
if (!NewTD->isInvalidDecl() &&
|
|
NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
|
|
if (II->isStr("FILE"))
|
|
Context.setFILEDecl(NewTD);
|
|
else if (II->isStr("jmp_buf"))
|
|
Context.setjmp_bufDecl(NewTD);
|
|
else if (II->isStr("sigjmp_buf"))
|
|
Context.setsigjmp_bufDecl(NewTD);
|
|
else if (II->isStr("ucontext_t"))
|
|
Context.setucontext_tDecl(NewTD);
|
|
}
|
|
|
|
return NewTD;
|
|
}
|
|
|
|
/// Determines whether the given declaration is an out-of-scope
|
|
/// previous declaration.
|
|
///
|
|
/// This routine should be invoked when name lookup has found a
|
|
/// previous declaration (PrevDecl) that is not in the scope where a
|
|
/// new declaration by the same name is being introduced. If the new
|
|
/// declaration occurs in a local scope, previous declarations with
|
|
/// linkage may still be considered previous declarations (C99
|
|
/// 6.2.2p4-5, C++ [basic.link]p6).
|
|
///
|
|
/// \param PrevDecl the previous declaration found by name
|
|
/// lookup
|
|
///
|
|
/// \param DC the context in which the new declaration is being
|
|
/// declared.
|
|
///
|
|
/// \returns true if PrevDecl is an out-of-scope previous declaration
|
|
/// for a new delcaration with the same name.
|
|
static bool
|
|
isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
|
|
ASTContext &Context) {
|
|
if (!PrevDecl)
|
|
return false;
|
|
|
|
if (!PrevDecl->hasLinkage())
|
|
return false;
|
|
|
|
if (Context.getLangOpts().CPlusPlus) {
|
|
// C++ [basic.link]p6:
|
|
// If there is a visible declaration of an entity with linkage
|
|
// having the same name and type, ignoring entities declared
|
|
// outside the innermost enclosing namespace scope, the block
|
|
// scope declaration declares that same entity and receives the
|
|
// linkage of the previous declaration.
|
|
DeclContext *OuterContext = DC->getRedeclContext();
|
|
if (!OuterContext->isFunctionOrMethod())
|
|
// This rule only applies to block-scope declarations.
|
|
return false;
|
|
|
|
DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
|
|
if (PrevOuterContext->isRecord())
|
|
// We found a member function: ignore it.
|
|
return false;
|
|
|
|
// Find the innermost enclosing namespace for the new and
|
|
// previous declarations.
|
|
OuterContext = OuterContext->getEnclosingNamespaceContext();
|
|
PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
|
|
|
|
// The previous declaration is in a different namespace, so it
|
|
// isn't the same function.
|
|
if (!OuterContext->Equals(PrevOuterContext))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
|
|
CXXScopeSpec &SS = D.getCXXScopeSpec();
|
|
if (!SS.isSet()) return;
|
|
DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
|
|
}
|
|
|
|
bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
|
|
QualType type = decl->getType();
|
|
Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
|
|
if (lifetime == Qualifiers::OCL_Autoreleasing) {
|
|
// Various kinds of declaration aren't allowed to be __autoreleasing.
|
|
unsigned kind = -1U;
|
|
if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
|
|
if (var->hasAttr<BlocksAttr>())
|
|
kind = 0; // __block
|
|
else if (!var->hasLocalStorage())
|
|
kind = 1; // global
|
|
} else if (isa<ObjCIvarDecl>(decl)) {
|
|
kind = 3; // ivar
|
|
} else if (isa<FieldDecl>(decl)) {
|
|
kind = 2; // field
|
|
}
|
|
|
|
if (kind != -1U) {
|
|
Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
|
|
<< kind;
|
|
}
|
|
} else if (lifetime == Qualifiers::OCL_None) {
|
|
// Try to infer lifetime.
|
|
if (!type->isObjCLifetimeType())
|
|
return false;
|
|
|
|
lifetime = type->getObjCARCImplicitLifetime();
|
|
type = Context.getLifetimeQualifiedType(type, lifetime);
|
|
decl->setType(type);
|
|
}
|
|
|
|
if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
|
|
// Thread-local variables cannot have lifetime.
|
|
if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
|
|
var->getTLSKind()) {
|
|
Diag(var->getLocation(), diag::err_arc_thread_ownership)
|
|
<< var->getType();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
|
|
// Ensure that an auto decl is deduced otherwise the checks below might cache
|
|
// the wrong linkage.
|
|
assert(S.ParsingInitForAutoVars.count(&ND) == 0);
|
|
|
|
// 'weak' only applies to declarations with external linkage.
|
|
if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
|
|
if (!ND.isExternallyVisible()) {
|
|
S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
|
|
ND.dropAttr<WeakAttr>();
|
|
}
|
|
}
|
|
if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
|
|
if (ND.isExternallyVisible()) {
|
|
S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
|
|
ND.dropAttr<WeakRefAttr>();
|
|
ND.dropAttr<AliasAttr>();
|
|
}
|
|
}
|
|
|
|
if (auto *VD = dyn_cast<VarDecl>(&ND)) {
|
|
if (VD->hasInit()) {
|
|
if (const auto *Attr = VD->getAttr<AliasAttr>()) {
|
|
assert(VD->isThisDeclarationADefinition() &&
|
|
!VD->isExternallyVisible() && "Broken AliasAttr handled late!");
|
|
S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
|
|
VD->dropAttr<AliasAttr>();
|
|
}
|
|
}
|
|
}
|
|
|
|
// 'selectany' only applies to externally visible variable declarations.
|
|
// It does not apply to functions.
|
|
if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
|
|
if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
|
|
S.Diag(Attr->getLocation(),
|
|
diag::err_attribute_selectany_non_extern_data);
|
|
ND.dropAttr<SelectAnyAttr>();
|
|
}
|
|
}
|
|
|
|
if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
|
|
auto *VD = dyn_cast<VarDecl>(&ND);
|
|
bool IsAnonymousNS = false;
|
|
bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
|
|
if (VD) {
|
|
const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
|
|
while (NS && !IsAnonymousNS) {
|
|
IsAnonymousNS = NS->isAnonymousNamespace();
|
|
NS = dyn_cast<NamespaceDecl>(NS->getParent());
|
|
}
|
|
}
|
|
// dll attributes require external linkage. Static locals may have external
|
|
// linkage but still cannot be explicitly imported or exported.
|
|
// In Microsoft mode, a variable defined in anonymous namespace must have
|
|
// external linkage in order to be exported.
|
|
bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
|
|
if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
|
|
(!AnonNSInMicrosoftMode &&
|
|
(!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
|
|
S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
|
|
<< &ND << Attr;
|
|
ND.setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
// Virtual functions cannot be marked as 'notail'.
|
|
if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
|
|
if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
|
|
if (MD->isVirtual()) {
|
|
S.Diag(ND.getLocation(),
|
|
diag::err_invalid_attribute_on_virtual_function)
|
|
<< Attr;
|
|
ND.dropAttr<NotTailCalledAttr>();
|
|
}
|
|
|
|
// Check the attributes on the function type, if any.
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
|
|
// Don't declare this variable in the second operand of the for-statement;
|
|
// GCC miscompiles that by ending its lifetime before evaluating the
|
|
// third operand. See gcc.gnu.org/PR86769.
|
|
AttributedTypeLoc ATL;
|
|
for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
|
|
(ATL = TL.getAsAdjusted<AttributedTypeLoc>());
|
|
TL = ATL.getModifiedLoc()) {
|
|
// The [[lifetimebound]] attribute can be applied to the implicit object
|
|
// parameter of a non-static member function (other than a ctor or dtor)
|
|
// by applying it to the function type.
|
|
if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
|
|
const auto *MD = dyn_cast<CXXMethodDecl>(FD);
|
|
if (!MD || MD->isStatic()) {
|
|
S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
|
|
<< !MD << A->getRange();
|
|
} else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
|
|
S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
|
|
<< isa<CXXDestructorDecl>(MD) << A->getRange();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
|
|
NamedDecl *NewDecl,
|
|
bool IsSpecialization,
|
|
bool IsDefinition) {
|
|
if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
|
|
return;
|
|
|
|
bool IsTemplate = false;
|
|
if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
|
|
OldDecl = OldTD->getTemplatedDecl();
|
|
IsTemplate = true;
|
|
if (!IsSpecialization)
|
|
IsDefinition = false;
|
|
}
|
|
if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
|
|
NewDecl = NewTD->getTemplatedDecl();
|
|
IsTemplate = true;
|
|
}
|
|
|
|
if (!OldDecl || !NewDecl)
|
|
return;
|
|
|
|
const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
|
|
const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
|
|
const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
|
|
const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
|
|
|
|
// dllimport and dllexport are inheritable attributes so we have to exclude
|
|
// inherited attribute instances.
|
|
bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
|
|
(NewExportAttr && !NewExportAttr->isInherited());
|
|
|
|
// A redeclaration is not allowed to add a dllimport or dllexport attribute,
|
|
// the only exception being explicit specializations.
|
|
// Implicitly generated declarations are also excluded for now because there
|
|
// is no other way to switch these to use dllimport or dllexport.
|
|
bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
|
|
|
|
if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
|
|
// Allow with a warning for free functions and global variables.
|
|
bool JustWarn = false;
|
|
if (!OldDecl->isCXXClassMember()) {
|
|
auto *VD = dyn_cast<VarDecl>(OldDecl);
|
|
if (VD && !VD->getDescribedVarTemplate())
|
|
JustWarn = true;
|
|
auto *FD = dyn_cast<FunctionDecl>(OldDecl);
|
|
if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
|
|
JustWarn = true;
|
|
}
|
|
|
|
// We cannot change a declaration that's been used because IR has already
|
|
// been emitted. Dllimported functions will still work though (modulo
|
|
// address equality) as they can use the thunk.
|
|
if (OldDecl->isUsed())
|
|
if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
|
|
JustWarn = false;
|
|
|
|
unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
|
|
: diag::err_attribute_dll_redeclaration;
|
|
S.Diag(NewDecl->getLocation(), DiagID)
|
|
<< NewDecl
|
|
<< (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
|
|
S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
|
|
if (!JustWarn) {
|
|
NewDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A redeclaration is not allowed to drop a dllimport attribute, the only
|
|
// exceptions being inline function definitions (except for function
|
|
// templates), local extern declarations, qualified friend declarations or
|
|
// special MSVC extension: in the last case, the declaration is treated as if
|
|
// it were marked dllexport.
|
|
bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
|
|
bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
|
|
if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
|
|
// Ignore static data because out-of-line definitions are diagnosed
|
|
// separately.
|
|
IsStaticDataMember = VD->isStaticDataMember();
|
|
IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
|
|
VarDecl::DeclarationOnly;
|
|
} else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
|
|
IsInline = FD->isInlined();
|
|
IsQualifiedFriend = FD->getQualifier() &&
|
|
FD->getFriendObjectKind() == Decl::FOK_Declared;
|
|
}
|
|
|
|
if (OldImportAttr && !HasNewAttr &&
|
|
(!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
|
|
!NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
|
|
if (IsMicrosoft && IsDefinition) {
|
|
S.Diag(NewDecl->getLocation(),
|
|
diag::warn_redeclaration_without_import_attribute)
|
|
<< NewDecl;
|
|
S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
|
|
NewDecl->dropAttr<DLLImportAttr>();
|
|
NewDecl->addAttr(::new (S.Context) DLLExportAttr(
|
|
NewImportAttr->getRange(), S.Context,
|
|
NewImportAttr->getSpellingListIndex()));
|
|
} else {
|
|
S.Diag(NewDecl->getLocation(),
|
|
diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
|
|
<< NewDecl << OldImportAttr;
|
|
S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
|
|
S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
|
|
OldDecl->dropAttr<DLLImportAttr>();
|
|
NewDecl->dropAttr<DLLImportAttr>();
|
|
}
|
|
} else if (IsInline && OldImportAttr && !IsMicrosoft) {
|
|
// In MinGW, seeing a function declared inline drops the dllimport
|
|
// attribute.
|
|
OldDecl->dropAttr<DLLImportAttr>();
|
|
NewDecl->dropAttr<DLLImportAttr>();
|
|
S.Diag(NewDecl->getLocation(),
|
|
diag::warn_dllimport_dropped_from_inline_function)
|
|
<< NewDecl << OldImportAttr;
|
|
}
|
|
|
|
// A specialization of a class template member function is processed here
|
|
// since it's a redeclaration. If the parent class is dllexport, the
|
|
// specialization inherits that attribute. This doesn't happen automatically
|
|
// since the parent class isn't instantiated until later.
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
|
|
if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
|
|
!NewImportAttr && !NewExportAttr) {
|
|
if (const DLLExportAttr *ParentExportAttr =
|
|
MD->getParent()->getAttr<DLLExportAttr>()) {
|
|
DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
|
|
NewAttr->setInherited(true);
|
|
NewDecl->addAttr(NewAttr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given that we are within the definition of the given function,
|
|
/// will that definition behave like C99's 'inline', where the
|
|
/// definition is discarded except for optimization purposes?
|
|
static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
|
|
// Try to avoid calling GetGVALinkageForFunction.
|
|
|
|
// All cases of this require the 'inline' keyword.
|
|
if (!FD->isInlined()) return false;
|
|
|
|
// This is only possible in C++ with the gnu_inline attribute.
|
|
if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
|
|
return false;
|
|
|
|
// Okay, go ahead and call the relatively-more-expensive function.
|
|
return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
|
|
}
|
|
|
|
/// Determine whether a variable is extern "C" prior to attaching
|
|
/// an initializer. We can't just call isExternC() here, because that
|
|
/// will also compute and cache whether the declaration is externally
|
|
/// visible, which might change when we attach the initializer.
|
|
///
|
|
/// This can only be used if the declaration is known to not be a
|
|
/// redeclaration of an internal linkage declaration.
|
|
///
|
|
/// For instance:
|
|
///
|
|
/// auto x = []{};
|
|
///
|
|
/// Attaching the initializer here makes this declaration not externally
|
|
/// visible, because its type has internal linkage.
|
|
///
|
|
/// FIXME: This is a hack.
|
|
template<typename T>
|
|
static bool isIncompleteDeclExternC(Sema &S, const T *D) {
|
|
if (S.getLangOpts().CPlusPlus) {
|
|
// In C++, the overloadable attribute negates the effects of extern "C".
|
|
if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
|
|
return false;
|
|
|
|
// So do CUDA's host/device attributes.
|
|
if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
|
|
D->template hasAttr<CUDAHostAttr>()))
|
|
return false;
|
|
}
|
|
return D->isExternC();
|
|
}
|
|
|
|
static bool shouldConsiderLinkage(const VarDecl *VD) {
|
|
const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
|
|
if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
|
|
isa<OMPDeclareMapperDecl>(DC))
|
|
return VD->hasExternalStorage();
|
|
if (DC->isFileContext())
|
|
return true;
|
|
if (DC->isRecord())
|
|
return false;
|
|
llvm_unreachable("Unexpected context");
|
|
}
|
|
|
|
static bool shouldConsiderLinkage(const FunctionDecl *FD) {
|
|
const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
|
|
if (DC->isFileContext() || DC->isFunctionOrMethod() ||
|
|
isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
|
|
return true;
|
|
if (DC->isRecord())
|
|
return false;
|
|
llvm_unreachable("Unexpected context");
|
|
}
|
|
|
|
static bool hasParsedAttr(Scope *S, const Declarator &PD,
|
|
ParsedAttr::Kind Kind) {
|
|
// Check decl attributes on the DeclSpec.
|
|
if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
|
|
return true;
|
|
|
|
// Walk the declarator structure, checking decl attributes that were in a type
|
|
// position to the decl itself.
|
|
for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
|
|
if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
|
|
return true;
|
|
}
|
|
|
|
// Finally, check attributes on the decl itself.
|
|
return PD.getAttributes().hasAttribute(Kind);
|
|
}
|
|
|
|
/// Adjust the \c DeclContext for a function or variable that might be a
|
|
/// function-local external declaration.
|
|
bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
|
|
if (!DC->isFunctionOrMethod())
|
|
return false;
|
|
|
|
// If this is a local extern function or variable declared within a function
|
|
// template, don't add it into the enclosing namespace scope until it is
|
|
// instantiated; it might have a dependent type right now.
|
|
if (DC->isDependentContext())
|
|
return true;
|
|
|
|
// C++11 [basic.link]p7:
|
|
// When a block scope declaration of an entity with linkage is not found to
|
|
// refer to some other declaration, then that entity is a member of the
|
|
// innermost enclosing namespace.
|
|
//
|
|
// Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
|
|
// semantically-enclosing namespace, not a lexically-enclosing one.
|
|
while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
|
|
DC = DC->getParent();
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if given declaration has external C language linkage.
|
|
static bool isDeclExternC(const Decl *D) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
return FD->isExternC();
|
|
if (const auto *VD = dyn_cast<VarDecl>(D))
|
|
return VD->isExternC();
|
|
|
|
llvm_unreachable("Unknown type of decl!");
|
|
}
|
|
|
|
NamedDecl *Sema::ActOnVariableDeclarator(
|
|
Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
|
|
LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
|
|
bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
|
|
QualType R = TInfo->getType();
|
|
DeclarationName Name = GetNameForDeclarator(D).getName();
|
|
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
|
|
if (D.isDecompositionDeclarator()) {
|
|
// Take the name of the first declarator as our name for diagnostic
|
|
// purposes.
|
|
auto &Decomp = D.getDecompositionDeclarator();
|
|
if (!Decomp.bindings().empty()) {
|
|
II = Decomp.bindings()[0].Name;
|
|
Name = II;
|
|
}
|
|
} else if (!II) {
|
|
Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
|
|
return nullptr;
|
|
}
|
|
|
|
if (getLangOpts().OpenCL) {
|
|
// OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
|
|
// OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
|
|
// argument.
|
|
if (R->isImageType() || R->isPipeType()) {
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_opencl_type_can_only_be_used_as_function_parameter)
|
|
<< R;
|
|
D.setInvalidType();
|
|
return nullptr;
|
|
}
|
|
|
|
// OpenCL v1.2 s6.9.r:
|
|
// The event type cannot be used to declare a program scope variable.
|
|
// OpenCL v2.0 s6.9.q:
|
|
// The clk_event_t and reserve_id_t types cannot be declared in program scope.
|
|
if (NULL == S->getParent()) {
|
|
if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_invalid_type_for_program_scope_var) << R;
|
|
D.setInvalidType();
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
|
|
QualType NR = R;
|
|
while (NR->isPointerType()) {
|
|
if (NR->isFunctionPointerType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
|
|
D.setInvalidType();
|
|
break;
|
|
}
|
|
NR = NR->getPointeeType();
|
|
}
|
|
|
|
if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
|
|
// OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
|
|
// half array type (unless the cl_khr_fp16 extension is enabled).
|
|
if (Context.getBaseElementType(R)->isHalfType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
|
|
if (R->isSamplerT()) {
|
|
// OpenCL v1.2 s6.9.b p4:
|
|
// The sampler type cannot be used with the __local and __global address
|
|
// space qualifiers.
|
|
if (R.getAddressSpace() == LangAS::opencl_local ||
|
|
R.getAddressSpace() == LangAS::opencl_global) {
|
|
Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
|
|
}
|
|
|
|
// OpenCL v1.2 s6.12.14.1:
|
|
// A global sampler must be declared with either the constant address
|
|
// space qualifier or with the const qualifier.
|
|
if (DC->isTranslationUnit() &&
|
|
!(R.getAddressSpace() == LangAS::opencl_constant ||
|
|
R.isConstQualified())) {
|
|
Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
|
|
// OpenCL v1.2 s6.9.r:
|
|
// The event type cannot be used with the __local, __constant and __global
|
|
// address space qualifiers.
|
|
if (R->isEventT()) {
|
|
if (R.getAddressSpace() != LangAS::opencl_private) {
|
|
Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
|
|
// OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
|
|
// supported. OpenCL C does not support thread_local either, and
|
|
// also reject all other thread storage class specifiers.
|
|
DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
|
|
if (TSC != TSCS_unspecified) {
|
|
bool IsCXX = getLangOpts().OpenCLCPlusPlus;
|
|
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
|
|
diag::err_opencl_unknown_type_specifier)
|
|
<< IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
|
|
<< DeclSpec::getSpecifierName(TSC) << 1;
|
|
D.setInvalidType();
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
|
|
StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
|
|
|
|
// dllimport globals without explicit storage class are treated as extern. We
|
|
// have to change the storage class this early to get the right DeclContext.
|
|
if (SC == SC_None && !DC->isRecord() &&
|
|
hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
|
|
!hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
|
|
SC = SC_Extern;
|
|
|
|
DeclContext *OriginalDC = DC;
|
|
bool IsLocalExternDecl = SC == SC_Extern &&
|
|
adjustContextForLocalExternDecl(DC);
|
|
|
|
if (SCSpec == DeclSpec::SCS_mutable) {
|
|
// mutable can only appear on non-static class members, so it's always
|
|
// an error here
|
|
Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
|
|
D.setInvalidType();
|
|
SC = SC_None;
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
|
|
!D.getAsmLabel() && !getSourceManager().isInSystemMacro(
|
|
D.getDeclSpec().getStorageClassSpecLoc())) {
|
|
// In C++11, the 'register' storage class specifier is deprecated.
|
|
// Suppress the warning in system macros, it's used in macros in some
|
|
// popular C system headers, such as in glibc's htonl() macro.
|
|
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
|
|
getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
|
|
: diag::warn_deprecated_register)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
}
|
|
|
|
DiagnoseFunctionSpecifiers(D.getDeclSpec());
|
|
|
|
if (!DC->isRecord() && S->getFnParent() == nullptr) {
|
|
// C99 6.9p2: The storage-class specifiers auto and register shall not
|
|
// appear in the declaration specifiers in an external declaration.
|
|
// Global Register+Asm is a GNU extension we support.
|
|
if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
|
|
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
|
|
bool IsMemberSpecialization = false;
|
|
bool IsVariableTemplateSpecialization = false;
|
|
bool IsPartialSpecialization = false;
|
|
bool IsVariableTemplate = false;
|
|
VarDecl *NewVD = nullptr;
|
|
VarTemplateDecl *NewTemplate = nullptr;
|
|
TemplateParameterList *TemplateParams = nullptr;
|
|
if (!getLangOpts().CPlusPlus) {
|
|
NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
|
|
II, R, TInfo, SC);
|
|
|
|
if (R->getContainedDeducedType())
|
|
ParsingInitForAutoVars.insert(NewVD);
|
|
|
|
if (D.isInvalidType())
|
|
NewVD->setInvalidDecl();
|
|
} else {
|
|
bool Invalid = false;
|
|
|
|
if (DC->isRecord() && !CurContext->isRecord()) {
|
|
// This is an out-of-line definition of a static data member.
|
|
switch (SC) {
|
|
case SC_None:
|
|
break;
|
|
case SC_Static:
|
|
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
|
|
diag::err_static_out_of_line)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
break;
|
|
case SC_Auto:
|
|
case SC_Register:
|
|
case SC_Extern:
|
|
// [dcl.stc] p2: The auto or register specifiers shall be applied only
|
|
// to names of variables declared in a block or to function parameters.
|
|
// [dcl.stc] p6: The extern specifier cannot be used in the declaration
|
|
// of class members
|
|
|
|
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
|
|
diag::err_storage_class_for_static_member)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
break;
|
|
case SC_PrivateExtern:
|
|
llvm_unreachable("C storage class in c++!");
|
|
}
|
|
}
|
|
|
|
if (SC == SC_Static && CurContext->isRecord()) {
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
|
|
if (RD->isLocalClass())
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_static_data_member_not_allowed_in_local_class)
|
|
<< Name << RD->getDeclName();
|
|
|
|
// C++98 [class.union]p1: If a union contains a static data member,
|
|
// the program is ill-formed. C++11 drops this restriction.
|
|
if (RD->isUnion())
|
|
Diag(D.getIdentifierLoc(),
|
|
getLangOpts().CPlusPlus11
|
|
? diag::warn_cxx98_compat_static_data_member_in_union
|
|
: diag::ext_static_data_member_in_union) << Name;
|
|
// We conservatively disallow static data members in anonymous structs.
|
|
else if (!RD->getDeclName())
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_static_data_member_not_allowed_in_anon_struct)
|
|
<< Name << RD->isUnion();
|
|
}
|
|
}
|
|
|
|
// Match up the template parameter lists with the scope specifier, then
|
|
// determine whether we have a template or a template specialization.
|
|
TemplateParams = MatchTemplateParametersToScopeSpecifier(
|
|
D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
|
|
D.getCXXScopeSpec(),
|
|
D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
|
|
? D.getName().TemplateId
|
|
: nullptr,
|
|
TemplateParamLists,
|
|
/*never a friend*/ false, IsMemberSpecialization, Invalid);
|
|
|
|
if (TemplateParams) {
|
|
if (!TemplateParams->size() &&
|
|
D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
|
|
// There is an extraneous 'template<>' for this variable. Complain
|
|
// about it, but allow the declaration of the variable.
|
|
Diag(TemplateParams->getTemplateLoc(),
|
|
diag::err_template_variable_noparams)
|
|
<< II
|
|
<< SourceRange(TemplateParams->getTemplateLoc(),
|
|
TemplateParams->getRAngleLoc());
|
|
TemplateParams = nullptr;
|
|
} else {
|
|
if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
|
|
// This is an explicit specialization or a partial specialization.
|
|
// FIXME: Check that we can declare a specialization here.
|
|
IsVariableTemplateSpecialization = true;
|
|
IsPartialSpecialization = TemplateParams->size() > 0;
|
|
} else { // if (TemplateParams->size() > 0)
|
|
// This is a template declaration.
|
|
IsVariableTemplate = true;
|
|
|
|
// Check that we can declare a template here.
|
|
if (CheckTemplateDeclScope(S, TemplateParams))
|
|
return nullptr;
|
|
|
|
// Only C++1y supports variable templates (N3651).
|
|
Diag(D.getIdentifierLoc(),
|
|
getLangOpts().CPlusPlus14
|
|
? diag::warn_cxx11_compat_variable_template
|
|
: diag::ext_variable_template);
|
|
}
|
|
}
|
|
} else {
|
|
assert((Invalid ||
|
|
D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
|
|
"should have a 'template<>' for this decl");
|
|
}
|
|
|
|
if (IsVariableTemplateSpecialization) {
|
|
SourceLocation TemplateKWLoc =
|
|
TemplateParamLists.size() > 0
|
|
? TemplateParamLists[0]->getTemplateLoc()
|
|
: SourceLocation();
|
|
DeclResult Res = ActOnVarTemplateSpecialization(
|
|
S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
|
|
IsPartialSpecialization);
|
|
if (Res.isInvalid())
|
|
return nullptr;
|
|
NewVD = cast<VarDecl>(Res.get());
|
|
AddToScope = false;
|
|
} else if (D.isDecompositionDeclarator()) {
|
|
NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
|
|
D.getIdentifierLoc(), R, TInfo, SC,
|
|
Bindings);
|
|
} else
|
|
NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
|
|
D.getIdentifierLoc(), II, R, TInfo, SC);
|
|
|
|
// If this is supposed to be a variable template, create it as such.
|
|
if (IsVariableTemplate) {
|
|
NewTemplate =
|
|
VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
|
|
TemplateParams, NewVD);
|
|
NewVD->setDescribedVarTemplate(NewTemplate);
|
|
}
|
|
|
|
// If this decl has an auto type in need of deduction, make a note of the
|
|
// Decl so we can diagnose uses of it in its own initializer.
|
|
if (R->getContainedDeducedType())
|
|
ParsingInitForAutoVars.insert(NewVD);
|
|
|
|
if (D.isInvalidType() || Invalid) {
|
|
NewVD->setInvalidDecl();
|
|
if (NewTemplate)
|
|
NewTemplate->setInvalidDecl();
|
|
}
|
|
|
|
SetNestedNameSpecifier(*this, NewVD, D);
|
|
|
|
// If we have any template parameter lists that don't directly belong to
|
|
// the variable (matching the scope specifier), store them.
|
|
unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
|
|
if (TemplateParamLists.size() > VDTemplateParamLists)
|
|
NewVD->setTemplateParameterListsInfo(
|
|
Context, TemplateParamLists.drop_back(VDTemplateParamLists));
|
|
|
|
if (D.getDeclSpec().isConstexprSpecified()) {
|
|
NewVD->setConstexpr(true);
|
|
// C++1z [dcl.spec.constexpr]p1:
|
|
// A static data member declared with the constexpr specifier is
|
|
// implicitly an inline variable.
|
|
if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
|
|
NewVD->setImplicitlyInline();
|
|
}
|
|
}
|
|
|
|
if (D.getDeclSpec().isInlineSpecified()) {
|
|
if (!getLangOpts().CPlusPlus) {
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
|
|
<< 0;
|
|
} else if (CurContext->isFunctionOrMethod()) {
|
|
// 'inline' is not allowed on block scope variable declaration.
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(),
|
|
diag::err_inline_declaration_block_scope) << Name
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
|
|
} else {
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(),
|
|
getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
|
|
: diag::ext_inline_variable);
|
|
NewVD->setInlineSpecified();
|
|
}
|
|
}
|
|
|
|
// Set the lexical context. If the declarator has a C++ scope specifier, the
|
|
// lexical context will be different from the semantic context.
|
|
NewVD->setLexicalDeclContext(CurContext);
|
|
if (NewTemplate)
|
|
NewTemplate->setLexicalDeclContext(CurContext);
|
|
|
|
if (IsLocalExternDecl) {
|
|
if (D.isDecompositionDeclarator())
|
|
for (auto *B : Bindings)
|
|
B->setLocalExternDecl();
|
|
else
|
|
NewVD->setLocalExternDecl();
|
|
}
|
|
|
|
bool EmitTLSUnsupportedError = false;
|
|
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
|
|
// C++11 [dcl.stc]p4:
|
|
// When thread_local is applied to a variable of block scope the
|
|
// storage-class-specifier static is implied if it does not appear
|
|
// explicitly.
|
|
// Core issue: 'static' is not implied if the variable is declared
|
|
// 'extern'.
|
|
if (NewVD->hasLocalStorage() &&
|
|
(SCSpec != DeclSpec::SCS_unspecified ||
|
|
TSCS != DeclSpec::TSCS_thread_local ||
|
|
!DC->isFunctionOrMethod()))
|
|
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
|
|
diag::err_thread_non_global)
|
|
<< DeclSpec::getSpecifierName(TSCS);
|
|
else if (!Context.getTargetInfo().isTLSSupported()) {
|
|
if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
|
|
// Postpone error emission until we've collected attributes required to
|
|
// figure out whether it's a host or device variable and whether the
|
|
// error should be ignored.
|
|
EmitTLSUnsupportedError = true;
|
|
// We still need to mark the variable as TLS so it shows up in AST with
|
|
// proper storage class for other tools to use even if we're not going
|
|
// to emit any code for it.
|
|
NewVD->setTSCSpec(TSCS);
|
|
} else
|
|
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
|
|
diag::err_thread_unsupported);
|
|
} else
|
|
NewVD->setTSCSpec(TSCS);
|
|
}
|
|
|
|
// C99 6.7.4p3
|
|
// An inline definition of a function with external linkage shall
|
|
// not contain a definition of a modifiable object with static or
|
|
// thread storage duration...
|
|
// We only apply this when the function is required to be defined
|
|
// elsewhere, i.e. when the function is not 'extern inline'. Note
|
|
// that a local variable with thread storage duration still has to
|
|
// be marked 'static'. Also note that it's possible to get these
|
|
// semantics in C++ using __attribute__((gnu_inline)).
|
|
if (SC == SC_Static && S->getFnParent() != nullptr &&
|
|
!NewVD->getType().isConstQualified()) {
|
|
FunctionDecl *CurFD = getCurFunctionDecl();
|
|
if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
|
|
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
|
|
diag::warn_static_local_in_extern_inline);
|
|
MaybeSuggestAddingStaticToDecl(CurFD);
|
|
}
|
|
}
|
|
|
|
if (D.getDeclSpec().isModulePrivateSpecified()) {
|
|
if (IsVariableTemplateSpecialization)
|
|
Diag(NewVD->getLocation(), diag::err_module_private_specialization)
|
|
<< (IsPartialSpecialization ? 1 : 0)
|
|
<< FixItHint::CreateRemoval(
|
|
D.getDeclSpec().getModulePrivateSpecLoc());
|
|
else if (IsMemberSpecialization)
|
|
Diag(NewVD->getLocation(), diag::err_module_private_specialization)
|
|
<< 2
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
|
|
else if (NewVD->hasLocalStorage())
|
|
Diag(NewVD->getLocation(), diag::err_module_private_local)
|
|
<< 0 << NewVD->getDeclName()
|
|
<< SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
|
|
else {
|
|
NewVD->setModulePrivate();
|
|
if (NewTemplate)
|
|
NewTemplate->setModulePrivate();
|
|
for (auto *B : Bindings)
|
|
B->setModulePrivate();
|
|
}
|
|
}
|
|
|
|
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
|
ProcessDeclAttributes(S, NewVD, D);
|
|
|
|
if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
|
|
if (EmitTLSUnsupportedError &&
|
|
((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
|
|
(getLangOpts().OpenMPIsDevice &&
|
|
NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
|
|
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
|
|
diag::err_thread_unsupported);
|
|
// CUDA B.2.5: "__shared__ and __constant__ variables have implied static
|
|
// storage [duration]."
|
|
if (SC == SC_None && S->getFnParent() != nullptr &&
|
|
(NewVD->hasAttr<CUDASharedAttr>() ||
|
|
NewVD->hasAttr<CUDAConstantAttr>())) {
|
|
NewVD->setStorageClass(SC_Static);
|
|
}
|
|
}
|
|
|
|
// Ensure that dllimport globals without explicit storage class are treated as
|
|
// extern. The storage class is set above using parsed attributes. Now we can
|
|
// check the VarDecl itself.
|
|
assert(!NewVD->hasAttr<DLLImportAttr>() ||
|
|
NewVD->getAttr<DLLImportAttr>()->isInherited() ||
|
|
NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
|
|
|
|
// In auto-retain/release, infer strong retension for variables of
|
|
// retainable type.
|
|
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
|
|
NewVD->setInvalidDecl();
|
|
|
|
// Handle GNU asm-label extension (encoded as an attribute).
|
|
if (Expr *E = (Expr*)D.getAsmLabel()) {
|
|
// The parser guarantees this is a string.
|
|
StringLiteral *SE = cast<StringLiteral>(E);
|
|
StringRef Label = SE->getString();
|
|
if (S->getFnParent() != nullptr) {
|
|
switch (SC) {
|
|
case SC_None:
|
|
case SC_Auto:
|
|
Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
|
|
break;
|
|
case SC_Register:
|
|
// Local Named register
|
|
if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
|
|
DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
|
|
Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
|
|
break;
|
|
case SC_Static:
|
|
case SC_Extern:
|
|
case SC_PrivateExtern:
|
|
break;
|
|
}
|
|
} else if (SC == SC_Register) {
|
|
// Global Named register
|
|
if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
|
|
const auto &TI = Context.getTargetInfo();
|
|
bool HasSizeMismatch;
|
|
|
|
if (!TI.isValidGCCRegisterName(Label))
|
|
Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
|
|
else if (!TI.validateGlobalRegisterVariable(Label,
|
|
Context.getTypeSize(R),
|
|
HasSizeMismatch))
|
|
Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
|
|
else if (HasSizeMismatch)
|
|
Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
|
|
}
|
|
|
|
if (!R->isIntegralType(Context) && !R->isPointerType()) {
|
|
Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
|
|
NewVD->setInvalidDecl(true);
|
|
}
|
|
}
|
|
|
|
NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
|
|
Context, Label, 0));
|
|
} else if (!ExtnameUndeclaredIdentifiers.empty()) {
|
|
llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
|
|
ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
|
|
if (I != ExtnameUndeclaredIdentifiers.end()) {
|
|
if (isDeclExternC(NewVD)) {
|
|
NewVD->addAttr(I->second);
|
|
ExtnameUndeclaredIdentifiers.erase(I);
|
|
} else
|
|
Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
|
|
<< /*Variable*/1 << NewVD;
|
|
}
|
|
}
|
|
|
|
// Find the shadowed declaration before filtering for scope.
|
|
NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
|
|
? getShadowedDeclaration(NewVD, Previous)
|
|
: nullptr;
|
|
|
|
// Don't consider existing declarations that are in a different
|
|
// scope and are out-of-semantic-context declarations (if the new
|
|
// declaration has linkage).
|
|
FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
|
|
D.getCXXScopeSpec().isNotEmpty() ||
|
|
IsMemberSpecialization ||
|
|
IsVariableTemplateSpecialization);
|
|
|
|
// Check whether the previous declaration is in the same block scope. This
|
|
// affects whether we merge types with it, per C++11 [dcl.array]p3.
|
|
if (getLangOpts().CPlusPlus &&
|
|
NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
|
|
NewVD->setPreviousDeclInSameBlockScope(
|
|
Previous.isSingleResult() && !Previous.isShadowed() &&
|
|
isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
|
|
|
|
if (!getLangOpts().CPlusPlus) {
|
|
D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
|
|
} else {
|
|
// If this is an explicit specialization of a static data member, check it.
|
|
if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
|
|
CheckMemberSpecialization(NewVD, Previous))
|
|
NewVD->setInvalidDecl();
|
|
|
|
// Merge the decl with the existing one if appropriate.
|
|
if (!Previous.empty()) {
|
|
if (Previous.isSingleResult() &&
|
|
isa<FieldDecl>(Previous.getFoundDecl()) &&
|
|
D.getCXXScopeSpec().isSet()) {
|
|
// The user tried to define a non-static data member
|
|
// out-of-line (C++ [dcl.meaning]p1).
|
|
Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
Previous.clear();
|
|
NewVD->setInvalidDecl();
|
|
}
|
|
} else if (D.getCXXScopeSpec().isSet()) {
|
|
// No previous declaration in the qualifying scope.
|
|
Diag(D.getIdentifierLoc(), diag::err_no_member)
|
|
<< Name << computeDeclContext(D.getCXXScopeSpec(), true)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
NewVD->setInvalidDecl();
|
|
}
|
|
|
|
if (!IsVariableTemplateSpecialization)
|
|
D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
|
|
|
|
if (NewTemplate) {
|
|
VarTemplateDecl *PrevVarTemplate =
|
|
NewVD->getPreviousDecl()
|
|
? NewVD->getPreviousDecl()->getDescribedVarTemplate()
|
|
: nullptr;
|
|
|
|
// Check the template parameter list of this declaration, possibly
|
|
// merging in the template parameter list from the previous variable
|
|
// template declaration.
|
|
if (CheckTemplateParameterList(
|
|
TemplateParams,
|
|
PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
|
|
: nullptr,
|
|
(D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
|
|
DC->isDependentContext())
|
|
? TPC_ClassTemplateMember
|
|
: TPC_VarTemplate))
|
|
NewVD->setInvalidDecl();
|
|
|
|
// If we are providing an explicit specialization of a static variable
|
|
// template, make a note of that.
|
|
if (PrevVarTemplate &&
|
|
PrevVarTemplate->getInstantiatedFromMemberTemplate())
|
|
PrevVarTemplate->setMemberSpecialization();
|
|
}
|
|
}
|
|
|
|
// Diagnose shadowed variables iff this isn't a redeclaration.
|
|
if (ShadowedDecl && !D.isRedeclaration())
|
|
CheckShadow(NewVD, ShadowedDecl, Previous);
|
|
|
|
ProcessPragmaWeak(S, NewVD);
|
|
|
|
// If this is the first declaration of an extern C variable, update
|
|
// the map of such variables.
|
|
if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
|
|
isIncompleteDeclExternC(*this, NewVD))
|
|
RegisterLocallyScopedExternCDecl(NewVD, S);
|
|
|
|
if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
|
|
Decl *ManglingContextDecl;
|
|
if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
|
|
NewVD->getDeclContext(), ManglingContextDecl)) {
|
|
Context.setManglingNumber(
|
|
NewVD, MCtx->getManglingNumber(
|
|
NewVD, getMSManglingNumber(getLangOpts(), S)));
|
|
Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
|
|
}
|
|
}
|
|
|
|
// Special handling of variable named 'main'.
|
|
if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
|
|
NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
|
|
!getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
|
|
|
|
// C++ [basic.start.main]p3
|
|
// A program that declares a variable main at global scope is ill-formed.
|
|
if (getLangOpts().CPlusPlus)
|
|
Diag(D.getBeginLoc(), diag::err_main_global_variable);
|
|
|
|
// In C, and external-linkage variable named main results in undefined
|
|
// behavior.
|
|
else if (NewVD->hasExternalFormalLinkage())
|
|
Diag(D.getBeginLoc(), diag::warn_main_redefined);
|
|
}
|
|
|
|
if (D.isRedeclaration() && !Previous.empty()) {
|
|
NamedDecl *Prev = Previous.getRepresentativeDecl();
|
|
checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
|
|
D.isFunctionDefinition());
|
|
}
|
|
|
|
if (NewTemplate) {
|
|
if (NewVD->isInvalidDecl())
|
|
NewTemplate->setInvalidDecl();
|
|
ActOnDocumentableDecl(NewTemplate);
|
|
return NewTemplate;
|
|
}
|
|
|
|
if (IsMemberSpecialization && !NewVD->isInvalidDecl())
|
|
CompleteMemberSpecialization(NewVD, Previous);
|
|
|
|
return NewVD;
|
|
}
|
|
|
|
/// Enum describing the %select options in diag::warn_decl_shadow.
|
|
enum ShadowedDeclKind {
|
|
SDK_Local,
|
|
SDK_Global,
|
|
SDK_StaticMember,
|
|
SDK_Field,
|
|
SDK_Typedef,
|
|
SDK_Using
|
|
};
|
|
|
|
/// Determine what kind of declaration we're shadowing.
|
|
static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
|
|
const DeclContext *OldDC) {
|
|
if (isa<TypeAliasDecl>(ShadowedDecl))
|
|
return SDK_Using;
|
|
else if (isa<TypedefDecl>(ShadowedDecl))
|
|
return SDK_Typedef;
|
|
else if (isa<RecordDecl>(OldDC))
|
|
return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
|
|
|
|
return OldDC->isFileContext() ? SDK_Global : SDK_Local;
|
|
}
|
|
|
|
/// Return the location of the capture if the given lambda captures the given
|
|
/// variable \p VD, or an invalid source location otherwise.
|
|
static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
|
|
const VarDecl *VD) {
|
|
for (const Capture &Capture : LSI->Captures) {
|
|
if (Capture.isVariableCapture() && Capture.getVariable() == VD)
|
|
return Capture.getLocation();
|
|
}
|
|
return SourceLocation();
|
|
}
|
|
|
|
static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
|
|
const LookupResult &R) {
|
|
// Only diagnose if we're shadowing an unambiguous field or variable.
|
|
if (R.getResultKind() != LookupResult::Found)
|
|
return false;
|
|
|
|
// Return false if warning is ignored.
|
|
return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
|
|
}
|
|
|
|
/// Return the declaration shadowed by the given variable \p D, or null
|
|
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
|
|
NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
|
|
const LookupResult &R) {
|
|
if (!shouldWarnIfShadowedDecl(Diags, R))
|
|
return nullptr;
|
|
|
|
// Don't diagnose declarations at file scope.
|
|
if (D->hasGlobalStorage())
|
|
return nullptr;
|
|
|
|
NamedDecl *ShadowedDecl = R.getFoundDecl();
|
|
return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
|
|
? ShadowedDecl
|
|
: nullptr;
|
|
}
|
|
|
|
/// Return the declaration shadowed by the given typedef \p D, or null
|
|
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
|
|
NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
|
|
const LookupResult &R) {
|
|
// Don't warn if typedef declaration is part of a class
|
|
if (D->getDeclContext()->isRecord())
|
|
return nullptr;
|
|
|
|
if (!shouldWarnIfShadowedDecl(Diags, R))
|
|
return nullptr;
|
|
|
|
NamedDecl *ShadowedDecl = R.getFoundDecl();
|
|
return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
|
|
}
|
|
|
|
/// Diagnose variable or built-in function shadowing. Implements
|
|
/// -Wshadow.
|
|
///
|
|
/// This method is called whenever a VarDecl is added to a "useful"
|
|
/// scope.
|
|
///
|
|
/// \param ShadowedDecl the declaration that is shadowed by the given variable
|
|
/// \param R the lookup of the name
|
|
///
|
|
void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
|
|
const LookupResult &R) {
|
|
DeclContext *NewDC = D->getDeclContext();
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
|
|
// Fields are not shadowed by variables in C++ static methods.
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
|
|
if (MD->isStatic())
|
|
return;
|
|
|
|
// Fields shadowed by constructor parameters are a special case. Usually
|
|
// the constructor initializes the field with the parameter.
|
|
if (isa<CXXConstructorDecl>(NewDC))
|
|
if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
|
|
// Remember that this was shadowed so we can either warn about its
|
|
// modification or its existence depending on warning settings.
|
|
ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
|
|
if (shadowedVar->isExternC()) {
|
|
// For shadowing external vars, make sure that we point to the global
|
|
// declaration, not a locally scoped extern declaration.
|
|
for (auto I : shadowedVar->redecls())
|
|
if (I->isFileVarDecl()) {
|
|
ShadowedDecl = I;
|
|
break;
|
|
}
|
|
}
|
|
|
|
DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
|
|
|
|
unsigned WarningDiag = diag::warn_decl_shadow;
|
|
SourceLocation CaptureLoc;
|
|
if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
|
|
isa<CXXMethodDecl>(NewDC)) {
|
|
if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
|
|
if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
|
|
if (RD->getLambdaCaptureDefault() == LCD_None) {
|
|
// Try to avoid warnings for lambdas with an explicit capture list.
|
|
const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
|
|
// Warn only when the lambda captures the shadowed decl explicitly.
|
|
CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
|
|
if (CaptureLoc.isInvalid())
|
|
WarningDiag = diag::warn_decl_shadow_uncaptured_local;
|
|
} else {
|
|
// Remember that this was shadowed so we can avoid the warning if the
|
|
// shadowed decl isn't captured and the warning settings allow it.
|
|
cast<LambdaScopeInfo>(getCurFunction())
|
|
->ShadowingDecls.push_back(
|
|
{cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
|
|
// A variable can't shadow a local variable in an enclosing scope, if
|
|
// they are separated by a non-capturing declaration context.
|
|
for (DeclContext *ParentDC = NewDC;
|
|
ParentDC && !ParentDC->Equals(OldDC);
|
|
ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
|
|
// Only block literals, captured statements, and lambda expressions
|
|
// can capture; other scopes don't.
|
|
if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
|
|
!isLambdaCallOperator(ParentDC)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only warn about certain kinds of shadowing for class members.
|
|
if (NewDC && NewDC->isRecord()) {
|
|
// In particular, don't warn about shadowing non-class members.
|
|
if (!OldDC->isRecord())
|
|
return;
|
|
|
|
// TODO: should we warn about static data members shadowing
|
|
// static data members from base classes?
|
|
|
|
// TODO: don't diagnose for inaccessible shadowed members.
|
|
// This is hard to do perfectly because we might friend the
|
|
// shadowing context, but that's just a false negative.
|
|
}
|
|
|
|
|
|
DeclarationName Name = R.getLookupName();
|
|
|
|
// Emit warning and note.
|
|
if (getSourceManager().isInSystemMacro(R.getNameLoc()))
|
|
return;
|
|
ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
|
|
Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
|
|
if (!CaptureLoc.isInvalid())
|
|
Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
|
|
<< Name << /*explicitly*/ 1;
|
|
Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
|
|
/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
|
|
/// when these variables are captured by the lambda.
|
|
void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
|
|
for (const auto &Shadow : LSI->ShadowingDecls) {
|
|
const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
|
|
// Try to avoid the warning when the shadowed decl isn't captured.
|
|
SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
|
|
const DeclContext *OldDC = ShadowedDecl->getDeclContext();
|
|
Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
|
|
? diag::warn_decl_shadow_uncaptured_local
|
|
: diag::warn_decl_shadow)
|
|
<< Shadow.VD->getDeclName()
|
|
<< computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
|
|
if (!CaptureLoc.isInvalid())
|
|
Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
|
|
<< Shadow.VD->getDeclName() << /*explicitly*/ 0;
|
|
Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
|
|
/// Check -Wshadow without the advantage of a previous lookup.
|
|
void Sema::CheckShadow(Scope *S, VarDecl *D) {
|
|
if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
|
|
return;
|
|
|
|
LookupResult R(*this, D->getDeclName(), D->getLocation(),
|
|
Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
|
|
LookupName(R, S);
|
|
if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
|
|
CheckShadow(D, ShadowedDecl, R);
|
|
}
|
|
|
|
/// Check if 'E', which is an expression that is about to be modified, refers
|
|
/// to a constructor parameter that shadows a field.
|
|
void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
|
|
// Quickly ignore expressions that can't be shadowing ctor parameters.
|
|
if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
|
|
return;
|
|
E = E->IgnoreParenImpCasts();
|
|
auto *DRE = dyn_cast<DeclRefExpr>(E);
|
|
if (!DRE)
|
|
return;
|
|
const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
|
|
auto I = ShadowingDecls.find(D);
|
|
if (I == ShadowingDecls.end())
|
|
return;
|
|
const NamedDecl *ShadowedDecl = I->second;
|
|
const DeclContext *OldDC = ShadowedDecl->getDeclContext();
|
|
Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
|
|
Diag(D->getLocation(), diag::note_var_declared_here) << D;
|
|
Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
|
|
|
|
// Avoid issuing multiple warnings about the same decl.
|
|
ShadowingDecls.erase(I);
|
|
}
|
|
|
|
/// Check for conflict between this global or extern "C" declaration and
|
|
/// previous global or extern "C" declarations. This is only used in C++.
|
|
template<typename T>
|
|
static bool checkGlobalOrExternCConflict(
|
|
Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
|
|
assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
|
|
NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
|
|
|
|
if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
|
|
// The common case: this global doesn't conflict with any extern "C"
|
|
// declaration.
|
|
return false;
|
|
}
|
|
|
|
if (Prev) {
|
|
if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
|
|
// Both the old and new declarations have C language linkage. This is a
|
|
// redeclaration.
|
|
Previous.clear();
|
|
Previous.addDecl(Prev);
|
|
return true;
|
|
}
|
|
|
|
// This is a global, non-extern "C" declaration, and there is a previous
|
|
// non-global extern "C" declaration. Diagnose if this is a variable
|
|
// declaration.
|
|
if (!isa<VarDecl>(ND))
|
|
return false;
|
|
} else {
|
|
// The declaration is extern "C". Check for any declaration in the
|
|
// translation unit which might conflict.
|
|
if (IsGlobal) {
|
|
// We have already performed the lookup into the translation unit.
|
|
IsGlobal = false;
|
|
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
|
I != E; ++I) {
|
|
if (isa<VarDecl>(*I)) {
|
|
Prev = *I;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
DeclContext::lookup_result R =
|
|
S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
|
|
for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
|
|
I != E; ++I) {
|
|
if (isa<VarDecl>(*I)) {
|
|
Prev = *I;
|
|
break;
|
|
}
|
|
// FIXME: If we have any other entity with this name in global scope,
|
|
// the declaration is ill-formed, but that is a defect: it breaks the
|
|
// 'stat' hack, for instance. Only variables can have mangled name
|
|
// clashes with extern "C" declarations, so only they deserve a
|
|
// diagnostic.
|
|
}
|
|
}
|
|
|
|
if (!Prev)
|
|
return false;
|
|
}
|
|
|
|
// Use the first declaration's location to ensure we point at something which
|
|
// is lexically inside an extern "C" linkage-spec.
|
|
assert(Prev && "should have found a previous declaration to diagnose");
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
|
|
Prev = FD->getFirstDecl();
|
|
else
|
|
Prev = cast<VarDecl>(Prev)->getFirstDecl();
|
|
|
|
S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
|
|
<< IsGlobal << ND;
|
|
S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
|
|
<< IsGlobal;
|
|
return false;
|
|
}
|
|
|
|
/// Apply special rules for handling extern "C" declarations. Returns \c true
|
|
/// if we have found that this is a redeclaration of some prior entity.
|
|
///
|
|
/// Per C++ [dcl.link]p6:
|
|
/// Two declarations [for a function or variable] with C language linkage
|
|
/// with the same name that appear in different scopes refer to the same
|
|
/// [entity]. An entity with C language linkage shall not be declared with
|
|
/// the same name as an entity in global scope.
|
|
template<typename T>
|
|
static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
|
|
LookupResult &Previous) {
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
// In C, when declaring a global variable, look for a corresponding 'extern'
|
|
// variable declared in function scope. We don't need this in C++, because
|
|
// we find local extern decls in the surrounding file-scope DeclContext.
|
|
if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
|
|
if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
|
|
Previous.clear();
|
|
Previous.addDecl(Prev);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// A declaration in the translation unit can conflict with an extern "C"
|
|
// declaration.
|
|
if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
|
|
return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
|
|
|
|
// An extern "C" declaration can conflict with a declaration in the
|
|
// translation unit or can be a redeclaration of an extern "C" declaration
|
|
// in another scope.
|
|
if (isIncompleteDeclExternC(S,ND))
|
|
return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
|
|
|
|
// Neither global nor extern "C": nothing to do.
|
|
return false;
|
|
}
|
|
|
|
void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
|
|
// If the decl is already known invalid, don't check it.
|
|
if (NewVD->isInvalidDecl())
|
|
return;
|
|
|
|
QualType T = NewVD->getType();
|
|
|
|
// Defer checking an 'auto' type until its initializer is attached.
|
|
if (T->isUndeducedType())
|
|
return;
|
|
|
|
if (NewVD->hasAttrs())
|
|
CheckAlignasUnderalignment(NewVD);
|
|
|
|
if (T->isObjCObjectType()) {
|
|
Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
|
|
<< FixItHint::CreateInsertion(NewVD->getLocation(), "*");
|
|
T = Context.getObjCObjectPointerType(T);
|
|
NewVD->setType(T);
|
|
}
|
|
|
|
// Emit an error if an address space was applied to decl with local storage.
|
|
// This includes arrays of objects with address space qualifiers, but not
|
|
// automatic variables that point to other address spaces.
|
|
// ISO/IEC TR 18037 S5.1.2
|
|
if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
|
|
T.getAddressSpace() != LangAS::Default) {
|
|
Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// OpenCL v1.2 s6.8 - The static qualifier is valid only in program
|
|
// scope.
|
|
if (getLangOpts().OpenCLVersion == 120 &&
|
|
!getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
|
|
NewVD->isStaticLocal()) {
|
|
Diag(NewVD->getLocation(), diag::err_static_function_scope);
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
if (getLangOpts().OpenCL) {
|
|
// OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
|
|
if (NewVD->hasAttr<BlocksAttr>()) {
|
|
Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
|
|
return;
|
|
}
|
|
|
|
if (T->isBlockPointerType()) {
|
|
// OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
|
|
// can't use 'extern' storage class.
|
|
if (!T.isConstQualified()) {
|
|
Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
|
|
<< 0 /*const*/;
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
if (NewVD->hasExternalStorage()) {
|
|
Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
// OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
|
|
// __constant address space.
|
|
// OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
|
|
// variables inside a function can also be declared in the global
|
|
// address space.
|
|
// OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local
|
|
// address space additionally.
|
|
// FIXME: Add local AS for OpenCL C++.
|
|
if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
|
|
NewVD->hasExternalStorage()) {
|
|
if (!T->isSamplerT() &&
|
|
!(T.getAddressSpace() == LangAS::opencl_constant ||
|
|
(T.getAddressSpace() == LangAS::opencl_global &&
|
|
(getLangOpts().OpenCLVersion == 200 ||
|
|
getLangOpts().OpenCLCPlusPlus)))) {
|
|
int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
|
|
if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
|
|
Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
|
|
<< Scope << "global or constant";
|
|
else
|
|
Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
|
|
<< Scope << "constant";
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
} else {
|
|
if (T.getAddressSpace() == LangAS::opencl_global) {
|
|
Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
|
|
<< 1 /*is any function*/ << "global";
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
if (T.getAddressSpace() == LangAS::opencl_constant ||
|
|
T.getAddressSpace() == LangAS::opencl_local) {
|
|
FunctionDecl *FD = getCurFunctionDecl();
|
|
// OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
|
|
// in functions.
|
|
if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
|
|
if (T.getAddressSpace() == LangAS::opencl_constant)
|
|
Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
|
|
<< 0 /*non-kernel only*/ << "constant";
|
|
else
|
|
Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
|
|
<< 0 /*non-kernel only*/ << "local";
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
// OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
|
|
// in the outermost scope of a kernel function.
|
|
if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
|
|
if (!getCurScope()->isFunctionScope()) {
|
|
if (T.getAddressSpace() == LangAS::opencl_constant)
|
|
Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
|
|
<< "constant";
|
|
else
|
|
Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
|
|
<< "local";
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
} else if (T.getAddressSpace() != LangAS::opencl_private) {
|
|
// Do not allow other address spaces on automatic variable.
|
|
Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
|
|
&& !NewVD->hasAttr<BlocksAttr>()) {
|
|
if (getLangOpts().getGC() != LangOptions::NonGC)
|
|
Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
|
|
else {
|
|
assert(!getLangOpts().ObjCAutoRefCount);
|
|
Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
|
|
}
|
|
}
|
|
|
|
bool isVM = T->isVariablyModifiedType();
|
|
if (isVM || NewVD->hasAttr<CleanupAttr>() ||
|
|
NewVD->hasAttr<BlocksAttr>())
|
|
setFunctionHasBranchProtectedScope();
|
|
|
|
if ((isVM && NewVD->hasLinkage()) ||
|
|
(T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
|
|
bool SizeIsNegative;
|
|
llvm::APSInt Oversized;
|
|
TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
|
|
NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
|
|
QualType FixedT;
|
|
if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
|
|
FixedT = FixedTInfo->getType();
|
|
else if (FixedTInfo) {
|
|
// Type and type-as-written are canonically different. We need to fix up
|
|
// both types separately.
|
|
FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
|
|
Oversized);
|
|
}
|
|
if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
|
|
const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
|
|
// FIXME: This won't give the correct result for
|
|
// int a[10][n];
|
|
SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
|
|
|
|
if (NewVD->isFileVarDecl())
|
|
Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
|
|
<< SizeRange;
|
|
else if (NewVD->isStaticLocal())
|
|
Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
|
|
<< SizeRange;
|
|
else
|
|
Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
|
|
<< SizeRange;
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
if (!FixedTInfo) {
|
|
if (NewVD->isFileVarDecl())
|
|
Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
|
|
else
|
|
Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
|
|
NewVD->setType(FixedT);
|
|
NewVD->setTypeSourceInfo(FixedTInfo);
|
|
}
|
|
|
|
if (T->isVoidType()) {
|
|
// C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
|
|
// of objects and functions.
|
|
if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
|
|
Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
|
|
<< T;
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
|
|
Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
if (isVM && NewVD->hasAttr<BlocksAttr>()) {
|
|
Diag(NewVD->getLocation(), diag::err_block_on_vm);
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
if (NewVD->isConstexpr() && !T->isDependentType() &&
|
|
RequireLiteralType(NewVD->getLocation(), T,
|
|
diag::err_constexpr_var_non_literal)) {
|
|
NewVD->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Perform semantic checking on a newly-created variable
|
|
/// declaration.
|
|
///
|
|
/// This routine performs all of the type-checking required for a
|
|
/// variable declaration once it has been built. It is used both to
|
|
/// check variables after they have been parsed and their declarators
|
|
/// have been translated into a declaration, and to check variables
|
|
/// that have been instantiated from a template.
|
|
///
|
|
/// Sets NewVD->isInvalidDecl() if an error was encountered.
|
|
///
|
|
/// Returns true if the variable declaration is a redeclaration.
|
|
bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
|
|
CheckVariableDeclarationType(NewVD);
|
|
|
|
// If the decl is already known invalid, don't check it.
|
|
if (NewVD->isInvalidDecl())
|
|
return false;
|
|
|
|
// If we did not find anything by this name, look for a non-visible
|
|
// extern "C" declaration with the same name.
|
|
if (Previous.empty() &&
|
|
checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
|
|
Previous.setShadowed();
|
|
|
|
if (!Previous.empty()) {
|
|
MergeVarDecl(NewVD, Previous);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
struct FindOverriddenMethod {
|
|
Sema *S;
|
|
CXXMethodDecl *Method;
|
|
|
|
/// Member lookup function that determines whether a given C++
|
|
/// method overrides a method in a base class, to be used with
|
|
/// CXXRecordDecl::lookupInBases().
|
|
bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
|
|
RecordDecl *BaseRecord =
|
|
Specifier->getType()->getAs<RecordType>()->getDecl();
|
|
|
|
DeclarationName Name = Method->getDeclName();
|
|
|
|
// FIXME: Do we care about other names here too?
|
|
if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
|
|
// We really want to find the base class destructor here.
|
|
QualType T = S->Context.getTypeDeclType(BaseRecord);
|
|
CanQualType CT = S->Context.getCanonicalType(T);
|
|
|
|
Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
|
|
}
|
|
|
|
for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
|
|
Path.Decls = Path.Decls.slice(1)) {
|
|
NamedDecl *D = Path.Decls.front();
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
|
|
} // end anonymous namespace
|
|
|
|
/// Report an error regarding overriding, along with any relevant
|
|
/// overridden methods.
|
|
///
|
|
/// \param DiagID the primary error to report.
|
|
/// \param MD the overriding method.
|
|
/// \param OEK which overrides to include as notes.
|
|
static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
|
|
OverrideErrorKind OEK = OEK_All) {
|
|
S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
|
|
for (const CXXMethodDecl *O : MD->overridden_methods()) {
|
|
// This check (& the OEK parameter) could be replaced by a predicate, but
|
|
// without lambdas that would be overkill. This is still nicer than writing
|
|
// out the diag loop 3 times.
|
|
if ((OEK == OEK_All) ||
|
|
(OEK == OEK_NonDeleted && !O->isDeleted()) ||
|
|
(OEK == OEK_Deleted && O->isDeleted()))
|
|
S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
|
|
}
|
|
}
|
|
|
|
/// AddOverriddenMethods - See if a method overrides any in the base classes,
|
|
/// and if so, check that it's a valid override and remember it.
|
|
bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
|
|
// Look for methods in base classes that this method might override.
|
|
CXXBasePaths Paths;
|
|
FindOverriddenMethod FOM;
|
|
FOM.Method = MD;
|
|
FOM.S = this;
|
|
bool hasDeletedOverridenMethods = false;
|
|
bool hasNonDeletedOverridenMethods = false;
|
|
bool AddedAny = false;
|
|
if (DC->lookupInBases(FOM, Paths)) {
|
|
for (auto *I : Paths.found_decls()) {
|
|
if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
|
|
MD->addOverriddenMethod(OldMD->getCanonicalDecl());
|
|
if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
|
|
!CheckOverridingFunctionAttributes(MD, OldMD) &&
|
|
!CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
|
|
!CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
|
|
hasDeletedOverridenMethods |= OldMD->isDeleted();
|
|
hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
|
|
AddedAny = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hasDeletedOverridenMethods && !MD->isDeleted()) {
|
|
ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
|
|
}
|
|
if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
|
|
ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
|
|
}
|
|
|
|
return AddedAny;
|
|
}
|
|
|
|
namespace {
|
|
// Struct for holding all of the extra arguments needed by
|
|
// DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
|
|
struct ActOnFDArgs {
|
|
Scope *S;
|
|
Declarator &D;
|
|
MultiTemplateParamsArg TemplateParamLists;
|
|
bool AddToScope;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
|
|
// Callback to only accept typo corrections that have a non-zero edit distance.
|
|
// Also only accept corrections that have the same parent decl.
|
|
class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
|
|
public:
|
|
DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
|
|
CXXRecordDecl *Parent)
|
|
: Context(Context), OriginalFD(TypoFD),
|
|
ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
|
|
|
|
bool ValidateCandidate(const TypoCorrection &candidate) override {
|
|
if (candidate.getEditDistance() == 0)
|
|
return false;
|
|
|
|
SmallVector<unsigned, 1> MismatchedParams;
|
|
for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
|
|
CDeclEnd = candidate.end();
|
|
CDecl != CDeclEnd; ++CDecl) {
|
|
FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
|
|
|
|
if (FD && !FD->hasBody() &&
|
|
hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
CXXRecordDecl *Parent = MD->getParent();
|
|
if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
|
|
return true;
|
|
} else if (!ExpectedParent) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<CorrectionCandidateCallback> clone() override {
|
|
return llvm::make_unique<DifferentNameValidatorCCC>(*this);
|
|
}
|
|
|
|
private:
|
|
ASTContext &Context;
|
|
FunctionDecl *OriginalFD;
|
|
CXXRecordDecl *ExpectedParent;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
|
|
TypoCorrectedFunctionDefinitions.insert(F);
|
|
}
|
|
|
|
/// Generate diagnostics for an invalid function redeclaration.
|
|
///
|
|
/// This routine handles generating the diagnostic messages for an invalid
|
|
/// function redeclaration, including finding possible similar declarations
|
|
/// or performing typo correction if there are no previous declarations with
|
|
/// the same name.
|
|
///
|
|
/// Returns a NamedDecl iff typo correction was performed and substituting in
|
|
/// the new declaration name does not cause new errors.
|
|
static NamedDecl *DiagnoseInvalidRedeclaration(
|
|
Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
|
|
ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
|
|
DeclarationName Name = NewFD->getDeclName();
|
|
DeclContext *NewDC = NewFD->getDeclContext();
|
|
SmallVector<unsigned, 1> MismatchedParams;
|
|
SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
|
|
TypoCorrection Correction;
|
|
bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
|
|
unsigned DiagMsg =
|
|
IsLocalFriend ? diag::err_no_matching_local_friend :
|
|
NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
|
|
diag::err_member_decl_does_not_match;
|
|
LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
|
|
IsLocalFriend ? Sema::LookupLocalFriendName
|
|
: Sema::LookupOrdinaryName,
|
|
Sema::ForVisibleRedeclaration);
|
|
|
|
NewFD->setInvalidDecl();
|
|
if (IsLocalFriend)
|
|
SemaRef.LookupName(Prev, S);
|
|
else
|
|
SemaRef.LookupQualifiedName(Prev, NewDC);
|
|
assert(!Prev.isAmbiguous() &&
|
|
"Cannot have an ambiguity in previous-declaration lookup");
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
|
|
DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
|
|
MD ? MD->getParent() : nullptr);
|
|
if (!Prev.empty()) {
|
|
for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
|
|
Func != FuncEnd; ++Func) {
|
|
FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
|
|
if (FD &&
|
|
hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
|
|
// Add 1 to the index so that 0 can mean the mismatch didn't
|
|
// involve a parameter
|
|
unsigned ParamNum =
|
|
MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
|
|
NearMatches.push_back(std::make_pair(FD, ParamNum));
|
|
}
|
|
}
|
|
// If the qualified name lookup yielded nothing, try typo correction
|
|
} else if ((Correction = SemaRef.CorrectTypo(
|
|
Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
|
|
&ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
|
|
IsLocalFriend ? nullptr : NewDC))) {
|
|
// Set up everything for the call to ActOnFunctionDeclarator
|
|
ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
|
|
ExtraArgs.D.getIdentifierLoc());
|
|
Previous.clear();
|
|
Previous.setLookupName(Correction.getCorrection());
|
|
for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
|
|
CDeclEnd = Correction.end();
|
|
CDecl != CDeclEnd; ++CDecl) {
|
|
FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
|
|
if (FD && !FD->hasBody() &&
|
|
hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
|
|
Previous.addDecl(FD);
|
|
}
|
|
}
|
|
bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
|
|
|
|
NamedDecl *Result;
|
|
// Retry building the function declaration with the new previous
|
|
// declarations, and with errors suppressed.
|
|
{
|
|
// Trap errors.
|
|
Sema::SFINAETrap Trap(SemaRef);
|
|
|
|
// TODO: Refactor ActOnFunctionDeclarator so that we can call only the
|
|
// pieces need to verify the typo-corrected C++ declaration and hopefully
|
|
// eliminate the need for the parameter pack ExtraArgs.
|
|
Result = SemaRef.ActOnFunctionDeclarator(
|
|
ExtraArgs.S, ExtraArgs.D,
|
|
Correction.getCorrectionDecl()->getDeclContext(),
|
|
NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
|
|
ExtraArgs.AddToScope);
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
Result = nullptr;
|
|
}
|
|
|
|
if (Result) {
|
|
// Determine which correction we picked.
|
|
Decl *Canonical = Result->getCanonicalDecl();
|
|
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
|
I != E; ++I)
|
|
if ((*I)->getCanonicalDecl() == Canonical)
|
|
Correction.setCorrectionDecl(*I);
|
|
|
|
// Let Sema know about the correction.
|
|
SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
|
|
SemaRef.diagnoseTypo(
|
|
Correction,
|
|
SemaRef.PDiag(IsLocalFriend
|
|
? diag::err_no_matching_local_friend_suggest
|
|
: diag::err_member_decl_does_not_match_suggest)
|
|
<< Name << NewDC << IsDefinition);
|
|
return Result;
|
|
}
|
|
|
|
// Pretend the typo correction never occurred
|
|
ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
|
|
ExtraArgs.D.getIdentifierLoc());
|
|
ExtraArgs.D.setRedeclaration(wasRedeclaration);
|
|
Previous.clear();
|
|
Previous.setLookupName(Name);
|
|
}
|
|
|
|
SemaRef.Diag(NewFD->getLocation(), DiagMsg)
|
|
<< Name << NewDC << IsDefinition << NewFD->getLocation();
|
|
|
|
bool NewFDisConst = false;
|
|
if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
|
|
NewFDisConst = NewMD->isConst();
|
|
|
|
for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
|
|
NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
|
|
NearMatch != NearMatchEnd; ++NearMatch) {
|
|
FunctionDecl *FD = NearMatch->first;
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
|
|
bool FDisConst = MD && MD->isConst();
|
|
bool IsMember = MD || !IsLocalFriend;
|
|
|
|
// FIXME: These notes are poorly worded for the local friend case.
|
|
if (unsigned Idx = NearMatch->second) {
|
|
ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
|
|
SourceLocation Loc = FDParam->getTypeSpecStartLoc();
|
|
if (Loc.isInvalid()) Loc = FD->getLocation();
|
|
SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
|
|
: diag::note_local_decl_close_param_match)
|
|
<< Idx << FDParam->getType()
|
|
<< NewFD->getParamDecl(Idx - 1)->getType();
|
|
} else if (FDisConst != NewFDisConst) {
|
|
SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
|
|
<< NewFDisConst << FD->getSourceRange().getEnd();
|
|
} else
|
|
SemaRef.Diag(FD->getLocation(),
|
|
IsMember ? diag::note_member_def_close_match
|
|
: diag::note_local_decl_close_match);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
|
|
switch (D.getDeclSpec().getStorageClassSpec()) {
|
|
default: llvm_unreachable("Unknown storage class!");
|
|
case DeclSpec::SCS_auto:
|
|
case DeclSpec::SCS_register:
|
|
case DeclSpec::SCS_mutable:
|
|
SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
|
|
diag::err_typecheck_sclass_func);
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
D.setInvalidType();
|
|
break;
|
|
case DeclSpec::SCS_unspecified: break;
|
|
case DeclSpec::SCS_extern:
|
|
if (D.getDeclSpec().isExternInLinkageSpec())
|
|
return SC_None;
|
|
return SC_Extern;
|
|
case DeclSpec::SCS_static: {
|
|
if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
|
|
// C99 6.7.1p5:
|
|
// The declaration of an identifier for a function that has
|
|
// block scope shall have no explicit storage-class specifier
|
|
// other than extern
|
|
// See also (C++ [dcl.stc]p4).
|
|
SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
|
|
diag::err_static_block_func);
|
|
break;
|
|
} else
|
|
return SC_Static;
|
|
}
|
|
case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
|
|
}
|
|
|
|
// No explicit storage class has already been returned
|
|
return SC_None;
|
|
}
|
|
|
|
static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
|
|
DeclContext *DC, QualType &R,
|
|
TypeSourceInfo *TInfo,
|
|
StorageClass SC,
|
|
bool &IsVirtualOkay) {
|
|
DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
|
|
FunctionDecl *NewFD = nullptr;
|
|
bool isInline = D.getDeclSpec().isInlineSpecified();
|
|
|
|
if (!SemaRef.getLangOpts().CPlusPlus) {
|
|
// Determine whether the function was written with a
|
|
// prototype. This true when:
|
|
// - there is a prototype in the declarator, or
|
|
// - the type R of the function is some kind of typedef or other non-
|
|
// attributed reference to a type name (which eventually refers to a
|
|
// function type).
|
|
bool HasPrototype =
|
|
(D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
|
|
(!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
|
|
|
|
NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
|
|
R, TInfo, SC, isInline, HasPrototype, false);
|
|
if (D.isInvalidType())
|
|
NewFD->setInvalidDecl();
|
|
|
|
return NewFD;
|
|
}
|
|
|
|
bool isExplicit = D.getDeclSpec().isExplicitSpecified();
|
|
bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
|
|
|
|
// Check that the return type is not an abstract class type.
|
|
// For record types, this is done by the AbstractClassUsageDiagnoser once
|
|
// the class has been completely parsed.
|
|
if (!DC->isRecord() &&
|
|
SemaRef.RequireNonAbstractType(
|
|
D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
|
|
diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
|
|
D.setInvalidType();
|
|
|
|
if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
|
|
// This is a C++ constructor declaration.
|
|
assert(DC->isRecord() &&
|
|
"Constructors can only be declared in a member context");
|
|
|
|
R = SemaRef.CheckConstructorDeclarator(D, R, SC);
|
|
return CXXConstructorDecl::Create(
|
|
SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
|
|
TInfo, isExplicit, isInline,
|
|
/*isImplicitlyDeclared=*/false, isConstexpr);
|
|
|
|
} else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
|
|
// This is a C++ destructor declaration.
|
|
if (DC->isRecord()) {
|
|
R = SemaRef.CheckDestructorDeclarator(D, R, SC);
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
|
|
CXXDestructorDecl *NewDD =
|
|
CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
|
|
NameInfo, R, TInfo, isInline,
|
|
/*isImplicitlyDeclared=*/false);
|
|
|
|
// If the destructor needs an implicit exception specification, set it
|
|
// now. FIXME: It'd be nice to be able to create the right type to start
|
|
// with, but the type needs to reference the destructor declaration.
|
|
if (SemaRef.getLangOpts().CPlusPlus11)
|
|
SemaRef.AdjustDestructorExceptionSpec(NewDD);
|
|
|
|
IsVirtualOkay = true;
|
|
return NewDD;
|
|
|
|
} else {
|
|
SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
|
|
D.setInvalidType();
|
|
|
|
// Create a FunctionDecl to satisfy the function definition parsing
|
|
// code path.
|
|
return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
|
|
D.getIdentifierLoc(), Name, R, TInfo, SC,
|
|
isInline,
|
|
/*hasPrototype=*/true, isConstexpr);
|
|
}
|
|
|
|
} else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
|
|
if (!DC->isRecord()) {
|
|
SemaRef.Diag(D.getIdentifierLoc(),
|
|
diag::err_conv_function_not_member);
|
|
return nullptr;
|
|
}
|
|
|
|
SemaRef.CheckConversionDeclarator(D, R, SC);
|
|
IsVirtualOkay = true;
|
|
return CXXConversionDecl::Create(
|
|
SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
|
|
TInfo, isInline, isExplicit, isConstexpr, SourceLocation());
|
|
|
|
} else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
|
|
SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
|
|
|
|
return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
|
|
isExplicit, NameInfo, R, TInfo,
|
|
D.getEndLoc());
|
|
} else if (DC->isRecord()) {
|
|
// If the name of the function is the same as the name of the record,
|
|
// then this must be an invalid constructor that has a return type.
|
|
// (The parser checks for a return type and makes the declarator a
|
|
// constructor if it has no return type).
|
|
if (Name.getAsIdentifierInfo() &&
|
|
Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
|
|
SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
|
|
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
return nullptr;
|
|
}
|
|
|
|
// This is a C++ method declaration.
|
|
CXXMethodDecl *Ret = CXXMethodDecl::Create(
|
|
SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
|
|
TInfo, SC, isInline, isConstexpr, SourceLocation());
|
|
IsVirtualOkay = !Ret->isStatic();
|
|
return Ret;
|
|
} else {
|
|
bool isFriend =
|
|
SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
|
|
if (!isFriend && SemaRef.CurContext->isRecord())
|
|
return nullptr;
|
|
|
|
// Determine whether the function was written with a
|
|
// prototype. This true when:
|
|
// - we're in C++ (where every function has a prototype),
|
|
return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
|
|
R, TInfo, SC, isInline, true /*HasPrototype*/,
|
|
isConstexpr);
|
|
}
|
|
}
|
|
|
|
enum OpenCLParamType {
|
|
ValidKernelParam,
|
|
PtrPtrKernelParam,
|
|
PtrKernelParam,
|
|
InvalidAddrSpacePtrKernelParam,
|
|
InvalidKernelParam,
|
|
RecordKernelParam
|
|
};
|
|
|
|
static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
|
|
// Size dependent types are just typedefs to normal integer types
|
|
// (e.g. unsigned long), so we cannot distinguish them from other typedefs to
|
|
// integers other than by their names.
|
|
StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
|
|
|
|
// Remove typedefs one by one until we reach a typedef
|
|
// for a size dependent type.
|
|
QualType DesugaredTy = Ty;
|
|
do {
|
|
ArrayRef<StringRef> Names(SizeTypeNames);
|
|
auto Match = llvm::find(Names, DesugaredTy.getAsString());
|
|
if (Names.end() != Match)
|
|
return true;
|
|
|
|
Ty = DesugaredTy;
|
|
DesugaredTy = Ty.getSingleStepDesugaredType(C);
|
|
} while (DesugaredTy != Ty);
|
|
|
|
return false;
|
|
}
|
|
|
|
static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
|
|
if (PT->isPointerType()) {
|
|
QualType PointeeType = PT->getPointeeType();
|
|
if (PointeeType->isPointerType())
|
|
return PtrPtrKernelParam;
|
|
if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
|
|
PointeeType.getAddressSpace() == LangAS::opencl_private ||
|
|
PointeeType.getAddressSpace() == LangAS::Default)
|
|
return InvalidAddrSpacePtrKernelParam;
|
|
return PtrKernelParam;
|
|
}
|
|
|
|
// OpenCL v1.2 s6.9.k:
|
|
// Arguments to kernel functions in a program cannot be declared with the
|
|
// built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
|
|
// uintptr_t or a struct and/or union that contain fields declared to be one
|
|
// of these built-in scalar types.
|
|
if (isOpenCLSizeDependentType(S.getASTContext(), PT))
|
|
return InvalidKernelParam;
|
|
|
|
if (PT->isImageType())
|
|
return PtrKernelParam;
|
|
|
|
if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
|
|
return InvalidKernelParam;
|
|
|
|
// OpenCL extension spec v1.2 s9.5:
|
|
// This extension adds support for half scalar and vector types as built-in
|
|
// types that can be used for arithmetic operations, conversions etc.
|
|
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
|
|
return InvalidKernelParam;
|
|
|
|
if (PT->isRecordType())
|
|
return RecordKernelParam;
|
|
|
|
// Look into an array argument to check if it has a forbidden type.
|
|
if (PT->isArrayType()) {
|
|
const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
|
|
// Call ourself to check an underlying type of an array. Since the
|
|
// getPointeeOrArrayElementType returns an innermost type which is not an
|
|
// array, this recursive call only happens once.
|
|
return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
|
|
}
|
|
|
|
return ValidKernelParam;
|
|
}
|
|
|
|
static void checkIsValidOpenCLKernelParameter(
|
|
Sema &S,
|
|
Declarator &D,
|
|
ParmVarDecl *Param,
|
|
llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
|
|
QualType PT = Param->getType();
|
|
|
|
// Cache the valid types we encounter to avoid rechecking structs that are
|
|
// used again
|
|
if (ValidTypes.count(PT.getTypePtr()))
|
|
return;
|
|
|
|
switch (getOpenCLKernelParameterType(S, PT)) {
|
|
case PtrPtrKernelParam:
|
|
// OpenCL v1.2 s6.9.a:
|
|
// A kernel function argument cannot be declared as a
|
|
// pointer to a pointer type.
|
|
S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
|
|
D.setInvalidType();
|
|
return;
|
|
|
|
case InvalidAddrSpacePtrKernelParam:
|
|
// OpenCL v1.0 s6.5:
|
|
// __kernel function arguments declared to be a pointer of a type can point
|
|
// to one of the following address spaces only : __global, __local or
|
|
// __constant.
|
|
S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
|
|
D.setInvalidType();
|
|
return;
|
|
|
|
// OpenCL v1.2 s6.9.k:
|
|
// Arguments to kernel functions in a program cannot be declared with the
|
|
// built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
|
|
// uintptr_t or a struct and/or union that contain fields declared to be
|
|
// one of these built-in scalar types.
|
|
|
|
case InvalidKernelParam:
|
|
// OpenCL v1.2 s6.8 n:
|
|
// A kernel function argument cannot be declared
|
|
// of event_t type.
|
|
// Do not diagnose half type since it is diagnosed as invalid argument
|
|
// type for any function elsewhere.
|
|
if (!PT->isHalfType()) {
|
|
S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
|
|
|
|
// Explain what typedefs are involved.
|
|
const TypedefType *Typedef = nullptr;
|
|
while ((Typedef = PT->getAs<TypedefType>())) {
|
|
SourceLocation Loc = Typedef->getDecl()->getLocation();
|
|
// SourceLocation may be invalid for a built-in type.
|
|
if (Loc.isValid())
|
|
S.Diag(Loc, diag::note_entity_declared_at) << PT;
|
|
PT = Typedef->desugar();
|
|
}
|
|
}
|
|
|
|
D.setInvalidType();
|
|
return;
|
|
|
|
case PtrKernelParam:
|
|
case ValidKernelParam:
|
|
ValidTypes.insert(PT.getTypePtr());
|
|
return;
|
|
|
|
case RecordKernelParam:
|
|
break;
|
|
}
|
|
|
|
// Track nested structs we will inspect
|
|
SmallVector<const Decl *, 4> VisitStack;
|
|
|
|
// Track where we are in the nested structs. Items will migrate from
|
|
// VisitStack to HistoryStack as we do the DFS for bad field.
|
|
SmallVector<const FieldDecl *, 4> HistoryStack;
|
|
HistoryStack.push_back(nullptr);
|
|
|
|
// At this point we already handled everything except of a RecordType or
|
|
// an ArrayType of a RecordType.
|
|
assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
|
|
const RecordType *RecTy =
|
|
PT->getPointeeOrArrayElementType()->getAs<RecordType>();
|
|
const RecordDecl *OrigRecDecl = RecTy->getDecl();
|
|
|
|
VisitStack.push_back(RecTy->getDecl());
|
|
assert(VisitStack.back() && "First decl null?");
|
|
|
|
do {
|
|
const Decl *Next = VisitStack.pop_back_val();
|
|
if (!Next) {
|
|
assert(!HistoryStack.empty());
|
|
// Found a marker, we have gone up a level
|
|
if (const FieldDecl *Hist = HistoryStack.pop_back_val())
|
|
ValidTypes.insert(Hist->getType().getTypePtr());
|
|
|
|
continue;
|
|
}
|
|
|
|
// Adds everything except the original parameter declaration (which is not a
|
|
// field itself) to the history stack.
|
|
const RecordDecl *RD;
|
|
if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
|
|
HistoryStack.push_back(Field);
|
|
|
|
QualType FieldTy = Field->getType();
|
|
// Other field types (known to be valid or invalid) are handled while we
|
|
// walk around RecordDecl::fields().
|
|
assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
|
|
"Unexpected type.");
|
|
const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
|
|
|
|
RD = FieldRecTy->castAs<RecordType>()->getDecl();
|
|
} else {
|
|
RD = cast<RecordDecl>(Next);
|
|
}
|
|
|
|
// Add a null marker so we know when we've gone back up a level
|
|
VisitStack.push_back(nullptr);
|
|
|
|
for (const auto *FD : RD->fields()) {
|
|
QualType QT = FD->getType();
|
|
|
|
if (ValidTypes.count(QT.getTypePtr()))
|
|
continue;
|
|
|
|
OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
|
|
if (ParamType == ValidKernelParam)
|
|
continue;
|
|
|
|
if (ParamType == RecordKernelParam) {
|
|
VisitStack.push_back(FD);
|
|
continue;
|
|
}
|
|
|
|
// OpenCL v1.2 s6.9.p:
|
|
// Arguments to kernel functions that are declared to be a struct or union
|
|
// do not allow OpenCL objects to be passed as elements of the struct or
|
|
// union.
|
|
if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
|
|
ParamType == InvalidAddrSpacePtrKernelParam) {
|
|
S.Diag(Param->getLocation(),
|
|
diag::err_record_with_pointers_kernel_param)
|
|
<< PT->isUnionType()
|
|
<< PT;
|
|
} else {
|
|
S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
|
|
}
|
|
|
|
S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
|
|
<< OrigRecDecl->getDeclName();
|
|
|
|
// We have an error, now let's go back up through history and show where
|
|
// the offending field came from
|
|
for (ArrayRef<const FieldDecl *>::const_iterator
|
|
I = HistoryStack.begin() + 1,
|
|
E = HistoryStack.end();
|
|
I != E; ++I) {
|
|
const FieldDecl *OuterField = *I;
|
|
S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
|
|
<< OuterField->getType();
|
|
}
|
|
|
|
S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
|
|
<< QT->isPointerType()
|
|
<< QT;
|
|
D.setInvalidType();
|
|
return;
|
|
}
|
|
} while (!VisitStack.empty());
|
|
}
|
|
|
|
/// Find the DeclContext in which a tag is implicitly declared if we see an
|
|
/// elaborated type specifier in the specified context, and lookup finds
|
|
/// nothing.
|
|
static DeclContext *getTagInjectionContext(DeclContext *DC) {
|
|
while (!DC->isFileContext() && !DC->isFunctionOrMethod())
|
|
DC = DC->getParent();
|
|
return DC;
|
|
}
|
|
|
|
/// Find the Scope in which a tag is implicitly declared if we see an
|
|
/// elaborated type specifier in the specified context, and lookup finds
|
|
/// nothing.
|
|
static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
|
|
while (S->isClassScope() ||
|
|
(LangOpts.CPlusPlus &&
|
|
S->isFunctionPrototypeScope()) ||
|
|
((S->getFlags() & Scope::DeclScope) == 0) ||
|
|
(S->getEntity() && S->getEntity()->isTransparentContext()))
|
|
S = S->getParent();
|
|
return S;
|
|
}
|
|
|
|
NamedDecl*
|
|
Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
|
|
TypeSourceInfo *TInfo, LookupResult &Previous,
|
|
MultiTemplateParamsArg TemplateParamLists,
|
|
bool &AddToScope) {
|
|
QualType R = TInfo->getType();
|
|
|
|
assert(R->isFunctionType());
|
|
|
|
// TODO: consider using NameInfo for diagnostic.
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
StorageClass SC = getFunctionStorageClass(*this, D);
|
|
|
|
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
|
|
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
|
|
diag::err_invalid_thread)
|
|
<< DeclSpec::getSpecifierName(TSCS);
|
|
|
|
if (D.isFirstDeclarationOfMember())
|
|
adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
|
|
D.getIdentifierLoc());
|
|
|
|
bool isFriend = false;
|
|
FunctionTemplateDecl *FunctionTemplate = nullptr;
|
|
bool isMemberSpecialization = false;
|
|
bool isFunctionTemplateSpecialization = false;
|
|
|
|
bool isDependentClassScopeExplicitSpecialization = false;
|
|
bool HasExplicitTemplateArgs = false;
|
|
TemplateArgumentListInfo TemplateArgs;
|
|
|
|
bool isVirtualOkay = false;
|
|
|
|
DeclContext *OriginalDC = DC;
|
|
bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
|
|
|
|
FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
|
|
isVirtualOkay);
|
|
if (!NewFD) return nullptr;
|
|
|
|
if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
|
|
NewFD->setTopLevelDeclInObjCContainer();
|
|
|
|
// Set the lexical context. If this is a function-scope declaration, or has a
|
|
// C++ scope specifier, or is the object of a friend declaration, the lexical
|
|
// context will be different from the semantic context.
|
|
NewFD->setLexicalDeclContext(CurContext);
|
|
|
|
if (IsLocalExternDecl)
|
|
NewFD->setLocalExternDecl();
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
bool isInline = D.getDeclSpec().isInlineSpecified();
|
|
bool isVirtual = D.getDeclSpec().isVirtualSpecified();
|
|
bool isExplicit = D.getDeclSpec().isExplicitSpecified();
|
|
bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
|
|
isFriend = D.getDeclSpec().isFriendSpecified();
|
|
if (isFriend && !isInline && D.isFunctionDefinition()) {
|
|
// C++ [class.friend]p5
|
|
// A function can be defined in a friend declaration of a
|
|
// class . . . . Such a function is implicitly inline.
|
|
NewFD->setImplicitlyInline();
|
|
}
|
|
|
|
// If this is a method defined in an __interface, and is not a constructor
|
|
// or an overloaded operator, then set the pure flag (isVirtual will already
|
|
// return true).
|
|
if (const CXXRecordDecl *Parent =
|
|
dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
|
|
if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
|
|
NewFD->setPure(true);
|
|
|
|
// C++ [class.union]p2
|
|
// A union can have member functions, but not virtual functions.
|
|
if (isVirtual && Parent->isUnion())
|
|
Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
|
|
}
|
|
|
|
SetNestedNameSpecifier(*this, NewFD, D);
|
|
isMemberSpecialization = false;
|
|
isFunctionTemplateSpecialization = false;
|
|
if (D.isInvalidType())
|
|
NewFD->setInvalidDecl();
|
|
|
|
// Match up the template parameter lists with the scope specifier, then
|
|
// determine whether we have a template or a template specialization.
|
|
bool Invalid = false;
|
|
if (TemplateParameterList *TemplateParams =
|
|
MatchTemplateParametersToScopeSpecifier(
|
|
D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
|
|
D.getCXXScopeSpec(),
|
|
D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
|
|
? D.getName().TemplateId
|
|
: nullptr,
|
|
TemplateParamLists, isFriend, isMemberSpecialization,
|
|
Invalid)) {
|
|
if (TemplateParams->size() > 0) {
|
|
// This is a function template
|
|
|
|
// Check that we can declare a template here.
|
|
if (CheckTemplateDeclScope(S, TemplateParams))
|
|
NewFD->setInvalidDecl();
|
|
|
|
// A destructor cannot be a template.
|
|
if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
|
|
Diag(NewFD->getLocation(), diag::err_destructor_template);
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
|
|
// If we're adding a template to a dependent context, we may need to
|
|
// rebuilding some of the types used within the template parameter list,
|
|
// now that we know what the current instantiation is.
|
|
if (DC->isDependentContext()) {
|
|
ContextRAII SavedContext(*this, DC);
|
|
if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
|
|
Invalid = true;
|
|
}
|
|
|
|
FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
|
|
NewFD->getLocation(),
|
|
Name, TemplateParams,
|
|
NewFD);
|
|
FunctionTemplate->setLexicalDeclContext(CurContext);
|
|
NewFD->setDescribedFunctionTemplate(FunctionTemplate);
|
|
|
|
// For source fidelity, store the other template param lists.
|
|
if (TemplateParamLists.size() > 1) {
|
|
NewFD->setTemplateParameterListsInfo(Context,
|
|
TemplateParamLists.drop_back(1));
|
|
}
|
|
} else {
|
|
// This is a function template specialization.
|
|
isFunctionTemplateSpecialization = true;
|
|
// For source fidelity, store all the template param lists.
|
|
if (TemplateParamLists.size() > 0)
|
|
NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
|
|
|
|
// C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
|
|
if (isFriend) {
|
|
// We want to remove the "template<>", found here.
|
|
SourceRange RemoveRange = TemplateParams->getSourceRange();
|
|
|
|
// If we remove the template<> and the name is not a
|
|
// template-id, we're actually silently creating a problem:
|
|
// the friend declaration will refer to an untemplated decl,
|
|
// and clearly the user wants a template specialization. So
|
|
// we need to insert '<>' after the name.
|
|
SourceLocation InsertLoc;
|
|
if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
|
|
InsertLoc = D.getName().getSourceRange().getEnd();
|
|
InsertLoc = getLocForEndOfToken(InsertLoc);
|
|
}
|
|
|
|
Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
|
|
<< Name << RemoveRange
|
|
<< FixItHint::CreateRemoval(RemoveRange)
|
|
<< FixItHint::CreateInsertion(InsertLoc, "<>");
|
|
}
|
|
}
|
|
} else {
|
|
// All template param lists were matched against the scope specifier:
|
|
// this is NOT (an explicit specialization of) a template.
|
|
if (TemplateParamLists.size() > 0)
|
|
// For source fidelity, store all the template param lists.
|
|
NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
|
|
}
|
|
|
|
if (Invalid) {
|
|
NewFD->setInvalidDecl();
|
|
if (FunctionTemplate)
|
|
FunctionTemplate->setInvalidDecl();
|
|
}
|
|
|
|
// C++ [dcl.fct.spec]p5:
|
|
// The virtual specifier shall only be used in declarations of
|
|
// nonstatic class member functions that appear within a
|
|
// member-specification of a class declaration; see 10.3.
|
|
//
|
|
if (isVirtual && !NewFD->isInvalidDecl()) {
|
|
if (!isVirtualOkay) {
|
|
Diag(D.getDeclSpec().getVirtualSpecLoc(),
|
|
diag::err_virtual_non_function);
|
|
} else if (!CurContext->isRecord()) {
|
|
// 'virtual' was specified outside of the class.
|
|
Diag(D.getDeclSpec().getVirtualSpecLoc(),
|
|
diag::err_virtual_out_of_class)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
|
|
} else if (NewFD->getDescribedFunctionTemplate()) {
|
|
// C++ [temp.mem]p3:
|
|
// A member function template shall not be virtual.
|
|
Diag(D.getDeclSpec().getVirtualSpecLoc(),
|
|
diag::err_virtual_member_function_template)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
|
|
} else {
|
|
// Okay: Add virtual to the method.
|
|
NewFD->setVirtualAsWritten(true);
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus14 &&
|
|
NewFD->getReturnType()->isUndeducedType())
|
|
Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus14 &&
|
|
(NewFD->isDependentContext() ||
|
|
(isFriend && CurContext->isDependentContext())) &&
|
|
NewFD->getReturnType()->isUndeducedType()) {
|
|
// If the function template is referenced directly (for instance, as a
|
|
// member of the current instantiation), pretend it has a dependent type.
|
|
// This is not really justified by the standard, but is the only sane
|
|
// thing to do.
|
|
// FIXME: For a friend function, we have not marked the function as being
|
|
// a friend yet, so 'isDependentContext' on the FD doesn't work.
|
|
const FunctionProtoType *FPT =
|
|
NewFD->getType()->castAs<FunctionProtoType>();
|
|
QualType Result =
|
|
SubstAutoType(FPT->getReturnType(), Context.DependentTy);
|
|
NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
|
|
FPT->getExtProtoInfo()));
|
|
}
|
|
|
|
// C++ [dcl.fct.spec]p3:
|
|
// The inline specifier shall not appear on a block scope function
|
|
// declaration.
|
|
if (isInline && !NewFD->isInvalidDecl()) {
|
|
if (CurContext->isFunctionOrMethod()) {
|
|
// 'inline' is not allowed on block scope function declaration.
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(),
|
|
diag::err_inline_declaration_block_scope) << Name
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
|
|
}
|
|
}
|
|
|
|
// C++ [dcl.fct.spec]p6:
|
|
// The explicit specifier shall be used only in the declaration of a
|
|
// constructor or conversion function within its class definition;
|
|
// see 12.3.1 and 12.3.2.
|
|
if (isExplicit && !NewFD->isInvalidDecl() &&
|
|
!isa<CXXDeductionGuideDecl>(NewFD)) {
|
|
if (!CurContext->isRecord()) {
|
|
// 'explicit' was specified outside of the class.
|
|
Diag(D.getDeclSpec().getExplicitSpecLoc(),
|
|
diag::err_explicit_out_of_class)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
|
|
} else if (!isa<CXXConstructorDecl>(NewFD) &&
|
|
!isa<CXXConversionDecl>(NewFD)) {
|
|
// 'explicit' was specified on a function that wasn't a constructor
|
|
// or conversion function.
|
|
Diag(D.getDeclSpec().getExplicitSpecLoc(),
|
|
diag::err_explicit_non_ctor_or_conv_function)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
|
|
}
|
|
}
|
|
|
|
if (isConstexpr) {
|
|
// C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
|
|
// are implicitly inline.
|
|
NewFD->setImplicitlyInline();
|
|
|
|
// C++11 [dcl.constexpr]p3: functions declared constexpr are required to
|
|
// be either constructors or to return a literal type. Therefore,
|
|
// destructors cannot be declared constexpr.
|
|
if (isa<CXXDestructorDecl>(NewFD))
|
|
Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
|
|
}
|
|
|
|
// If __module_private__ was specified, mark the function accordingly.
|
|
if (D.getDeclSpec().isModulePrivateSpecified()) {
|
|
if (isFunctionTemplateSpecialization) {
|
|
SourceLocation ModulePrivateLoc
|
|
= D.getDeclSpec().getModulePrivateSpecLoc();
|
|
Diag(ModulePrivateLoc, diag::err_module_private_specialization)
|
|
<< 0
|
|
<< FixItHint::CreateRemoval(ModulePrivateLoc);
|
|
} else {
|
|
NewFD->setModulePrivate();
|
|
if (FunctionTemplate)
|
|
FunctionTemplate->setModulePrivate();
|
|
}
|
|
}
|
|
|
|
if (isFriend) {
|
|
if (FunctionTemplate) {
|
|
FunctionTemplate->setObjectOfFriendDecl();
|
|
FunctionTemplate->setAccess(AS_public);
|
|
}
|
|
NewFD->setObjectOfFriendDecl();
|
|
NewFD->setAccess(AS_public);
|
|
}
|
|
|
|
// If a function is defined as defaulted or deleted, mark it as such now.
|
|
// FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
|
|
// definition kind to FDK_Definition.
|
|
switch (D.getFunctionDefinitionKind()) {
|
|
case FDK_Declaration:
|
|
case FDK_Definition:
|
|
break;
|
|
|
|
case FDK_Defaulted:
|
|
NewFD->setDefaulted();
|
|
break;
|
|
|
|
case FDK_Deleted:
|
|
NewFD->setDeletedAsWritten();
|
|
break;
|
|
}
|
|
|
|
if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
|
|
D.isFunctionDefinition()) {
|
|
// C++ [class.mfct]p2:
|
|
// A member function may be defined (8.4) in its class definition, in
|
|
// which case it is an inline member function (7.1.2)
|
|
NewFD->setImplicitlyInline();
|
|
}
|
|
|
|
if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
|
|
!CurContext->isRecord()) {
|
|
// C++ [class.static]p1:
|
|
// A data or function member of a class may be declared static
|
|
// in a class definition, in which case it is a static member of
|
|
// the class.
|
|
|
|
// Complain about the 'static' specifier if it's on an out-of-line
|
|
// member function definition.
|
|
|
|
// MSVC permits the use of a 'static' storage specifier on an out-of-line
|
|
// member function template declaration, warn about this.
|
|
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
|
|
NewFD->getDescribedFunctionTemplate() && getLangOpts().MSVCCompat
|
|
? diag::ext_static_out_of_line : diag::err_static_out_of_line)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
}
|
|
|
|
// C++11 [except.spec]p15:
|
|
// A deallocation function with no exception-specification is treated
|
|
// as if it were specified with noexcept(true).
|
|
const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
|
|
if ((Name.getCXXOverloadedOperator() == OO_Delete ||
|
|
Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
|
|
getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
|
|
NewFD->setType(Context.getFunctionType(
|
|
FPT->getReturnType(), FPT->getParamTypes(),
|
|
FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
|
|
}
|
|
|
|
// Filter out previous declarations that don't match the scope.
|
|
FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
|
|
D.getCXXScopeSpec().isNotEmpty() ||
|
|
isMemberSpecialization ||
|
|
isFunctionTemplateSpecialization);
|
|
|
|
// Handle GNU asm-label extension (encoded as an attribute).
|
|
if (Expr *E = (Expr*) D.getAsmLabel()) {
|
|
// The parser guarantees this is a string.
|
|
StringLiteral *SE = cast<StringLiteral>(E);
|
|
NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
|
|
SE->getString(), 0));
|
|
} else if (!ExtnameUndeclaredIdentifiers.empty()) {
|
|
llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
|
|
ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
|
|
if (I != ExtnameUndeclaredIdentifiers.end()) {
|
|
if (isDeclExternC(NewFD)) {
|
|
NewFD->addAttr(I->second);
|
|
ExtnameUndeclaredIdentifiers.erase(I);
|
|
} else
|
|
Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
|
|
<< /*Variable*/0 << NewFD;
|
|
}
|
|
}
|
|
|
|
// Copy the parameter declarations from the declarator D to the function
|
|
// declaration NewFD, if they are available. First scavenge them into Params.
|
|
SmallVector<ParmVarDecl*, 16> Params;
|
|
unsigned FTIIdx;
|
|
if (D.isFunctionDeclarator(FTIIdx)) {
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
|
|
|
|
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
|
|
// function that takes no arguments, not a function that takes a
|
|
// single void argument.
|
|
// We let through "const void" here because Sema::GetTypeForDeclarator
|
|
// already checks for that case.
|
|
if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
|
|
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
|
|
assert(Param->getDeclContext() != NewFD && "Was set before ?");
|
|
Param->setDeclContext(NewFD);
|
|
Params.push_back(Param);
|
|
|
|
if (Param->isInvalidDecl())
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// In C, find all the tag declarations from the prototype and move them
|
|
// into the function DeclContext. Remove them from the surrounding tag
|
|
// injection context of the function, which is typically but not always
|
|
// the TU.
|
|
DeclContext *PrototypeTagContext =
|
|
getTagInjectionContext(NewFD->getLexicalDeclContext());
|
|
for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
|
|
auto *TD = dyn_cast<TagDecl>(NonParmDecl);
|
|
|
|
// We don't want to reparent enumerators. Look at their parent enum
|
|
// instead.
|
|
if (!TD) {
|
|
if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
|
|
TD = cast<EnumDecl>(ECD->getDeclContext());
|
|
}
|
|
if (!TD)
|
|
continue;
|
|
DeclContext *TagDC = TD->getLexicalDeclContext();
|
|
if (!TagDC->containsDecl(TD))
|
|
continue;
|
|
TagDC->removeDecl(TD);
|
|
TD->setDeclContext(NewFD);
|
|
NewFD->addDecl(TD);
|
|
|
|
// Preserve the lexical DeclContext if it is not the surrounding tag
|
|
// injection context of the FD. In this example, the semantic context of
|
|
// E will be f and the lexical context will be S, while both the
|
|
// semantic and lexical contexts of S will be f:
|
|
// void f(struct S { enum E { a } f; } s);
|
|
if (TagDC != PrototypeTagContext)
|
|
TD->setLexicalDeclContext(TagDC);
|
|
}
|
|
}
|
|
} else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
|
|
// When we're declaring a function with a typedef, typeof, etc as in the
|
|
// following example, we'll need to synthesize (unnamed)
|
|
// parameters for use in the declaration.
|
|
//
|
|
// @code
|
|
// typedef void fn(int);
|
|
// fn f;
|
|
// @endcode
|
|
|
|
// Synthesize a parameter for each argument type.
|
|
for (const auto &AI : FT->param_types()) {
|
|
ParmVarDecl *Param =
|
|
BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
|
|
Param->setScopeInfo(0, Params.size());
|
|
Params.push_back(Param);
|
|
}
|
|
} else {
|
|
assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
|
|
"Should not need args for typedef of non-prototype fn");
|
|
}
|
|
|
|
// Finally, we know we have the right number of parameters, install them.
|
|
NewFD->setParams(Params);
|
|
|
|
if (D.getDeclSpec().isNoreturnSpecified())
|
|
NewFD->addAttr(
|
|
::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
|
|
Context, 0));
|
|
|
|
// Functions returning a variably modified type violate C99 6.7.5.2p2
|
|
// because all functions have linkage.
|
|
if (!NewFD->isInvalidDecl() &&
|
|
NewFD->getReturnType()->isVariablyModifiedType()) {
|
|
Diag(NewFD->getLocation(), diag::err_vm_func_decl);
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
|
|
// Apply an implicit SectionAttr if '#pragma clang section text' is active
|
|
if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
|
|
!NewFD->hasAttr<SectionAttr>()) {
|
|
NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
|
|
PragmaClangTextSection.SectionName,
|
|
PragmaClangTextSection.PragmaLocation));
|
|
}
|
|
|
|
// Apply an implicit SectionAttr if #pragma code_seg is active.
|
|
if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
|
|
!NewFD->hasAttr<SectionAttr>()) {
|
|
NewFD->addAttr(
|
|
SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
|
|
CodeSegStack.CurrentValue->getString(),
|
|
CodeSegStack.CurrentPragmaLocation));
|
|
if (UnifySection(CodeSegStack.CurrentValue->getString(),
|
|
ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
|
|
ASTContext::PSF_Read,
|
|
NewFD))
|
|
NewFD->dropAttr<SectionAttr>();
|
|
}
|
|
|
|
// Apply an implicit CodeSegAttr from class declspec or
|
|
// apply an implicit SectionAttr from #pragma code_seg if active.
|
|
if (!NewFD->hasAttr<CodeSegAttr>()) {
|
|
if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
|
|
D.isFunctionDefinition())) {
|
|
NewFD->addAttr(SAttr);
|
|
}
|
|
}
|
|
|
|
// Handle attributes.
|
|
ProcessDeclAttributes(S, NewFD, D);
|
|
|
|
if (getLangOpts().OpenCL) {
|
|
// OpenCL v1.1 s6.5: Using an address space qualifier in a function return
|
|
// type declaration will generate a compilation error.
|
|
LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
|
|
if (AddressSpace != LangAS::Default) {
|
|
Diag(NewFD->getLocation(),
|
|
diag::err_opencl_return_value_with_address_space);
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// Perform semantic checking on the function declaration.
|
|
if (!NewFD->isInvalidDecl() && NewFD->isMain())
|
|
CheckMain(NewFD, D.getDeclSpec());
|
|
|
|
if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
|
|
CheckMSVCRTEntryPoint(NewFD);
|
|
|
|
if (!NewFD->isInvalidDecl())
|
|
D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
|
|
isMemberSpecialization));
|
|
else if (!Previous.empty())
|
|
// Recover gracefully from an invalid redeclaration.
|
|
D.setRedeclaration(true);
|
|
assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
|
|
Previous.getResultKind() != LookupResult::FoundOverloaded) &&
|
|
"previous declaration set still overloaded");
|
|
|
|
// Diagnose no-prototype function declarations with calling conventions that
|
|
// don't support variadic calls. Only do this in C and do it after merging
|
|
// possibly prototyped redeclarations.
|
|
const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
|
|
if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
|
|
CallingConv CC = FT->getExtInfo().getCC();
|
|
if (!supportsVariadicCall(CC)) {
|
|
// Windows system headers sometimes accidentally use stdcall without
|
|
// (void) parameters, so we relax this to a warning.
|
|
int DiagID =
|
|
CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
|
|
Diag(NewFD->getLocation(), DiagID)
|
|
<< FunctionType::getNameForCallConv(CC);
|
|
}
|
|
}
|
|
} else {
|
|
// C++11 [replacement.functions]p3:
|
|
// The program's definitions shall not be specified as inline.
|
|
//
|
|
// N.B. We diagnose declarations instead of definitions per LWG issue 2340.
|
|
//
|
|
// Suppress the diagnostic if the function is __attribute__((used)), since
|
|
// that forces an external definition to be emitted.
|
|
if (D.getDeclSpec().isInlineSpecified() &&
|
|
NewFD->isReplaceableGlobalAllocationFunction() &&
|
|
!NewFD->hasAttr<UsedAttr>())
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(),
|
|
diag::ext_operator_new_delete_declared_inline)
|
|
<< NewFD->getDeclName();
|
|
|
|
// If the declarator is a template-id, translate the parser's template
|
|
// argument list into our AST format.
|
|
if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
|
|
TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
|
|
TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
|
|
TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
|
|
TemplateId->NumArgs);
|
|
translateTemplateArguments(TemplateArgsPtr,
|
|
TemplateArgs);
|
|
|
|
HasExplicitTemplateArgs = true;
|
|
|
|
if (NewFD->isInvalidDecl()) {
|
|
HasExplicitTemplateArgs = false;
|
|
} else if (FunctionTemplate) {
|
|
// Function template with explicit template arguments.
|
|
Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
|
|
<< SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
|
|
|
|
HasExplicitTemplateArgs = false;
|
|
} else {
|
|
assert((isFunctionTemplateSpecialization ||
|
|
D.getDeclSpec().isFriendSpecified()) &&
|
|
"should have a 'template<>' for this decl");
|
|
// "friend void foo<>(int);" is an implicit specialization decl.
|
|
isFunctionTemplateSpecialization = true;
|
|
}
|
|
} else if (isFriend && isFunctionTemplateSpecialization) {
|
|
// This combination is only possible in a recovery case; the user
|
|
// wrote something like:
|
|
// template <> friend void foo(int);
|
|
// which we're recovering from as if the user had written:
|
|
// friend void foo<>(int);
|
|
// Go ahead and fake up a template id.
|
|
HasExplicitTemplateArgs = true;
|
|
TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
|
|
TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
|
|
}
|
|
|
|
// We do not add HD attributes to specializations here because
|
|
// they may have different constexpr-ness compared to their
|
|
// templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
|
|
// may end up with different effective targets. Instead, a
|
|
// specialization inherits its target attributes from its template
|
|
// in the CheckFunctionTemplateSpecialization() call below.
|
|
if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
|
|
maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
|
|
|
|
// If it's a friend (and only if it's a friend), it's possible
|
|
// that either the specialized function type or the specialized
|
|
// template is dependent, and therefore matching will fail. In
|
|
// this case, don't check the specialization yet.
|
|
bool InstantiationDependent = false;
|
|
if (isFunctionTemplateSpecialization && isFriend &&
|
|
(NewFD->getType()->isDependentType() || DC->isDependentContext() ||
|
|
TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs,
|
|
InstantiationDependent))) {
|
|
assert(HasExplicitTemplateArgs &&
|
|
"friend function specialization without template args");
|
|
if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
|
|
Previous))
|
|
NewFD->setInvalidDecl();
|
|
} else if (isFunctionTemplateSpecialization) {
|
|
if (CurContext->isDependentContext() && CurContext->isRecord()
|
|
&& !isFriend) {
|
|
isDependentClassScopeExplicitSpecialization = true;
|
|
} else if (!NewFD->isInvalidDecl() &&
|
|
CheckFunctionTemplateSpecialization(
|
|
NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
|
|
Previous))
|
|
NewFD->setInvalidDecl();
|
|
|
|
// C++ [dcl.stc]p1:
|
|
// A storage-class-specifier shall not be specified in an explicit
|
|
// specialization (14.7.3)
|
|
FunctionTemplateSpecializationInfo *Info =
|
|
NewFD->getTemplateSpecializationInfo();
|
|
if (Info && SC != SC_None) {
|
|
if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
|
|
Diag(NewFD->getLocation(),
|
|
diag::err_explicit_specialization_inconsistent_storage_class)
|
|
<< SC
|
|
<< FixItHint::CreateRemoval(
|
|
D.getDeclSpec().getStorageClassSpecLoc());
|
|
|
|
else
|
|
Diag(NewFD->getLocation(),
|
|
diag::ext_explicit_specialization_storage_class)
|
|
<< FixItHint::CreateRemoval(
|
|
D.getDeclSpec().getStorageClassSpecLoc());
|
|
}
|
|
} else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
|
|
if (CheckMemberSpecialization(NewFD, Previous))
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
|
|
// Perform semantic checking on the function declaration.
|
|
if (!isDependentClassScopeExplicitSpecialization) {
|
|
if (!NewFD->isInvalidDecl() && NewFD->isMain())
|
|
CheckMain(NewFD, D.getDeclSpec());
|
|
|
|
if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
|
|
CheckMSVCRTEntryPoint(NewFD);
|
|
|
|
if (!NewFD->isInvalidDecl())
|
|
D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
|
|
isMemberSpecialization));
|
|
else if (!Previous.empty())
|
|
// Recover gracefully from an invalid redeclaration.
|
|
D.setRedeclaration(true);
|
|
}
|
|
|
|
assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
|
|
Previous.getResultKind() != LookupResult::FoundOverloaded) &&
|
|
"previous declaration set still overloaded");
|
|
|
|
NamedDecl *PrincipalDecl = (FunctionTemplate
|
|
? cast<NamedDecl>(FunctionTemplate)
|
|
: NewFD);
|
|
|
|
if (isFriend && NewFD->getPreviousDecl()) {
|
|
AccessSpecifier Access = AS_public;
|
|
if (!NewFD->isInvalidDecl())
|
|
Access = NewFD->getPreviousDecl()->getAccess();
|
|
|
|
NewFD->setAccess(Access);
|
|
if (FunctionTemplate) FunctionTemplate->setAccess(Access);
|
|
}
|
|
|
|
if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
|
|
PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
|
|
PrincipalDecl->setNonMemberOperator();
|
|
|
|
// If we have a function template, check the template parameter
|
|
// list. This will check and merge default template arguments.
|
|
if (FunctionTemplate) {
|
|
FunctionTemplateDecl *PrevTemplate =
|
|
FunctionTemplate->getPreviousDecl();
|
|
CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
|
|
PrevTemplate ? PrevTemplate->getTemplateParameters()
|
|
: nullptr,
|
|
D.getDeclSpec().isFriendSpecified()
|
|
? (D.isFunctionDefinition()
|
|
? TPC_FriendFunctionTemplateDefinition
|
|
: TPC_FriendFunctionTemplate)
|
|
: (D.getCXXScopeSpec().isSet() &&
|
|
DC && DC->isRecord() &&
|
|
DC->isDependentContext())
|
|
? TPC_ClassTemplateMember
|
|
: TPC_FunctionTemplate);
|
|
}
|
|
|
|
if (NewFD->isInvalidDecl()) {
|
|
// Ignore all the rest of this.
|
|
} else if (!D.isRedeclaration()) {
|
|
struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
|
|
AddToScope };
|
|
// Fake up an access specifier if it's supposed to be a class member.
|
|
if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
|
|
NewFD->setAccess(AS_public);
|
|
|
|
// Qualified decls generally require a previous declaration.
|
|
if (D.getCXXScopeSpec().isSet()) {
|
|
// ...with the major exception of templated-scope or
|
|
// dependent-scope friend declarations.
|
|
|
|
// TODO: we currently also suppress this check in dependent
|
|
// contexts because (1) the parameter depth will be off when
|
|
// matching friend templates and (2) we might actually be
|
|
// selecting a friend based on a dependent factor. But there
|
|
// are situations where these conditions don't apply and we
|
|
// can actually do this check immediately.
|
|
//
|
|
// Unless the scope is dependent, it's always an error if qualified
|
|
// redeclaration lookup found nothing at all. Diagnose that now;
|
|
// nothing will diagnose that error later.
|
|
if (isFriend &&
|
|
(D.getCXXScopeSpec().getScopeRep()->isDependent() ||
|
|
(!Previous.empty() && (TemplateParamLists.size() ||
|
|
CurContext->isDependentContext())))) {
|
|
// ignore these
|
|
} else {
|
|
// The user tried to provide an out-of-line definition for a
|
|
// function that is a member of a class or namespace, but there
|
|
// was no such member function declared (C++ [class.mfct]p2,
|
|
// C++ [namespace.memdef]p2). For example:
|
|
//
|
|
// class X {
|
|
// void f() const;
|
|
// };
|
|
//
|
|
// void X::f() { } // ill-formed
|
|
//
|
|
// Complain about this problem, and attempt to suggest close
|
|
// matches (e.g., those that differ only in cv-qualifiers and
|
|
// whether the parameter types are references).
|
|
|
|
if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
|
|
*this, Previous, NewFD, ExtraArgs, false, nullptr)) {
|
|
AddToScope = ExtraArgs.AddToScope;
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// Unqualified local friend declarations are required to resolve
|
|
// to something.
|
|
} else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
|
|
if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
|
|
*this, Previous, NewFD, ExtraArgs, true, S)) {
|
|
AddToScope = ExtraArgs.AddToScope;
|
|
return Result;
|
|
}
|
|
}
|
|
} else if (!D.isFunctionDefinition() &&
|
|
isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
|
|
!isFriend && !isFunctionTemplateSpecialization &&
|
|
!isMemberSpecialization) {
|
|
// An out-of-line member function declaration must also be a
|
|
// definition (C++ [class.mfct]p2).
|
|
// Note that this is not the case for explicit specializations of
|
|
// function templates or member functions of class templates, per
|
|
// C++ [temp.expl.spec]p2. We also allow these declarations as an
|
|
// extension for compatibility with old SWIG code which likes to
|
|
// generate them.
|
|
Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
}
|
|
}
|
|
|
|
ProcessPragmaWeak(S, NewFD);
|
|
checkAttributesAfterMerging(*this, *NewFD);
|
|
|
|
AddKnownFunctionAttributes(NewFD);
|
|
|
|
if (NewFD->hasAttr<OverloadableAttr>() &&
|
|
!NewFD->getType()->getAs<FunctionProtoType>()) {
|
|
Diag(NewFD->getLocation(),
|
|
diag::err_attribute_overloadable_no_prototype)
|
|
<< NewFD;
|
|
|
|
// Turn this into a variadic function with no parameters.
|
|
const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
|
|
FunctionProtoType::ExtProtoInfo EPI(
|
|
Context.getDefaultCallingConvention(true, false));
|
|
EPI.Variadic = true;
|
|
EPI.ExtInfo = FT->getExtInfo();
|
|
|
|
QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
|
|
NewFD->setType(R);
|
|
}
|
|
|
|
// If there's a #pragma GCC visibility in scope, and this isn't a class
|
|
// member, set the visibility of this function.
|
|
if (!DC->isRecord() && NewFD->isExternallyVisible())
|
|
AddPushedVisibilityAttribute(NewFD);
|
|
|
|
// If there's a #pragma clang arc_cf_code_audited in scope, consider
|
|
// marking the function.
|
|
AddCFAuditedAttribute(NewFD);
|
|
|
|
// If this is a function definition, check if we have to apply optnone due to
|
|
// a pragma.
|
|
if(D.isFunctionDefinition())
|
|
AddRangeBasedOptnone(NewFD);
|
|
|
|
// If this is the first declaration of an extern C variable, update
|
|
// the map of such variables.
|
|
if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
|
|
isIncompleteDeclExternC(*this, NewFD))
|
|
RegisterLocallyScopedExternCDecl(NewFD, S);
|
|
|
|
// Set this FunctionDecl's range up to the right paren.
|
|
NewFD->setRangeEnd(D.getSourceRange().getEnd());
|
|
|
|
if (D.isRedeclaration() && !Previous.empty()) {
|
|
NamedDecl *Prev = Previous.getRepresentativeDecl();
|
|
checkDLLAttributeRedeclaration(*this, Prev, NewFD,
|
|
isMemberSpecialization ||
|
|
isFunctionTemplateSpecialization,
|
|
D.isFunctionDefinition());
|
|
}
|
|
|
|
if (getLangOpts().CUDA) {
|
|
IdentifierInfo *II = NewFD->getIdentifier();
|
|
if (II && II->isStr(getCudaConfigureFuncName()) &&
|
|
!NewFD->isInvalidDecl() &&
|
|
NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
|
|
if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
|
|
Diag(NewFD->getLocation(), diag::err_config_scalar_return)
|
|
<< getCudaConfigureFuncName();
|
|
Context.setcudaConfigureCallDecl(NewFD);
|
|
}
|
|
|
|
// Variadic functions, other than a *declaration* of printf, are not allowed
|
|
// in device-side CUDA code, unless someone passed
|
|
// -fcuda-allow-variadic-functions.
|
|
if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
|
|
(NewFD->hasAttr<CUDADeviceAttr>() ||
|
|
NewFD->hasAttr<CUDAGlobalAttr>()) &&
|
|
!(II && II->isStr("printf") && NewFD->isExternC() &&
|
|
!D.isFunctionDefinition())) {
|
|
Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
|
|
}
|
|
}
|
|
|
|
MarkUnusedFileScopedDecl(NewFD);
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
if (FunctionTemplate) {
|
|
if (NewFD->isInvalidDecl())
|
|
FunctionTemplate->setInvalidDecl();
|
|
return FunctionTemplate;
|
|
}
|
|
|
|
if (isMemberSpecialization && !NewFD->isInvalidDecl())
|
|
CompleteMemberSpecialization(NewFD, Previous);
|
|
}
|
|
|
|
if (NewFD->hasAttr<OpenCLKernelAttr>()) {
|
|
// OpenCL v1.2 s6.8 static is invalid for kernel functions.
|
|
if ((getLangOpts().OpenCLVersion >= 120)
|
|
&& (SC == SC_Static)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_static_kernel);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// OpenCL v1.2, s6.9 -- Kernels can only have return type void.
|
|
if (!NewFD->getReturnType()->isVoidType()) {
|
|
SourceRange RTRange = NewFD->getReturnTypeSourceRange();
|
|
Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
|
|
<< (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
|
|
: FixItHint());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
llvm::SmallPtrSet<const Type *, 16> ValidTypes;
|
|
for (auto Param : NewFD->parameters())
|
|
checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
|
|
}
|
|
for (const ParmVarDecl *Param : NewFD->parameters()) {
|
|
QualType PT = Param->getType();
|
|
|
|
// OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
|
|
// types.
|
|
if (getLangOpts().OpenCLVersion >= 200) {
|
|
if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
|
|
QualType ElemTy = PipeTy->getElementType();
|
|
if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
|
|
Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
|
|
D.setInvalidType();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Here we have an function template explicit specialization at class scope.
|
|
// The actual specialization will be postponed to template instatiation
|
|
// time via the ClassScopeFunctionSpecializationDecl node.
|
|
if (isDependentClassScopeExplicitSpecialization) {
|
|
ClassScopeFunctionSpecializationDecl *NewSpec =
|
|
ClassScopeFunctionSpecializationDecl::Create(
|
|
Context, CurContext, NewFD->getLocation(),
|
|
cast<CXXMethodDecl>(NewFD),
|
|
HasExplicitTemplateArgs, TemplateArgs);
|
|
CurContext->addDecl(NewSpec);
|
|
AddToScope = false;
|
|
}
|
|
|
|
// Diagnose availability attributes. Availability cannot be used on functions
|
|
// that are run during load/unload.
|
|
if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
|
|
if (NewFD->hasAttr<ConstructorAttr>()) {
|
|
Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
|
|
<< 1;
|
|
NewFD->dropAttr<AvailabilityAttr>();
|
|
}
|
|
if (NewFD->hasAttr<DestructorAttr>()) {
|
|
Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
|
|
<< 2;
|
|
NewFD->dropAttr<AvailabilityAttr>();
|
|
}
|
|
}
|
|
|
|
return NewFD;
|
|
}
|
|
|
|
/// Return a CodeSegAttr from a containing class. The Microsoft docs say
|
|
/// when __declspec(code_seg) "is applied to a class, all member functions of
|
|
/// the class and nested classes -- this includes compiler-generated special
|
|
/// member functions -- are put in the specified segment."
|
|
/// The actual behavior is a little more complicated. The Microsoft compiler
|
|
/// won't check outer classes if there is an active value from #pragma code_seg.
|
|
/// The CodeSeg is always applied from the direct parent but only from outer
|
|
/// classes when the #pragma code_seg stack is empty. See:
|
|
/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
|
|
/// available since MS has removed the page.
|
|
static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
|
|
const auto *Method = dyn_cast<CXXMethodDecl>(FD);
|
|
if (!Method)
|
|
return nullptr;
|
|
const CXXRecordDecl *Parent = Method->getParent();
|
|
if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
|
|
Attr *NewAttr = SAttr->clone(S.getASTContext());
|
|
NewAttr->setImplicit(true);
|
|
return NewAttr;
|
|
}
|
|
|
|
// The Microsoft compiler won't check outer classes for the CodeSeg
|
|
// when the #pragma code_seg stack is active.
|
|
if (S.CodeSegStack.CurrentValue)
|
|
return nullptr;
|
|
|
|
while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
|
|
if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
|
|
Attr *NewAttr = SAttr->clone(S.getASTContext());
|
|
NewAttr->setImplicit(true);
|
|
return NewAttr;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
|
|
/// containing class. Otherwise it will return implicit SectionAttr if the
|
|
/// function is a definition and there is an active value on CodeSegStack
|
|
/// (from the current #pragma code-seg value).
|
|
///
|
|
/// \param FD Function being declared.
|
|
/// \param IsDefinition Whether it is a definition or just a declarartion.
|
|
/// \returns A CodeSegAttr or SectionAttr to apply to the function or
|
|
/// nullptr if no attribute should be added.
|
|
Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
|
|
bool IsDefinition) {
|
|
if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
|
|
return A;
|
|
if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
|
|
CodeSegStack.CurrentValue) {
|
|
return SectionAttr::CreateImplicit(getASTContext(),
|
|
SectionAttr::Declspec_allocate,
|
|
CodeSegStack.CurrentValue->getString(),
|
|
CodeSegStack.CurrentPragmaLocation);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Determines if we can perform a correct type check for \p D as a
|
|
/// redeclaration of \p PrevDecl. If not, we can generally still perform a
|
|
/// best-effort check.
|
|
///
|
|
/// \param NewD The new declaration.
|
|
/// \param OldD The old declaration.
|
|
/// \param NewT The portion of the type of the new declaration to check.
|
|
/// \param OldT The portion of the type of the old declaration to check.
|
|
bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
|
|
QualType NewT, QualType OldT) {
|
|
if (!NewD->getLexicalDeclContext()->isDependentContext())
|
|
return true;
|
|
|
|
// For dependently-typed local extern declarations and friends, we can't
|
|
// perform a correct type check in general until instantiation:
|
|
//
|
|
// int f();
|
|
// template<typename T> void g() { T f(); }
|
|
//
|
|
// (valid if g() is only instantiated with T = int).
|
|
if (NewT->isDependentType() &&
|
|
(NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
|
|
return false;
|
|
|
|
// Similarly, if the previous declaration was a dependent local extern
|
|
// declaration, we don't really know its type yet.
|
|
if (OldT->isDependentType() && OldD->isLocalExternDecl())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the new declaration declared in dependent context must be
|
|
/// put in the same redeclaration chain as the specified declaration.
|
|
///
|
|
/// \param D Declaration that is checked.
|
|
/// \param PrevDecl Previous declaration found with proper lookup method for the
|
|
/// same declaration name.
|
|
/// \returns True if D must be added to the redeclaration chain which PrevDecl
|
|
/// belongs to.
|
|
///
|
|
bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
|
|
if (!D->getLexicalDeclContext()->isDependentContext())
|
|
return true;
|
|
|
|
// Don't chain dependent friend function definitions until instantiation, to
|
|
// permit cases like
|
|
//
|
|
// void func();
|
|
// template<typename T> class C1 { friend void func() {} };
|
|
// template<typename T> class C2 { friend void func() {} };
|
|
//
|
|
// ... which is valid if only one of C1 and C2 is ever instantiated.
|
|
//
|
|
// FIXME: This need only apply to function definitions. For now, we proxy
|
|
// this by checking for a file-scope function. We do not want this to apply
|
|
// to friend declarations nominating member functions, because that gets in
|
|
// the way of access checks.
|
|
if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
|
|
return false;
|
|
|
|
auto *VD = dyn_cast<ValueDecl>(D);
|
|
auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
|
|
return !VD || !PrevVD ||
|
|
canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
|
|
PrevVD->getType());
|
|
}
|
|
|
|
/// Check the target attribute of the function for MultiVersion
|
|
/// validity.
|
|
///
|
|
/// Returns true if there was an error, false otherwise.
|
|
static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
|
|
const auto *TA = FD->getAttr<TargetAttr>();
|
|
assert(TA && "MultiVersion Candidate requires a target attribute");
|
|
TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
|
|
const TargetInfo &TargetInfo = S.Context.getTargetInfo();
|
|
enum ErrType { Feature = 0, Architecture = 1 };
|
|
|
|
if (!ParseInfo.Architecture.empty() &&
|
|
!TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
|
|
S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
|
|
<< Architecture << ParseInfo.Architecture;
|
|
return true;
|
|
}
|
|
|
|
for (const auto &Feat : ParseInfo.Features) {
|
|
auto BareFeat = StringRef{Feat}.substr(1);
|
|
if (Feat[0] == '-') {
|
|
S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
|
|
<< Feature << ("no-" + BareFeat).str();
|
|
return true;
|
|
}
|
|
|
|
if (!TargetInfo.validateCpuSupports(BareFeat) ||
|
|
!TargetInfo.isValidFeatureName(BareFeat)) {
|
|
S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
|
|
<< Feature << BareFeat;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
|
|
MultiVersionKind MVType) {
|
|
for (const Attr *A : FD->attrs()) {
|
|
switch (A->getKind()) {
|
|
case attr::CPUDispatch:
|
|
case attr::CPUSpecific:
|
|
if (MVType != MultiVersionKind::CPUDispatch &&
|
|
MVType != MultiVersionKind::CPUSpecific)
|
|
return true;
|
|
break;
|
|
case attr::Target:
|
|
if (MVType != MultiVersionKind::Target)
|
|
return true;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
|
|
const FunctionDecl *NewFD,
|
|
bool CausesMV,
|
|
MultiVersionKind MVType) {
|
|
enum DoesntSupport {
|
|
FuncTemplates = 0,
|
|
VirtFuncs = 1,
|
|
DeducedReturn = 2,
|
|
Constructors = 3,
|
|
Destructors = 4,
|
|
DeletedFuncs = 5,
|
|
DefaultedFuncs = 6,
|
|
ConstexprFuncs = 7,
|
|
};
|
|
enum Different {
|
|
CallingConv = 0,
|
|
ReturnType = 1,
|
|
ConstexprSpec = 2,
|
|
InlineSpec = 3,
|
|
StorageClass = 4,
|
|
Linkage = 5
|
|
};
|
|
|
|
bool IsCPUSpecificCPUDispatchMVType =
|
|
MVType == MultiVersionKind::CPUDispatch ||
|
|
MVType == MultiVersionKind::CPUSpecific;
|
|
|
|
if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
|
|
S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
|
|
S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
|
|
return true;
|
|
}
|
|
|
|
if (!NewFD->getType()->getAs<FunctionProtoType>())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
|
|
|
|
if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
|
|
if (OldFD)
|
|
S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
// For now, disallow all other attributes. These should be opt-in, but
|
|
// an analysis of all of them is a future FIXME.
|
|
if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
|
|
S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
|
|
<< IsCPUSpecificCPUDispatchMVType;
|
|
S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
|
|
return true;
|
|
}
|
|
|
|
if (HasNonMultiVersionAttributes(NewFD, MVType))
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
|
|
<< IsCPUSpecificCPUDispatchMVType;
|
|
|
|
if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << FuncTemplates;
|
|
|
|
if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
|
|
if (NewCXXFD->isVirtual())
|
|
return S.Diag(NewCXXFD->getLocation(),
|
|
diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << VirtFuncs;
|
|
|
|
if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
|
|
return S.Diag(NewCXXCtor->getLocation(),
|
|
diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << Constructors;
|
|
|
|
if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
|
|
return S.Diag(NewCXXDtor->getLocation(),
|
|
diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << Destructors;
|
|
}
|
|
|
|
if (NewFD->isDeleted())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
|
|
|
|
if (NewFD->isDefaulted())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
|
|
|
|
if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
|
|
MVType == MultiVersionKind::CPUSpecific))
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << ConstexprFuncs;
|
|
|
|
QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
|
|
const auto *NewType = cast<FunctionType>(NewQType);
|
|
QualType NewReturnType = NewType->getReturnType();
|
|
|
|
if (NewReturnType->isUndeducedType())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
|
|
<< IsCPUSpecificCPUDispatchMVType << DeducedReturn;
|
|
|
|
// Only allow transition to MultiVersion if it hasn't been used.
|
|
if (OldFD && CausesMV && OldFD->isUsed(false))
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
|
|
|
|
// Ensure the return type is identical.
|
|
if (OldFD) {
|
|
QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
|
|
const auto *OldType = cast<FunctionType>(OldQType);
|
|
FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
|
|
FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
|
|
|
|
if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
|
|
<< CallingConv;
|
|
|
|
QualType OldReturnType = OldType->getReturnType();
|
|
|
|
if (OldReturnType != NewReturnType)
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
|
|
<< ReturnType;
|
|
|
|
if (OldFD->isConstexpr() != NewFD->isConstexpr())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
|
|
<< ConstexprSpec;
|
|
|
|
if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
|
|
<< InlineSpec;
|
|
|
|
if (OldFD->getStorageClass() != NewFD->getStorageClass())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
|
|
<< StorageClass;
|
|
|
|
if (OldFD->isExternC() != NewFD->isExternC())
|
|
return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
|
|
<< Linkage;
|
|
|
|
if (S.CheckEquivalentExceptionSpec(
|
|
OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
|
|
NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check the validity of a multiversion function declaration that is the
|
|
/// first of its kind. Also sets the multiversion'ness' of the function itself.
|
|
///
|
|
/// This sets NewFD->isInvalidDecl() to true if there was an error.
|
|
///
|
|
/// Returns true if there was an error, false otherwise.
|
|
static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
|
|
MultiVersionKind MVType,
|
|
const TargetAttr *TA) {
|
|
assert(MVType != MultiVersionKind::None &&
|
|
"Function lacks multiversion attribute");
|
|
|
|
// Target only causes MV if it is default, otherwise this is a normal
|
|
// function.
|
|
if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
|
|
return false;
|
|
|
|
if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
|
|
FD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
|
|
FD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
FD->setIsMultiVersion();
|
|
return false;
|
|
}
|
|
|
|
static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
|
|
for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
|
|
if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool CheckTargetCausesMultiVersioning(
|
|
Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
|
|
bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
|
|
LookupResult &Previous) {
|
|
const auto *OldTA = OldFD->getAttr<TargetAttr>();
|
|
TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
|
|
// Sort order doesn't matter, it just needs to be consistent.
|
|
llvm::sort(NewParsed.Features);
|
|
|
|
// If the old decl is NOT MultiVersioned yet, and we don't cause that
|
|
// to change, this is a simple redeclaration.
|
|
if (!NewTA->isDefaultVersion() &&
|
|
(!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
|
|
return false;
|
|
|
|
// Otherwise, this decl causes MultiVersioning.
|
|
if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
|
|
S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
|
|
MultiVersionKind::Target)) {
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
if (CheckMultiVersionValue(S, NewFD)) {
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// If this is 'default', permit the forward declaration.
|
|
if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
|
|
Redeclaration = true;
|
|
OldDecl = OldFD;
|
|
OldFD->setIsMultiVersion();
|
|
NewFD->setIsMultiVersion();
|
|
return false;
|
|
}
|
|
|
|
if (CheckMultiVersionValue(S, OldFD)) {
|
|
S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
TargetAttr::ParsedTargetAttr OldParsed =
|
|
OldTA->parse(std::less<std::string>());
|
|
|
|
if (OldParsed == NewParsed) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
|
|
S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
for (const auto *FD : OldFD->redecls()) {
|
|
const auto *CurTA = FD->getAttr<TargetAttr>();
|
|
// We allow forward declarations before ANY multiversioning attributes, but
|
|
// nothing after the fact.
|
|
if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
|
|
(!CurTA || CurTA->isInherited())) {
|
|
S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
|
|
<< 0;
|
|
S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
OldFD->setIsMultiVersion();
|
|
NewFD->setIsMultiVersion();
|
|
Redeclaration = false;
|
|
MergeTypeWithPrevious = false;
|
|
OldDecl = nullptr;
|
|
Previous.clear();
|
|
return false;
|
|
}
|
|
|
|
/// Check the validity of a new function declaration being added to an existing
|
|
/// multiversioned declaration collection.
|
|
static bool CheckMultiVersionAdditionalDecl(
|
|
Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
|
|
MultiVersionKind NewMVType, const TargetAttr *NewTA,
|
|
const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
|
|
bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
|
|
LookupResult &Previous) {
|
|
|
|
MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
|
|
// Disallow mixing of multiversioning types.
|
|
if ((OldMVType == MultiVersionKind::Target &&
|
|
NewMVType != MultiVersionKind::Target) ||
|
|
(NewMVType == MultiVersionKind::Target &&
|
|
OldMVType != MultiVersionKind::Target)) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
|
|
S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
TargetAttr::ParsedTargetAttr NewParsed;
|
|
if (NewTA) {
|
|
NewParsed = NewTA->parse();
|
|
llvm::sort(NewParsed.Features);
|
|
}
|
|
|
|
bool UseMemberUsingDeclRules =
|
|
S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
|
|
|
|
// Next, check ALL non-overloads to see if this is a redeclaration of a
|
|
// previous member of the MultiVersion set.
|
|
for (NamedDecl *ND : Previous) {
|
|
FunctionDecl *CurFD = ND->getAsFunction();
|
|
if (!CurFD)
|
|
continue;
|
|
if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
|
|
continue;
|
|
|
|
if (NewMVType == MultiVersionKind::Target) {
|
|
const auto *CurTA = CurFD->getAttr<TargetAttr>();
|
|
if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
|
|
NewFD->setIsMultiVersion();
|
|
Redeclaration = true;
|
|
OldDecl = ND;
|
|
return false;
|
|
}
|
|
|
|
TargetAttr::ParsedTargetAttr CurParsed =
|
|
CurTA->parse(std::less<std::string>());
|
|
if (CurParsed == NewParsed) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
|
|
S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
} else {
|
|
const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
|
|
const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
|
|
// Handle CPUDispatch/CPUSpecific versions.
|
|
// Only 1 CPUDispatch function is allowed, this will make it go through
|
|
// the redeclaration errors.
|
|
if (NewMVType == MultiVersionKind::CPUDispatch &&
|
|
CurFD->hasAttr<CPUDispatchAttr>()) {
|
|
if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
|
|
std::equal(
|
|
CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
|
|
NewCPUDisp->cpus_begin(),
|
|
[](const IdentifierInfo *Cur, const IdentifierInfo *New) {
|
|
return Cur->getName() == New->getName();
|
|
})) {
|
|
NewFD->setIsMultiVersion();
|
|
Redeclaration = true;
|
|
OldDecl = ND;
|
|
return false;
|
|
}
|
|
|
|
// If the declarations don't match, this is an error condition.
|
|
S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
|
|
S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
|
|
|
|
if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
|
|
std::equal(
|
|
CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
|
|
NewCPUSpec->cpus_begin(),
|
|
[](const IdentifierInfo *Cur, const IdentifierInfo *New) {
|
|
return Cur->getName() == New->getName();
|
|
})) {
|
|
NewFD->setIsMultiVersion();
|
|
Redeclaration = true;
|
|
OldDecl = ND;
|
|
return false;
|
|
}
|
|
|
|
// Only 1 version of CPUSpecific is allowed for each CPU.
|
|
for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
|
|
for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
|
|
if (CurII == NewII) {
|
|
S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
|
|
<< NewII;
|
|
S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// If the two decls aren't the same MVType, there is no possible error
|
|
// condition.
|
|
}
|
|
}
|
|
|
|
// Else, this is simply a non-redecl case. Checking the 'value' is only
|
|
// necessary in the Target case, since The CPUSpecific/Dispatch cases are
|
|
// handled in the attribute adding step.
|
|
if (NewMVType == MultiVersionKind::Target &&
|
|
CheckMultiVersionValue(S, NewFD)) {
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
|
|
!OldFD->isMultiVersion(), NewMVType)) {
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// Permit forward declarations in the case where these two are compatible.
|
|
if (!OldFD->isMultiVersion()) {
|
|
OldFD->setIsMultiVersion();
|
|
NewFD->setIsMultiVersion();
|
|
Redeclaration = true;
|
|
OldDecl = OldFD;
|
|
return false;
|
|
}
|
|
|
|
NewFD->setIsMultiVersion();
|
|
Redeclaration = false;
|
|
MergeTypeWithPrevious = false;
|
|
OldDecl = nullptr;
|
|
Previous.clear();
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Check the validity of a mulitversion function declaration.
|
|
/// Also sets the multiversion'ness' of the function itself.
|
|
///
|
|
/// This sets NewFD->isInvalidDecl() to true if there was an error.
|
|
///
|
|
/// Returns true if there was an error, false otherwise.
|
|
static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
|
|
bool &Redeclaration, NamedDecl *&OldDecl,
|
|
bool &MergeTypeWithPrevious,
|
|
LookupResult &Previous) {
|
|
const auto *NewTA = NewFD->getAttr<TargetAttr>();
|
|
const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
|
|
const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
|
|
|
|
// Mixing Multiversioning types is prohibited.
|
|
if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
|
|
(NewCPUDisp && NewCPUSpec)) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
MultiVersionKind MVType = NewFD->getMultiVersionKind();
|
|
|
|
// Main isn't allowed to become a multiversion function, however it IS
|
|
// permitted to have 'main' be marked with the 'target' optimization hint.
|
|
if (NewFD->isMain()) {
|
|
if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
|
|
MVType == MultiVersionKind::CPUDispatch ||
|
|
MVType == MultiVersionKind::CPUSpecific) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!OldDecl || !OldDecl->getAsFunction() ||
|
|
OldDecl->getDeclContext()->getRedeclContext() !=
|
|
NewFD->getDeclContext()->getRedeclContext()) {
|
|
// If there's no previous declaration, AND this isn't attempting to cause
|
|
// multiversioning, this isn't an error condition.
|
|
if (MVType == MultiVersionKind::None)
|
|
return false;
|
|
return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
|
|
}
|
|
|
|
FunctionDecl *OldFD = OldDecl->getAsFunction();
|
|
|
|
if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
|
|
return false;
|
|
|
|
if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
|
|
S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
|
|
<< (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
|
|
NewFD->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// Handle the target potentially causes multiversioning case.
|
|
if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
|
|
return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
|
|
Redeclaration, OldDecl,
|
|
MergeTypeWithPrevious, Previous);
|
|
|
|
// At this point, we have a multiversion function decl (in OldFD) AND an
|
|
// appropriate attribute in the current function decl. Resolve that these are
|
|
// still compatible with previous declarations.
|
|
return CheckMultiVersionAdditionalDecl(
|
|
S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
|
|
OldDecl, MergeTypeWithPrevious, Previous);
|
|
}
|
|
|
|
/// Perform semantic checking of a new function declaration.
|
|
///
|
|
/// Performs semantic analysis of the new function declaration
|
|
/// NewFD. This routine performs all semantic checking that does not
|
|
/// require the actual declarator involved in the declaration, and is
|
|
/// used both for the declaration of functions as they are parsed
|
|
/// (called via ActOnDeclarator) and for the declaration of functions
|
|
/// that have been instantiated via C++ template instantiation (called
|
|
/// via InstantiateDecl).
|
|
///
|
|
/// \param IsMemberSpecialization whether this new function declaration is
|
|
/// a member specialization (that replaces any definition provided by the
|
|
/// previous declaration).
|
|
///
|
|
/// This sets NewFD->isInvalidDecl() to true if there was an error.
|
|
///
|
|
/// \returns true if the function declaration is a redeclaration.
|
|
bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
|
|
LookupResult &Previous,
|
|
bool IsMemberSpecialization) {
|
|
assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
|
|
"Variably modified return types are not handled here");
|
|
|
|
// Determine whether the type of this function should be merged with
|
|
// a previous visible declaration. This never happens for functions in C++,
|
|
// and always happens in C if the previous declaration was visible.
|
|
bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
|
|
!Previous.isShadowed();
|
|
|
|
bool Redeclaration = false;
|
|
NamedDecl *OldDecl = nullptr;
|
|
bool MayNeedOverloadableChecks = false;
|
|
|
|
// Merge or overload the declaration with an existing declaration of
|
|
// the same name, if appropriate.
|
|
if (!Previous.empty()) {
|
|
// Determine whether NewFD is an overload of PrevDecl or
|
|
// a declaration that requires merging. If it's an overload,
|
|
// there's no more work to do here; we'll just add the new
|
|
// function to the scope.
|
|
if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
|
|
NamedDecl *Candidate = Previous.getRepresentativeDecl();
|
|
if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
|
|
Redeclaration = true;
|
|
OldDecl = Candidate;
|
|
}
|
|
} else {
|
|
MayNeedOverloadableChecks = true;
|
|
switch (CheckOverload(S, NewFD, Previous, OldDecl,
|
|
/*NewIsUsingDecl*/ false)) {
|
|
case Ovl_Match:
|
|
Redeclaration = true;
|
|
break;
|
|
|
|
case Ovl_NonFunction:
|
|
Redeclaration = true;
|
|
break;
|
|
|
|
case Ovl_Overload:
|
|
Redeclaration = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for a previous extern "C" declaration with this name.
|
|
if (!Redeclaration &&
|
|
checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
|
|
if (!Previous.empty()) {
|
|
// This is an extern "C" declaration with the same name as a previous
|
|
// declaration, and thus redeclares that entity...
|
|
Redeclaration = true;
|
|
OldDecl = Previous.getFoundDecl();
|
|
MergeTypeWithPrevious = false;
|
|
|
|
// ... except in the presence of __attribute__((overloadable)).
|
|
if (OldDecl->hasAttr<OverloadableAttr>() ||
|
|
NewFD->hasAttr<OverloadableAttr>()) {
|
|
if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
|
|
MayNeedOverloadableChecks = true;
|
|
Redeclaration = false;
|
|
OldDecl = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
|
|
MergeTypeWithPrevious, Previous))
|
|
return Redeclaration;
|
|
|
|
// C++11 [dcl.constexpr]p8:
|
|
// A constexpr specifier for a non-static member function that is not
|
|
// a constructor declares that member function to be const.
|
|
//
|
|
// This needs to be delayed until we know whether this is an out-of-line
|
|
// definition of a static member function.
|
|
//
|
|
// This rule is not present in C++1y, so we produce a backwards
|
|
// compatibility warning whenever it happens in C++11.
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
|
|
if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
|
|
!MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
|
|
!MD->getMethodQualifiers().hasConst()) {
|
|
CXXMethodDecl *OldMD = nullptr;
|
|
if (OldDecl)
|
|
OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
|
|
if (!OldMD || !OldMD->isStatic()) {
|
|
const FunctionProtoType *FPT =
|
|
MD->getType()->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.TypeQuals.addConst();
|
|
MD->setType(Context.getFunctionType(FPT->getReturnType(),
|
|
FPT->getParamTypes(), EPI));
|
|
|
|
// Warn that we did this, if we're not performing template instantiation.
|
|
// In that case, we'll have warned already when the template was defined.
|
|
if (!inTemplateInstantiation()) {
|
|
SourceLocation AddConstLoc;
|
|
if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
|
|
.IgnoreParens().getAs<FunctionTypeLoc>())
|
|
AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
|
|
|
|
Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
|
|
<< FixItHint::CreateInsertion(AddConstLoc, " const");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Redeclaration) {
|
|
// NewFD and OldDecl represent declarations that need to be
|
|
// merged.
|
|
if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
|
|
NewFD->setInvalidDecl();
|
|
return Redeclaration;
|
|
}
|
|
|
|
Previous.clear();
|
|
Previous.addDecl(OldDecl);
|
|
|
|
if (FunctionTemplateDecl *OldTemplateDecl =
|
|
dyn_cast<FunctionTemplateDecl>(OldDecl)) {
|
|
auto *OldFD = OldTemplateDecl->getTemplatedDecl();
|
|
FunctionTemplateDecl *NewTemplateDecl
|
|
= NewFD->getDescribedFunctionTemplate();
|
|
assert(NewTemplateDecl && "Template/non-template mismatch");
|
|
|
|
// The call to MergeFunctionDecl above may have created some state in
|
|
// NewTemplateDecl that needs to be merged with OldTemplateDecl before we
|
|
// can add it as a redeclaration.
|
|
NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
|
|
|
|
NewFD->setPreviousDeclaration(OldFD);
|
|
adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
|
|
if (NewFD->isCXXClassMember()) {
|
|
NewFD->setAccess(OldTemplateDecl->getAccess());
|
|
NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
|
|
}
|
|
|
|
// If this is an explicit specialization of a member that is a function
|
|
// template, mark it as a member specialization.
|
|
if (IsMemberSpecialization &&
|
|
NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
|
|
NewTemplateDecl->setMemberSpecialization();
|
|
assert(OldTemplateDecl->isMemberSpecialization());
|
|
// Explicit specializations of a member template do not inherit deleted
|
|
// status from the parent member template that they are specializing.
|
|
if (OldFD->isDeleted()) {
|
|
// FIXME: This assert will not hold in the presence of modules.
|
|
assert(OldFD->getCanonicalDecl() == OldFD);
|
|
// FIXME: We need an update record for this AST mutation.
|
|
OldFD->setDeletedAsWritten(false);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
|
|
auto *OldFD = cast<FunctionDecl>(OldDecl);
|
|
// This needs to happen first so that 'inline' propagates.
|
|
NewFD->setPreviousDeclaration(OldFD);
|
|
adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
|
|
if (NewFD->isCXXClassMember())
|
|
NewFD->setAccess(OldFD->getAccess());
|
|
}
|
|
}
|
|
} else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
|
|
!NewFD->getAttr<OverloadableAttr>()) {
|
|
assert((Previous.empty() ||
|
|
llvm::any_of(Previous,
|
|
[](const NamedDecl *ND) {
|
|
return ND->hasAttr<OverloadableAttr>();
|
|
})) &&
|
|
"Non-redecls shouldn't happen without overloadable present");
|
|
|
|
auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
|
|
const auto *FD = dyn_cast<FunctionDecl>(ND);
|
|
return FD && !FD->hasAttr<OverloadableAttr>();
|
|
});
|
|
|
|
if (OtherUnmarkedIter != Previous.end()) {
|
|
Diag(NewFD->getLocation(),
|
|
diag::err_attribute_overloadable_multiple_unmarked_overloads);
|
|
Diag((*OtherUnmarkedIter)->getLocation(),
|
|
diag::note_attribute_overloadable_prev_overload)
|
|
<< false;
|
|
|
|
NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
|
|
}
|
|
}
|
|
|
|
// Semantic checking for this function declaration (in isolation).
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++-specific checks.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
|
|
CheckConstructor(Constructor);
|
|
} else if (CXXDestructorDecl *Destructor =
|
|
dyn_cast<CXXDestructorDecl>(NewFD)) {
|
|
CXXRecordDecl *Record = Destructor->getParent();
|
|
QualType ClassType = Context.getTypeDeclType(Record);
|
|
|
|
// FIXME: Shouldn't we be able to perform this check even when the class
|
|
// type is dependent? Both gcc and edg can handle that.
|
|
if (!ClassType->isDependentType()) {
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXDestructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
if (NewFD->getDeclName() != Name) {
|
|
Diag(NewFD->getLocation(), diag::err_destructor_name);
|
|
NewFD->setInvalidDecl();
|
|
return Redeclaration;
|
|
}
|
|
}
|
|
} else if (CXXConversionDecl *Conversion
|
|
= dyn_cast<CXXConversionDecl>(NewFD)) {
|
|
ActOnConversionDeclarator(Conversion);
|
|
} else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
|
|
if (auto *TD = Guide->getDescribedFunctionTemplate())
|
|
CheckDeductionGuideTemplate(TD);
|
|
|
|
// A deduction guide is not on the list of entities that can be
|
|
// explicitly specialized.
|
|
if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
|
|
Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
|
|
<< /*explicit specialization*/ 1;
|
|
}
|
|
|
|
// Find any virtual functions that this function overrides.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
|
|
if (!Method->isFunctionTemplateSpecialization() &&
|
|
!Method->getDescribedFunctionTemplate() &&
|
|
Method->isCanonicalDecl()) {
|
|
if (AddOverriddenMethods(Method->getParent(), Method)) {
|
|
// If the function was marked as "static", we have a problem.
|
|
if (NewFD->getStorageClass() == SC_Static) {
|
|
ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Method->isStatic())
|
|
checkThisInStaticMemberFunctionType(Method);
|
|
}
|
|
|
|
// Extra checking for C++ overloaded operators (C++ [over.oper]).
|
|
if (NewFD->isOverloadedOperator() &&
|
|
CheckOverloadedOperatorDeclaration(NewFD)) {
|
|
NewFD->setInvalidDecl();
|
|
return Redeclaration;
|
|
}
|
|
|
|
// Extra checking for C++0x literal operators (C++0x [over.literal]).
|
|
if (NewFD->getLiteralIdentifier() &&
|
|
CheckLiteralOperatorDeclaration(NewFD)) {
|
|
NewFD->setInvalidDecl();
|
|
return Redeclaration;
|
|
}
|
|
|
|
// In C++, check default arguments now that we have merged decls. Unless
|
|
// the lexical context is the class, because in this case this is done
|
|
// during delayed parsing anyway.
|
|
if (!CurContext->isRecord())
|
|
CheckCXXDefaultArguments(NewFD);
|
|
|
|
// If this function declares a builtin function, check the type of this
|
|
// declaration against the expected type for the builtin.
|
|
if (unsigned BuiltinID = NewFD->getBuiltinID()) {
|
|
ASTContext::GetBuiltinTypeError Error;
|
|
LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
|
|
QualType T = Context.GetBuiltinType(BuiltinID, Error);
|
|
// If the type of the builtin differs only in its exception
|
|
// specification, that's OK.
|
|
// FIXME: If the types do differ in this way, it would be better to
|
|
// retain the 'noexcept' form of the type.
|
|
if (!T.isNull() &&
|
|
!Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
|
|
NewFD->getType()))
|
|
// The type of this function differs from the type of the builtin,
|
|
// so forget about the builtin entirely.
|
|
Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
|
|
}
|
|
|
|
// If this function is declared as being extern "C", then check to see if
|
|
// the function returns a UDT (class, struct, or union type) that is not C
|
|
// compatible, and if it does, warn the user.
|
|
// But, issue any diagnostic on the first declaration only.
|
|
if (Previous.empty() && NewFD->isExternC()) {
|
|
QualType R = NewFD->getReturnType();
|
|
if (R->isIncompleteType() && !R->isVoidType())
|
|
Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
|
|
<< NewFD << R;
|
|
else if (!R.isPODType(Context) && !R->isVoidType() &&
|
|
!R->isObjCObjectPointerType())
|
|
Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
|
|
}
|
|
|
|
// C++1z [dcl.fct]p6:
|
|
// [...] whether the function has a non-throwing exception-specification
|
|
// [is] part of the function type
|
|
//
|
|
// This results in an ABI break between C++14 and C++17 for functions whose
|
|
// declared type includes an exception-specification in a parameter or
|
|
// return type. (Exception specifications on the function itself are OK in
|
|
// most cases, and exception specifications are not permitted in most other
|
|
// contexts where they could make it into a mangling.)
|
|
if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
|
|
auto HasNoexcept = [&](QualType T) -> bool {
|
|
// Strip off declarator chunks that could be between us and a function
|
|
// type. We don't need to look far, exception specifications are very
|
|
// restricted prior to C++17.
|
|
if (auto *RT = T->getAs<ReferenceType>())
|
|
T = RT->getPointeeType();
|
|
else if (T->isAnyPointerType())
|
|
T = T->getPointeeType();
|
|
else if (auto *MPT = T->getAs<MemberPointerType>())
|
|
T = MPT->getPointeeType();
|
|
if (auto *FPT = T->getAs<FunctionProtoType>())
|
|
if (FPT->isNothrow())
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
|
|
bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
|
|
for (QualType T : FPT->param_types())
|
|
AnyNoexcept |= HasNoexcept(T);
|
|
if (AnyNoexcept)
|
|
Diag(NewFD->getLocation(),
|
|
diag::warn_cxx17_compat_exception_spec_in_signature)
|
|
<< NewFD;
|
|
}
|
|
|
|
if (!Redeclaration && LangOpts.CUDA)
|
|
checkCUDATargetOverload(NewFD, Previous);
|
|
}
|
|
return Redeclaration;
|
|
}
|
|
|
|
void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
|
|
// C++11 [basic.start.main]p3:
|
|
// A program that [...] declares main to be inline, static or
|
|
// constexpr is ill-formed.
|
|
// C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
|
|
// appear in a declaration of main.
|
|
// static main is not an error under C99, but we should warn about it.
|
|
// We accept _Noreturn main as an extension.
|
|
if (FD->getStorageClass() == SC_Static)
|
|
Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
|
|
? diag::err_static_main : diag::warn_static_main)
|
|
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
|
|
if (FD->isInlineSpecified())
|
|
Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
|
|
<< FixItHint::CreateRemoval(DS.getInlineSpecLoc());
|
|
if (DS.isNoreturnSpecified()) {
|
|
SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
|
|
SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
|
|
Diag(NoreturnLoc, diag::ext_noreturn_main);
|
|
Diag(NoreturnLoc, diag::note_main_remove_noreturn)
|
|
<< FixItHint::CreateRemoval(NoreturnRange);
|
|
}
|
|
if (FD->isConstexpr()) {
|
|
Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
|
|
<< FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
|
|
FD->setConstexpr(false);
|
|
}
|
|
|
|
if (getLangOpts().OpenCL) {
|
|
Diag(FD->getLocation(), diag::err_opencl_no_main)
|
|
<< FD->hasAttr<OpenCLKernelAttr>();
|
|
FD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
QualType T = FD->getType();
|
|
assert(T->isFunctionType() && "function decl is not of function type");
|
|
const FunctionType* FT = T->castAs<FunctionType>();
|
|
|
|
// Set default calling convention for main()
|
|
if (FT->getCallConv() != CC_C) {
|
|
FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
|
|
FD->setType(QualType(FT, 0));
|
|
T = Context.getCanonicalType(FD->getType());
|
|
}
|
|
|
|
if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
|
|
// In C with GNU extensions we allow main() to have non-integer return
|
|
// type, but we should warn about the extension, and we disable the
|
|
// implicit-return-zero rule.
|
|
|
|
// GCC in C mode accepts qualified 'int'.
|
|
if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
|
|
FD->setHasImplicitReturnZero(true);
|
|
else {
|
|
Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
|
|
SourceRange RTRange = FD->getReturnTypeSourceRange();
|
|
if (RTRange.isValid())
|
|
Diag(RTRange.getBegin(), diag::note_main_change_return_type)
|
|
<< FixItHint::CreateReplacement(RTRange, "int");
|
|
}
|
|
} else {
|
|
// In C and C++, main magically returns 0 if you fall off the end;
|
|
// set the flag which tells us that.
|
|
// This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
|
|
|
|
// All the standards say that main() should return 'int'.
|
|
if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
|
|
FD->setHasImplicitReturnZero(true);
|
|
else {
|
|
// Otherwise, this is just a flat-out error.
|
|
SourceRange RTRange = FD->getReturnTypeSourceRange();
|
|
Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
|
|
<< (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
|
|
: FixItHint());
|
|
FD->setInvalidDecl(true);
|
|
}
|
|
}
|
|
|
|
// Treat protoless main() as nullary.
|
|
if (isa<FunctionNoProtoType>(FT)) return;
|
|
|
|
const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
|
|
unsigned nparams = FTP->getNumParams();
|
|
assert(FD->getNumParams() == nparams);
|
|
|
|
bool HasExtraParameters = (nparams > 3);
|
|
|
|
if (FTP->isVariadic()) {
|
|
Diag(FD->getLocation(), diag::ext_variadic_main);
|
|
// FIXME: if we had information about the location of the ellipsis, we
|
|
// could add a FixIt hint to remove it as a parameter.
|
|
}
|
|
|
|
// Darwin passes an undocumented fourth argument of type char**. If
|
|
// other platforms start sprouting these, the logic below will start
|
|
// getting shifty.
|
|
if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
|
|
HasExtraParameters = false;
|
|
|
|
if (HasExtraParameters) {
|
|
Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
|
|
FD->setInvalidDecl(true);
|
|
nparams = 3;
|
|
}
|
|
|
|
// FIXME: a lot of the following diagnostics would be improved
|
|
// if we had some location information about types.
|
|
|
|
QualType CharPP =
|
|
Context.getPointerType(Context.getPointerType(Context.CharTy));
|
|
QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
|
|
|
|
for (unsigned i = 0; i < nparams; ++i) {
|
|
QualType AT = FTP->getParamType(i);
|
|
|
|
bool mismatch = true;
|
|
|
|
if (Context.hasSameUnqualifiedType(AT, Expected[i]))
|
|
mismatch = false;
|
|
else if (Expected[i] == CharPP) {
|
|
// As an extension, the following forms are okay:
|
|
// char const **
|
|
// char const * const *
|
|
// char * const *
|
|
|
|
QualifierCollector qs;
|
|
const PointerType* PT;
|
|
if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
|
|
(PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
|
|
Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
|
|
Context.CharTy)) {
|
|
qs.removeConst();
|
|
mismatch = !qs.empty();
|
|
}
|
|
}
|
|
|
|
if (mismatch) {
|
|
Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
|
|
// TODO: suggest replacing given type with expected type
|
|
FD->setInvalidDecl(true);
|
|
}
|
|
}
|
|
|
|
if (nparams == 1 && !FD->isInvalidDecl()) {
|
|
Diag(FD->getLocation(), diag::warn_main_one_arg);
|
|
}
|
|
|
|
if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
|
|
Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
|
|
FD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
|
|
QualType T = FD->getType();
|
|
assert(T->isFunctionType() && "function decl is not of function type");
|
|
const FunctionType *FT = T->castAs<FunctionType>();
|
|
|
|
// Set an implicit return of 'zero' if the function can return some integral,
|
|
// enumeration, pointer or nullptr type.
|
|
if (FT->getReturnType()->isIntegralOrEnumerationType() ||
|
|
FT->getReturnType()->isAnyPointerType() ||
|
|
FT->getReturnType()->isNullPtrType())
|
|
// DllMain is exempt because a return value of zero means it failed.
|
|
if (FD->getName() != "DllMain")
|
|
FD->setHasImplicitReturnZero(true);
|
|
|
|
if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
|
|
Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
|
|
FD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
|
|
// FIXME: Need strict checking. In C89, we need to check for
|
|
// any assignment, increment, decrement, function-calls, or
|
|
// commas outside of a sizeof. In C99, it's the same list,
|
|
// except that the aforementioned are allowed in unevaluated
|
|
// expressions. Everything else falls under the
|
|
// "may accept other forms of constant expressions" exception.
|
|
// (We never end up here for C++, so the constant expression
|
|
// rules there don't matter.)
|
|
const Expr *Culprit;
|
|
if (Init->isConstantInitializer(Context, false, &Culprit))
|
|
return false;
|
|
Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
|
|
<< Culprit->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
// Visits an initialization expression to see if OrigDecl is evaluated in
|
|
// its own initialization and throws a warning if it does.
|
|
class SelfReferenceChecker
|
|
: public EvaluatedExprVisitor<SelfReferenceChecker> {
|
|
Sema &S;
|
|
Decl *OrigDecl;
|
|
bool isRecordType;
|
|
bool isPODType;
|
|
bool isReferenceType;
|
|
|
|
bool isInitList;
|
|
llvm::SmallVector<unsigned, 4> InitFieldIndex;
|
|
|
|
public:
|
|
typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
|
|
|
|
SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
|
|
S(S), OrigDecl(OrigDecl) {
|
|
isPODType = false;
|
|
isRecordType = false;
|
|
isReferenceType = false;
|
|
isInitList = false;
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
|
|
isPODType = VD->getType().isPODType(S.Context);
|
|
isRecordType = VD->getType()->isRecordType();
|
|
isReferenceType = VD->getType()->isReferenceType();
|
|
}
|
|
}
|
|
|
|
// For most expressions, just call the visitor. For initializer lists,
|
|
// track the index of the field being initialized since fields are
|
|
// initialized in order allowing use of previously initialized fields.
|
|
void CheckExpr(Expr *E) {
|
|
InitListExpr *InitList = dyn_cast<InitListExpr>(E);
|
|
if (!InitList) {
|
|
Visit(E);
|
|
return;
|
|
}
|
|
|
|
// Track and increment the index here.
|
|
isInitList = true;
|
|
InitFieldIndex.push_back(0);
|
|
for (auto Child : InitList->children()) {
|
|
CheckExpr(cast<Expr>(Child));
|
|
++InitFieldIndex.back();
|
|
}
|
|
InitFieldIndex.pop_back();
|
|
}
|
|
|
|
// Returns true if MemberExpr is checked and no further checking is needed.
|
|
// Returns false if additional checking is required.
|
|
bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
|
|
llvm::SmallVector<FieldDecl*, 4> Fields;
|
|
Expr *Base = E;
|
|
bool ReferenceField = false;
|
|
|
|
// Get the field members used.
|
|
while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
|
|
FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
if (!FD)
|
|
return false;
|
|
Fields.push_back(FD);
|
|
if (FD->getType()->isReferenceType())
|
|
ReferenceField = true;
|
|
Base = ME->getBase()->IgnoreParenImpCasts();
|
|
}
|
|
|
|
// Keep checking only if the base Decl is the same.
|
|
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
|
|
if (!DRE || DRE->getDecl() != OrigDecl)
|
|
return false;
|
|
|
|
// A reference field can be bound to an unininitialized field.
|
|
if (CheckReference && !ReferenceField)
|
|
return true;
|
|
|
|
// Convert FieldDecls to their index number.
|
|
llvm::SmallVector<unsigned, 4> UsedFieldIndex;
|
|
for (const FieldDecl *I : llvm::reverse(Fields))
|
|
UsedFieldIndex.push_back(I->getFieldIndex());
|
|
|
|
// See if a warning is needed by checking the first difference in index
|
|
// numbers. If field being used has index less than the field being
|
|
// initialized, then the use is safe.
|
|
for (auto UsedIter = UsedFieldIndex.begin(),
|
|
UsedEnd = UsedFieldIndex.end(),
|
|
OrigIter = InitFieldIndex.begin(),
|
|
OrigEnd = InitFieldIndex.end();
|
|
UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
|
|
if (*UsedIter < *OrigIter)
|
|
return true;
|
|
if (*UsedIter > *OrigIter)
|
|
break;
|
|
}
|
|
|
|
// TODO: Add a different warning which will print the field names.
|
|
HandleDeclRefExpr(DRE);
|
|
return true;
|
|
}
|
|
|
|
// For most expressions, the cast is directly above the DeclRefExpr.
|
|
// For conditional operators, the cast can be outside the conditional
|
|
// operator if both expressions are DeclRefExpr's.
|
|
void HandleValue(Expr *E) {
|
|
E = E->IgnoreParens();
|
|
if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
HandleDeclRefExpr(DRE);
|
|
return;
|
|
}
|
|
|
|
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
Visit(CO->getCond());
|
|
HandleValue(CO->getTrueExpr());
|
|
HandleValue(CO->getFalseExpr());
|
|
return;
|
|
}
|
|
|
|
if (BinaryConditionalOperator *BCO =
|
|
dyn_cast<BinaryConditionalOperator>(E)) {
|
|
Visit(BCO->getCond());
|
|
HandleValue(BCO->getFalseExpr());
|
|
return;
|
|
}
|
|
|
|
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
|
|
HandleValue(OVE->getSourceExpr());
|
|
return;
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
Visit(BO->getLHS());
|
|
HandleValue(BO->getRHS());
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (isa<MemberExpr>(E)) {
|
|
if (isInitList) {
|
|
if (CheckInitListMemberExpr(cast<MemberExpr>(E),
|
|
false /*CheckReference*/))
|
|
return;
|
|
}
|
|
|
|
Expr *Base = E->IgnoreParenImpCasts();
|
|
while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
|
|
// Check for static member variables and don't warn on them.
|
|
if (!isa<FieldDecl>(ME->getMemberDecl()))
|
|
return;
|
|
Base = ME->getBase()->IgnoreParenImpCasts();
|
|
}
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
|
|
HandleDeclRefExpr(DRE);
|
|
return;
|
|
}
|
|
|
|
Visit(E);
|
|
}
|
|
|
|
// Reference types not handled in HandleValue are handled here since all
|
|
// uses of references are bad, not just r-value uses.
|
|
void VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (isReferenceType)
|
|
HandleDeclRefExpr(E);
|
|
}
|
|
|
|
void VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
|
if (E->getCastKind() == CK_LValueToRValue) {
|
|
HandleValue(E->getSubExpr());
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitImplicitCastExpr(E);
|
|
}
|
|
|
|
void VisitMemberExpr(MemberExpr *E) {
|
|
if (isInitList) {
|
|
if (CheckInitListMemberExpr(E, true /*CheckReference*/))
|
|
return;
|
|
}
|
|
|
|
// Don't warn on arrays since they can be treated as pointers.
|
|
if (E->getType()->canDecayToPointerType()) return;
|
|
|
|
// Warn when a non-static method call is followed by non-static member
|
|
// field accesses, which is followed by a DeclRefExpr.
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
|
|
bool Warn = (MD && !MD->isStatic());
|
|
Expr *Base = E->getBase()->IgnoreParenImpCasts();
|
|
while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
|
|
if (!isa<FieldDecl>(ME->getMemberDecl()))
|
|
Warn = false;
|
|
Base = ME->getBase()->IgnoreParenImpCasts();
|
|
}
|
|
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
|
|
if (Warn)
|
|
HandleDeclRefExpr(DRE);
|
|
return;
|
|
}
|
|
|
|
// The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
|
|
// Visit that expression.
|
|
Visit(Base);
|
|
}
|
|
|
|
void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
|
|
Expr *Callee = E->getCallee();
|
|
|
|
if (isa<UnresolvedLookupExpr>(Callee))
|
|
return Inherited::VisitCXXOperatorCallExpr(E);
|
|
|
|
Visit(Callee);
|
|
for (auto Arg: E->arguments())
|
|
HandleValue(Arg->IgnoreParenImpCasts());
|
|
}
|
|
|
|
void VisitUnaryOperator(UnaryOperator *E) {
|
|
// For POD record types, addresses of its own members are well-defined.
|
|
if (E->getOpcode() == UO_AddrOf && isRecordType &&
|
|
isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
|
|
if (!isPODType)
|
|
HandleValue(E->getSubExpr());
|
|
return;
|
|
}
|
|
|
|
if (E->isIncrementDecrementOp()) {
|
|
HandleValue(E->getSubExpr());
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitUnaryOperator(E);
|
|
}
|
|
|
|
void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
|
|
|
|
void VisitCXXConstructExpr(CXXConstructExpr *E) {
|
|
if (E->getConstructor()->isCopyConstructor()) {
|
|
Expr *ArgExpr = E->getArg(0);
|
|
if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
|
|
if (ILE->getNumInits() == 1)
|
|
ArgExpr = ILE->getInit(0);
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
|
|
if (ICE->getCastKind() == CK_NoOp)
|
|
ArgExpr = ICE->getSubExpr();
|
|
HandleValue(ArgExpr);
|
|
return;
|
|
}
|
|
Inherited::VisitCXXConstructExpr(E);
|
|
}
|
|
|
|
void VisitCallExpr(CallExpr *E) {
|
|
// Treat std::move as a use.
|
|
if (E->isCallToStdMove()) {
|
|
HandleValue(E->getArg(0));
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitCallExpr(E);
|
|
}
|
|
|
|
void VisitBinaryOperator(BinaryOperator *E) {
|
|
if (E->isCompoundAssignmentOp()) {
|
|
HandleValue(E->getLHS());
|
|
Visit(E->getRHS());
|
|
return;
|
|
}
|
|
|
|
Inherited::VisitBinaryOperator(E);
|
|
}
|
|
|
|
// A custom visitor for BinaryConditionalOperator is needed because the
|
|
// regular visitor would check the condition and true expression separately
|
|
// but both point to the same place giving duplicate diagnostics.
|
|
void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
|
|
Visit(E->getCond());
|
|
Visit(E->getFalseExpr());
|
|
}
|
|
|
|
void HandleDeclRefExpr(DeclRefExpr *DRE) {
|
|
Decl* ReferenceDecl = DRE->getDecl();
|
|
if (OrigDecl != ReferenceDecl) return;
|
|
unsigned diag;
|
|
if (isReferenceType) {
|
|
diag = diag::warn_uninit_self_reference_in_reference_init;
|
|
} else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
|
|
diag = diag::warn_static_self_reference_in_init;
|
|
} else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
|
|
isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
|
|
DRE->getDecl()->getType()->isRecordType()) {
|
|
diag = diag::warn_uninit_self_reference_in_init;
|
|
} else {
|
|
// Local variables will be handled by the CFG analysis.
|
|
return;
|
|
}
|
|
|
|
S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
|
|
S.PDiag(diag)
|
|
<< DRE->getDecl() << OrigDecl->getLocation()
|
|
<< DRE->getSourceRange());
|
|
}
|
|
};
|
|
|
|
/// CheckSelfReference - Warns if OrigDecl is used in expression E.
|
|
static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
|
|
bool DirectInit) {
|
|
// Parameters arguments are occassionially constructed with itself,
|
|
// for instance, in recursive functions. Skip them.
|
|
if (isa<ParmVarDecl>(OrigDecl))
|
|
return;
|
|
|
|
E = E->IgnoreParens();
|
|
|
|
// Skip checking T a = a where T is not a record or reference type.
|
|
// Doing so is a way to silence uninitialized warnings.
|
|
if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
|
|
if (ICE->getCastKind() == CK_LValueToRValue)
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
|
|
if (DRE->getDecl() == OrigDecl)
|
|
return;
|
|
|
|
SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
|
|
}
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
// Simple wrapper to add the name of a variable or (if no variable is
|
|
// available) a DeclarationName into a diagnostic.
|
|
struct VarDeclOrName {
|
|
VarDecl *VDecl;
|
|
DeclarationName Name;
|
|
|
|
friend const Sema::SemaDiagnosticBuilder &
|
|
operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
|
|
return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
|
|
DeclarationName Name, QualType Type,
|
|
TypeSourceInfo *TSI,
|
|
SourceRange Range, bool DirectInit,
|
|
Expr *&Init) {
|
|
bool IsInitCapture = !VDecl;
|
|
assert((!VDecl || !VDecl->isInitCapture()) &&
|
|
"init captures are expected to be deduced prior to initialization");
|
|
|
|
VarDeclOrName VN{VDecl, Name};
|
|
|
|
DeducedType *Deduced = Type->getContainedDeducedType();
|
|
assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
|
|
|
|
// C++11 [dcl.spec.auto]p3
|
|
if (!Init) {
|
|
assert(VDecl && "no init for init capture deduction?");
|
|
|
|
// Except for class argument deduction, and then for an initializing
|
|
// declaration only, i.e. no static at class scope or extern.
|
|
if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
|
|
VDecl->hasExternalStorage() ||
|
|
VDecl->isStaticDataMember()) {
|
|
Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
|
|
<< VDecl->getDeclName() << Type;
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
ArrayRef<Expr*> DeduceInits;
|
|
if (Init)
|
|
DeduceInits = Init;
|
|
|
|
if (DirectInit) {
|
|
if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
|
|
DeduceInits = PL->exprs();
|
|
}
|
|
|
|
if (isa<DeducedTemplateSpecializationType>(Deduced)) {
|
|
assert(VDecl && "non-auto type for init capture deduction?");
|
|
InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
|
|
InitializationKind Kind = InitializationKind::CreateForInit(
|
|
VDecl->getLocation(), DirectInit, Init);
|
|
// FIXME: Initialization should not be taking a mutable list of inits.
|
|
SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
|
|
return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
|
|
InitsCopy);
|
|
}
|
|
|
|
if (DirectInit) {
|
|
if (auto *IL = dyn_cast<InitListExpr>(Init))
|
|
DeduceInits = IL->inits();
|
|
}
|
|
|
|
// Deduction only works if we have exactly one source expression.
|
|
if (DeduceInits.empty()) {
|
|
// It isn't possible to write this directly, but it is possible to
|
|
// end up in this situation with "auto x(some_pack...);"
|
|
Diag(Init->getBeginLoc(), IsInitCapture
|
|
? diag::err_init_capture_no_expression
|
|
: diag::err_auto_var_init_no_expression)
|
|
<< VN << Type << Range;
|
|
return QualType();
|
|
}
|
|
|
|
if (DeduceInits.size() > 1) {
|
|
Diag(DeduceInits[1]->getBeginLoc(),
|
|
IsInitCapture ? diag::err_init_capture_multiple_expressions
|
|
: diag::err_auto_var_init_multiple_expressions)
|
|
<< VN << Type << Range;
|
|
return QualType();
|
|
}
|
|
|
|
Expr *DeduceInit = DeduceInits[0];
|
|
if (DirectInit && isa<InitListExpr>(DeduceInit)) {
|
|
Diag(Init->getBeginLoc(), IsInitCapture
|
|
? diag::err_init_capture_paren_braces
|
|
: diag::err_auto_var_init_paren_braces)
|
|
<< isa<InitListExpr>(Init) << VN << Type << Range;
|
|
return QualType();
|
|
}
|
|
|
|
// Expressions default to 'id' when we're in a debugger.
|
|
bool DefaultedAnyToId = false;
|
|
if (getLangOpts().DebuggerCastResultToId &&
|
|
Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
|
|
ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
|
|
if (Result.isInvalid()) {
|
|
return QualType();
|
|
}
|
|
Init = Result.get();
|
|
DefaultedAnyToId = true;
|
|
}
|
|
|
|
// C++ [dcl.decomp]p1:
|
|
// If the assignment-expression [...] has array type A and no ref-qualifier
|
|
// is present, e has type cv A
|
|
if (VDecl && isa<DecompositionDecl>(VDecl) &&
|
|
Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
|
|
DeduceInit->getType()->isConstantArrayType())
|
|
return Context.getQualifiedType(DeduceInit->getType(),
|
|
Type.getQualifiers());
|
|
|
|
QualType DeducedType;
|
|
if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
|
|
if (!IsInitCapture)
|
|
DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
|
|
else if (isa<InitListExpr>(Init))
|
|
Diag(Range.getBegin(),
|
|
diag::err_init_capture_deduction_failure_from_init_list)
|
|
<< VN
|
|
<< (DeduceInit->getType().isNull() ? TSI->getType()
|
|
: DeduceInit->getType())
|
|
<< DeduceInit->getSourceRange();
|
|
else
|
|
Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
|
|
<< VN << TSI->getType()
|
|
<< (DeduceInit->getType().isNull() ? TSI->getType()
|
|
: DeduceInit->getType())
|
|
<< DeduceInit->getSourceRange();
|
|
} else
|
|
Init = DeduceInit;
|
|
|
|
// Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
|
|
// 'id' instead of a specific object type prevents most of our usual
|
|
// checks.
|
|
// We only want to warn outside of template instantiations, though:
|
|
// inside a template, the 'id' could have come from a parameter.
|
|
if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
|
|
!DeducedType.isNull() && DeducedType->isObjCIdType()) {
|
|
SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
|
|
Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
|
|
}
|
|
|
|
return DeducedType;
|
|
}
|
|
|
|
bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
|
|
Expr *&Init) {
|
|
QualType DeducedType = deduceVarTypeFromInitializer(
|
|
VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
|
|
VDecl->getSourceRange(), DirectInit, Init);
|
|
if (DeducedType.isNull()) {
|
|
VDecl->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
VDecl->setType(DeducedType);
|
|
assert(VDecl->isLinkageValid());
|
|
|
|
// In ARC, infer lifetime.
|
|
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
|
|
VDecl->setInvalidDecl();
|
|
|
|
// If this is a redeclaration, check that the type we just deduced matches
|
|
// the previously declared type.
|
|
if (VarDecl *Old = VDecl->getPreviousDecl()) {
|
|
// We never need to merge the type, because we cannot form an incomplete
|
|
// array of auto, nor deduce such a type.
|
|
MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
|
|
}
|
|
|
|
// Check the deduced type is valid for a variable declaration.
|
|
CheckVariableDeclarationType(VDecl);
|
|
return VDecl->isInvalidDecl();
|
|
}
|
|
|
|
/// AddInitializerToDecl - Adds the initializer Init to the
|
|
/// declaration dcl. If DirectInit is true, this is C++ direct
|
|
/// initialization rather than copy initialization.
|
|
void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
|
|
// If there is no declaration, there was an error parsing it. Just ignore
|
|
// the initializer.
|
|
if (!RealDecl || RealDecl->isInvalidDecl()) {
|
|
CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
|
|
return;
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
|
|
// Pure-specifiers are handled in ActOnPureSpecifier.
|
|
Diag(Method->getLocation(), diag::err_member_function_initialization)
|
|
<< Method->getDeclName() << Init->getSourceRange();
|
|
Method->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
|
|
if (!VDecl) {
|
|
assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
|
|
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
|
|
if (VDecl->getType()->isUndeducedType()) {
|
|
// Attempt typo correction early so that the type of the init expression can
|
|
// be deduced based on the chosen correction if the original init contains a
|
|
// TypoExpr.
|
|
ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
|
|
if (!Res.isUsable()) {
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
Init = Res.get();
|
|
|
|
if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
|
|
return;
|
|
}
|
|
|
|
// dllimport cannot be used on variable definitions.
|
|
if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
|
|
Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
|
|
// C99 6.7.8p5. C++ has no such restriction, but that is a defect.
|
|
Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
if (!VDecl->getType()->isDependentType()) {
|
|
// A definition must end up with a complete type, which means it must be
|
|
// complete with the restriction that an array type might be completed by
|
|
// the initializer; note that later code assumes this restriction.
|
|
QualType BaseDeclType = VDecl->getType();
|
|
if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
|
|
BaseDeclType = Array->getElementType();
|
|
if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// The variable can not have an abstract class type.
|
|
if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractVariableType))
|
|
VDecl->setInvalidDecl();
|
|
}
|
|
|
|
// If adding the initializer will turn this declaration into a definition,
|
|
// and we already have a definition for this variable, diagnose or otherwise
|
|
// handle the situation.
|
|
VarDecl *Def;
|
|
if ((Def = VDecl->getDefinition()) && Def != VDecl &&
|
|
(!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
|
|
!VDecl->isThisDeclarationADemotedDefinition() &&
|
|
checkVarDeclRedefinition(Def, VDecl))
|
|
return;
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++ [class.static.data]p4
|
|
// If a static data member is of const integral or const
|
|
// enumeration type, its declaration in the class definition can
|
|
// specify a constant-initializer which shall be an integral
|
|
// constant expression (5.19). In that case, the member can appear
|
|
// in integral constant expressions. The member shall still be
|
|
// defined in a namespace scope if it is used in the program and the
|
|
// namespace scope definition shall not contain an initializer.
|
|
//
|
|
// We already performed a redefinition check above, but for static
|
|
// data members we also need to check whether there was an in-class
|
|
// declaration with an initializer.
|
|
if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
|
|
Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
|
|
<< VDecl->getDeclName();
|
|
Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
|
|
diag::note_previous_initializer)
|
|
<< 0;
|
|
return;
|
|
}
|
|
|
|
if (VDecl->hasLocalStorage())
|
|
setFunctionHasBranchProtectedScope();
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
|
|
// a kernel function cannot be initialized."
|
|
if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
|
|
Diag(VDecl->getLocation(), diag::err_local_cant_init);
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Get the decls type and save a reference for later, since
|
|
// CheckInitializerTypes may change it.
|
|
QualType DclT = VDecl->getType(), SavT = DclT;
|
|
|
|
// Expressions default to 'id' when we're in a debugger
|
|
// and we are assigning it to a variable of Objective-C pointer type.
|
|
if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
|
|
Init->getType() == Context.UnknownAnyTy) {
|
|
ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
|
|
if (Result.isInvalid()) {
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
Init = Result.get();
|
|
}
|
|
|
|
// Perform the initialization.
|
|
ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
|
|
if (!VDecl->isInvalidDecl()) {
|
|
InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
|
|
InitializationKind Kind = InitializationKind::CreateForInit(
|
|
VDecl->getLocation(), DirectInit, Init);
|
|
|
|
MultiExprArg Args = Init;
|
|
if (CXXDirectInit)
|
|
Args = MultiExprArg(CXXDirectInit->getExprs(),
|
|
CXXDirectInit->getNumExprs());
|
|
|
|
// Try to correct any TypoExprs in the initialization arguments.
|
|
for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
|
|
ExprResult Res = CorrectDelayedTyposInExpr(
|
|
Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
|
|
InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
|
|
return Init.Failed() ? ExprError() : E;
|
|
});
|
|
if (Res.isInvalid()) {
|
|
VDecl->setInvalidDecl();
|
|
} else if (Res.get() != Args[Idx]) {
|
|
Args[Idx] = Res.get();
|
|
}
|
|
}
|
|
if (VDecl->isInvalidDecl())
|
|
return;
|
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind, Args,
|
|
/*TopLevelOfInitList=*/false,
|
|
/*TreatUnavailableAsInvalid=*/false);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
|
|
if (Result.isInvalid()) {
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
Init = Result.getAs<Expr>();
|
|
}
|
|
|
|
// Check for self-references within variable initializers.
|
|
// Variables declared within a function/method body (except for references)
|
|
// are handled by a dataflow analysis.
|
|
if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
|
|
VDecl->getType()->isReferenceType()) {
|
|
CheckSelfReference(*this, RealDecl, Init, DirectInit);
|
|
}
|
|
|
|
// If the type changed, it means we had an incomplete type that was
|
|
// completed by the initializer. For example:
|
|
// int ary[] = { 1, 3, 5 };
|
|
// "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
|
|
if (!VDecl->isInvalidDecl() && (DclT != SavT))
|
|
VDecl->setType(DclT);
|
|
|
|
if (!VDecl->isInvalidDecl()) {
|
|
checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
|
|
|
|
if (VDecl->hasAttr<BlocksAttr>())
|
|
checkRetainCycles(VDecl, Init);
|
|
|
|
// It is safe to assign a weak reference into a strong variable.
|
|
// Although this code can still have problems:
|
|
// id x = self.weakProp;
|
|
// id y = self.weakProp;
|
|
// we do not warn to warn spuriously when 'x' and 'y' are on separate
|
|
// paths through the function. This should be revisited if
|
|
// -Wrepeated-use-of-weak is made flow-sensitive.
|
|
if (FunctionScopeInfo *FSI = getCurFunction())
|
|
if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
|
|
VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
|
|
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
|
|
Init->getBeginLoc()))
|
|
FSI->markSafeWeakUse(Init);
|
|
}
|
|
|
|
// The initialization is usually a full-expression.
|
|
//
|
|
// FIXME: If this is a braced initialization of an aggregate, it is not
|
|
// an expression, and each individual field initializer is a separate
|
|
// full-expression. For instance, in:
|
|
//
|
|
// struct Temp { ~Temp(); };
|
|
// struct S { S(Temp); };
|
|
// struct T { S a, b; } t = { Temp(), Temp() }
|
|
//
|
|
// we should destroy the first Temp before constructing the second.
|
|
ExprResult Result =
|
|
ActOnFinishFullExpr(Init, VDecl->getLocation(),
|
|
/*DiscardedValue*/ false, VDecl->isConstexpr());
|
|
if (Result.isInvalid()) {
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
Init = Result.get();
|
|
|
|
// Attach the initializer to the decl.
|
|
VDecl->setInit(Init);
|
|
|
|
if (VDecl->isLocalVarDecl()) {
|
|
// Don't check the initializer if the declaration is malformed.
|
|
if (VDecl->isInvalidDecl()) {
|
|
// do nothing
|
|
|
|
// OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
|
|
// This is true even in OpenCL C++.
|
|
} else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
|
|
CheckForConstantInitializer(Init, DclT);
|
|
|
|
// Otherwise, C++ does not restrict the initializer.
|
|
} else if (getLangOpts().CPlusPlus) {
|
|
// do nothing
|
|
|
|
// C99 6.7.8p4: All the expressions in an initializer for an object that has
|
|
// static storage duration shall be constant expressions or string literals.
|
|
} else if (VDecl->getStorageClass() == SC_Static) {
|
|
CheckForConstantInitializer(Init, DclT);
|
|
|
|
// C89 is stricter than C99 for aggregate initializers.
|
|
// C89 6.5.7p3: All the expressions [...] in an initializer list
|
|
// for an object that has aggregate or union type shall be
|
|
// constant expressions.
|
|
} else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
|
|
isa<InitListExpr>(Init)) {
|
|
const Expr *Culprit;
|
|
if (!Init->isConstantInitializer(Context, false, &Culprit)) {
|
|
Diag(Culprit->getExprLoc(),
|
|
diag::ext_aggregate_init_not_constant)
|
|
<< Culprit->getSourceRange();
|
|
}
|
|
}
|
|
|
|
if (auto *E = dyn_cast<ExprWithCleanups>(Init))
|
|
if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
|
|
if (VDecl->hasLocalStorage())
|
|
BE->getBlockDecl()->setCanAvoidCopyToHeap();
|
|
} else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
|
|
VDecl->getLexicalDeclContext()->isRecord()) {
|
|
// This is an in-class initialization for a static data member, e.g.,
|
|
//
|
|
// struct S {
|
|
// static const int value = 17;
|
|
// };
|
|
|
|
// C++ [class.mem]p4:
|
|
// A member-declarator can contain a constant-initializer only
|
|
// if it declares a static member (9.4) of const integral or
|
|
// const enumeration type, see 9.4.2.
|
|
//
|
|
// C++11 [class.static.data]p3:
|
|
// If a non-volatile non-inline const static data member is of integral
|
|
// or enumeration type, its declaration in the class definition can
|
|
// specify a brace-or-equal-initializer in which every initializer-clause
|
|
// that is an assignment-expression is a constant expression. A static
|
|
// data member of literal type can be declared in the class definition
|
|
// with the constexpr specifier; if so, its declaration shall specify a
|
|
// brace-or-equal-initializer in which every initializer-clause that is
|
|
// an assignment-expression is a constant expression.
|
|
|
|
// Do nothing on dependent types.
|
|
if (DclT->isDependentType()) {
|
|
|
|
// Allow any 'static constexpr' members, whether or not they are of literal
|
|
// type. We separately check that every constexpr variable is of literal
|
|
// type.
|
|
} else if (VDecl->isConstexpr()) {
|
|
|
|
// Require constness.
|
|
} else if (!DclT.isConstQualified()) {
|
|
Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
|
|
<< Init->getSourceRange();
|
|
VDecl->setInvalidDecl();
|
|
|
|
// We allow integer constant expressions in all cases.
|
|
} else if (DclT->isIntegralOrEnumerationType()) {
|
|
// Check whether the expression is a constant expression.
|
|
SourceLocation Loc;
|
|
if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
|
|
// In C++11, a non-constexpr const static data member with an
|
|
// in-class initializer cannot be volatile.
|
|
Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
|
|
else if (Init->isValueDependent())
|
|
; // Nothing to check.
|
|
else if (Init->isIntegerConstantExpr(Context, &Loc))
|
|
; // Ok, it's an ICE!
|
|
else if (Init->getType()->isScopedEnumeralType() &&
|
|
Init->isCXX11ConstantExpr(Context))
|
|
; // Ok, it is a scoped-enum constant expression.
|
|
else if (Init->isEvaluatable(Context)) {
|
|
// If we can constant fold the initializer through heroics, accept it,
|
|
// but report this as a use of an extension for -pedantic.
|
|
Diag(Loc, diag::ext_in_class_initializer_non_constant)
|
|
<< Init->getSourceRange();
|
|
} else {
|
|
// Otherwise, this is some crazy unknown case. Report the issue at the
|
|
// location provided by the isIntegerConstantExpr failed check.
|
|
Diag(Loc, diag::err_in_class_initializer_non_constant)
|
|
<< Init->getSourceRange();
|
|
VDecl->setInvalidDecl();
|
|
}
|
|
|
|
// We allow foldable floating-point constants as an extension.
|
|
} else if (DclT->isFloatingType()) { // also permits complex, which is ok
|
|
// In C++98, this is a GNU extension. In C++11, it is not, but we support
|
|
// it anyway and provide a fixit to add the 'constexpr'.
|
|
if (getLangOpts().CPlusPlus11) {
|
|
Diag(VDecl->getLocation(),
|
|
diag::ext_in_class_initializer_float_type_cxx11)
|
|
<< DclT << Init->getSourceRange();
|
|
Diag(VDecl->getBeginLoc(),
|
|
diag::note_in_class_initializer_float_type_cxx11)
|
|
<< FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
|
|
} else {
|
|
Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
|
|
<< DclT << Init->getSourceRange();
|
|
|
|
if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
|
|
Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
|
|
<< Init->getSourceRange();
|
|
VDecl->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
// Suggest adding 'constexpr' in C++11 for literal types.
|
|
} else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
|
|
Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
|
|
<< DclT << Init->getSourceRange()
|
|
<< FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
|
|
VDecl->setConstexpr(true);
|
|
|
|
} else {
|
|
Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
|
|
<< DclT << Init->getSourceRange();
|
|
VDecl->setInvalidDecl();
|
|
}
|
|
} else if (VDecl->isFileVarDecl()) {
|
|
// In C, extern is typically used to avoid tentative definitions when
|
|
// declaring variables in headers, but adding an intializer makes it a
|
|
// definition. This is somewhat confusing, so GCC and Clang both warn on it.
|
|
// In C++, extern is often used to give implictly static const variables
|
|
// external linkage, so don't warn in that case. If selectany is present,
|
|
// this might be header code intended for C and C++ inclusion, so apply the
|
|
// C++ rules.
|
|
if (VDecl->getStorageClass() == SC_Extern &&
|
|
((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
|
|
!Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
|
|
!(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
|
|
!isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
|
|
Diag(VDecl->getLocation(), diag::warn_extern_init);
|
|
|
|
// In Microsoft C++ mode, a const variable defined in namespace scope has
|
|
// external linkage by default if the variable is declared with
|
|
// __declspec(dllexport).
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
|
|
VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
|
|
VDecl->setStorageClass(SC_Extern);
|
|
|
|
// C99 6.7.8p4. All file scoped initializers need to be constant.
|
|
if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
|
|
CheckForConstantInitializer(Init, DclT);
|
|
}
|
|
|
|
// We will represent direct-initialization similarly to copy-initialization:
|
|
// int x(1); -as-> int x = 1;
|
|
// ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
|
|
//
|
|
// Clients that want to distinguish between the two forms, can check for
|
|
// direct initializer using VarDecl::getInitStyle().
|
|
// A major benefit is that clients that don't particularly care about which
|
|
// exactly form was it (like the CodeGen) can handle both cases without
|
|
// special case code.
|
|
|
|
// C++ 8.5p11:
|
|
// The form of initialization (using parentheses or '=') is generally
|
|
// insignificant, but does matter when the entity being initialized has a
|
|
// class type.
|
|
if (CXXDirectInit) {
|
|
assert(DirectInit && "Call-style initializer must be direct init.");
|
|
VDecl->setInitStyle(VarDecl::CallInit);
|
|
} else if (DirectInit) {
|
|
// This must be list-initialization. No other way is direct-initialization.
|
|
VDecl->setInitStyle(VarDecl::ListInit);
|
|
}
|
|
|
|
CheckCompleteVariableDeclaration(VDecl);
|
|
}
|
|
|
|
/// ActOnInitializerError - Given that there was an error parsing an
|
|
/// initializer for the given declaration, try to return to some form
|
|
/// of sanity.
|
|
void Sema::ActOnInitializerError(Decl *D) {
|
|
// Our main concern here is re-establishing invariants like "a
|
|
// variable's type is either dependent or complete".
|
|
if (!D || D->isInvalidDecl()) return;
|
|
|
|
VarDecl *VD = dyn_cast<VarDecl>(D);
|
|
if (!VD) return;
|
|
|
|
// Bindings are not usable if we can't make sense of the initializer.
|
|
if (auto *DD = dyn_cast<DecompositionDecl>(D))
|
|
for (auto *BD : DD->bindings())
|
|
BD->setInvalidDecl();
|
|
|
|
// Auto types are meaningless if we can't make sense of the initializer.
|
|
if (ParsingInitForAutoVars.count(D)) {
|
|
D->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
QualType Ty = VD->getType();
|
|
if (Ty->isDependentType()) return;
|
|
|
|
// Require a complete type.
|
|
if (RequireCompleteType(VD->getLocation(),
|
|
Context.getBaseElementType(Ty),
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
VD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Require a non-abstract type.
|
|
if (RequireNonAbstractType(VD->getLocation(), Ty,
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractVariableType)) {
|
|
VD->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Don't bother complaining about constructors or destructors,
|
|
// though.
|
|
}
|
|
|
|
void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
|
|
// If there is no declaration, there was an error parsing it. Just ignore it.
|
|
if (!RealDecl)
|
|
return;
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
|
|
QualType Type = Var->getType();
|
|
|
|
// C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
|
|
if (isa<DecompositionDecl>(RealDecl)) {
|
|
Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
Expr *TmpInit = nullptr;
|
|
if (Type->isUndeducedType() &&
|
|
DeduceVariableDeclarationType(Var, false, TmpInit))
|
|
return;
|
|
|
|
// C++11 [class.static.data]p3: A static data member can be declared with
|
|
// the constexpr specifier; if so, its declaration shall specify
|
|
// a brace-or-equal-initializer.
|
|
// C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
|
|
// the definition of a variable [...] or the declaration of a static data
|
|
// member.
|
|
if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
|
|
!Var->isThisDeclarationADemotedDefinition()) {
|
|
if (Var->isStaticDataMember()) {
|
|
// C++1z removes the relevant rule; the in-class declaration is always
|
|
// a definition there.
|
|
if (!getLangOpts().CPlusPlus17) {
|
|
Diag(Var->getLocation(),
|
|
diag::err_constexpr_static_mem_var_requires_init)
|
|
<< Var->getDeclName();
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
} else {
|
|
Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// OpenCL v1.1 s6.5.3: variables declared in the constant address space must
|
|
// be initialized.
|
|
if (!Var->isInvalidDecl() &&
|
|
Var->getType().getAddressSpace() == LangAS::opencl_constant &&
|
|
Var->getStorageClass() != SC_Extern && !Var->getInit()) {
|
|
Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
switch (Var->isThisDeclarationADefinition()) {
|
|
case VarDecl::Definition:
|
|
if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
|
|
break;
|
|
|
|
// We have an out-of-line definition of a static data member
|
|
// that has an in-class initializer, so we type-check this like
|
|
// a declaration.
|
|
//
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case VarDecl::DeclarationOnly:
|
|
// It's only a declaration.
|
|
|
|
// Block scope. C99 6.7p7: If an identifier for an object is
|
|
// declared with no linkage (C99 6.2.2p6), the type for the
|
|
// object shall be complete.
|
|
if (!Type->isDependentType() && Var->isLocalVarDecl() &&
|
|
!Var->hasLinkage() && !Var->isInvalidDecl() &&
|
|
RequireCompleteType(Var->getLocation(), Type,
|
|
diag::err_typecheck_decl_incomplete_type))
|
|
Var->setInvalidDecl();
|
|
|
|
// Make sure that the type is not abstract.
|
|
if (!Type->isDependentType() && !Var->isInvalidDecl() &&
|
|
RequireNonAbstractType(Var->getLocation(), Type,
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractVariableType))
|
|
Var->setInvalidDecl();
|
|
if (!Type->isDependentType() && !Var->isInvalidDecl() &&
|
|
Var->getStorageClass() == SC_PrivateExtern) {
|
|
Diag(Var->getLocation(), diag::warn_private_extern);
|
|
Diag(Var->getLocation(), diag::note_private_extern);
|
|
}
|
|
|
|
return;
|
|
|
|
case VarDecl::TentativeDefinition:
|
|
// File scope. C99 6.9.2p2: A declaration of an identifier for an
|
|
// object that has file scope without an initializer, and without a
|
|
// storage-class specifier or with the storage-class specifier "static",
|
|
// constitutes a tentative definition. Note: A tentative definition with
|
|
// external linkage is valid (C99 6.2.2p5).
|
|
if (!Var->isInvalidDecl()) {
|
|
if (const IncompleteArrayType *ArrayT
|
|
= Context.getAsIncompleteArrayType(Type)) {
|
|
if (RequireCompleteType(Var->getLocation(),
|
|
ArrayT->getElementType(),
|
|
diag::err_illegal_decl_array_incomplete_type))
|
|
Var->setInvalidDecl();
|
|
} else if (Var->getStorageClass() == SC_Static) {
|
|
// C99 6.9.2p3: If the declaration of an identifier for an object is
|
|
// a tentative definition and has internal linkage (C99 6.2.2p3), the
|
|
// declared type shall not be an incomplete type.
|
|
// NOTE: code such as the following
|
|
// static struct s;
|
|
// struct s { int a; };
|
|
// is accepted by gcc. Hence here we issue a warning instead of
|
|
// an error and we do not invalidate the static declaration.
|
|
// NOTE: to avoid multiple warnings, only check the first declaration.
|
|
if (Var->isFirstDecl())
|
|
RequireCompleteType(Var->getLocation(), Type,
|
|
diag::ext_typecheck_decl_incomplete_type);
|
|
}
|
|
}
|
|
|
|
// Record the tentative definition; we're done.
|
|
if (!Var->isInvalidDecl())
|
|
TentativeDefinitions.push_back(Var);
|
|
return;
|
|
}
|
|
|
|
// Provide a specific diagnostic for uninitialized variable
|
|
// definitions with incomplete array type.
|
|
if (Type->isIncompleteArrayType()) {
|
|
Diag(Var->getLocation(),
|
|
diag::err_typecheck_incomplete_array_needs_initializer);
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Provide a specific diagnostic for uninitialized variable
|
|
// definitions with reference type.
|
|
if (Type->isReferenceType()) {
|
|
Diag(Var->getLocation(), diag::err_reference_var_requires_init)
|
|
<< Var->getDeclName()
|
|
<< SourceRange(Var->getLocation(), Var->getLocation());
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Do not attempt to type-check the default initializer for a
|
|
// variable with dependent type.
|
|
if (Type->isDependentType())
|
|
return;
|
|
|
|
if (Var->isInvalidDecl())
|
|
return;
|
|
|
|
if (!Var->hasAttr<AliasAttr>()) {
|
|
if (RequireCompleteType(Var->getLocation(),
|
|
Context.getBaseElementType(Type),
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
// The variable can not have an abstract class type.
|
|
if (RequireNonAbstractType(Var->getLocation(), Type,
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractVariableType)) {
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Check for jumps past the implicit initializer. C++0x
|
|
// clarifies that this applies to a "variable with automatic
|
|
// storage duration", not a "local variable".
|
|
// C++11 [stmt.dcl]p3
|
|
// A program that jumps from a point where a variable with automatic
|
|
// storage duration is not in scope to a point where it is in scope is
|
|
// ill-formed unless the variable has scalar type, class type with a
|
|
// trivial default constructor and a trivial destructor, a cv-qualified
|
|
// version of one of these types, or an array of one of the preceding
|
|
// types and is declared without an initializer.
|
|
if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
|
|
if (const RecordType *Record
|
|
= Context.getBaseElementType(Type)->getAs<RecordType>()) {
|
|
CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
|
|
// Mark the function (if we're in one) for further checking even if the
|
|
// looser rules of C++11 do not require such checks, so that we can
|
|
// diagnose incompatibilities with C++98.
|
|
if (!CXXRecord->isPOD())
|
|
setFunctionHasBranchProtectedScope();
|
|
}
|
|
}
|
|
// In OpenCL, we can't initialize objects in the __local address space,
|
|
// even implicitly, so don't synthesize an implicit initializer.
|
|
if (getLangOpts().OpenCL &&
|
|
Var->getType().getAddressSpace() == LangAS::opencl_local)
|
|
return;
|
|
// C++03 [dcl.init]p9:
|
|
// If no initializer is specified for an object, and the
|
|
// object is of (possibly cv-qualified) non-POD class type (or
|
|
// array thereof), the object shall be default-initialized; if
|
|
// the object is of const-qualified type, the underlying class
|
|
// type shall have a user-declared default
|
|
// constructor. Otherwise, if no initializer is specified for
|
|
// a non- static object, the object and its subobjects, if
|
|
// any, have an indeterminate initial value); if the object
|
|
// or any of its subobjects are of const-qualified type, the
|
|
// program is ill-formed.
|
|
// C++0x [dcl.init]p11:
|
|
// If no initializer is specified for an object, the object is
|
|
// default-initialized; [...].
|
|
InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
|
|
InitializationKind Kind
|
|
= InitializationKind::CreateDefault(Var->getLocation());
|
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind, None);
|
|
ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
|
|
if (Init.isInvalid())
|
|
Var->setInvalidDecl();
|
|
else if (Init.get()) {
|
|
Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
|
|
// This is important for template substitution.
|
|
Var->setInitStyle(VarDecl::CallInit);
|
|
}
|
|
|
|
CheckCompleteVariableDeclaration(Var);
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnCXXForRangeDecl(Decl *D) {
|
|
// If there is no declaration, there was an error parsing it. Ignore it.
|
|
if (!D)
|
|
return;
|
|
|
|
VarDecl *VD = dyn_cast<VarDecl>(D);
|
|
if (!VD) {
|
|
Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
|
|
D->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
VD->setCXXForRangeDecl(true);
|
|
|
|
// for-range-declaration cannot be given a storage class specifier.
|
|
int Error = -1;
|
|
switch (VD->getStorageClass()) {
|
|
case SC_None:
|
|
break;
|
|
case SC_Extern:
|
|
Error = 0;
|
|
break;
|
|
case SC_Static:
|
|
Error = 1;
|
|
break;
|
|
case SC_PrivateExtern:
|
|
Error = 2;
|
|
break;
|
|
case SC_Auto:
|
|
Error = 3;
|
|
break;
|
|
case SC_Register:
|
|
Error = 4;
|
|
break;
|
|
}
|
|
if (Error != -1) {
|
|
Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
|
|
<< VD->getDeclName() << Error;
|
|
D->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident,
|
|
ParsedAttributes &Attrs,
|
|
SourceLocation AttrEnd) {
|
|
// C++1y [stmt.iter]p1:
|
|
// A range-based for statement of the form
|
|
// for ( for-range-identifier : for-range-initializer ) statement
|
|
// is equivalent to
|
|
// for ( auto&& for-range-identifier : for-range-initializer ) statement
|
|
DeclSpec DS(Attrs.getPool().getFactory());
|
|
|
|
const char *PrevSpec;
|
|
unsigned DiagID;
|
|
DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
|
|
getPrintingPolicy());
|
|
|
|
Declarator D(DS, DeclaratorContext::ForContext);
|
|
D.SetIdentifier(Ident, IdentLoc);
|
|
D.takeAttributes(Attrs, AttrEnd);
|
|
|
|
D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
|
|
IdentLoc);
|
|
Decl *Var = ActOnDeclarator(S, D);
|
|
cast<VarDecl>(Var)->setCXXForRangeDecl(true);
|
|
FinalizeDeclaration(Var);
|
|
return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
|
|
AttrEnd.isValid() ? AttrEnd : IdentLoc);
|
|
}
|
|
|
|
void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
|
|
if (var->isInvalidDecl()) return;
|
|
|
|
if (getLangOpts().OpenCL) {
|
|
// OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
|
|
// initialiser
|
|
if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
|
|
!var->hasInit()) {
|
|
Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
|
|
<< 1 /*Init*/;
|
|
var->setInvalidDecl();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// In Objective-C, don't allow jumps past the implicit initialization of a
|
|
// local retaining variable.
|
|
if (getLangOpts().ObjC &&
|
|
var->hasLocalStorage()) {
|
|
switch (var->getType().getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Strong:
|
|
setFunctionHasBranchProtectedScope();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (var->hasLocalStorage() &&
|
|
var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
|
|
setFunctionHasBranchProtectedScope();
|
|
|
|
// Warn about externally-visible variables being defined without a
|
|
// prior declaration. We only want to do this for global
|
|
// declarations, but we also specifically need to avoid doing it for
|
|
// class members because the linkage of an anonymous class can
|
|
// change if it's later given a typedef name.
|
|
if (var->isThisDeclarationADefinition() &&
|
|
var->getDeclContext()->getRedeclContext()->isFileContext() &&
|
|
var->isExternallyVisible() && var->hasLinkage() &&
|
|
!var->isInline() && !var->getDescribedVarTemplate() &&
|
|
!isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
|
|
!getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
|
|
var->getLocation())) {
|
|
// Find a previous declaration that's not a definition.
|
|
VarDecl *prev = var->getPreviousDecl();
|
|
while (prev && prev->isThisDeclarationADefinition())
|
|
prev = prev->getPreviousDecl();
|
|
|
|
if (!prev)
|
|
Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
|
|
}
|
|
|
|
// Cache the result of checking for constant initialization.
|
|
Optional<bool> CacheHasConstInit;
|
|
const Expr *CacheCulprit;
|
|
auto checkConstInit = [&]() mutable {
|
|
if (!CacheHasConstInit)
|
|
CacheHasConstInit = var->getInit()->isConstantInitializer(
|
|
Context, var->getType()->isReferenceType(), &CacheCulprit);
|
|
return *CacheHasConstInit;
|
|
};
|
|
|
|
if (var->getTLSKind() == VarDecl::TLS_Static) {
|
|
if (var->getType().isDestructedType()) {
|
|
// GNU C++98 edits for __thread, [basic.start.term]p3:
|
|
// The type of an object with thread storage duration shall not
|
|
// have a non-trivial destructor.
|
|
Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
|
|
if (getLangOpts().CPlusPlus11)
|
|
Diag(var->getLocation(), diag::note_use_thread_local);
|
|
} else if (getLangOpts().CPlusPlus && var->hasInit()) {
|
|
if (!checkConstInit()) {
|
|
// GNU C++98 edits for __thread, [basic.start.init]p4:
|
|
// An object of thread storage duration shall not require dynamic
|
|
// initialization.
|
|
// FIXME: Need strict checking here.
|
|
Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
|
|
<< CacheCulprit->getSourceRange();
|
|
if (getLangOpts().CPlusPlus11)
|
|
Diag(var->getLocation(), diag::note_use_thread_local);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply section attributes and pragmas to global variables.
|
|
bool GlobalStorage = var->hasGlobalStorage();
|
|
if (GlobalStorage && var->isThisDeclarationADefinition() &&
|
|
!inTemplateInstantiation()) {
|
|
PragmaStack<StringLiteral *> *Stack = nullptr;
|
|
int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
|
|
if (var->getType().isConstQualified())
|
|
Stack = &ConstSegStack;
|
|
else if (!var->getInit()) {
|
|
Stack = &BSSSegStack;
|
|
SectionFlags |= ASTContext::PSF_Write;
|
|
} else {
|
|
Stack = &DataSegStack;
|
|
SectionFlags |= ASTContext::PSF_Write;
|
|
}
|
|
if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
|
|
var->addAttr(SectionAttr::CreateImplicit(
|
|
Context, SectionAttr::Declspec_allocate,
|
|
Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
|
|
}
|
|
if (const SectionAttr *SA = var->getAttr<SectionAttr>())
|
|
if (UnifySection(SA->getName(), SectionFlags, var))
|
|
var->dropAttr<SectionAttr>();
|
|
|
|
// Apply the init_seg attribute if this has an initializer. If the
|
|
// initializer turns out to not be dynamic, we'll end up ignoring this
|
|
// attribute.
|
|
if (CurInitSeg && var->getInit())
|
|
var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
|
|
CurInitSegLoc));
|
|
}
|
|
|
|
// All the following checks are C++ only.
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// If this variable must be emitted, add it as an initializer for the
|
|
// current module.
|
|
if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
|
|
Context.addModuleInitializer(ModuleScopes.back().Module, var);
|
|
return;
|
|
}
|
|
|
|
if (auto *DD = dyn_cast<DecompositionDecl>(var))
|
|
CheckCompleteDecompositionDeclaration(DD);
|
|
|
|
QualType type = var->getType();
|
|
if (type->isDependentType()) return;
|
|
|
|
if (var->hasAttr<BlocksAttr>())
|
|
getCurFunction()->addByrefBlockVar(var);
|
|
|
|
Expr *Init = var->getInit();
|
|
bool IsGlobal = GlobalStorage && !var->isStaticLocal();
|
|
QualType baseType = Context.getBaseElementType(type);
|
|
|
|
if (Init && !Init->isValueDependent()) {
|
|
if (var->isConstexpr()) {
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
if (!var->evaluateValue(Notes) || !var->isInitICE()) {
|
|
SourceLocation DiagLoc = var->getLocation();
|
|
// If the note doesn't add any useful information other than a source
|
|
// location, fold it into the primary diagnostic.
|
|
if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
|
|
diag::note_invalid_subexpr_in_const_expr) {
|
|
DiagLoc = Notes[0].first;
|
|
Notes.clear();
|
|
}
|
|
Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
|
|
<< var << Init->getSourceRange();
|
|
for (unsigned I = 0, N = Notes.size(); I != N; ++I)
|
|
Diag(Notes[I].first, Notes[I].second);
|
|
}
|
|
} else if (var->isUsableInConstantExpressions(Context)) {
|
|
// Check whether the initializer of a const variable of integral or
|
|
// enumeration type is an ICE now, since we can't tell whether it was
|
|
// initialized by a constant expression if we check later.
|
|
var->checkInitIsICE();
|
|
}
|
|
|
|
// Don't emit further diagnostics about constexpr globals since they
|
|
// were just diagnosed.
|
|
if (!var->isConstexpr() && GlobalStorage &&
|
|
var->hasAttr<RequireConstantInitAttr>()) {
|
|
// FIXME: Need strict checking in C++03 here.
|
|
bool DiagErr = getLangOpts().CPlusPlus11
|
|
? !var->checkInitIsICE() : !checkConstInit();
|
|
if (DiagErr) {
|
|
auto attr = var->getAttr<RequireConstantInitAttr>();
|
|
Diag(var->getLocation(), diag::err_require_constant_init_failed)
|
|
<< Init->getSourceRange();
|
|
Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
|
|
<< attr->getRange();
|
|
if (getLangOpts().CPlusPlus11) {
|
|
APValue Value;
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
|
|
for (auto &it : Notes)
|
|
Diag(it.first, it.second);
|
|
} else {
|
|
Diag(CacheCulprit->getExprLoc(),
|
|
diag::note_invalid_subexpr_in_const_expr)
|
|
<< CacheCulprit->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
else if (!var->isConstexpr() && IsGlobal &&
|
|
!getDiagnostics().isIgnored(diag::warn_global_constructor,
|
|
var->getLocation())) {
|
|
// Warn about globals which don't have a constant initializer. Don't
|
|
// warn about globals with a non-trivial destructor because we already
|
|
// warned about them.
|
|
CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
|
|
if (!(RD && !RD->hasTrivialDestructor())) {
|
|
if (!checkConstInit())
|
|
Diag(var->getLocation(), diag::warn_global_constructor)
|
|
<< Init->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Require the destructor.
|
|
if (const RecordType *recordType = baseType->getAs<RecordType>())
|
|
FinalizeVarWithDestructor(var, recordType);
|
|
|
|
// If this variable must be emitted, add it as an initializer for the current
|
|
// module.
|
|
if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
|
|
Context.addModuleInitializer(ModuleScopes.back().Module, var);
|
|
}
|
|
|
|
/// Determines if a variable's alignment is dependent.
|
|
static bool hasDependentAlignment(VarDecl *VD) {
|
|
if (VD->getType()->isDependentType())
|
|
return true;
|
|
for (auto *I : VD->specific_attrs<AlignedAttr>())
|
|
if (I->isAlignmentDependent())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Check if VD needs to be dllexport/dllimport due to being in a
|
|
/// dllexport/import function.
|
|
void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
|
|
assert(VD->isStaticLocal());
|
|
|
|
auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
|
|
|
|
// Find outermost function when VD is in lambda function.
|
|
while (FD && !getDLLAttr(FD) &&
|
|
!FD->hasAttr<DLLExportStaticLocalAttr>() &&
|
|
!FD->hasAttr<DLLImportStaticLocalAttr>()) {
|
|
FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
|
|
}
|
|
|
|
if (!FD)
|
|
return;
|
|
|
|
// Static locals inherit dll attributes from their function.
|
|
if (Attr *A = getDLLAttr(FD)) {
|
|
auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
|
|
NewAttr->setInherited(true);
|
|
VD->addAttr(NewAttr);
|
|
} else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
|
|
auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
|
|
getASTContext(),
|
|
A->getSpellingListIndex());
|
|
NewAttr->setInherited(true);
|
|
VD->addAttr(NewAttr);
|
|
|
|
// Export this function to enforce exporting this static variable even
|
|
// if it is not used in this compilation unit.
|
|
if (!FD->hasAttr<DLLExportAttr>())
|
|
FD->addAttr(NewAttr);
|
|
|
|
} else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
|
|
auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
|
|
getASTContext(),
|
|
A->getSpellingListIndex());
|
|
NewAttr->setInherited(true);
|
|
VD->addAttr(NewAttr);
|
|
}
|
|
}
|
|
|
|
/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
|
|
/// any semantic actions necessary after any initializer has been attached.
|
|
void Sema::FinalizeDeclaration(Decl *ThisDecl) {
|
|
// Note that we are no longer parsing the initializer for this declaration.
|
|
ParsingInitForAutoVars.erase(ThisDecl);
|
|
|
|
VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
|
|
if (!VD)
|
|
return;
|
|
|
|
// Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
|
|
if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
|
|
!inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
|
|
if (PragmaClangBSSSection.Valid)
|
|
VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
|
|
PragmaClangBSSSection.SectionName,
|
|
PragmaClangBSSSection.PragmaLocation));
|
|
if (PragmaClangDataSection.Valid)
|
|
VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
|
|
PragmaClangDataSection.SectionName,
|
|
PragmaClangDataSection.PragmaLocation));
|
|
if (PragmaClangRodataSection.Valid)
|
|
VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
|
|
PragmaClangRodataSection.SectionName,
|
|
PragmaClangRodataSection.PragmaLocation));
|
|
}
|
|
|
|
if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
|
|
for (auto *BD : DD->bindings()) {
|
|
FinalizeDeclaration(BD);
|
|
}
|
|
}
|
|
|
|
checkAttributesAfterMerging(*this, *VD);
|
|
|
|
// Perform TLS alignment check here after attributes attached to the variable
|
|
// which may affect the alignment have been processed. Only perform the check
|
|
// if the target has a maximum TLS alignment (zero means no constraints).
|
|
if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
|
|
// Protect the check so that it's not performed on dependent types and
|
|
// dependent alignments (we can't determine the alignment in that case).
|
|
if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
|
|
!VD->isInvalidDecl()) {
|
|
CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
|
|
if (Context.getDeclAlign(VD) > MaxAlignChars) {
|
|
Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
|
|
<< (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
|
|
<< (unsigned)MaxAlignChars.getQuantity();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (VD->isStaticLocal()) {
|
|
CheckStaticLocalForDllExport(VD);
|
|
|
|
if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
|
|
// CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
|
|
// function, only __shared__ variables or variables without any device
|
|
// memory qualifiers may be declared with static storage class.
|
|
// Note: It is unclear how a function-scope non-const static variable
|
|
// without device memory qualifier is implemented, therefore only static
|
|
// const variable without device memory qualifier is allowed.
|
|
[&]() {
|
|
if (!getLangOpts().CUDA)
|
|
return;
|
|
if (VD->hasAttr<CUDASharedAttr>())
|
|
return;
|
|
if (VD->getType().isConstQualified() &&
|
|
!(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
|
|
return;
|
|
if (CUDADiagIfDeviceCode(VD->getLocation(),
|
|
diag::err_device_static_local_var)
|
|
<< CurrentCUDATarget())
|
|
VD->setInvalidDecl();
|
|
}();
|
|
}
|
|
}
|
|
|
|
// Perform check for initializers of device-side global variables.
|
|
// CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
|
|
// 7.5). We must also apply the same checks to all __shared__
|
|
// variables whether they are local or not. CUDA also allows
|
|
// constant initializers for __constant__ and __device__ variables.
|
|
if (getLangOpts().CUDA)
|
|
checkAllowedCUDAInitializer(VD);
|
|
|
|
// Grab the dllimport or dllexport attribute off of the VarDecl.
|
|
const InheritableAttr *DLLAttr = getDLLAttr(VD);
|
|
|
|
// Imported static data members cannot be defined out-of-line.
|
|
if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
|
|
if (VD->isStaticDataMember() && VD->isOutOfLine() &&
|
|
VD->isThisDeclarationADefinition()) {
|
|
// We allow definitions of dllimport class template static data members
|
|
// with a warning.
|
|
CXXRecordDecl *Context =
|
|
cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
|
|
bool IsClassTemplateMember =
|
|
isa<ClassTemplatePartialSpecializationDecl>(Context) ||
|
|
Context->getDescribedClassTemplate();
|
|
|
|
Diag(VD->getLocation(),
|
|
IsClassTemplateMember
|
|
? diag::warn_attribute_dllimport_static_field_definition
|
|
: diag::err_attribute_dllimport_static_field_definition);
|
|
Diag(IA->getLocation(), diag::note_attribute);
|
|
if (!IsClassTemplateMember)
|
|
VD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
// dllimport/dllexport variables cannot be thread local, their TLS index
|
|
// isn't exported with the variable.
|
|
if (DLLAttr && VD->getTLSKind()) {
|
|
auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
|
|
if (F && getDLLAttr(F)) {
|
|
assert(VD->isStaticLocal());
|
|
// But if this is a static local in a dlimport/dllexport function, the
|
|
// function will never be inlined, which means the var would never be
|
|
// imported, so having it marked import/export is safe.
|
|
} else {
|
|
Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
|
|
<< DLLAttr;
|
|
VD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
|
|
if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
|
|
Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
|
|
VD->dropAttr<UsedAttr>();
|
|
}
|
|
}
|
|
|
|
const DeclContext *DC = VD->getDeclContext();
|
|
// If there's a #pragma GCC visibility in scope, and this isn't a class
|
|
// member, set the visibility of this variable.
|
|
if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
|
|
AddPushedVisibilityAttribute(VD);
|
|
|
|
// FIXME: Warn on unused var template partial specializations.
|
|
if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
|
|
MarkUnusedFileScopedDecl(VD);
|
|
|
|
// Now we have parsed the initializer and can update the table of magic
|
|
// tag values.
|
|
if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
|
|
!VD->getType()->isIntegralOrEnumerationType())
|
|
return;
|
|
|
|
for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
|
|
const Expr *MagicValueExpr = VD->getInit();
|
|
if (!MagicValueExpr) {
|
|
continue;
|
|
}
|
|
llvm::APSInt MagicValueInt;
|
|
if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
|
|
Diag(I->getRange().getBegin(),
|
|
diag::err_type_tag_for_datatype_not_ice)
|
|
<< LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
|
|
continue;
|
|
}
|
|
if (MagicValueInt.getActiveBits() > 64) {
|
|
Diag(I->getRange().getBegin(),
|
|
diag::err_type_tag_for_datatype_too_large)
|
|
<< LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
|
|
continue;
|
|
}
|
|
uint64_t MagicValue = MagicValueInt.getZExtValue();
|
|
RegisterTypeTagForDatatype(I->getArgumentKind(),
|
|
MagicValue,
|
|
I->getMatchingCType(),
|
|
I->getLayoutCompatible(),
|
|
I->getMustBeNull());
|
|
}
|
|
}
|
|
|
|
static bool hasDeducedAuto(DeclaratorDecl *DD) {
|
|
auto *VD = dyn_cast<VarDecl>(DD);
|
|
return VD && !VD->getType()->hasAutoForTrailingReturnType();
|
|
}
|
|
|
|
Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
|
|
ArrayRef<Decl *> Group) {
|
|
SmallVector<Decl*, 8> Decls;
|
|
|
|
if (DS.isTypeSpecOwned())
|
|
Decls.push_back(DS.getRepAsDecl());
|
|
|
|
DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
|
|
DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
|
|
bool DiagnosedMultipleDecomps = false;
|
|
DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
|
|
bool DiagnosedNonDeducedAuto = false;
|
|
|
|
for (unsigned i = 0, e = Group.size(); i != e; ++i) {
|
|
if (Decl *D = Group[i]) {
|
|
// For declarators, there are some additional syntactic-ish checks we need
|
|
// to perform.
|
|
if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
|
|
if (!FirstDeclaratorInGroup)
|
|
FirstDeclaratorInGroup = DD;
|
|
if (!FirstDecompDeclaratorInGroup)
|
|
FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
|
|
if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
|
|
!hasDeducedAuto(DD))
|
|
FirstNonDeducedAutoInGroup = DD;
|
|
|
|
if (FirstDeclaratorInGroup != DD) {
|
|
// A decomposition declaration cannot be combined with any other
|
|
// declaration in the same group.
|
|
if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
|
|
Diag(FirstDecompDeclaratorInGroup->getLocation(),
|
|
diag::err_decomp_decl_not_alone)
|
|
<< FirstDeclaratorInGroup->getSourceRange()
|
|
<< DD->getSourceRange();
|
|
DiagnosedMultipleDecomps = true;
|
|
}
|
|
|
|
// A declarator that uses 'auto' in any way other than to declare a
|
|
// variable with a deduced type cannot be combined with any other
|
|
// declarator in the same group.
|
|
if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
|
|
Diag(FirstNonDeducedAutoInGroup->getLocation(),
|
|
diag::err_auto_non_deduced_not_alone)
|
|
<< FirstNonDeducedAutoInGroup->getType()
|
|
->hasAutoForTrailingReturnType()
|
|
<< FirstDeclaratorInGroup->getSourceRange()
|
|
<< DD->getSourceRange();
|
|
DiagnosedNonDeducedAuto = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Decls.push_back(D);
|
|
}
|
|
}
|
|
|
|
if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
|
|
if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
|
|
handleTagNumbering(Tag, S);
|
|
if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
|
|
getLangOpts().CPlusPlus)
|
|
Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
|
|
}
|
|
}
|
|
|
|
return BuildDeclaratorGroup(Decls);
|
|
}
|
|
|
|
/// BuildDeclaratorGroup - convert a list of declarations into a declaration
|
|
/// group, performing any necessary semantic checking.
|
|
Sema::DeclGroupPtrTy
|
|
Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
|
|
// C++14 [dcl.spec.auto]p7: (DR1347)
|
|
// If the type that replaces the placeholder type is not the same in each
|
|
// deduction, the program is ill-formed.
|
|
if (Group.size() > 1) {
|
|
QualType Deduced;
|
|
VarDecl *DeducedDecl = nullptr;
|
|
for (unsigned i = 0, e = Group.size(); i != e; ++i) {
|
|
VarDecl *D = dyn_cast<VarDecl>(Group[i]);
|
|
if (!D || D->isInvalidDecl())
|
|
break;
|
|
DeducedType *DT = D->getType()->getContainedDeducedType();
|
|
if (!DT || DT->getDeducedType().isNull())
|
|
continue;
|
|
if (Deduced.isNull()) {
|
|
Deduced = DT->getDeducedType();
|
|
DeducedDecl = D;
|
|
} else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
|
|
auto *AT = dyn_cast<AutoType>(DT);
|
|
Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
|
|
diag::err_auto_different_deductions)
|
|
<< (AT ? (unsigned)AT->getKeyword() : 3)
|
|
<< Deduced << DeducedDecl->getDeclName()
|
|
<< DT->getDeducedType() << D->getDeclName()
|
|
<< DeducedDecl->getInit()->getSourceRange()
|
|
<< D->getInit()->getSourceRange();
|
|
D->setInvalidDecl();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ActOnDocumentableDecls(Group);
|
|
|
|
return DeclGroupPtrTy::make(
|
|
DeclGroupRef::Create(Context, Group.data(), Group.size()));
|
|
}
|
|
|
|
void Sema::ActOnDocumentableDecl(Decl *D) {
|
|
ActOnDocumentableDecls(D);
|
|
}
|
|
|
|
void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
|
|
// Don't parse the comment if Doxygen diagnostics are ignored.
|
|
if (Group.empty() || !Group[0])
|
|
return;
|
|
|
|
if (Diags.isIgnored(diag::warn_doc_param_not_found,
|
|
Group[0]->getLocation()) &&
|
|
Diags.isIgnored(diag::warn_unknown_comment_command_name,
|
|
Group[0]->getLocation()))
|
|
return;
|
|
|
|
if (Group.size() >= 2) {
|
|
// This is a decl group. Normally it will contain only declarations
|
|
// produced from declarator list. But in case we have any definitions or
|
|
// additional declaration references:
|
|
// 'typedef struct S {} S;'
|
|
// 'typedef struct S *S;'
|
|
// 'struct S *pS;'
|
|
// FinalizeDeclaratorGroup adds these as separate declarations.
|
|
Decl *MaybeTagDecl = Group[0];
|
|
if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
|
|
Group = Group.slice(1);
|
|
}
|
|
}
|
|
|
|
// See if there are any new comments that are not attached to a decl.
|
|
ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
|
|
if (!Comments.empty() &&
|
|
!Comments.back()->isAttached()) {
|
|
// There is at least one comment that not attached to a decl.
|
|
// Maybe it should be attached to one of these decls?
|
|
//
|
|
// Note that this way we pick up not only comments that precede the
|
|
// declaration, but also comments that *follow* the declaration -- thanks to
|
|
// the lookahead in the lexer: we've consumed the semicolon and looked
|
|
// ahead through comments.
|
|
for (unsigned i = 0, e = Group.size(); i != e; ++i)
|
|
Context.getCommentForDecl(Group[i], &PP);
|
|
}
|
|
}
|
|
|
|
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
|
|
/// to introduce parameters into function prototype scope.
|
|
Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
|
|
// Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
|
|
|
|
// C++03 [dcl.stc]p2 also permits 'auto'.
|
|
StorageClass SC = SC_None;
|
|
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
|
|
SC = SC_Register;
|
|
// In C++11, the 'register' storage class specifier is deprecated.
|
|
// In C++17, it is not allowed, but we tolerate it as an extension.
|
|
if (getLangOpts().CPlusPlus11) {
|
|
Diag(DS.getStorageClassSpecLoc(),
|
|
getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
|
|
: diag::warn_deprecated_register)
|
|
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
|
|
}
|
|
} else if (getLangOpts().CPlusPlus &&
|
|
DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
|
|
SC = SC_Auto;
|
|
} else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
|
|
Diag(DS.getStorageClassSpecLoc(),
|
|
diag::err_invalid_storage_class_in_func_decl);
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
|
|
if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
|
|
Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
|
|
<< DeclSpec::getSpecifierName(TSCS);
|
|
if (DS.isInlineSpecified())
|
|
Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
|
|
<< getLangOpts().CPlusPlus17;
|
|
if (DS.isConstexprSpecified())
|
|
Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
|
|
<< 0;
|
|
|
|
DiagnoseFunctionSpecifiers(DS);
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType parmDeclType = TInfo->getType();
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// Check that there are no default arguments inside the type of this
|
|
// parameter.
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
// Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
|
|
if (D.getCXXScopeSpec().isSet()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
D.getCXXScopeSpec().clear();
|
|
}
|
|
}
|
|
|
|
// Ensure we have a valid name
|
|
IdentifierInfo *II = nullptr;
|
|
if (D.hasName()) {
|
|
II = D.getIdentifier();
|
|
if (!II) {
|
|
Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
|
|
<< GetNameForDeclarator(D).getName();
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
// Check for redeclaration of parameters, e.g. int foo(int x, int x);
|
|
if (II) {
|
|
LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
|
|
ForVisibleRedeclaration);
|
|
LookupName(R, S);
|
|
if (R.isSingleResult()) {
|
|
NamedDecl *PrevDecl = R.getFoundDecl();
|
|
if (PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = nullptr;
|
|
} else if (S->isDeclScope(PrevDecl)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
|
|
|
|
// Recover by removing the name
|
|
II = nullptr;
|
|
D.SetIdentifier(nullptr, D.getIdentifierLoc());
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Temporarily put parameter variables in the translation unit, not
|
|
// the enclosing context. This prevents them from accidentally
|
|
// looking like class members in C++.
|
|
ParmVarDecl *New =
|
|
CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
|
|
D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
|
|
|
|
if (D.isInvalidType())
|
|
New->setInvalidDecl();
|
|
|
|
assert(S->isFunctionPrototypeScope());
|
|
assert(S->getFunctionPrototypeDepth() >= 1);
|
|
New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
|
|
S->getNextFunctionPrototypeIndex());
|
|
|
|
// Add the parameter declaration into this scope.
|
|
S->AddDecl(New);
|
|
if (II)
|
|
IdResolver.AddDecl(New);
|
|
|
|
ProcessDeclAttributes(S, New, D);
|
|
|
|
if (D.getDeclSpec().isModulePrivateSpecified())
|
|
Diag(New->getLocation(), diag::err_module_private_local)
|
|
<< 1 << New->getDeclName()
|
|
<< SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
|
|
|
|
if (New->hasAttr<BlocksAttr>()) {
|
|
Diag(New->getLocation(), diag::err_block_on_nonlocal);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
/// Synthesizes a variable for a parameter arising from a
|
|
/// typedef.
|
|
ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
|
|
SourceLocation Loc,
|
|
QualType T) {
|
|
/* FIXME: setting StartLoc == Loc.
|
|
Would it be worth to modify callers so as to provide proper source
|
|
location for the unnamed parameters, embedding the parameter's type? */
|
|
ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
|
|
T, Context.getTrivialTypeSourceInfo(T, Loc),
|
|
SC_None, nullptr);
|
|
Param->setImplicit();
|
|
return Param;
|
|
}
|
|
|
|
void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
|
|
// Don't diagnose unused-parameter errors in template instantiations; we
|
|
// will already have done so in the template itself.
|
|
if (inTemplateInstantiation())
|
|
return;
|
|
|
|
for (const ParmVarDecl *Parameter : Parameters) {
|
|
if (!Parameter->isReferenced() && Parameter->getDeclName() &&
|
|
!Parameter->hasAttr<UnusedAttr>()) {
|
|
Diag(Parameter->getLocation(), diag::warn_unused_parameter)
|
|
<< Parameter->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::DiagnoseSizeOfParametersAndReturnValue(
|
|
ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
|
|
if (LangOpts.NumLargeByValueCopy == 0) // No check.
|
|
return;
|
|
|
|
// Warn if the return value is pass-by-value and larger than the specified
|
|
// threshold.
|
|
if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
|
|
unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
|
|
if (Size > LangOpts.NumLargeByValueCopy)
|
|
Diag(D->getLocation(), diag::warn_return_value_size)
|
|
<< D->getDeclName() << Size;
|
|
}
|
|
|
|
// Warn if any parameter is pass-by-value and larger than the specified
|
|
// threshold.
|
|
for (const ParmVarDecl *Parameter : Parameters) {
|
|
QualType T = Parameter->getType();
|
|
if (T->isDependentType() || !T.isPODType(Context))
|
|
continue;
|
|
unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
|
|
if (Size > LangOpts.NumLargeByValueCopy)
|
|
Diag(Parameter->getLocation(), diag::warn_parameter_size)
|
|
<< Parameter->getDeclName() << Size;
|
|
}
|
|
}
|
|
|
|
ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation NameLoc, IdentifierInfo *Name,
|
|
QualType T, TypeSourceInfo *TSInfo,
|
|
StorageClass SC) {
|
|
// In ARC, infer a lifetime qualifier for appropriate parameter types.
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
|
T.getObjCLifetime() == Qualifiers::OCL_None &&
|
|
T->isObjCLifetimeType()) {
|
|
|
|
Qualifiers::ObjCLifetime lifetime;
|
|
|
|
// Special cases for arrays:
|
|
// - if it's const, use __unsafe_unretained
|
|
// - otherwise, it's an error
|
|
if (T->isArrayType()) {
|
|
if (!T.isConstQualified()) {
|
|
if (DelayedDiagnostics.shouldDelayDiagnostics())
|
|
DelayedDiagnostics.add(
|
|
sema::DelayedDiagnostic::makeForbiddenType(
|
|
NameLoc, diag::err_arc_array_param_no_ownership, T, false));
|
|
else
|
|
Diag(NameLoc, diag::err_arc_array_param_no_ownership)
|
|
<< TSInfo->getTypeLoc().getSourceRange();
|
|
}
|
|
lifetime = Qualifiers::OCL_ExplicitNone;
|
|
} else {
|
|
lifetime = T->getObjCARCImplicitLifetime();
|
|
}
|
|
T = Context.getLifetimeQualifiedType(T, lifetime);
|
|
}
|
|
|
|
ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
|
|
Context.getAdjustedParameterType(T),
|
|
TSInfo, SC, nullptr);
|
|
|
|
// Parameters can not be abstract class types.
|
|
// For record types, this is done by the AbstractClassUsageDiagnoser once
|
|
// the class has been completely parsed.
|
|
if (!CurContext->isRecord() &&
|
|
RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
|
|
AbstractParamType))
|
|
New->setInvalidDecl();
|
|
|
|
// Parameter declarators cannot be interface types. All ObjC objects are
|
|
// passed by reference.
|
|
if (T->isObjCObjectType()) {
|
|
SourceLocation TypeEndLoc =
|
|
getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
|
|
Diag(NameLoc,
|
|
diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
|
|
<< FixItHint::CreateInsertion(TypeEndLoc, "*");
|
|
T = Context.getObjCObjectPointerType(T);
|
|
New->setType(T);
|
|
}
|
|
|
|
// ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
|
|
// duration shall not be qualified by an address-space qualifier."
|
|
// Since all parameters have automatic store duration, they can not have
|
|
// an address space.
|
|
if (T.getAddressSpace() != LangAS::Default &&
|
|
// OpenCL allows function arguments declared to be an array of a type
|
|
// to be qualified with an address space.
|
|
!(getLangOpts().OpenCL &&
|
|
(T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
|
|
Diag(NameLoc, diag::err_arg_with_address_space);
|
|
New->setInvalidDecl();
|
|
}
|
|
|
|
return New;
|
|
}
|
|
|
|
void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
|
|
SourceLocation LocAfterDecls) {
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
|
|
|
|
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
|
|
// for a K&R function.
|
|
if (!FTI.hasPrototype) {
|
|
for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
|
|
--i;
|
|
if (FTI.Params[i].Param == nullptr) {
|
|
SmallString<256> Code;
|
|
llvm::raw_svector_ostream(Code)
|
|
<< " int " << FTI.Params[i].Ident->getName() << ";\n";
|
|
Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
|
|
<< FTI.Params[i].Ident
|
|
<< FixItHint::CreateInsertion(LocAfterDecls, Code);
|
|
|
|
// Implicitly declare the argument as type 'int' for lack of a better
|
|
// type.
|
|
AttributeFactory attrs;
|
|
DeclSpec DS(attrs);
|
|
const char* PrevSpec; // unused
|
|
unsigned DiagID; // unused
|
|
DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
|
|
DiagID, Context.getPrintingPolicy());
|
|
// Use the identifier location for the type source range.
|
|
DS.SetRangeStart(FTI.Params[i].IdentLoc);
|
|
DS.SetRangeEnd(FTI.Params[i].IdentLoc);
|
|
Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
|
|
ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
|
|
FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Decl *
|
|
Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
SkipBodyInfo *SkipBody) {
|
|
assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
|
|
assert(D.isFunctionDeclarator() && "Not a function declarator!");
|
|
Scope *ParentScope = FnBodyScope->getParent();
|
|
|
|
D.setFunctionDefinitionKind(FDK_Definition);
|
|
Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
|
|
return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
|
|
}
|
|
|
|
void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
|
|
Consumer.HandleInlineFunctionDefinition(D);
|
|
}
|
|
|
|
static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
|
|
const FunctionDecl*& PossibleZeroParamPrototype) {
|
|
// Don't warn about invalid declarations.
|
|
if (FD->isInvalidDecl())
|
|
return false;
|
|
|
|
// Or declarations that aren't global.
|
|
if (!FD->isGlobal())
|
|
return false;
|
|
|
|
// Don't warn about C++ member functions.
|
|
if (isa<CXXMethodDecl>(FD))
|
|
return false;
|
|
|
|
// Don't warn about 'main'.
|
|
if (FD->isMain())
|
|
return false;
|
|
|
|
// Don't warn about inline functions.
|
|
if (FD->isInlined())
|
|
return false;
|
|
|
|
// Don't warn about function templates.
|
|
if (FD->getDescribedFunctionTemplate())
|
|
return false;
|
|
|
|
// Don't warn about function template specializations.
|
|
if (FD->isFunctionTemplateSpecialization())
|
|
return false;
|
|
|
|
// Don't warn for OpenCL kernels.
|
|
if (FD->hasAttr<OpenCLKernelAttr>())
|
|
return false;
|
|
|
|
// Don't warn on explicitly deleted functions.
|
|
if (FD->isDeleted())
|
|
return false;
|
|
|
|
bool MissingPrototype = true;
|
|
for (const FunctionDecl *Prev = FD->getPreviousDecl();
|
|
Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Ignore any declarations that occur in function or method
|
|
// scope, because they aren't visible from the header.
|
|
if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
|
|
continue;
|
|
|
|
MissingPrototype = !Prev->getType()->isFunctionProtoType();
|
|
if (FD->getNumParams() == 0)
|
|
PossibleZeroParamPrototype = Prev;
|
|
break;
|
|
}
|
|
|
|
return MissingPrototype;
|
|
}
|
|
|
|
void
|
|
Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
|
|
const FunctionDecl *EffectiveDefinition,
|
|
SkipBodyInfo *SkipBody) {
|
|
const FunctionDecl *Definition = EffectiveDefinition;
|
|
if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
|
|
// If this is a friend function defined in a class template, it does not
|
|
// have a body until it is used, nevertheless it is a definition, see
|
|
// [temp.inst]p2:
|
|
//
|
|
// ... for the purpose of determining whether an instantiated redeclaration
|
|
// is valid according to [basic.def.odr] and [class.mem], a declaration that
|
|
// corresponds to a definition in the template is considered to be a
|
|
// definition.
|
|
//
|
|
// The following code must produce redefinition error:
|
|
//
|
|
// template<typename T> struct C20 { friend void func_20() {} };
|
|
// C20<int> c20i;
|
|
// void func_20() {}
|
|
//
|
|
for (auto I : FD->redecls()) {
|
|
if (I != FD && !I->isInvalidDecl() &&
|
|
I->getFriendObjectKind() != Decl::FOK_None) {
|
|
if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
|
|
if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
|
|
// A merged copy of the same function, instantiated as a member of
|
|
// the same class, is OK.
|
|
if (declaresSameEntity(OrigFD, Original) &&
|
|
declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
|
|
cast<Decl>(FD->getLexicalDeclContext())))
|
|
continue;
|
|
}
|
|
|
|
if (Original->isThisDeclarationADefinition()) {
|
|
Definition = I;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Definition)
|
|
// Similar to friend functions a friend function template may be a
|
|
// definition and do not have a body if it is instantiated in a class
|
|
// template.
|
|
if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
|
|
for (auto I : FTD->redecls()) {
|
|
auto D = cast<FunctionTemplateDecl>(I);
|
|
if (D != FTD) {
|
|
assert(!D->isThisDeclarationADefinition() &&
|
|
"More than one definition in redeclaration chain");
|
|
if (D->getFriendObjectKind() != Decl::FOK_None)
|
|
if (FunctionTemplateDecl *FT =
|
|
D->getInstantiatedFromMemberTemplate()) {
|
|
if (FT->isThisDeclarationADefinition()) {
|
|
Definition = D->getTemplatedDecl();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Definition)
|
|
return;
|
|
|
|
if (canRedefineFunction(Definition, getLangOpts()))
|
|
return;
|
|
|
|
// Don't emit an error when this is redefinition of a typo-corrected
|
|
// definition.
|
|
if (TypoCorrectedFunctionDefinitions.count(Definition))
|
|
return;
|
|
|
|
// If we don't have a visible definition of the function, and it's inline or
|
|
// a template, skip the new definition.
|
|
if (SkipBody && !hasVisibleDefinition(Definition) &&
|
|
(Definition->getFormalLinkage() == InternalLinkage ||
|
|
Definition->isInlined() ||
|
|
Definition->getDescribedFunctionTemplate() ||
|
|
Definition->getNumTemplateParameterLists())) {
|
|
SkipBody->ShouldSkip = true;
|
|
SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
|
|
if (auto *TD = Definition->getDescribedFunctionTemplate())
|
|
makeMergedDefinitionVisible(TD);
|
|
makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
|
|
return;
|
|
}
|
|
|
|
if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
|
|
Definition->getStorageClass() == SC_Extern)
|
|
Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
|
|
<< FD->getDeclName() << getLangOpts().CPlusPlus;
|
|
else
|
|
Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
|
|
|
|
Diag(Definition->getLocation(), diag::note_previous_definition);
|
|
FD->setInvalidDecl();
|
|
}
|
|
|
|
static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
|
|
Sema &S) {
|
|
CXXRecordDecl *const LambdaClass = CallOperator->getParent();
|
|
|
|
LambdaScopeInfo *LSI = S.PushLambdaScope();
|
|
LSI->CallOperator = CallOperator;
|
|
LSI->Lambda = LambdaClass;
|
|
LSI->ReturnType = CallOperator->getReturnType();
|
|
const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
|
|
|
|
if (LCD == LCD_None)
|
|
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
|
|
else if (LCD == LCD_ByCopy)
|
|
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
|
|
else if (LCD == LCD_ByRef)
|
|
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
|
|
DeclarationNameInfo DNI = CallOperator->getNameInfo();
|
|
|
|
LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
|
|
LSI->Mutable = !CallOperator->isConst();
|
|
|
|
// Add the captures to the LSI so they can be noted as already
|
|
// captured within tryCaptureVar.
|
|
auto I = LambdaClass->field_begin();
|
|
for (const auto &C : LambdaClass->captures()) {
|
|
if (C.capturesVariable()) {
|
|
VarDecl *VD = C.getCapturedVar();
|
|
if (VD->isInitCapture())
|
|
S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
|
|
QualType CaptureType = VD->getType();
|
|
const bool ByRef = C.getCaptureKind() == LCK_ByRef;
|
|
LSI->addCapture(VD, /*IsBlock*/false, ByRef,
|
|
/*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
|
|
/*EllipsisLoc*/C.isPackExpansion()
|
|
? C.getEllipsisLoc() : SourceLocation(),
|
|
CaptureType, /*Expr*/ nullptr);
|
|
|
|
} else if (C.capturesThis()) {
|
|
LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
|
|
/*Expr*/ nullptr,
|
|
C.getCaptureKind() == LCK_StarThis);
|
|
} else {
|
|
LSI->addVLATypeCapture(C.getLocation(), I->getType());
|
|
}
|
|
++I;
|
|
}
|
|
}
|
|
|
|
Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
|
|
SkipBodyInfo *SkipBody) {
|
|
if (!D) {
|
|
// Parsing the function declaration failed in some way. Push on a fake scope
|
|
// anyway so we can try to parse the function body.
|
|
PushFunctionScope();
|
|
PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
|
|
return D;
|
|
}
|
|
|
|
FunctionDecl *FD = nullptr;
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
|
|
FD = FunTmpl->getTemplatedDecl();
|
|
else
|
|
FD = cast<FunctionDecl>(D);
|
|
|
|
// Do not push if it is a lambda because one is already pushed when building
|
|
// the lambda in ActOnStartOfLambdaDefinition().
|
|
if (!isLambdaCallOperator(FD))
|
|
PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
|
|
|
|
// Check for defining attributes before the check for redefinition.
|
|
if (const auto *Attr = FD->getAttr<AliasAttr>()) {
|
|
Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
|
|
FD->dropAttr<AliasAttr>();
|
|
FD->setInvalidDecl();
|
|
}
|
|
if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
|
|
Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
|
|
FD->dropAttr<IFuncAttr>();
|
|
FD->setInvalidDecl();
|
|
}
|
|
|
|
// See if this is a redefinition. If 'will have body' is already set, then
|
|
// these checks were already performed when it was set.
|
|
if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
|
|
CheckForFunctionRedefinition(FD, nullptr, SkipBody);
|
|
|
|
// If we're skipping the body, we're done. Don't enter the scope.
|
|
if (SkipBody && SkipBody->ShouldSkip)
|
|
return D;
|
|
}
|
|
|
|
// Mark this function as "will have a body eventually". This lets users to
|
|
// call e.g. isInlineDefinitionExternallyVisible while we're still parsing
|
|
// this function.
|
|
FD->setWillHaveBody();
|
|
|
|
// If we are instantiating a generic lambda call operator, push
|
|
// a LambdaScopeInfo onto the function stack. But use the information
|
|
// that's already been calculated (ActOnLambdaExpr) to prime the current
|
|
// LambdaScopeInfo.
|
|
// When the template operator is being specialized, the LambdaScopeInfo,
|
|
// has to be properly restored so that tryCaptureVariable doesn't try
|
|
// and capture any new variables. In addition when calculating potential
|
|
// captures during transformation of nested lambdas, it is necessary to
|
|
// have the LSI properly restored.
|
|
if (isGenericLambdaCallOperatorSpecialization(FD)) {
|
|
assert(inTemplateInstantiation() &&
|
|
"There should be an active template instantiation on the stack "
|
|
"when instantiating a generic lambda!");
|
|
RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
|
|
} else {
|
|
// Enter a new function scope
|
|
PushFunctionScope();
|
|
}
|
|
|
|
// Builtin functions cannot be defined.
|
|
if (unsigned BuiltinID = FD->getBuiltinID()) {
|
|
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
|
|
!Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
|
|
Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
|
|
FD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
// The return type of a function definition must be complete
|
|
// (C99 6.9.1p3, C++ [dcl.fct]p6).
|
|
QualType ResultType = FD->getReturnType();
|
|
if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
|
|
!FD->isInvalidDecl() &&
|
|
RequireCompleteType(FD->getLocation(), ResultType,
|
|
diag::err_func_def_incomplete_result))
|
|
FD->setInvalidDecl();
|
|
|
|
if (FnBodyScope)
|
|
PushDeclContext(FnBodyScope, FD);
|
|
|
|
// Check the validity of our function parameters
|
|
CheckParmsForFunctionDef(FD->parameters(),
|
|
/*CheckParameterNames=*/true);
|
|
|
|
// Add non-parameter declarations already in the function to the current
|
|
// scope.
|
|
if (FnBodyScope) {
|
|
for (Decl *NPD : FD->decls()) {
|
|
auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
|
|
if (!NonParmDecl)
|
|
continue;
|
|
assert(!isa<ParmVarDecl>(NonParmDecl) &&
|
|
"parameters should not be in newly created FD yet");
|
|
|
|
// If the decl has a name, make it accessible in the current scope.
|
|
if (NonParmDecl->getDeclName())
|
|
PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
|
|
|
|
// Similarly, dive into enums and fish their constants out, making them
|
|
// accessible in this scope.
|
|
if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
|
|
for (auto *EI : ED->enumerators())
|
|
PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Introduce our parameters into the function scope
|
|
for (auto Param : FD->parameters()) {
|
|
Param->setOwningFunction(FD);
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (Param->getIdentifier() && FnBodyScope) {
|
|
CheckShadow(FnBodyScope, Param);
|
|
|
|
PushOnScopeChains(Param, FnBodyScope);
|
|
}
|
|
}
|
|
|
|
// Ensure that the function's exception specification is instantiated.
|
|
if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
|
|
ResolveExceptionSpec(D->getLocation(), FPT);
|
|
|
|
// dllimport cannot be applied to non-inline function definitions.
|
|
if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
|
|
!FD->isTemplateInstantiation()) {
|
|
assert(!FD->hasAttr<DLLExportAttr>());
|
|
Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
|
|
FD->setInvalidDecl();
|
|
return D;
|
|
}
|
|
// We want to attach documentation to original Decl (which might be
|
|
// a function template).
|
|
ActOnDocumentableDecl(D);
|
|
if (getCurLexicalContext()->isObjCContainer() &&
|
|
getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
|
|
getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
|
|
Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
|
|
|
|
return D;
|
|
}
|
|
|
|
/// Given the set of return statements within a function body,
|
|
/// compute the variables that are subject to the named return value
|
|
/// optimization.
|
|
///
|
|
/// Each of the variables that is subject to the named return value
|
|
/// optimization will be marked as NRVO variables in the AST, and any
|
|
/// return statement that has a marked NRVO variable as its NRVO candidate can
|
|
/// use the named return value optimization.
|
|
///
|
|
/// This function applies a very simplistic algorithm for NRVO: if every return
|
|
/// statement in the scope of a variable has the same NRVO candidate, that
|
|
/// candidate is an NRVO variable.
|
|
void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
|
|
ReturnStmt **Returns = Scope->Returns.data();
|
|
|
|
for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
|
|
if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
|
|
if (!NRVOCandidate->isNRVOVariable())
|
|
Returns[I]->setNRVOCandidate(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Sema::canDelayFunctionBody(const Declarator &D) {
|
|
// We can't delay parsing the body of a constexpr function template (yet).
|
|
if (D.getDeclSpec().isConstexprSpecified())
|
|
return false;
|
|
|
|
// We can't delay parsing the body of a function template with a deduced
|
|
// return type (yet).
|
|
if (D.getDeclSpec().hasAutoTypeSpec()) {
|
|
// If the placeholder introduces a non-deduced trailing return type,
|
|
// we can still delay parsing it.
|
|
if (D.getNumTypeObjects()) {
|
|
const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
|
|
if (Outer.Kind == DeclaratorChunk::Function &&
|
|
Outer.Fun.hasTrailingReturnType()) {
|
|
QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
|
|
return Ty.isNull() || !Ty->isUndeducedType();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::canSkipFunctionBody(Decl *D) {
|
|
// We cannot skip the body of a function (or function template) which is
|
|
// constexpr, since we may need to evaluate its body in order to parse the
|
|
// rest of the file.
|
|
// We cannot skip the body of a function with an undeduced return type,
|
|
// because any callers of that function need to know the type.
|
|
if (const FunctionDecl *FD = D->getAsFunction()) {
|
|
if (FD->isConstexpr())
|
|
return false;
|
|
// We can't simply call Type::isUndeducedType here, because inside template
|
|
// auto can be deduced to a dependent type, which is not considered
|
|
// "undeduced".
|
|
if (FD->getReturnType()->getContainedDeducedType())
|
|
return false;
|
|
}
|
|
return Consumer.shouldSkipFunctionBody(D);
|
|
}
|
|
|
|
Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
|
|
if (!Decl)
|
|
return nullptr;
|
|
if (FunctionDecl *FD = Decl->getAsFunction())
|
|
FD->setHasSkippedBody();
|
|
else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
|
|
MD->setHasSkippedBody();
|
|
return Decl;
|
|
}
|
|
|
|
Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
|
|
return ActOnFinishFunctionBody(D, BodyArg, false);
|
|
}
|
|
|
|
/// RAII object that pops an ExpressionEvaluationContext when exiting a function
|
|
/// body.
|
|
class ExitFunctionBodyRAII {
|
|
public:
|
|
ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
|
|
~ExitFunctionBodyRAII() {
|
|
if (!IsLambda)
|
|
S.PopExpressionEvaluationContext();
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
bool IsLambda = false;
|
|
};
|
|
|
|
static void diagnoseImplicitlyRetainedSelf(Sema &S) {
|
|
llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
|
|
|
|
auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
|
|
if (EscapeInfo.count(BD))
|
|
return EscapeInfo[BD];
|
|
|
|
bool R = false;
|
|
const BlockDecl *CurBD = BD;
|
|
|
|
do {
|
|
R = !CurBD->doesNotEscape();
|
|
if (R)
|
|
break;
|
|
CurBD = CurBD->getParent()->getInnermostBlockDecl();
|
|
} while (CurBD);
|
|
|
|
return EscapeInfo[BD] = R;
|
|
};
|
|
|
|
// If the location where 'self' is implicitly retained is inside a escaping
|
|
// block, emit a diagnostic.
|
|
for (const std::pair<SourceLocation, const BlockDecl *> &P :
|
|
S.ImplicitlyRetainedSelfLocs)
|
|
if (IsOrNestedInEscapingBlock(P.second))
|
|
S.Diag(P.first, diag::warn_implicitly_retains_self)
|
|
<< FixItHint::CreateInsertion(P.first, "self->");
|
|
}
|
|
|
|
Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
|
|
bool IsInstantiation) {
|
|
FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
|
|
|
|
sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
|
|
sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
|
|
|
|
if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
|
|
CheckCompletedCoroutineBody(FD, Body);
|
|
|
|
// Do not call PopExpressionEvaluationContext() if it is a lambda because one
|
|
// is already popped when finishing the lambda in BuildLambdaExpr(). This is
|
|
// meant to pop the context added in ActOnStartOfFunctionDef().
|
|
ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
|
|
|
|
if (FD) {
|
|
FD->setBody(Body);
|
|
FD->setWillHaveBody(false);
|
|
|
|
if (getLangOpts().CPlusPlus14) {
|
|
if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
|
|
FD->getReturnType()->isUndeducedType()) {
|
|
// If the function has a deduced result type but contains no 'return'
|
|
// statements, the result type as written must be exactly 'auto', and
|
|
// the deduced result type is 'void'.
|
|
if (!FD->getReturnType()->getAs<AutoType>()) {
|
|
Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
|
|
<< FD->getReturnType();
|
|
FD->setInvalidDecl();
|
|
} else {
|
|
// Substitute 'void' for the 'auto' in the type.
|
|
TypeLoc ResultType = getReturnTypeLoc(FD);
|
|
Context.adjustDeducedFunctionResultType(
|
|
FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
|
|
}
|
|
}
|
|
} else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
|
|
// In C++11, we don't use 'auto' deduction rules for lambda call
|
|
// operators because we don't support return type deduction.
|
|
auto *LSI = getCurLambda();
|
|
if (LSI->HasImplicitReturnType) {
|
|
deduceClosureReturnType(*LSI);
|
|
|
|
// C++11 [expr.prim.lambda]p4:
|
|
// [...] if there are no return statements in the compound-statement
|
|
// [the deduced type is] the type void
|
|
QualType RetType =
|
|
LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
|
|
|
|
// Update the return type to the deduced type.
|
|
const FunctionProtoType *Proto =
|
|
FD->getType()->getAs<FunctionProtoType>();
|
|
FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
|
|
Proto->getExtProtoInfo()));
|
|
}
|
|
}
|
|
|
|
// If the function implicitly returns zero (like 'main') or is naked,
|
|
// don't complain about missing return statements.
|
|
if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
|
|
WP.disableCheckFallThrough();
|
|
|
|
// MSVC permits the use of pure specifier (=0) on function definition,
|
|
// defined at class scope, warn about this non-standard construct.
|
|
if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
|
|
Diag(FD->getLocation(), diag::ext_pure_function_definition);
|
|
|
|
if (!FD->isInvalidDecl()) {
|
|
// Don't diagnose unused parameters of defaulted or deleted functions.
|
|
if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
|
|
DiagnoseUnusedParameters(FD->parameters());
|
|
DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
|
|
FD->getReturnType(), FD);
|
|
|
|
// If this is a structor, we need a vtable.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
|
|
MarkVTableUsed(FD->getLocation(), Constructor->getParent());
|
|
else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
|
|
MarkVTableUsed(FD->getLocation(), Destructor->getParent());
|
|
|
|
// Try to apply the named return value optimization. We have to check
|
|
// if we can do this here because lambdas keep return statements around
|
|
// to deduce an implicit return type.
|
|
if (FD->getReturnType()->isRecordType() &&
|
|
(!getLangOpts().CPlusPlus || !FD->isDependentContext()))
|
|
computeNRVO(Body, getCurFunction());
|
|
}
|
|
|
|
// GNU warning -Wmissing-prototypes:
|
|
// Warn if a global function is defined without a previous
|
|
// prototype declaration. This warning is issued even if the
|
|
// definition itself provides a prototype. The aim is to detect
|
|
// global functions that fail to be declared in header files.
|
|
const FunctionDecl *PossibleZeroParamPrototype = nullptr;
|
|
if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
|
|
Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
|
|
|
|
if (PossibleZeroParamPrototype) {
|
|
// We found a declaration that is not a prototype,
|
|
// but that could be a zero-parameter prototype
|
|
if (TypeSourceInfo *TI =
|
|
PossibleZeroParamPrototype->getTypeSourceInfo()) {
|
|
TypeLoc TL = TI->getTypeLoc();
|
|
if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
|
|
Diag(PossibleZeroParamPrototype->getLocation(),
|
|
diag::note_declaration_not_a_prototype)
|
|
<< PossibleZeroParamPrototype
|
|
<< FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
|
|
}
|
|
}
|
|
|
|
// GNU warning -Wstrict-prototypes
|
|
// Warn if K&R function is defined without a previous declaration.
|
|
// This warning is issued only if the definition itself does not provide
|
|
// a prototype. Only K&R definitions do not provide a prototype.
|
|
// An empty list in a function declarator that is part of a definition
|
|
// of that function specifies that the function has no parameters
|
|
// (C99 6.7.5.3p14)
|
|
if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
|
|
!LangOpts.CPlusPlus) {
|
|
TypeSourceInfo *TI = FD->getTypeSourceInfo();
|
|
TypeLoc TL = TI->getTypeLoc();
|
|
FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
|
|
Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
|
|
}
|
|
}
|
|
|
|
// Warn on CPUDispatch with an actual body.
|
|
if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
|
|
if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
|
|
if (!CmpndBody->body_empty())
|
|
Diag(CmpndBody->body_front()->getBeginLoc(),
|
|
diag::warn_dispatch_body_ignored);
|
|
|
|
if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
const CXXMethodDecl *KeyFunction;
|
|
if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
|
|
MD->isVirtual() &&
|
|
(KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
|
|
MD == KeyFunction->getCanonicalDecl()) {
|
|
// Update the key-function state if necessary for this ABI.
|
|
if (FD->isInlined() &&
|
|
!Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
|
|
Context.setNonKeyFunction(MD);
|
|
|
|
// If the newly-chosen key function is already defined, then we
|
|
// need to mark the vtable as used retroactively.
|
|
KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
|
|
const FunctionDecl *Definition;
|
|
if (KeyFunction && KeyFunction->isDefined(Definition))
|
|
MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
|
|
} else {
|
|
// We just defined they key function; mark the vtable as used.
|
|
MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
|
|
"Function parsing confused");
|
|
} else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
|
|
assert(MD == getCurMethodDecl() && "Method parsing confused");
|
|
MD->setBody(Body);
|
|
if (!MD->isInvalidDecl()) {
|
|
if (!MD->hasSkippedBody())
|
|
DiagnoseUnusedParameters(MD->parameters());
|
|
DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
|
|
MD->getReturnType(), MD);
|
|
|
|
if (Body)
|
|
computeNRVO(Body, getCurFunction());
|
|
}
|
|
if (getCurFunction()->ObjCShouldCallSuper) {
|
|
Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
|
|
<< MD->getSelector().getAsString();
|
|
getCurFunction()->ObjCShouldCallSuper = false;
|
|
}
|
|
if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
|
|
const ObjCMethodDecl *InitMethod = nullptr;
|
|
bool isDesignated =
|
|
MD->isDesignatedInitializerForTheInterface(&InitMethod);
|
|
assert(isDesignated && InitMethod);
|
|
(void)isDesignated;
|
|
|
|
auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
|
|
auto IFace = MD->getClassInterface();
|
|
if (!IFace)
|
|
return false;
|
|
auto SuperD = IFace->getSuperClass();
|
|
if (!SuperD)
|
|
return false;
|
|
return SuperD->getIdentifier() ==
|
|
NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
|
|
};
|
|
// Don't issue this warning for unavailable inits or direct subclasses
|
|
// of NSObject.
|
|
if (!MD->isUnavailable() && !superIsNSObject(MD)) {
|
|
Diag(MD->getLocation(),
|
|
diag::warn_objc_designated_init_missing_super_call);
|
|
Diag(InitMethod->getLocation(),
|
|
diag::note_objc_designated_init_marked_here);
|
|
}
|
|
getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
|
|
}
|
|
if (getCurFunction()->ObjCWarnForNoInitDelegation) {
|
|
// Don't issue this warning for unavaialable inits.
|
|
if (!MD->isUnavailable())
|
|
Diag(MD->getLocation(),
|
|
diag::warn_objc_secondary_init_missing_init_call);
|
|
getCurFunction()->ObjCWarnForNoInitDelegation = false;
|
|
}
|
|
|
|
diagnoseImplicitlyRetainedSelf(*this);
|
|
} else {
|
|
// Parsing the function declaration failed in some way. Pop the fake scope
|
|
// we pushed on.
|
|
PopFunctionScopeInfo(ActivePolicy, dcl);
|
|
return nullptr;
|
|
}
|
|
|
|
if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
|
|
DiagnoseUnguardedAvailabilityViolations(dcl);
|
|
|
|
assert(!getCurFunction()->ObjCShouldCallSuper &&
|
|
"This should only be set for ObjC methods, which should have been "
|
|
"handled in the block above.");
|
|
|
|
// Verify and clean out per-function state.
|
|
if (Body && (!FD || !FD->isDefaulted())) {
|
|
// C++ constructors that have function-try-blocks can't have return
|
|
// statements in the handlers of that block. (C++ [except.handle]p14)
|
|
// Verify this.
|
|
if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
|
|
DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
|
|
|
|
// Verify that gotos and switch cases don't jump into scopes illegally.
|
|
if (getCurFunction()->NeedsScopeChecking() &&
|
|
!PP.isCodeCompletionEnabled())
|
|
DiagnoseInvalidJumps(Body);
|
|
|
|
if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
|
|
if (!Destructor->getParent()->isDependentType())
|
|
CheckDestructor(Destructor);
|
|
|
|
MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
|
|
Destructor->getParent());
|
|
}
|
|
|
|
// If any errors have occurred, clear out any temporaries that may have
|
|
// been leftover. This ensures that these temporaries won't be picked up for
|
|
// deletion in some later function.
|
|
if (getDiagnostics().hasErrorOccurred() ||
|
|
getDiagnostics().getSuppressAllDiagnostics()) {
|
|
DiscardCleanupsInEvaluationContext();
|
|
}
|
|
if (!getDiagnostics().hasUncompilableErrorOccurred() &&
|
|
!isa<FunctionTemplateDecl>(dcl)) {
|
|
// Since the body is valid, issue any analysis-based warnings that are
|
|
// enabled.
|
|
ActivePolicy = &WP;
|
|
}
|
|
|
|
if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
|
|
(!CheckConstexprFunctionDecl(FD) ||
|
|
!CheckConstexprFunctionBody(FD, Body)))
|
|
FD->setInvalidDecl();
|
|
|
|
if (FD && FD->hasAttr<NakedAttr>()) {
|
|
for (const Stmt *S : Body->children()) {
|
|
// Allow local register variables without initializer as they don't
|
|
// require prologue.
|
|
bool RegisterVariables = false;
|
|
if (auto *DS = dyn_cast<DeclStmt>(S)) {
|
|
for (const auto *Decl : DS->decls()) {
|
|
if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
|
|
RegisterVariables =
|
|
Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
|
|
if (!RegisterVariables)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (RegisterVariables)
|
|
continue;
|
|
if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
|
|
Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
|
|
Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
|
|
FD->setInvalidDecl();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(ExprCleanupObjects.size() ==
|
|
ExprEvalContexts.back().NumCleanupObjects &&
|
|
"Leftover temporaries in function");
|
|
assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
|
|
assert(MaybeODRUseExprs.empty() &&
|
|
"Leftover expressions for odr-use checking");
|
|
}
|
|
|
|
if (!IsInstantiation)
|
|
PopDeclContext();
|
|
|
|
PopFunctionScopeInfo(ActivePolicy, dcl);
|
|
// If any errors have occurred, clear out any temporaries that may have
|
|
// been leftover. This ensures that these temporaries won't be picked up for
|
|
// deletion in some later function.
|
|
if (getDiagnostics().hasErrorOccurred()) {
|
|
DiscardCleanupsInEvaluationContext();
|
|
}
|
|
|
|
return dcl;
|
|
}
|
|
|
|
/// When we finish delayed parsing of an attribute, we must attach it to the
|
|
/// relevant Decl.
|
|
void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
|
|
ParsedAttributes &Attrs) {
|
|
// Always attach attributes to the underlying decl.
|
|
if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
|
|
D = TD->getTemplatedDecl();
|
|
ProcessDeclAttributeList(S, D, Attrs);
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
|
|
if (Method->isStatic())
|
|
checkThisInStaticMemberFunctionAttributes(Method);
|
|
}
|
|
|
|
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
|
|
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
|
|
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
|
|
IdentifierInfo &II, Scope *S) {
|
|
// Find the scope in which the identifier is injected and the corresponding
|
|
// DeclContext.
|
|
// FIXME: C89 does not say what happens if there is no enclosing block scope.
|
|
// In that case, we inject the declaration into the translation unit scope
|
|
// instead.
|
|
Scope *BlockScope = S;
|
|
while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
|
|
BlockScope = BlockScope->getParent();
|
|
|
|
Scope *ContextScope = BlockScope;
|
|
while (!ContextScope->getEntity())
|
|
ContextScope = ContextScope->getParent();
|
|
ContextRAII SavedContext(*this, ContextScope->getEntity());
|
|
|
|
// Before we produce a declaration for an implicitly defined
|
|
// function, see whether there was a locally-scoped declaration of
|
|
// this name as a function or variable. If so, use that
|
|
// (non-visible) declaration, and complain about it.
|
|
NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
|
|
if (ExternCPrev) {
|
|
// We still need to inject the function into the enclosing block scope so
|
|
// that later (non-call) uses can see it.
|
|
PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
|
|
|
|
// C89 footnote 38:
|
|
// If in fact it is not defined as having type "function returning int",
|
|
// the behavior is undefined.
|
|
if (!isa<FunctionDecl>(ExternCPrev) ||
|
|
!Context.typesAreCompatible(
|
|
cast<FunctionDecl>(ExternCPrev)->getType(),
|
|
Context.getFunctionNoProtoType(Context.IntTy))) {
|
|
Diag(Loc, diag::ext_use_out_of_scope_declaration)
|
|
<< ExternCPrev << !getLangOpts().C99;
|
|
Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
|
|
return ExternCPrev;
|
|
}
|
|
}
|
|
|
|
// Extension in C99. Legal in C90, but warn about it.
|
|
unsigned diag_id;
|
|
if (II.getName().startswith("__builtin_"))
|
|
diag_id = diag::warn_builtin_unknown;
|
|
// OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
|
|
else if (getLangOpts().OpenCL)
|
|
diag_id = diag::err_opencl_implicit_function_decl;
|
|
else if (getLangOpts().C99)
|
|
diag_id = diag::ext_implicit_function_decl;
|
|
else
|
|
diag_id = diag::warn_implicit_function_decl;
|
|
Diag(Loc, diag_id) << &II;
|
|
|
|
// If we found a prior declaration of this function, don't bother building
|
|
// another one. We've already pushed that one into scope, so there's nothing
|
|
// more to do.
|
|
if (ExternCPrev)
|
|
return ExternCPrev;
|
|
|
|
// Because typo correction is expensive, only do it if the implicit
|
|
// function declaration is going to be treated as an error.
|
|
if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
|
|
TypoCorrection Corrected;
|
|
DeclFilterCCC<FunctionDecl> CCC{};
|
|
if (S && (Corrected =
|
|
CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
|
|
S, nullptr, CCC, CTK_NonError)))
|
|
diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
|
|
/*ErrorRecovery*/false);
|
|
}
|
|
|
|
// Set a Declarator for the implicit definition: int foo();
|
|
const char *Dummy;
|
|
AttributeFactory attrFactory;
|
|
DeclSpec DS(attrFactory);
|
|
unsigned DiagID;
|
|
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
|
|
Context.getPrintingPolicy());
|
|
(void)Error; // Silence warning.
|
|
assert(!Error && "Error setting up implicit decl!");
|
|
SourceLocation NoLoc;
|
|
Declarator D(DS, DeclaratorContext::BlockContext);
|
|
D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
|
|
/*IsAmbiguous=*/false,
|
|
/*LParenLoc=*/NoLoc,
|
|
/*Params=*/nullptr,
|
|
/*NumParams=*/0,
|
|
/*EllipsisLoc=*/NoLoc,
|
|
/*RParenLoc=*/NoLoc,
|
|
/*RefQualifierIsLvalueRef=*/true,
|
|
/*RefQualifierLoc=*/NoLoc,
|
|
/*MutableLoc=*/NoLoc, EST_None,
|
|
/*ESpecRange=*/SourceRange(),
|
|
/*Exceptions=*/nullptr,
|
|
/*ExceptionRanges=*/nullptr,
|
|
/*NumExceptions=*/0,
|
|
/*NoexceptExpr=*/nullptr,
|
|
/*ExceptionSpecTokens=*/nullptr,
|
|
/*DeclsInPrototype=*/None, Loc,
|
|
Loc, D),
|
|
std::move(DS.getAttributes()), SourceLocation());
|
|
D.SetIdentifier(&II, Loc);
|
|
|
|
// Insert this function into the enclosing block scope.
|
|
FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
|
|
FD->setImplicit();
|
|
|
|
AddKnownFunctionAttributes(FD);
|
|
|
|
return FD;
|
|
}
|
|
|
|
/// Adds any function attributes that we know a priori based on
|
|
/// the declaration of this function.
|
|
///
|
|
/// These attributes can apply both to implicitly-declared builtins
|
|
/// (like __builtin___printf_chk) or to library-declared functions
|
|
/// like NSLog or printf.
|
|
///
|
|
/// We need to check for duplicate attributes both here and where user-written
|
|
/// attributes are applied to declarations.
|
|
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
|
|
if (FD->isInvalidDecl())
|
|
return;
|
|
|
|
// If this is a built-in function, map its builtin attributes to
|
|
// actual attributes.
|
|
if (unsigned BuiltinID = FD->getBuiltinID()) {
|
|
// Handle printf-formatting attributes.
|
|
unsigned FormatIdx;
|
|
bool HasVAListArg;
|
|
if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
|
|
if (!FD->hasAttr<FormatAttr>()) {
|
|
const char *fmt = "printf";
|
|
unsigned int NumParams = FD->getNumParams();
|
|
if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
|
|
FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
|
|
fmt = "NSString";
|
|
FD->addAttr(FormatAttr::CreateImplicit(Context,
|
|
&Context.Idents.get(fmt),
|
|
FormatIdx+1,
|
|
HasVAListArg ? 0 : FormatIdx+2,
|
|
FD->getLocation()));
|
|
}
|
|
}
|
|
if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
|
|
HasVAListArg)) {
|
|
if (!FD->hasAttr<FormatAttr>())
|
|
FD->addAttr(FormatAttr::CreateImplicit(Context,
|
|
&Context.Idents.get("scanf"),
|
|
FormatIdx+1,
|
|
HasVAListArg ? 0 : FormatIdx+2,
|
|
FD->getLocation()));
|
|
}
|
|
|
|
// Handle automatically recognized callbacks.
|
|
SmallVector<int, 4> Encoding;
|
|
if (!FD->hasAttr<CallbackAttr>() &&
|
|
Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
|
|
FD->addAttr(CallbackAttr::CreateImplicit(
|
|
Context, Encoding.data(), Encoding.size(), FD->getLocation()));
|
|
|
|
// Mark const if we don't care about errno and that is the only thing
|
|
// preventing the function from being const. This allows IRgen to use LLVM
|
|
// intrinsics for such functions.
|
|
if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
|
|
Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
|
|
FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
|
|
|
|
// We make "fma" on some platforms const because we know it does not set
|
|
// errno in those environments even though it could set errno based on the
|
|
// C standard.
|
|
const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
|
|
if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
|
|
!FD->hasAttr<ConstAttr>()) {
|
|
switch (BuiltinID) {
|
|
case Builtin::BI__builtin_fma:
|
|
case Builtin::BI__builtin_fmaf:
|
|
case Builtin::BI__builtin_fmal:
|
|
case Builtin::BIfma:
|
|
case Builtin::BIfmaf:
|
|
case Builtin::BIfmal:
|
|
FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
|
|
!FD->hasAttr<ReturnsTwiceAttr>())
|
|
FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
|
|
FD->getLocation()));
|
|
if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
|
|
FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
|
|
if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
|
|
FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
|
|
if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
|
|
FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
|
|
if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
|
|
!FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
|
|
// Add the appropriate attribute, depending on the CUDA compilation mode
|
|
// and which target the builtin belongs to. For example, during host
|
|
// compilation, aux builtins are __device__, while the rest are __host__.
|
|
if (getLangOpts().CUDAIsDevice !=
|
|
Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
|
|
FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
|
|
else
|
|
FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
|
|
}
|
|
}
|
|
|
|
// If C++ exceptions are enabled but we are told extern "C" functions cannot
|
|
// throw, add an implicit nothrow attribute to any extern "C" function we come
|
|
// across.
|
|
if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
|
|
FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
|
|
const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
|
|
if (!FPT || FPT->getExceptionSpecType() == EST_None)
|
|
FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
|
|
}
|
|
|
|
IdentifierInfo *Name = FD->getIdentifier();
|
|
if (!Name)
|
|
return;
|
|
if ((!getLangOpts().CPlusPlus &&
|
|
FD->getDeclContext()->isTranslationUnit()) ||
|
|
(isa<LinkageSpecDecl>(FD->getDeclContext()) &&
|
|
cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
|
|
LinkageSpecDecl::lang_c)) {
|
|
// Okay: this could be a libc/libm/Objective-C function we know
|
|
// about.
|
|
} else
|
|
return;
|
|
|
|
if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
|
|
// FIXME: asprintf and vasprintf aren't C99 functions. Should they be
|
|
// target-specific builtins, perhaps?
|
|
if (!FD->hasAttr<FormatAttr>())
|
|
FD->addAttr(FormatAttr::CreateImplicit(Context,
|
|
&Context.Idents.get("printf"), 2,
|
|
Name->isStr("vasprintf") ? 0 : 3,
|
|
FD->getLocation()));
|
|
}
|
|
|
|
if (Name->isStr("__CFStringMakeConstantString")) {
|
|
// We already have a __builtin___CFStringMakeConstantString,
|
|
// but builds that use -fno-constant-cfstrings don't go through that.
|
|
if (!FD->hasAttr<FormatArgAttr>())
|
|
FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
|
|
FD->getLocation()));
|
|
}
|
|
}
|
|
|
|
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
|
|
TypeSourceInfo *TInfo) {
|
|
assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
if (!TInfo) {
|
|
assert(D.isInvalidType() && "no declarator info for valid type");
|
|
TInfo = Context.getTrivialTypeSourceInfo(T);
|
|
}
|
|
|
|
// Scope manipulation handled by caller.
|
|
TypedefDecl *NewTD =
|
|
TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
|
|
D.getIdentifierLoc(), D.getIdentifier(), TInfo);
|
|
|
|
// Bail out immediately if we have an invalid declaration.
|
|
if (D.isInvalidType()) {
|
|
NewTD->setInvalidDecl();
|
|
return NewTD;
|
|
}
|
|
|
|
if (D.getDeclSpec().isModulePrivateSpecified()) {
|
|
if (CurContext->isFunctionOrMethod())
|
|
Diag(NewTD->getLocation(), diag::err_module_private_local)
|
|
<< 2 << NewTD->getDeclName()
|
|
<< SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
|
|
else
|
|
NewTD->setModulePrivate();
|
|
}
|
|
|
|
// C++ [dcl.typedef]p8:
|
|
// If the typedef declaration defines an unnamed class (or
|
|
// enum), the first typedef-name declared by the declaration
|
|
// to be that class type (or enum type) is used to denote the
|
|
// class type (or enum type) for linkage purposes only.
|
|
// We need to check whether the type was declared in the declaration.
|
|
switch (D.getDeclSpec().getTypeSpecType()) {
|
|
case TST_enum:
|
|
case TST_struct:
|
|
case TST_interface:
|
|
case TST_union:
|
|
case TST_class: {
|
|
TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
|
|
setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NewTD;
|
|
}
|
|
|
|
/// Check that this is a valid underlying type for an enum declaration.
|
|
bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
|
|
SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
|
|
QualType T = TI->getType();
|
|
|
|
if (T->isDependentType())
|
|
return false;
|
|
|
|
if (const BuiltinType *BT = T->getAs<BuiltinType>())
|
|
if (BT->isInteger())
|
|
return false;
|
|
|
|
Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
|
|
return true;
|
|
}
|
|
|
|
/// Check whether this is a valid redeclaration of a previous enumeration.
|
|
/// \return true if the redeclaration was invalid.
|
|
bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
|
|
QualType EnumUnderlyingTy, bool IsFixed,
|
|
const EnumDecl *Prev) {
|
|
if (IsScoped != Prev->isScoped()) {
|
|
Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
|
|
<< Prev->isScoped();
|
|
Diag(Prev->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
if (IsFixed && Prev->isFixed()) {
|
|
if (!EnumUnderlyingTy->isDependentType() &&
|
|
!Prev->getIntegerType()->isDependentType() &&
|
|
!Context.hasSameUnqualifiedType(EnumUnderlyingTy,
|
|
Prev->getIntegerType())) {
|
|
// TODO: Highlight the underlying type of the redeclaration.
|
|
Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
|
|
<< EnumUnderlyingTy << Prev->getIntegerType();
|
|
Diag(Prev->getLocation(), diag::note_previous_declaration)
|
|
<< Prev->getIntegerTypeRange();
|
|
return true;
|
|
}
|
|
} else if (IsFixed != Prev->isFixed()) {
|
|
Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
|
|
<< Prev->isFixed();
|
|
Diag(Prev->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Get diagnostic %select index for tag kind for
|
|
/// redeclaration diagnostic message.
|
|
/// WARNING: Indexes apply to particular diagnostics only!
|
|
///
|
|
/// \returns diagnostic %select index.
|
|
static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
|
|
switch (Tag) {
|
|
case TTK_Struct: return 0;
|
|
case TTK_Interface: return 1;
|
|
case TTK_Class: return 2;
|
|
default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
|
|
}
|
|
}
|
|
|
|
/// Determine if tag kind is a class-key compatible with
|
|
/// class for redeclaration (class, struct, or __interface).
|
|
///
|
|
/// \returns true iff the tag kind is compatible.
|
|
static bool isClassCompatTagKind(TagTypeKind Tag)
|
|
{
|
|
return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
|
|
}
|
|
|
|
Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
|
|
TagTypeKind TTK) {
|
|
if (isa<TypedefDecl>(PrevDecl))
|
|
return NTK_Typedef;
|
|
else if (isa<TypeAliasDecl>(PrevDecl))
|
|
return NTK_TypeAlias;
|
|
else if (isa<ClassTemplateDecl>(PrevDecl))
|
|
return NTK_Template;
|
|
else if (isa<TypeAliasTemplateDecl>(PrevDecl))
|
|
return NTK_TypeAliasTemplate;
|
|
else if (isa<TemplateTemplateParmDecl>(PrevDecl))
|
|
return NTK_TemplateTemplateArgument;
|
|
switch (TTK) {
|
|
case TTK_Struct:
|
|
case TTK_Interface:
|
|
case TTK_Class:
|
|
return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
|
|
case TTK_Union:
|
|
return NTK_NonUnion;
|
|
case TTK_Enum:
|
|
return NTK_NonEnum;
|
|
}
|
|
llvm_unreachable("invalid TTK");
|
|
}
|
|
|
|
/// Determine whether a tag with a given kind is acceptable
|
|
/// as a redeclaration of the given tag declaration.
|
|
///
|
|
/// \returns true if the new tag kind is acceptable, false otherwise.
|
|
bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
|
|
TagTypeKind NewTag, bool isDefinition,
|
|
SourceLocation NewTagLoc,
|
|
const IdentifierInfo *Name) {
|
|
// C++ [dcl.type.elab]p3:
|
|
// The class-key or enum keyword present in the
|
|
// elaborated-type-specifier shall agree in kind with the
|
|
// declaration to which the name in the elaborated-type-specifier
|
|
// refers. This rule also applies to the form of
|
|
// elaborated-type-specifier that declares a class-name or
|
|
// friend class since it can be construed as referring to the
|
|
// definition of the class. Thus, in any
|
|
// elaborated-type-specifier, the enum keyword shall be used to
|
|
// refer to an enumeration (7.2), the union class-key shall be
|
|
// used to refer to a union (clause 9), and either the class or
|
|
// struct class-key shall be used to refer to a class (clause 9)
|
|
// declared using the class or struct class-key.
|
|
TagTypeKind OldTag = Previous->getTagKind();
|
|
if (OldTag != NewTag &&
|
|
!(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
|
|
return false;
|
|
|
|
// Tags are compatible, but we might still want to warn on mismatched tags.
|
|
// Non-class tags can't be mismatched at this point.
|
|
if (!isClassCompatTagKind(NewTag))
|
|
return true;
|
|
|
|
// Declarations for which -Wmismatched-tags is disabled are entirely ignored
|
|
// by our warning analysis. We don't want to warn about mismatches with (eg)
|
|
// declarations in system headers that are designed to be specialized, but if
|
|
// a user asks us to warn, we should warn if their code contains mismatched
|
|
// declarations.
|
|
auto IsIgnoredLoc = [&](SourceLocation Loc) {
|
|
return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
|
|
Loc);
|
|
};
|
|
if (IsIgnoredLoc(NewTagLoc))
|
|
return true;
|
|
|
|
auto IsIgnored = [&](const TagDecl *Tag) {
|
|
return IsIgnoredLoc(Tag->getLocation());
|
|
};
|
|
while (IsIgnored(Previous)) {
|
|
Previous = Previous->getPreviousDecl();
|
|
if (!Previous)
|
|
return true;
|
|
OldTag = Previous->getTagKind();
|
|
}
|
|
|
|
bool isTemplate = false;
|
|
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
|
|
isTemplate = Record->getDescribedClassTemplate();
|
|
|
|
if (inTemplateInstantiation()) {
|
|
if (OldTag != NewTag) {
|
|
// In a template instantiation, do not offer fix-its for tag mismatches
|
|
// since they usually mess up the template instead of fixing the problem.
|
|
Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
|
|
<< getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
|
|
<< getRedeclDiagFromTagKind(OldTag);
|
|
// FIXME: Note previous location?
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (isDefinition) {
|
|
// On definitions, check all previous tags and issue a fix-it for each
|
|
// one that doesn't match the current tag.
|
|
if (Previous->getDefinition()) {
|
|
// Don't suggest fix-its for redefinitions.
|
|
return true;
|
|
}
|
|
|
|
bool previousMismatch = false;
|
|
for (const TagDecl *I : Previous->redecls()) {
|
|
if (I->getTagKind() != NewTag) {
|
|
// Ignore previous declarations for which the warning was disabled.
|
|
if (IsIgnored(I))
|
|
continue;
|
|
|
|
if (!previousMismatch) {
|
|
previousMismatch = true;
|
|
Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
|
|
<< getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
|
|
<< getRedeclDiagFromTagKind(I->getTagKind());
|
|
}
|
|
Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
|
|
<< getRedeclDiagFromTagKind(NewTag)
|
|
<< FixItHint::CreateReplacement(I->getInnerLocStart(),
|
|
TypeWithKeyword::getTagTypeKindName(NewTag));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Identify the prevailing tag kind: this is the kind of the definition (if
|
|
// there is a non-ignored definition), or otherwise the kind of the prior
|
|
// (non-ignored) declaration.
|
|
const TagDecl *PrevDef = Previous->getDefinition();
|
|
if (PrevDef && IsIgnored(PrevDef))
|
|
PrevDef = nullptr;
|
|
const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
|
|
if (Redecl->getTagKind() != NewTag) {
|
|
Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
|
|
<< getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
|
|
<< getRedeclDiagFromTagKind(OldTag);
|
|
Diag(Redecl->getLocation(), diag::note_previous_use);
|
|
|
|
// If there is a previous definition, suggest a fix-it.
|
|
if (PrevDef) {
|
|
Diag(NewTagLoc, diag::note_struct_class_suggestion)
|
|
<< getRedeclDiagFromTagKind(Redecl->getTagKind())
|
|
<< FixItHint::CreateReplacement(SourceRange(NewTagLoc),
|
|
TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
|
|
/// from an outer enclosing namespace or file scope inside a friend declaration.
|
|
/// This should provide the commented out code in the following snippet:
|
|
/// namespace N {
|
|
/// struct X;
|
|
/// namespace M {
|
|
/// struct Y { friend struct /*N::*/ X; };
|
|
/// }
|
|
/// }
|
|
static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
|
|
SourceLocation NameLoc) {
|
|
// While the decl is in a namespace, do repeated lookup of that name and see
|
|
// if we get the same namespace back. If we do not, continue until
|
|
// translation unit scope, at which point we have a fully qualified NNS.
|
|
SmallVector<IdentifierInfo *, 4> Namespaces;
|
|
DeclContext *DC = ND->getDeclContext()->getRedeclContext();
|
|
for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
|
|
// This tag should be declared in a namespace, which can only be enclosed by
|
|
// other namespaces. Bail if there's an anonymous namespace in the chain.
|
|
NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
|
|
if (!Namespace || Namespace->isAnonymousNamespace())
|
|
return FixItHint();
|
|
IdentifierInfo *II = Namespace->getIdentifier();
|
|
Namespaces.push_back(II);
|
|
NamedDecl *Lookup = SemaRef.LookupSingleName(
|
|
S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
|
|
if (Lookup == Namespace)
|
|
break;
|
|
}
|
|
|
|
// Once we have all the namespaces, reverse them to go outermost first, and
|
|
// build an NNS.
|
|
SmallString<64> Insertion;
|
|
llvm::raw_svector_ostream OS(Insertion);
|
|
if (DC->isTranslationUnit())
|
|
OS << "::";
|
|
std::reverse(Namespaces.begin(), Namespaces.end());
|
|
for (auto *II : Namespaces)
|
|
OS << II->getName() << "::";
|
|
return FixItHint::CreateInsertion(NameLoc, Insertion);
|
|
}
|
|
|
|
/// Determine whether a tag originally declared in context \p OldDC can
|
|
/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
|
|
/// found a declaration in \p OldDC as a previous decl, perhaps through a
|
|
/// using-declaration).
|
|
static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
|
|
DeclContext *NewDC) {
|
|
OldDC = OldDC->getRedeclContext();
|
|
NewDC = NewDC->getRedeclContext();
|
|
|
|
if (OldDC->Equals(NewDC))
|
|
return true;
|
|
|
|
// In MSVC mode, we allow a redeclaration if the contexts are related (either
|
|
// encloses the other).
|
|
if (S.getLangOpts().MSVCCompat &&
|
|
(OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// This is invoked when we see 'struct foo' or 'struct {'. In the
|
|
/// former case, Name will be non-null. In the later case, Name will be null.
|
|
/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
|
|
/// reference/declaration/definition of a tag.
|
|
///
|
|
/// \param IsTypeSpecifier \c true if this is a type-specifier (or
|
|
/// trailing-type-specifier) other than one in an alias-declaration.
|
|
///
|
|
/// \param SkipBody If non-null, will be set to indicate if the caller should
|
|
/// skip the definition of this tag and treat it as if it were a declaration.
|
|
Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
|
|
SourceLocation KWLoc, CXXScopeSpec &SS,
|
|
IdentifierInfo *Name, SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attrs, AccessSpecifier AS,
|
|
SourceLocation ModulePrivateLoc,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
bool &OwnedDecl, bool &IsDependent,
|
|
SourceLocation ScopedEnumKWLoc,
|
|
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
|
|
bool IsTypeSpecifier, bool IsTemplateParamOrArg,
|
|
SkipBodyInfo *SkipBody) {
|
|
// If this is not a definition, it must have a name.
|
|
IdentifierInfo *OrigName = Name;
|
|
assert((Name != nullptr || TUK == TUK_Definition) &&
|
|
"Nameless record must be a definition!");
|
|
assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
|
|
|
|
OwnedDecl = false;
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
bool ScopedEnum = ScopedEnumKWLoc.isValid();
|
|
|
|
// FIXME: Check member specializations more carefully.
|
|
bool isMemberSpecialization = false;
|
|
bool Invalid = false;
|
|
|
|
// We only need to do this matching if we have template parameters
|
|
// or a scope specifier, which also conveniently avoids this work
|
|
// for non-C++ cases.
|
|
if (TemplateParameterLists.size() > 0 ||
|
|
(SS.isNotEmpty() && TUK != TUK_Reference)) {
|
|
if (TemplateParameterList *TemplateParams =
|
|
MatchTemplateParametersToScopeSpecifier(
|
|
KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
|
|
TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
|
|
if (Kind == TTK_Enum) {
|
|
Diag(KWLoc, diag::err_enum_template);
|
|
return nullptr;
|
|
}
|
|
|
|
if (TemplateParams->size() > 0) {
|
|
// This is a declaration or definition of a class template (which may
|
|
// be a member of another template).
|
|
|
|
if (Invalid)
|
|
return nullptr;
|
|
|
|
OwnedDecl = false;
|
|
DeclResult Result = CheckClassTemplate(
|
|
S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
|
|
AS, ModulePrivateLoc,
|
|
/*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
|
|
TemplateParameterLists.data(), SkipBody);
|
|
return Result.get();
|
|
} else {
|
|
// The "template<>" header is extraneous.
|
|
Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
|
|
<< TypeWithKeyword::getTagTypeKindName(Kind) << Name;
|
|
isMemberSpecialization = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Figure out the underlying type if this a enum declaration. We need to do
|
|
// this early, because it's needed to detect if this is an incompatible
|
|
// redeclaration.
|
|
llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
|
|
bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
|
|
|
|
if (Kind == TTK_Enum) {
|
|
if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
|
|
// No underlying type explicitly specified, or we failed to parse the
|
|
// type, default to int.
|
|
EnumUnderlying = Context.IntTy.getTypePtr();
|
|
} else if (UnderlyingType.get()) {
|
|
// C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
|
|
// integral type; any cv-qualification is ignored.
|
|
TypeSourceInfo *TI = nullptr;
|
|
GetTypeFromParser(UnderlyingType.get(), &TI);
|
|
EnumUnderlying = TI;
|
|
|
|
if (CheckEnumUnderlyingType(TI))
|
|
// Recover by falling back to int.
|
|
EnumUnderlying = Context.IntTy.getTypePtr();
|
|
|
|
if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
|
|
UPPC_FixedUnderlyingType))
|
|
EnumUnderlying = Context.IntTy.getTypePtr();
|
|
|
|
} else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
// For MSVC ABI compatibility, unfixed enums must use an underlying type
|
|
// of 'int'. However, if this is an unfixed forward declaration, don't set
|
|
// the underlying type unless the user enables -fms-compatibility. This
|
|
// makes unfixed forward declared enums incomplete and is more conforming.
|
|
if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
|
|
EnumUnderlying = Context.IntTy.getTypePtr();
|
|
}
|
|
}
|
|
|
|
DeclContext *SearchDC = CurContext;
|
|
DeclContext *DC = CurContext;
|
|
bool isStdBadAlloc = false;
|
|
bool isStdAlignValT = false;
|
|
|
|
RedeclarationKind Redecl = forRedeclarationInCurContext();
|
|
if (TUK == TUK_Friend || TUK == TUK_Reference)
|
|
Redecl = NotForRedeclaration;
|
|
|
|
/// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
|
|
/// implemented asks for structural equivalence checking, the returned decl
|
|
/// here is passed back to the parser, allowing the tag body to be parsed.
|
|
auto createTagFromNewDecl = [&]() -> TagDecl * {
|
|
assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
|
|
// If there is an identifier, use the location of the identifier as the
|
|
// location of the decl, otherwise use the location of the struct/union
|
|
// keyword.
|
|
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
|
|
TagDecl *New = nullptr;
|
|
|
|
if (Kind == TTK_Enum) {
|
|
New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
|
|
ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
|
|
// If this is an undefined enum, bail.
|
|
if (TUK != TUK_Definition && !Invalid)
|
|
return nullptr;
|
|
if (EnumUnderlying) {
|
|
EnumDecl *ED = cast<EnumDecl>(New);
|
|
if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
|
|
ED->setIntegerTypeSourceInfo(TI);
|
|
else
|
|
ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
|
|
ED->setPromotionType(ED->getIntegerType());
|
|
}
|
|
} else { // struct/union
|
|
New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
|
|
nullptr);
|
|
}
|
|
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
|
|
// Add alignment attributes if necessary; these attributes are checked
|
|
// when the ASTContext lays out the structure.
|
|
//
|
|
// It is important for implementing the correct semantics that this
|
|
// happen here (in ActOnTag). The #pragma pack stack is
|
|
// maintained as a result of parser callbacks which can occur at
|
|
// many points during the parsing of a struct declaration (because
|
|
// the #pragma tokens are effectively skipped over during the
|
|
// parsing of the struct).
|
|
if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
|
|
AddAlignmentAttributesForRecord(RD);
|
|
AddMsStructLayoutForRecord(RD);
|
|
}
|
|
}
|
|
New->setLexicalDeclContext(CurContext);
|
|
return New;
|
|
};
|
|
|
|
LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
|
|
if (Name && SS.isNotEmpty()) {
|
|
// We have a nested-name tag ('struct foo::bar').
|
|
|
|
// Check for invalid 'foo::'.
|
|
if (SS.isInvalid()) {
|
|
Name = nullptr;
|
|
goto CreateNewDecl;
|
|
}
|
|
|
|
// If this is a friend or a reference to a class in a dependent
|
|
// context, don't try to make a decl for it.
|
|
if (TUK == TUK_Friend || TUK == TUK_Reference) {
|
|
DC = computeDeclContext(SS, false);
|
|
if (!DC) {
|
|
IsDependent = true;
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
DC = computeDeclContext(SS, true);
|
|
if (!DC) {
|
|
Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
|
|
<< SS.getRange();
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (RequireCompleteDeclContext(SS, DC))
|
|
return nullptr;
|
|
|
|
SearchDC = DC;
|
|
// Look-up name inside 'foo::'.
|
|
LookupQualifiedName(Previous, DC);
|
|
|
|
if (Previous.isAmbiguous())
|
|
return nullptr;
|
|
|
|
if (Previous.empty()) {
|
|
// Name lookup did not find anything. However, if the
|
|
// nested-name-specifier refers to the current instantiation,
|
|
// and that current instantiation has any dependent base
|
|
// classes, we might find something at instantiation time: treat
|
|
// this as a dependent elaborated-type-specifier.
|
|
// But this only makes any sense for reference-like lookups.
|
|
if (Previous.wasNotFoundInCurrentInstantiation() &&
|
|
(TUK == TUK_Reference || TUK == TUK_Friend)) {
|
|
IsDependent = true;
|
|
return nullptr;
|
|
}
|
|
|
|
// A tag 'foo::bar' must already exist.
|
|
Diag(NameLoc, diag::err_not_tag_in_scope)
|
|
<< Kind << Name << DC << SS.getRange();
|
|
Name = nullptr;
|
|
Invalid = true;
|
|
goto CreateNewDecl;
|
|
}
|
|
} else if (Name) {
|
|
// C++14 [class.mem]p14:
|
|
// If T is the name of a class, then each of the following shall have a
|
|
// name different from T:
|
|
// -- every member of class T that is itself a type
|
|
if (TUK != TUK_Reference && TUK != TUK_Friend &&
|
|
DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
|
|
return nullptr;
|
|
|
|
// If this is a named struct, check to see if there was a previous forward
|
|
// declaration or definition.
|
|
// FIXME: We're looking into outer scopes here, even when we
|
|
// shouldn't be. Doing so can result in ambiguities that we
|
|
// shouldn't be diagnosing.
|
|
LookupName(Previous, S);
|
|
|
|
// When declaring or defining a tag, ignore ambiguities introduced
|
|
// by types using'ed into this scope.
|
|
if (Previous.isAmbiguous() &&
|
|
(TUK == TUK_Definition || TUK == TUK_Declaration)) {
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *ND = F.next();
|
|
if (!ND->getDeclContext()->getRedeclContext()->Equals(
|
|
SearchDC->getRedeclContext()))
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
}
|
|
|
|
// C++11 [namespace.memdef]p3:
|
|
// If the name in a friend declaration is neither qualified nor
|
|
// a template-id and the declaration is a function or an
|
|
// elaborated-type-specifier, the lookup to determine whether
|
|
// the entity has been previously declared shall not consider
|
|
// any scopes outside the innermost enclosing namespace.
|
|
//
|
|
// MSVC doesn't implement the above rule for types, so a friend tag
|
|
// declaration may be a redeclaration of a type declared in an enclosing
|
|
// scope. They do implement this rule for friend functions.
|
|
//
|
|
// Does it matter that this should be by scope instead of by
|
|
// semantic context?
|
|
if (!Previous.empty() && TUK == TUK_Friend) {
|
|
DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
bool FriendSawTagOutsideEnclosingNamespace = false;
|
|
while (F.hasNext()) {
|
|
NamedDecl *ND = F.next();
|
|
DeclContext *DC = ND->getDeclContext()->getRedeclContext();
|
|
if (DC->isFileContext() &&
|
|
!EnclosingNS->Encloses(ND->getDeclContext())) {
|
|
if (getLangOpts().MSVCCompat)
|
|
FriendSawTagOutsideEnclosingNamespace = true;
|
|
else
|
|
F.erase();
|
|
}
|
|
}
|
|
F.done();
|
|
|
|
// Diagnose this MSVC extension in the easy case where lookup would have
|
|
// unambiguously found something outside the enclosing namespace.
|
|
if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
|
|
NamedDecl *ND = Previous.getFoundDecl();
|
|
Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
|
|
<< createFriendTagNNSFixIt(*this, ND, S, NameLoc);
|
|
}
|
|
}
|
|
|
|
// Note: there used to be some attempt at recovery here.
|
|
if (Previous.isAmbiguous())
|
|
return nullptr;
|
|
|
|
if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
|
|
// FIXME: This makes sure that we ignore the contexts associated
|
|
// with C structs, unions, and enums when looking for a matching
|
|
// tag declaration or definition. See the similar lookup tweak
|
|
// in Sema::LookupName; is there a better way to deal with this?
|
|
while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
|
|
SearchDC = SearchDC->getParent();
|
|
}
|
|
}
|
|
|
|
if (Previous.isSingleResult() &&
|
|
Previous.getFoundDecl()->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
|
|
// Just pretend that we didn't see the previous declaration.
|
|
Previous.clear();
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
|
|
DC->Equals(getStdNamespace())) {
|
|
if (Name->isStr("bad_alloc")) {
|
|
// This is a declaration of or a reference to "std::bad_alloc".
|
|
isStdBadAlloc = true;
|
|
|
|
// If std::bad_alloc has been implicitly declared (but made invisible to
|
|
// name lookup), fill in this implicit declaration as the previous
|
|
// declaration, so that the declarations get chained appropriately.
|
|
if (Previous.empty() && StdBadAlloc)
|
|
Previous.addDecl(getStdBadAlloc());
|
|
} else if (Name->isStr("align_val_t")) {
|
|
isStdAlignValT = true;
|
|
if (Previous.empty() && StdAlignValT)
|
|
Previous.addDecl(getStdAlignValT());
|
|
}
|
|
}
|
|
|
|
// If we didn't find a previous declaration, and this is a reference
|
|
// (or friend reference), move to the correct scope. In C++, we
|
|
// also need to do a redeclaration lookup there, just in case
|
|
// there's a shadow friend decl.
|
|
if (Name && Previous.empty() &&
|
|
(TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
|
|
if (Invalid) goto CreateNewDecl;
|
|
assert(SS.isEmpty());
|
|
|
|
if (TUK == TUK_Reference || IsTemplateParamOrArg) {
|
|
// C++ [basic.scope.pdecl]p5:
|
|
// -- for an elaborated-type-specifier of the form
|
|
//
|
|
// class-key identifier
|
|
//
|
|
// if the elaborated-type-specifier is used in the
|
|
// decl-specifier-seq or parameter-declaration-clause of a
|
|
// function defined in namespace scope, the identifier is
|
|
// declared as a class-name in the namespace that contains
|
|
// the declaration; otherwise, except as a friend
|
|
// declaration, the identifier is declared in the smallest
|
|
// non-class, non-function-prototype scope that contains the
|
|
// declaration.
|
|
//
|
|
// C99 6.7.2.3p8 has a similar (but not identical!) provision for
|
|
// C structs and unions.
|
|
//
|
|
// It is an error in C++ to declare (rather than define) an enum
|
|
// type, including via an elaborated type specifier. We'll
|
|
// diagnose that later; for now, declare the enum in the same
|
|
// scope as we would have picked for any other tag type.
|
|
//
|
|
// GNU C also supports this behavior as part of its incomplete
|
|
// enum types extension, while GNU C++ does not.
|
|
//
|
|
// Find the context where we'll be declaring the tag.
|
|
// FIXME: We would like to maintain the current DeclContext as the
|
|
// lexical context,
|
|
SearchDC = getTagInjectionContext(SearchDC);
|
|
|
|
// Find the scope where we'll be declaring the tag.
|
|
S = getTagInjectionScope(S, getLangOpts());
|
|
} else {
|
|
assert(TUK == TUK_Friend);
|
|
// C++ [namespace.memdef]p3:
|
|
// If a friend declaration in a non-local class first declares a
|
|
// class or function, the friend class or function is a member of
|
|
// the innermost enclosing namespace.
|
|
SearchDC = SearchDC->getEnclosingNamespaceContext();
|
|
}
|
|
|
|
// In C++, we need to do a redeclaration lookup to properly
|
|
// diagnose some problems.
|
|
// FIXME: redeclaration lookup is also used (with and without C++) to find a
|
|
// hidden declaration so that we don't get ambiguity errors when using a
|
|
// type declared by an elaborated-type-specifier. In C that is not correct
|
|
// and we should instead merge compatible types found by lookup.
|
|
if (getLangOpts().CPlusPlus) {
|
|
Previous.setRedeclarationKind(forRedeclarationInCurContext());
|
|
LookupQualifiedName(Previous, SearchDC);
|
|
} else {
|
|
Previous.setRedeclarationKind(forRedeclarationInCurContext());
|
|
LookupName(Previous, S);
|
|
}
|
|
}
|
|
|
|
// If we have a known previous declaration to use, then use it.
|
|
if (Previous.empty() && SkipBody && SkipBody->Previous)
|
|
Previous.addDecl(SkipBody->Previous);
|
|
|
|
if (!Previous.empty()) {
|
|
NamedDecl *PrevDecl = Previous.getFoundDecl();
|
|
NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
|
|
|
|
// It's okay to have a tag decl in the same scope as a typedef
|
|
// which hides a tag decl in the same scope. Finding this
|
|
// insanity with a redeclaration lookup can only actually happen
|
|
// in C++.
|
|
//
|
|
// This is also okay for elaborated-type-specifiers, which is
|
|
// technically forbidden by the current standard but which is
|
|
// okay according to the likely resolution of an open issue;
|
|
// see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
|
|
if (getLangOpts().CPlusPlus) {
|
|
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
|
|
if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
|
|
TagDecl *Tag = TT->getDecl();
|
|
if (Tag->getDeclName() == Name &&
|
|
Tag->getDeclContext()->getRedeclContext()
|
|
->Equals(TD->getDeclContext()->getRedeclContext())) {
|
|
PrevDecl = Tag;
|
|
Previous.clear();
|
|
Previous.addDecl(Tag);
|
|
Previous.resolveKind();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a redeclaration of a using shadow declaration, it must
|
|
// declare a tag in the same context. In MSVC mode, we allow a
|
|
// redefinition if either context is within the other.
|
|
if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
|
|
auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
|
|
if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
|
|
isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
|
|
!(OldTag && isAcceptableTagRedeclContext(
|
|
*this, OldTag->getDeclContext(), SearchDC))) {
|
|
Diag(KWLoc, diag::err_using_decl_conflict_reverse);
|
|
Diag(Shadow->getTargetDecl()->getLocation(),
|
|
diag::note_using_decl_target);
|
|
Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
|
|
<< 0;
|
|
// Recover by ignoring the old declaration.
|
|
Previous.clear();
|
|
goto CreateNewDecl;
|
|
}
|
|
}
|
|
|
|
if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
|
|
// If this is a use of a previous tag, or if the tag is already declared
|
|
// in the same scope (so that the definition/declaration completes or
|
|
// rementions the tag), reuse the decl.
|
|
if (TUK == TUK_Reference || TUK == TUK_Friend ||
|
|
isDeclInScope(DirectPrevDecl, SearchDC, S,
|
|
SS.isNotEmpty() || isMemberSpecialization)) {
|
|
// Make sure that this wasn't declared as an enum and now used as a
|
|
// struct or something similar.
|
|
if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
|
|
TUK == TUK_Definition, KWLoc,
|
|
Name)) {
|
|
bool SafeToContinue
|
|
= (PrevTagDecl->getTagKind() != TTK_Enum &&
|
|
Kind != TTK_Enum);
|
|
if (SafeToContinue)
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< Name
|
|
<< FixItHint::CreateReplacement(SourceRange(KWLoc),
|
|
PrevTagDecl->getKindName());
|
|
else
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
|
|
Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
|
|
|
|
if (SafeToContinue)
|
|
Kind = PrevTagDecl->getTagKind();
|
|
else {
|
|
// Recover by making this an anonymous redefinition.
|
|
Name = nullptr;
|
|
Previous.clear();
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
|
|
const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
|
|
|
|
// If this is an elaborated-type-specifier for a scoped enumeration,
|
|
// the 'class' keyword is not necessary and not permitted.
|
|
if (TUK == TUK_Reference || TUK == TUK_Friend) {
|
|
if (ScopedEnum)
|
|
Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
|
|
<< PrevEnum->isScoped()
|
|
<< FixItHint::CreateRemoval(ScopedEnumKWLoc);
|
|
return PrevTagDecl;
|
|
}
|
|
|
|
QualType EnumUnderlyingTy;
|
|
if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
|
|
EnumUnderlyingTy = TI->getType().getUnqualifiedType();
|
|
else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
|
|
EnumUnderlyingTy = QualType(T, 0);
|
|
|
|
// All conflicts with previous declarations are recovered by
|
|
// returning the previous declaration, unless this is a definition,
|
|
// in which case we want the caller to bail out.
|
|
if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
|
|
ScopedEnum, EnumUnderlyingTy,
|
|
IsFixed, PrevEnum))
|
|
return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
|
|
}
|
|
|
|
// C++11 [class.mem]p1:
|
|
// A member shall not be declared twice in the member-specification,
|
|
// except that a nested class or member class template can be declared
|
|
// and then later defined.
|
|
if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
|
|
S->isDeclScope(PrevDecl)) {
|
|
Diag(NameLoc, diag::ext_member_redeclared);
|
|
Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
|
|
if (!Invalid) {
|
|
// If this is a use, just return the declaration we found, unless
|
|
// we have attributes.
|
|
if (TUK == TUK_Reference || TUK == TUK_Friend) {
|
|
if (!Attrs.empty()) {
|
|
// FIXME: Diagnose these attributes. For now, we create a new
|
|
// declaration to hold them.
|
|
} else if (TUK == TUK_Reference &&
|
|
(PrevTagDecl->getFriendObjectKind() ==
|
|
Decl::FOK_Undeclared ||
|
|
PrevDecl->getOwningModule() != getCurrentModule()) &&
|
|
SS.isEmpty()) {
|
|
// This declaration is a reference to an existing entity, but
|
|
// has different visibility from that entity: it either makes
|
|
// a friend visible or it makes a type visible in a new module.
|
|
// In either case, create a new declaration. We only do this if
|
|
// the declaration would have meant the same thing if no prior
|
|
// declaration were found, that is, if it was found in the same
|
|
// scope where we would have injected a declaration.
|
|
if (!getTagInjectionContext(CurContext)->getRedeclContext()
|
|
->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
|
|
return PrevTagDecl;
|
|
// This is in the injected scope, create a new declaration in
|
|
// that scope.
|
|
S = getTagInjectionScope(S, getLangOpts());
|
|
} else {
|
|
return PrevTagDecl;
|
|
}
|
|
}
|
|
|
|
// Diagnose attempts to redefine a tag.
|
|
if (TUK == TUK_Definition) {
|
|
if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
|
|
// If we're defining a specialization and the previous definition
|
|
// is from an implicit instantiation, don't emit an error
|
|
// here; we'll catch this in the general case below.
|
|
bool IsExplicitSpecializationAfterInstantiation = false;
|
|
if (isMemberSpecialization) {
|
|
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
|
|
IsExplicitSpecializationAfterInstantiation =
|
|
RD->getTemplateSpecializationKind() !=
|
|
TSK_ExplicitSpecialization;
|
|
else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
|
|
IsExplicitSpecializationAfterInstantiation =
|
|
ED->getTemplateSpecializationKind() !=
|
|
TSK_ExplicitSpecialization;
|
|
}
|
|
|
|
// Note that clang allows ODR-like semantics for ObjC/C, i.e., do
|
|
// not keep more that one definition around (merge them). However,
|
|
// ensure the decl passes the structural compatibility check in
|
|
// C11 6.2.7/1 (or 6.1.2.6/1 in C89).
|
|
NamedDecl *Hidden = nullptr;
|
|
if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
|
|
// There is a definition of this tag, but it is not visible. We
|
|
// explicitly make use of C++'s one definition rule here, and
|
|
// assume that this definition is identical to the hidden one
|
|
// we already have. Make the existing definition visible and
|
|
// use it in place of this one.
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// Postpone making the old definition visible until after we
|
|
// complete parsing the new one and do the structural
|
|
// comparison.
|
|
SkipBody->CheckSameAsPrevious = true;
|
|
SkipBody->New = createTagFromNewDecl();
|
|
SkipBody->Previous = Def;
|
|
return Def;
|
|
} else {
|
|
SkipBody->ShouldSkip = true;
|
|
SkipBody->Previous = Def;
|
|
makeMergedDefinitionVisible(Hidden);
|
|
// Carry on and handle it like a normal definition. We'll
|
|
// skip starting the definitiion later.
|
|
}
|
|
} else if (!IsExplicitSpecializationAfterInstantiation) {
|
|
// A redeclaration in function prototype scope in C isn't
|
|
// visible elsewhere, so merely issue a warning.
|
|
if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
|
|
Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
|
|
else
|
|
Diag(NameLoc, diag::err_redefinition) << Name;
|
|
notePreviousDefinition(Def,
|
|
NameLoc.isValid() ? NameLoc : KWLoc);
|
|
// If this is a redefinition, recover by making this
|
|
// struct be anonymous, which will make any later
|
|
// references get the previous definition.
|
|
Name = nullptr;
|
|
Previous.clear();
|
|
Invalid = true;
|
|
}
|
|
} else {
|
|
// If the type is currently being defined, complain
|
|
// about a nested redefinition.
|
|
auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
|
|
if (TD->isBeingDefined()) {
|
|
Diag(NameLoc, diag::err_nested_redefinition) << Name;
|
|
Diag(PrevTagDecl->getLocation(),
|
|
diag::note_previous_definition);
|
|
Name = nullptr;
|
|
Previous.clear();
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
// Okay, this is definition of a previously declared or referenced
|
|
// tag. We're going to create a new Decl for it.
|
|
}
|
|
|
|
// Okay, we're going to make a redeclaration. If this is some kind
|
|
// of reference, make sure we build the redeclaration in the same DC
|
|
// as the original, and ignore the current access specifier.
|
|
if (TUK == TUK_Friend || TUK == TUK_Reference) {
|
|
SearchDC = PrevTagDecl->getDeclContext();
|
|
AS = AS_none;
|
|
}
|
|
}
|
|
// If we get here we have (another) forward declaration or we
|
|
// have a definition. Just create a new decl.
|
|
|
|
} else {
|
|
// If we get here, this is a definition of a new tag type in a nested
|
|
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a
|
|
// new decl/type. We set PrevDecl to NULL so that the entities
|
|
// have distinct types.
|
|
Previous.clear();
|
|
}
|
|
// If we get here, we're going to create a new Decl. If PrevDecl
|
|
// is non-NULL, it's a definition of the tag declared by
|
|
// PrevDecl. If it's NULL, we have a new definition.
|
|
|
|
// Otherwise, PrevDecl is not a tag, but was found with tag
|
|
// lookup. This is only actually possible in C++, where a few
|
|
// things like templates still live in the tag namespace.
|
|
} else {
|
|
// Use a better diagnostic if an elaborated-type-specifier
|
|
// found the wrong kind of type on the first
|
|
// (non-redeclaration) lookup.
|
|
if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
|
|
!Previous.isForRedeclaration()) {
|
|
NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
|
|
Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
|
|
<< Kind;
|
|
Diag(PrevDecl->getLocation(), diag::note_declared_at);
|
|
Invalid = true;
|
|
|
|
// Otherwise, only diagnose if the declaration is in scope.
|
|
} else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
|
|
SS.isNotEmpty() || isMemberSpecialization)) {
|
|
// do nothing
|
|
|
|
// Diagnose implicit declarations introduced by elaborated types.
|
|
} else if (TUK == TUK_Reference || TUK == TUK_Friend) {
|
|
NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
|
|
Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
|
|
Invalid = true;
|
|
|
|
// Otherwise it's a declaration. Call out a particularly common
|
|
// case here.
|
|
} else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
|
|
unsigned Kind = 0;
|
|
if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
|
|
Diag(NameLoc, diag::err_tag_definition_of_typedef)
|
|
<< Name << Kind << TND->getUnderlyingType();
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
|
|
Invalid = true;
|
|
|
|
// Otherwise, diagnose.
|
|
} else {
|
|
// The tag name clashes with something else in the target scope,
|
|
// issue an error and recover by making this tag be anonymous.
|
|
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
|
|
notePreviousDefinition(PrevDecl, NameLoc);
|
|
Name = nullptr;
|
|
Invalid = true;
|
|
}
|
|
|
|
// The existing declaration isn't relevant to us; we're in a
|
|
// new scope, so clear out the previous declaration.
|
|
Previous.clear();
|
|
}
|
|
}
|
|
|
|
CreateNewDecl:
|
|
|
|
TagDecl *PrevDecl = nullptr;
|
|
if (Previous.isSingleResult())
|
|
PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
|
|
|
|
// If there is an identifier, use the location of the identifier as the
|
|
// location of the decl, otherwise use the location of the struct/union
|
|
// keyword.
|
|
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
|
|
|
|
// Otherwise, create a new declaration. If there is a previous
|
|
// declaration of the same entity, the two will be linked via
|
|
// PrevDecl.
|
|
TagDecl *New;
|
|
|
|
if (Kind == TTK_Enum) {
|
|
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
|
// enum X { A, B, C } D; D should chain to X.
|
|
New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
|
|
cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
|
|
ScopedEnumUsesClassTag, IsFixed);
|
|
|
|
if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
|
|
StdAlignValT = cast<EnumDecl>(New);
|
|
|
|
// If this is an undefined enum, warn.
|
|
if (TUK != TUK_Definition && !Invalid) {
|
|
TagDecl *Def;
|
|
if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
|
|
// C++0x: 7.2p2: opaque-enum-declaration.
|
|
// Conflicts are diagnosed above. Do nothing.
|
|
}
|
|
else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
|
|
Diag(Loc, diag::ext_forward_ref_enum_def)
|
|
<< New;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
} else {
|
|
unsigned DiagID = diag::ext_forward_ref_enum;
|
|
if (getLangOpts().MSVCCompat)
|
|
DiagID = diag::ext_ms_forward_ref_enum;
|
|
else if (getLangOpts().CPlusPlus)
|
|
DiagID = diag::err_forward_ref_enum;
|
|
Diag(Loc, DiagID);
|
|
}
|
|
}
|
|
|
|
if (EnumUnderlying) {
|
|
EnumDecl *ED = cast<EnumDecl>(New);
|
|
if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
|
|
ED->setIntegerTypeSourceInfo(TI);
|
|
else
|
|
ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
|
|
ED->setPromotionType(ED->getIntegerType());
|
|
assert(ED->isComplete() && "enum with type should be complete");
|
|
}
|
|
} else {
|
|
// struct/union/class
|
|
|
|
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
|
// struct X { int A; } D; D should chain to X.
|
|
if (getLangOpts().CPlusPlus) {
|
|
// FIXME: Look for a way to use RecordDecl for simple structs.
|
|
New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
|
|
cast_or_null<CXXRecordDecl>(PrevDecl));
|
|
|
|
if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
|
|
StdBadAlloc = cast<CXXRecordDecl>(New);
|
|
} else
|
|
New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
|
|
cast_or_null<RecordDecl>(PrevDecl));
|
|
}
|
|
|
|
// C++11 [dcl.type]p3:
|
|
// A type-specifier-seq shall not define a class or enumeration [...].
|
|
if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
|
|
TUK == TUK_Definition) {
|
|
Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
|
|
<< Context.getTagDeclType(New);
|
|
Invalid = true;
|
|
}
|
|
|
|
if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
|
|
DC->getDeclKind() == Decl::Enum) {
|
|
Diag(New->getLocation(), diag::err_type_defined_in_enum)
|
|
<< Context.getTagDeclType(New);
|
|
Invalid = true;
|
|
}
|
|
|
|
// Maybe add qualifier info.
|
|
if (SS.isNotEmpty()) {
|
|
if (SS.isSet()) {
|
|
// If this is either a declaration or a definition, check the
|
|
// nested-name-specifier against the current context.
|
|
if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
|
|
diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
|
|
isMemberSpecialization))
|
|
Invalid = true;
|
|
|
|
New->setQualifierInfo(SS.getWithLocInContext(Context));
|
|
if (TemplateParameterLists.size() > 0) {
|
|
New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
|
|
}
|
|
}
|
|
else
|
|
Invalid = true;
|
|
}
|
|
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
|
|
// Add alignment attributes if necessary; these attributes are checked when
|
|
// the ASTContext lays out the structure.
|
|
//
|
|
// It is important for implementing the correct semantics that this
|
|
// happen here (in ActOnTag). The #pragma pack stack is
|
|
// maintained as a result of parser callbacks which can occur at
|
|
// many points during the parsing of a struct declaration (because
|
|
// the #pragma tokens are effectively skipped over during the
|
|
// parsing of the struct).
|
|
if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
|
|
AddAlignmentAttributesForRecord(RD);
|
|
AddMsStructLayoutForRecord(RD);
|
|
}
|
|
}
|
|
|
|
if (ModulePrivateLoc.isValid()) {
|
|
if (isMemberSpecialization)
|
|
Diag(New->getLocation(), diag::err_module_private_specialization)
|
|
<< 2
|
|
<< FixItHint::CreateRemoval(ModulePrivateLoc);
|
|
// __module_private__ does not apply to local classes. However, we only
|
|
// diagnose this as an error when the declaration specifiers are
|
|
// freestanding. Here, we just ignore the __module_private__.
|
|
else if (!SearchDC->isFunctionOrMethod())
|
|
New->setModulePrivate();
|
|
}
|
|
|
|
// If this is a specialization of a member class (of a class template),
|
|
// check the specialization.
|
|
if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
|
|
Invalid = true;
|
|
|
|
// If we're declaring or defining a tag in function prototype scope in C,
|
|
// note that this type can only be used within the function and add it to
|
|
// the list of decls to inject into the function definition scope.
|
|
if ((Name || Kind == TTK_Enum) &&
|
|
getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++ [dcl.fct]p6:
|
|
// Types shall not be defined in return or parameter types.
|
|
if (TUK == TUK_Definition && !IsTypeSpecifier) {
|
|
Diag(Loc, diag::err_type_defined_in_param_type)
|
|
<< Name;
|
|
Invalid = true;
|
|
}
|
|
} else if (!PrevDecl) {
|
|
Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
|
|
}
|
|
}
|
|
|
|
if (Invalid)
|
|
New->setInvalidDecl();
|
|
|
|
// Set the lexical context. If the tag has a C++ scope specifier, the
|
|
// lexical context will be different from the semantic context.
|
|
New->setLexicalDeclContext(CurContext);
|
|
|
|
// Mark this as a friend decl if applicable.
|
|
// In Microsoft mode, a friend declaration also acts as a forward
|
|
// declaration so we always pass true to setObjectOfFriendDecl to make
|
|
// the tag name visible.
|
|
if (TUK == TUK_Friend)
|
|
New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
|
|
|
|
// Set the access specifier.
|
|
if (!Invalid && SearchDC->isRecord())
|
|
SetMemberAccessSpecifier(New, PrevDecl, AS);
|
|
|
|
if (PrevDecl)
|
|
CheckRedeclarationModuleOwnership(New, PrevDecl);
|
|
|
|
if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
|
|
New->startDefinition();
|
|
|
|
ProcessDeclAttributeList(S, New, Attrs);
|
|
AddPragmaAttributes(S, New);
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (TUK == TUK_Friend) {
|
|
// We might be replacing an existing declaration in the lookup tables;
|
|
// if so, borrow its access specifier.
|
|
if (PrevDecl)
|
|
New->setAccess(PrevDecl->getAccess());
|
|
|
|
DeclContext *DC = New->getDeclContext()->getRedeclContext();
|
|
DC->makeDeclVisibleInContext(New);
|
|
if (Name) // can be null along some error paths
|
|
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
|
|
PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
|
|
} else if (Name) {
|
|
S = getNonFieldDeclScope(S);
|
|
PushOnScopeChains(New, S, true);
|
|
} else {
|
|
CurContext->addDecl(New);
|
|
}
|
|
|
|
// If this is the C FILE type, notify the AST context.
|
|
if (IdentifierInfo *II = New->getIdentifier())
|
|
if (!New->isInvalidDecl() &&
|
|
New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
|
|
II->isStr("FILE"))
|
|
Context.setFILEDecl(New);
|
|
|
|
if (PrevDecl)
|
|
mergeDeclAttributes(New, PrevDecl);
|
|
|
|
// If there's a #pragma GCC visibility in scope, set the visibility of this
|
|
// record.
|
|
AddPushedVisibilityAttribute(New);
|
|
|
|
if (isMemberSpecialization && !New->isInvalidDecl())
|
|
CompleteMemberSpecialization(New, Previous);
|
|
|
|
OwnedDecl = true;
|
|
// In C++, don't return an invalid declaration. We can't recover well from
|
|
// the cases where we make the type anonymous.
|
|
if (Invalid && getLangOpts().CPlusPlus) {
|
|
if (New->isBeingDefined())
|
|
if (auto RD = dyn_cast<RecordDecl>(New))
|
|
RD->completeDefinition();
|
|
return nullptr;
|
|
} else if (SkipBody && SkipBody->ShouldSkip) {
|
|
return SkipBody->Previous;
|
|
} else {
|
|
return New;
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
|
|
AdjustDeclIfTemplate(TagD);
|
|
TagDecl *Tag = cast<TagDecl>(TagD);
|
|
|
|
// Enter the tag context.
|
|
PushDeclContext(S, Tag);
|
|
|
|
ActOnDocumentableDecl(TagD);
|
|
|
|
// If there's a #pragma GCC visibility in scope, set the visibility of this
|
|
// record.
|
|
AddPushedVisibilityAttribute(Tag);
|
|
}
|
|
|
|
bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
|
|
SkipBodyInfo &SkipBody) {
|
|
if (!hasStructuralCompatLayout(Prev, SkipBody.New))
|
|
return false;
|
|
|
|
// Make the previous decl visible.
|
|
makeMergedDefinitionVisible(SkipBody.Previous);
|
|
return true;
|
|
}
|
|
|
|
Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
|
|
assert(isa<ObjCContainerDecl>(IDecl) &&
|
|
"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
|
|
DeclContext *OCD = cast<DeclContext>(IDecl);
|
|
assert(getContainingDC(OCD) == CurContext &&
|
|
"The next DeclContext should be lexically contained in the current one.");
|
|
CurContext = OCD;
|
|
return IDecl;
|
|
}
|
|
|
|
void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
|
|
SourceLocation FinalLoc,
|
|
bool IsFinalSpelledSealed,
|
|
SourceLocation LBraceLoc) {
|
|
AdjustDeclIfTemplate(TagD);
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
|
|
|
|
FieldCollector->StartClass();
|
|
|
|
if (!Record->getIdentifier())
|
|
return;
|
|
|
|
if (FinalLoc.isValid())
|
|
Record->addAttr(new (Context)
|
|
FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
|
|
|
|
// C++ [class]p2:
|
|
// [...] The class-name is also inserted into the scope of the
|
|
// class itself; this is known as the injected-class-name. For
|
|
// purposes of access checking, the injected-class-name is treated
|
|
// as if it were a public member name.
|
|
CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
|
|
Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
|
|
Record->getLocation(), Record->getIdentifier(),
|
|
/*PrevDecl=*/nullptr,
|
|
/*DelayTypeCreation=*/true);
|
|
Context.getTypeDeclType(InjectedClassName, Record);
|
|
InjectedClassName->setImplicit();
|
|
InjectedClassName->setAccess(AS_public);
|
|
if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
|
|
InjectedClassName->setDescribedClassTemplate(Template);
|
|
PushOnScopeChains(InjectedClassName, S);
|
|
assert(InjectedClassName->isInjectedClassName() &&
|
|
"Broken injected-class-name");
|
|
}
|
|
|
|
void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
|
|
SourceRange BraceRange) {
|
|
AdjustDeclIfTemplate(TagD);
|
|
TagDecl *Tag = cast<TagDecl>(TagD);
|
|
Tag->setBraceRange(BraceRange);
|
|
|
|
// Make sure we "complete" the definition even it is invalid.
|
|
if (Tag->isBeingDefined()) {
|
|
assert(Tag->isInvalidDecl() && "We should already have completed it");
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
|
|
RD->completeDefinition();
|
|
}
|
|
|
|
if (isa<CXXRecordDecl>(Tag)) {
|
|
FieldCollector->FinishClass();
|
|
}
|
|
|
|
// Exit this scope of this tag's definition.
|
|
PopDeclContext();
|
|
|
|
if (getCurLexicalContext()->isObjCContainer() &&
|
|
Tag->getDeclContext()->isFileContext())
|
|
Tag->setTopLevelDeclInObjCContainer();
|
|
|
|
// Notify the consumer that we've defined a tag.
|
|
if (!Tag->isInvalidDecl())
|
|
Consumer.HandleTagDeclDefinition(Tag);
|
|
}
|
|
|
|
void Sema::ActOnObjCContainerFinishDefinition() {
|
|
// Exit this scope of this interface definition.
|
|
PopDeclContext();
|
|
}
|
|
|
|
void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
|
|
assert(DC == CurContext && "Mismatch of container contexts");
|
|
OriginalLexicalContext = DC;
|
|
ActOnObjCContainerFinishDefinition();
|
|
}
|
|
|
|
void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
|
|
ActOnObjCContainerStartDefinition(cast<Decl>(DC));
|
|
OriginalLexicalContext = nullptr;
|
|
}
|
|
|
|
void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
|
|
AdjustDeclIfTemplate(TagD);
|
|
TagDecl *Tag = cast<TagDecl>(TagD);
|
|
Tag->setInvalidDecl();
|
|
|
|
// Make sure we "complete" the definition even it is invalid.
|
|
if (Tag->isBeingDefined()) {
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
|
|
RD->completeDefinition();
|
|
}
|
|
|
|
// We're undoing ActOnTagStartDefinition here, not
|
|
// ActOnStartCXXMemberDeclarations, so we don't have to mess with
|
|
// the FieldCollector.
|
|
|
|
PopDeclContext();
|
|
}
|
|
|
|
// Note that FieldName may be null for anonymous bitfields.
|
|
ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
|
|
IdentifierInfo *FieldName,
|
|
QualType FieldTy, bool IsMsStruct,
|
|
Expr *BitWidth, bool *ZeroWidth) {
|
|
// Default to true; that shouldn't confuse checks for emptiness
|
|
if (ZeroWidth)
|
|
*ZeroWidth = true;
|
|
|
|
// C99 6.7.2.1p4 - verify the field type.
|
|
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
|
|
if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
|
|
// Handle incomplete types with specific error.
|
|
if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
|
|
return ExprError();
|
|
if (FieldName)
|
|
return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
|
|
<< FieldName << FieldTy << BitWidth->getSourceRange();
|
|
return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
|
|
<< FieldTy << BitWidth->getSourceRange();
|
|
} else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
|
|
UPPC_BitFieldWidth))
|
|
return ExprError();
|
|
|
|
// If the bit-width is type- or value-dependent, don't try to check
|
|
// it now.
|
|
if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
|
|
return BitWidth;
|
|
|
|
llvm::APSInt Value;
|
|
ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
|
|
if (ICE.isInvalid())
|
|
return ICE;
|
|
BitWidth = ICE.get();
|
|
|
|
if (Value != 0 && ZeroWidth)
|
|
*ZeroWidth = false;
|
|
|
|
// Zero-width bitfield is ok for anonymous field.
|
|
if (Value == 0 && FieldName)
|
|
return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
|
|
|
|
if (Value.isSigned() && Value.isNegative()) {
|
|
if (FieldName)
|
|
return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
|
|
<< FieldName << Value.toString(10);
|
|
return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
|
|
<< Value.toString(10);
|
|
}
|
|
|
|
if (!FieldTy->isDependentType()) {
|
|
uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
|
|
uint64_t TypeWidth = Context.getIntWidth(FieldTy);
|
|
bool BitfieldIsOverwide = Value.ugt(TypeWidth);
|
|
|
|
// Over-wide bitfields are an error in C or when using the MSVC bitfield
|
|
// ABI.
|
|
bool CStdConstraintViolation =
|
|
BitfieldIsOverwide && !getLangOpts().CPlusPlus;
|
|
bool MSBitfieldViolation =
|
|
Value.ugt(TypeStorageSize) &&
|
|
(IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
|
|
if (CStdConstraintViolation || MSBitfieldViolation) {
|
|
unsigned DiagWidth =
|
|
CStdConstraintViolation ? TypeWidth : TypeStorageSize;
|
|
if (FieldName)
|
|
return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
|
|
<< FieldName << (unsigned)Value.getZExtValue()
|
|
<< !CStdConstraintViolation << DiagWidth;
|
|
|
|
return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
|
|
<< (unsigned)Value.getZExtValue() << !CStdConstraintViolation
|
|
<< DiagWidth;
|
|
}
|
|
|
|
// Warn on types where the user might conceivably expect to get all
|
|
// specified bits as value bits: that's all integral types other than
|
|
// 'bool'.
|
|
if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
|
|
if (FieldName)
|
|
Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
|
|
<< FieldName << (unsigned)Value.getZExtValue()
|
|
<< (unsigned)TypeWidth;
|
|
else
|
|
Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
|
|
<< (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
|
|
}
|
|
}
|
|
|
|
return BitWidth;
|
|
}
|
|
|
|
/// ActOnField - Each field of a C struct/union is passed into this in order
|
|
/// to create a FieldDecl object for it.
|
|
Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitfieldWidth) {
|
|
FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
|
|
DeclStart, D, static_cast<Expr*>(BitfieldWidth),
|
|
/*InitStyle=*/ICIS_NoInit, AS_public);
|
|
return Res;
|
|
}
|
|
|
|
/// HandleField - Analyze a field of a C struct or a C++ data member.
|
|
///
|
|
FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
|
|
SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitWidth,
|
|
InClassInitStyle InitStyle,
|
|
AccessSpecifier AS) {
|
|
if (D.isDecompositionDeclarator()) {
|
|
const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
|
|
Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
|
|
<< Decomp.getSourceRange();
|
|
return nullptr;
|
|
}
|
|
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
SourceLocation Loc = DeclStart;
|
|
if (II) Loc = D.getIdentifierLoc();
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType T = TInfo->getType();
|
|
if (getLangOpts().CPlusPlus) {
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
|
|
UPPC_DataMemberType)) {
|
|
D.setInvalidType();
|
|
T = Context.IntTy;
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
|
|
}
|
|
}
|
|
|
|
DiagnoseFunctionSpecifiers(D.getDeclSpec());
|
|
|
|
if (D.getDeclSpec().isInlineSpecified())
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
|
|
<< getLangOpts().CPlusPlus17;
|
|
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
|
|
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
|
|
diag::err_invalid_thread)
|
|
<< DeclSpec::getSpecifierName(TSCS);
|
|
|
|
// Check to see if this name was declared as a member previously
|
|
NamedDecl *PrevDecl = nullptr;
|
|
LookupResult Previous(*this, II, Loc, LookupMemberName,
|
|
ForVisibleRedeclaration);
|
|
LookupName(Previous, S);
|
|
switch (Previous.getResultKind()) {
|
|
case LookupResult::Found:
|
|
case LookupResult::FoundUnresolvedValue:
|
|
PrevDecl = Previous.getAsSingle<NamedDecl>();
|
|
break;
|
|
|
|
case LookupResult::FoundOverloaded:
|
|
PrevDecl = Previous.getRepresentativeDecl();
|
|
break;
|
|
|
|
case LookupResult::NotFound:
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
case LookupResult::Ambiguous:
|
|
break;
|
|
}
|
|
Previous.suppressDiagnostics();
|
|
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = nullptr;
|
|
}
|
|
|
|
if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
|
|
PrevDecl = nullptr;
|
|
|
|
bool Mutable
|
|
= (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
|
|
SourceLocation TSSL = D.getBeginLoc();
|
|
FieldDecl *NewFD
|
|
= CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
|
|
TSSL, AS, PrevDecl, &D);
|
|
|
|
if (NewFD->isInvalidDecl())
|
|
Record->setInvalidDecl();
|
|
|
|
if (D.getDeclSpec().isModulePrivateSpecified())
|
|
NewFD->setModulePrivate();
|
|
|
|
if (NewFD->isInvalidDecl() && PrevDecl) {
|
|
// Don't introduce NewFD into scope; there's already something
|
|
// with the same name in the same scope.
|
|
} else if (II) {
|
|
PushOnScopeChains(NewFD, S);
|
|
} else
|
|
Record->addDecl(NewFD);
|
|
|
|
return NewFD;
|
|
}
|
|
|
|
/// Build a new FieldDecl and check its well-formedness.
|
|
///
|
|
/// This routine builds a new FieldDecl given the fields name, type,
|
|
/// record, etc. \p PrevDecl should refer to any previous declaration
|
|
/// with the same name and in the same scope as the field to be
|
|
/// created.
|
|
///
|
|
/// \returns a new FieldDecl.
|
|
///
|
|
/// \todo The Declarator argument is a hack. It will be removed once
|
|
FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
|
|
TypeSourceInfo *TInfo,
|
|
RecordDecl *Record, SourceLocation Loc,
|
|
bool Mutable, Expr *BitWidth,
|
|
InClassInitStyle InitStyle,
|
|
SourceLocation TSSL,
|
|
AccessSpecifier AS, NamedDecl *PrevDecl,
|
|
Declarator *D) {
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
bool InvalidDecl = false;
|
|
if (D) InvalidDecl = D->isInvalidType();
|
|
|
|
// If we receive a broken type, recover by assuming 'int' and
|
|
// marking this declaration as invalid.
|
|
if (T.isNull()) {
|
|
InvalidDecl = true;
|
|
T = Context.IntTy;
|
|
}
|
|
|
|
QualType EltTy = Context.getBaseElementType(T);
|
|
if (!EltTy->isDependentType()) {
|
|
if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
|
|
// Fields of incomplete type force their record to be invalid.
|
|
Record->setInvalidDecl();
|
|
InvalidDecl = true;
|
|
} else {
|
|
NamedDecl *Def;
|
|
EltTy->isIncompleteType(&Def);
|
|
if (Def && Def->isInvalidDecl()) {
|
|
Record->setInvalidDecl();
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TR 18037 does not allow fields to be declared with address space
|
|
if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
|
|
T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
|
|
Diag(Loc, diag::err_field_with_address_space);
|
|
Record->setInvalidDecl();
|
|
InvalidDecl = true;
|
|
}
|
|
|
|
if (LangOpts.OpenCL) {
|
|
// OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
|
|
// used as structure or union field: image, sampler, event or block types.
|
|
if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
|
|
T->isBlockPointerType()) {
|
|
Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
|
|
Record->setInvalidDecl();
|
|
InvalidDecl = true;
|
|
}
|
|
// OpenCL v1.2 s6.9.c: bitfields are not supported.
|
|
if (BitWidth) {
|
|
Diag(Loc, diag::err_opencl_bitfields);
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
|
|
// Anonymous bit-fields cannot be cv-qualified (CWG 2229).
|
|
if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
|
|
T.hasQualifiers()) {
|
|
InvalidDecl = true;
|
|
Diag(Loc, diag::err_anon_bitfield_qualifiers);
|
|
}
|
|
|
|
// C99 6.7.2.1p8: A member of a structure or union may have any type other
|
|
// than a variably modified type.
|
|
if (!InvalidDecl && T->isVariablyModifiedType()) {
|
|
bool SizeIsNegative;
|
|
llvm::APSInt Oversized;
|
|
|
|
TypeSourceInfo *FixedTInfo =
|
|
TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
|
|
SizeIsNegative,
|
|
Oversized);
|
|
if (FixedTInfo) {
|
|
Diag(Loc, diag::warn_illegal_constant_array_size);
|
|
TInfo = FixedTInfo;
|
|
T = FixedTInfo->getType();
|
|
} else {
|
|
if (SizeIsNegative)
|
|
Diag(Loc, diag::err_typecheck_negative_array_size);
|
|
else if (Oversized.getBoolValue())
|
|
Diag(Loc, diag::err_array_too_large)
|
|
<< Oversized.toString(10);
|
|
else
|
|
Diag(Loc, diag::err_typecheck_field_variable_size);
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
|
|
// Fields can not have abstract class types
|
|
if (!InvalidDecl && RequireNonAbstractType(Loc, T,
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractFieldType))
|
|
InvalidDecl = true;
|
|
|
|
bool ZeroWidth = false;
|
|
if (InvalidDecl)
|
|
BitWidth = nullptr;
|
|
// If this is declared as a bit-field, check the bit-field.
|
|
if (BitWidth) {
|
|
BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
|
|
&ZeroWidth).get();
|
|
if (!BitWidth) {
|
|
InvalidDecl = true;
|
|
BitWidth = nullptr;
|
|
ZeroWidth = false;
|
|
}
|
|
}
|
|
|
|
// Check that 'mutable' is consistent with the type of the declaration.
|
|
if (!InvalidDecl && Mutable) {
|
|
unsigned DiagID = 0;
|
|
if (T->isReferenceType())
|
|
DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
|
|
: diag::err_mutable_reference;
|
|
else if (T.isConstQualified())
|
|
DiagID = diag::err_mutable_const;
|
|
|
|
if (DiagID) {
|
|
SourceLocation ErrLoc = Loc;
|
|
if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
|
|
ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
|
|
Diag(ErrLoc, DiagID);
|
|
if (DiagID != diag::ext_mutable_reference) {
|
|
Mutable = false;
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++11 [class.union]p8 (DR1460):
|
|
// At most one variant member of a union may have a
|
|
// brace-or-equal-initializer.
|
|
if (InitStyle != ICIS_NoInit)
|
|
checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
|
|
|
|
FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
|
|
BitWidth, Mutable, InitStyle);
|
|
if (InvalidDecl)
|
|
NewFD->setInvalidDecl();
|
|
|
|
if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
|
|
Diag(Loc, diag::err_duplicate_member) << II;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
|
|
if (!InvalidDecl && getLangOpts().CPlusPlus) {
|
|
if (Record->isUnion()) {
|
|
if (const RecordType *RT = EltTy->getAs<RecordType>()) {
|
|
CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (RDecl->getDefinition()) {
|
|
// C++ [class.union]p1: An object of a class with a non-trivial
|
|
// constructor, a non-trivial copy constructor, a non-trivial
|
|
// destructor, or a non-trivial copy assignment operator
|
|
// cannot be a member of a union, nor can an array of such
|
|
// objects.
|
|
if (CheckNontrivialField(NewFD))
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
// C++ [class.union]p1: If a union contains a member of reference type,
|
|
// the program is ill-formed, except when compiling with MSVC extensions
|
|
// enabled.
|
|
if (EltTy->isReferenceType()) {
|
|
Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
|
|
diag::ext_union_member_of_reference_type :
|
|
diag::err_union_member_of_reference_type)
|
|
<< NewFD->getDeclName() << EltTy;
|
|
if (!getLangOpts().MicrosoftExt)
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: We need to pass in the attributes given an AST
|
|
// representation, not a parser representation.
|
|
if (D) {
|
|
// FIXME: The current scope is almost... but not entirely... correct here.
|
|
ProcessDeclAttributes(getCurScope(), NewFD, *D);
|
|
|
|
if (NewFD->hasAttrs())
|
|
CheckAlignasUnderalignment(NewFD);
|
|
}
|
|
|
|
// In auto-retain/release, infer strong retension for fields of
|
|
// retainable type.
|
|
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
|
|
NewFD->setInvalidDecl();
|
|
|
|
if (T.isObjCGCWeak())
|
|
Diag(Loc, diag::warn_attribute_weak_on_field);
|
|
|
|
NewFD->setAccess(AS);
|
|
return NewFD;
|
|
}
|
|
|
|
bool Sema::CheckNontrivialField(FieldDecl *FD) {
|
|
assert(FD);
|
|
assert(getLangOpts().CPlusPlus && "valid check only for C++");
|
|
|
|
if (FD->isInvalidDecl() || FD->getType()->isDependentType())
|
|
return false;
|
|
|
|
QualType EltTy = Context.getBaseElementType(FD->getType());
|
|
if (const RecordType *RT = EltTy->getAs<RecordType>()) {
|
|
CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (RDecl->getDefinition()) {
|
|
// We check for copy constructors before constructors
|
|
// because otherwise we'll never get complaints about
|
|
// copy constructors.
|
|
|
|
CXXSpecialMember member = CXXInvalid;
|
|
// We're required to check for any non-trivial constructors. Since the
|
|
// implicit default constructor is suppressed if there are any
|
|
// user-declared constructors, we just need to check that there is a
|
|
// trivial default constructor and a trivial copy constructor. (We don't
|
|
// worry about move constructors here, since this is a C++98 check.)
|
|
if (RDecl->hasNonTrivialCopyConstructor())
|
|
member = CXXCopyConstructor;
|
|
else if (!RDecl->hasTrivialDefaultConstructor())
|
|
member = CXXDefaultConstructor;
|
|
else if (RDecl->hasNonTrivialCopyAssignment())
|
|
member = CXXCopyAssignment;
|
|
else if (RDecl->hasNonTrivialDestructor())
|
|
member = CXXDestructor;
|
|
|
|
if (member != CXXInvalid) {
|
|
if (!getLangOpts().CPlusPlus11 &&
|
|
getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
|
|
// Objective-C++ ARC: it is an error to have a non-trivial field of
|
|
// a union. However, system headers in Objective-C programs
|
|
// occasionally have Objective-C lifetime objects within unions,
|
|
// and rather than cause the program to fail, we make those
|
|
// members unavailable.
|
|
SourceLocation Loc = FD->getLocation();
|
|
if (getSourceManager().isInSystemHeader(Loc)) {
|
|
if (!FD->hasAttr<UnavailableAttr>())
|
|
FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
|
|
UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
|
|
diag::err_illegal_union_or_anon_struct_member)
|
|
<< FD->getParent()->isUnion() << FD->getDeclName() << member;
|
|
DiagnoseNontrivial(RDecl, member);
|
|
return !getLangOpts().CPlusPlus11;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// TranslateIvarVisibility - Translate visibility from a token ID to an
|
|
/// AST enum value.
|
|
static ObjCIvarDecl::AccessControl
|
|
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
|
|
switch (ivarVisibility) {
|
|
default: llvm_unreachable("Unknown visitibility kind");
|
|
case tok::objc_private: return ObjCIvarDecl::Private;
|
|
case tok::objc_public: return ObjCIvarDecl::Public;
|
|
case tok::objc_protected: return ObjCIvarDecl::Protected;
|
|
case tok::objc_package: return ObjCIvarDecl::Package;
|
|
}
|
|
}
|
|
|
|
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
|
|
/// in order to create an IvarDecl object for it.
|
|
Decl *Sema::ActOnIvar(Scope *S,
|
|
SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitfieldWidth,
|
|
tok::ObjCKeywordKind Visibility) {
|
|
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
Expr *BitWidth = (Expr*)BitfieldWidth;
|
|
SourceLocation Loc = DeclStart;
|
|
if (II) Loc = D.getIdentifierLoc();
|
|
|
|
// FIXME: Unnamed fields can be handled in various different ways, for
|
|
// example, unnamed unions inject all members into the struct namespace!
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType T = TInfo->getType();
|
|
|
|
if (BitWidth) {
|
|
// 6.7.2.1p3, 6.7.2.1p4
|
|
BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
|
|
if (!BitWidth)
|
|
D.setInvalidType();
|
|
} else {
|
|
// Not a bitfield.
|
|
|
|
// validate II.
|
|
|
|
}
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_ivar_reference_type);
|
|
D.setInvalidType();
|
|
}
|
|
// C99 6.7.2.1p8: A member of a structure or union may have any type other
|
|
// than a variably modified type.
|
|
else if (T->isVariablyModifiedType()) {
|
|
Diag(Loc, diag::err_typecheck_ivar_variable_size);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Get the visibility (access control) for this ivar.
|
|
ObjCIvarDecl::AccessControl ac =
|
|
Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
|
|
: ObjCIvarDecl::None;
|
|
// Must set ivar's DeclContext to its enclosing interface.
|
|
ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
|
|
if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
|
|
return nullptr;
|
|
ObjCContainerDecl *EnclosingContext;
|
|
if (ObjCImplementationDecl *IMPDecl =
|
|
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
|
|
if (LangOpts.ObjCRuntime.isFragile()) {
|
|
// Case of ivar declared in an implementation. Context is that of its class.
|
|
EnclosingContext = IMPDecl->getClassInterface();
|
|
assert(EnclosingContext && "Implementation has no class interface!");
|
|
}
|
|
else
|
|
EnclosingContext = EnclosingDecl;
|
|
} else {
|
|
if (ObjCCategoryDecl *CDecl =
|
|
dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
|
|
if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
|
|
Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
|
|
return nullptr;
|
|
}
|
|
}
|
|
EnclosingContext = EnclosingDecl;
|
|
}
|
|
|
|
// Construct the decl.
|
|
ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
|
|
DeclStart, Loc, II, T,
|
|
TInfo, ac, (Expr *)BitfieldWidth);
|
|
|
|
if (II) {
|
|
NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
|
|
ForVisibleRedeclaration);
|
|
if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
|
|
&& !isa<TagDecl>(PrevDecl)) {
|
|
Diag(Loc, diag::err_duplicate_member) << II;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
|
|
NewID->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
// Process attributes attached to the ivar.
|
|
ProcessDeclAttributes(S, NewID, D);
|
|
|
|
if (D.isInvalidType())
|
|
NewID->setInvalidDecl();
|
|
|
|
// In ARC, infer 'retaining' for ivars of retainable type.
|
|
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
|
|
NewID->setInvalidDecl();
|
|
|
|
if (D.getDeclSpec().isModulePrivateSpecified())
|
|
NewID->setModulePrivate();
|
|
|
|
if (II) {
|
|
// FIXME: When interfaces are DeclContexts, we'll need to add
|
|
// these to the interface.
|
|
S->AddDecl(NewID);
|
|
IdResolver.AddDecl(NewID);
|
|
}
|
|
|
|
if (LangOpts.ObjCRuntime.isNonFragile() &&
|
|
!NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
|
|
Diag(Loc, diag::warn_ivars_in_interface);
|
|
|
|
return NewID;
|
|
}
|
|
|
|
/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
|
|
/// class and class extensions. For every class \@interface and class
|
|
/// extension \@interface, if the last ivar is a bitfield of any type,
|
|
/// then add an implicit `char :0` ivar to the end of that interface.
|
|
void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
|
|
SmallVectorImpl<Decl *> &AllIvarDecls) {
|
|
if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
|
|
return;
|
|
|
|
Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
|
|
ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
|
|
|
|
if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
|
|
return;
|
|
ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
|
|
if (!ID) {
|
|
if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
|
|
if (!CD->IsClassExtension())
|
|
return;
|
|
}
|
|
// No need to add this to end of @implementation.
|
|
else
|
|
return;
|
|
}
|
|
// All conditions are met. Add a new bitfield to the tail end of ivars.
|
|
llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
|
|
Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
|
|
|
|
Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
|
|
DeclLoc, DeclLoc, nullptr,
|
|
Context.CharTy,
|
|
Context.getTrivialTypeSourceInfo(Context.CharTy,
|
|
DeclLoc),
|
|
ObjCIvarDecl::Private, BW,
|
|
true);
|
|
AllIvarDecls.push_back(Ivar);
|
|
}
|
|
|
|
void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
|
|
ArrayRef<Decl *> Fields, SourceLocation LBrac,
|
|
SourceLocation RBrac,
|
|
const ParsedAttributesView &Attrs) {
|
|
assert(EnclosingDecl && "missing record or interface decl");
|
|
|
|
// If this is an Objective-C @implementation or category and we have
|
|
// new fields here we should reset the layout of the interface since
|
|
// it will now change.
|
|
if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
|
|
ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
|
|
switch (DC->getKind()) {
|
|
default: break;
|
|
case Decl::ObjCCategory:
|
|
Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
|
|
break;
|
|
case Decl::ObjCImplementation:
|
|
Context.
|
|
ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
|
|
break;
|
|
}
|
|
}
|
|
|
|
RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
|
|
CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
|
|
|
|
// Start counting up the number of named members; make sure to include
|
|
// members of anonymous structs and unions in the total.
|
|
unsigned NumNamedMembers = 0;
|
|
if (Record) {
|
|
for (const auto *I : Record->decls()) {
|
|
if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
|
|
if (IFD->getDeclName())
|
|
++NumNamedMembers;
|
|
}
|
|
}
|
|
|
|
// Verify that all the fields are okay.
|
|
SmallVector<FieldDecl*, 32> RecFields;
|
|
|
|
bool ObjCFieldLifetimeErrReported = false;
|
|
for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
|
|
i != end; ++i) {
|
|
FieldDecl *FD = cast<FieldDecl>(*i);
|
|
|
|
// Get the type for the field.
|
|
const Type *FDTy = FD->getType().getTypePtr();
|
|
|
|
if (!FD->isAnonymousStructOrUnion()) {
|
|
// Remember all fields written by the user.
|
|
RecFields.push_back(FD);
|
|
}
|
|
|
|
// If the field is already invalid for some reason, don't emit more
|
|
// diagnostics about it.
|
|
if (FD->isInvalidDecl()) {
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
|
|
// C99 6.7.2.1p2:
|
|
// A structure or union shall not contain a member with
|
|
// incomplete or function type (hence, a structure shall not
|
|
// contain an instance of itself, but may contain a pointer to
|
|
// an instance of itself), except that the last member of a
|
|
// structure with more than one named member may have incomplete
|
|
// array type; such a structure (and any union containing,
|
|
// possibly recursively, a member that is such a structure)
|
|
// shall not be a member of a structure or an element of an
|
|
// array.
|
|
bool IsLastField = (i + 1 == Fields.end());
|
|
if (FDTy->isFunctionType()) {
|
|
// Field declared as a function.
|
|
Diag(FD->getLocation(), diag::err_field_declared_as_function)
|
|
<< FD->getDeclName();
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
} else if (FDTy->isIncompleteArrayType() &&
|
|
(Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
|
|
if (Record) {
|
|
// Flexible array member.
|
|
// Microsoft and g++ is more permissive regarding flexible array.
|
|
// It will accept flexible array in union and also
|
|
// as the sole element of a struct/class.
|
|
unsigned DiagID = 0;
|
|
if (!Record->isUnion() && !IsLastField) {
|
|
Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
|
|
<< FD->getDeclName() << FD->getType() << Record->getTagKind();
|
|
Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
} else if (Record->isUnion())
|
|
DiagID = getLangOpts().MicrosoftExt
|
|
? diag::ext_flexible_array_union_ms
|
|
: getLangOpts().CPlusPlus
|
|
? diag::ext_flexible_array_union_gnu
|
|
: diag::err_flexible_array_union;
|
|
else if (NumNamedMembers < 1)
|
|
DiagID = getLangOpts().MicrosoftExt
|
|
? diag::ext_flexible_array_empty_aggregate_ms
|
|
: getLangOpts().CPlusPlus
|
|
? diag::ext_flexible_array_empty_aggregate_gnu
|
|
: diag::err_flexible_array_empty_aggregate;
|
|
|
|
if (DiagID)
|
|
Diag(FD->getLocation(), DiagID) << FD->getDeclName()
|
|
<< Record->getTagKind();
|
|
// While the layout of types that contain virtual bases is not specified
|
|
// by the C++ standard, both the Itanium and Microsoft C++ ABIs place
|
|
// virtual bases after the derived members. This would make a flexible
|
|
// array member declared at the end of an object not adjacent to the end
|
|
// of the type.
|
|
if (CXXRecord && CXXRecord->getNumVBases() != 0)
|
|
Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
|
|
<< FD->getDeclName() << Record->getTagKind();
|
|
if (!getLangOpts().C99)
|
|
Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
|
|
<< FD->getDeclName() << Record->getTagKind();
|
|
|
|
// If the element type has a non-trivial destructor, we would not
|
|
// implicitly destroy the elements, so disallow it for now.
|
|
//
|
|
// FIXME: GCC allows this. We should probably either implicitly delete
|
|
// the destructor of the containing class, or just allow this.
|
|
QualType BaseElem = Context.getBaseElementType(FD->getType());
|
|
if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
|
|
Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
|
|
<< FD->getDeclName() << FD->getType();
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// Okay, we have a legal flexible array member at the end of the struct.
|
|
Record->setHasFlexibleArrayMember(true);
|
|
} else {
|
|
// In ObjCContainerDecl ivars with incomplete array type are accepted,
|
|
// unless they are followed by another ivar. That check is done
|
|
// elsewhere, after synthesized ivars are known.
|
|
}
|
|
} else if (!FDTy->isDependentType() &&
|
|
RequireCompleteType(FD->getLocation(), FD->getType(),
|
|
diag::err_field_incomplete)) {
|
|
// Incomplete type
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
} else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
|
|
if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
|
|
// A type which contains a flexible array member is considered to be a
|
|
// flexible array member.
|
|
Record->setHasFlexibleArrayMember(true);
|
|
if (!Record->isUnion()) {
|
|
// If this is a struct/class and this is not the last element, reject
|
|
// it. Note that GCC supports variable sized arrays in the middle of
|
|
// structures.
|
|
if (!IsLastField)
|
|
Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
|
|
<< FD->getDeclName() << FD->getType();
|
|
else {
|
|
// We support flexible arrays at the end of structs in
|
|
// other structs as an extension.
|
|
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
|
|
<< FD->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
if (isa<ObjCContainerDecl>(EnclosingDecl) &&
|
|
RequireNonAbstractType(FD->getLocation(), FD->getType(),
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractIvarType)) {
|
|
// Ivars can not have abstract class types
|
|
FD->setInvalidDecl();
|
|
}
|
|
if (Record && FDTTy->getDecl()->hasObjectMember())
|
|
Record->setHasObjectMember(true);
|
|
if (Record && FDTTy->getDecl()->hasVolatileMember())
|
|
Record->setHasVolatileMember(true);
|
|
if (Record && Record->isUnion() &&
|
|
FD->getType().isNonTrivialPrimitiveCType(Context))
|
|
Diag(FD->getLocation(),
|
|
diag::err_nontrivial_primitive_type_in_union);
|
|
} else if (FDTy->isObjCObjectType()) {
|
|
/// A field cannot be an Objective-c object
|
|
Diag(FD->getLocation(), diag::err_statically_allocated_object)
|
|
<< FixItHint::CreateInsertion(FD->getLocation(), "*");
|
|
QualType T = Context.getObjCObjectPointerType(FD->getType());
|
|
FD->setType(T);
|
|
} else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
|
|
Record && !ObjCFieldLifetimeErrReported && Record->isUnion() &&
|
|
!getLangOpts().CPlusPlus) {
|
|
// It's an error in ARC or Weak if a field has lifetime.
|
|
// We don't want to report this in a system header, though,
|
|
// so we just make the field unavailable.
|
|
// FIXME: that's really not sufficient; we need to make the type
|
|
// itself invalid to, say, initialize or copy.
|
|
QualType T = FD->getType();
|
|
if (T.hasNonTrivialObjCLifetime()) {
|
|
SourceLocation loc = FD->getLocation();
|
|
if (getSourceManager().isInSystemHeader(loc)) {
|
|
if (!FD->hasAttr<UnavailableAttr>()) {
|
|
FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
|
|
UnavailableAttr::IR_ARCFieldWithOwnership, loc));
|
|
}
|
|
} else {
|
|
Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
|
|
<< T->isBlockPointerType() << Record->getTagKind();
|
|
}
|
|
ObjCFieldLifetimeErrReported = true;
|
|
}
|
|
} else if (getLangOpts().ObjC &&
|
|
getLangOpts().getGC() != LangOptions::NonGC &&
|
|
Record && !Record->hasObjectMember()) {
|
|
if (FD->getType()->isObjCObjectPointerType() ||
|
|
FD->getType().isObjCGCStrong())
|
|
Record->setHasObjectMember(true);
|
|
else if (Context.getAsArrayType(FD->getType())) {
|
|
QualType BaseType = Context.getBaseElementType(FD->getType());
|
|
if (BaseType->isRecordType() &&
|
|
BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
|
|
Record->setHasObjectMember(true);
|
|
else if (BaseType->isObjCObjectPointerType() ||
|
|
BaseType.isObjCGCStrong())
|
|
Record->setHasObjectMember(true);
|
|
}
|
|
}
|
|
|
|
if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
|
|
QualType FT = FD->getType();
|
|
if (FT.isNonTrivialToPrimitiveDefaultInitialize())
|
|
Record->setNonTrivialToPrimitiveDefaultInitialize(true);
|
|
QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
|
|
if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
|
|
Record->setNonTrivialToPrimitiveCopy(true);
|
|
if (FT.isDestructedType()) {
|
|
Record->setNonTrivialToPrimitiveDestroy(true);
|
|
Record->setParamDestroyedInCallee(true);
|
|
}
|
|
|
|
if (const auto *RT = FT->getAs<RecordType>()) {
|
|
if (RT->getDecl()->getArgPassingRestrictions() ==
|
|
RecordDecl::APK_CanNeverPassInRegs)
|
|
Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
|
|
} else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
|
|
Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
|
|
}
|
|
|
|
if (Record && FD->getType().isVolatileQualified())
|
|
Record->setHasVolatileMember(true);
|
|
// Keep track of the number of named members.
|
|
if (FD->getIdentifier())
|
|
++NumNamedMembers;
|
|
}
|
|
|
|
// Okay, we successfully defined 'Record'.
|
|
if (Record) {
|
|
bool Completed = false;
|
|
if (CXXRecord) {
|
|
if (!CXXRecord->isInvalidDecl()) {
|
|
// Set access bits correctly on the directly-declared conversions.
|
|
for (CXXRecordDecl::conversion_iterator
|
|
I = CXXRecord->conversion_begin(),
|
|
E = CXXRecord->conversion_end(); I != E; ++I)
|
|
I.setAccess((*I)->getAccess());
|
|
}
|
|
|
|
if (!CXXRecord->isDependentType()) {
|
|
// Add any implicitly-declared members to this class.
|
|
AddImplicitlyDeclaredMembersToClass(CXXRecord);
|
|
|
|
if (!CXXRecord->isInvalidDecl()) {
|
|
// If we have virtual base classes, we may end up finding multiple
|
|
// final overriders for a given virtual function. Check for this
|
|
// problem now.
|
|
if (CXXRecord->getNumVBases()) {
|
|
CXXFinalOverriderMap FinalOverriders;
|
|
CXXRecord->getFinalOverriders(FinalOverriders);
|
|
|
|
for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
|
|
MEnd = FinalOverriders.end();
|
|
M != MEnd; ++M) {
|
|
for (OverridingMethods::iterator SO = M->second.begin(),
|
|
SOEnd = M->second.end();
|
|
SO != SOEnd; ++SO) {
|
|
assert(SO->second.size() > 0 &&
|
|
"Virtual function without overriding functions?");
|
|
if (SO->second.size() == 1)
|
|
continue;
|
|
|
|
// C++ [class.virtual]p2:
|
|
// In a derived class, if a virtual member function of a base
|
|
// class subobject has more than one final overrider the
|
|
// program is ill-formed.
|
|
Diag(Record->getLocation(), diag::err_multiple_final_overriders)
|
|
<< (const NamedDecl *)M->first << Record;
|
|
Diag(M->first->getLocation(),
|
|
diag::note_overridden_virtual_function);
|
|
for (OverridingMethods::overriding_iterator
|
|
OM = SO->second.begin(),
|
|
OMEnd = SO->second.end();
|
|
OM != OMEnd; ++OM)
|
|
Diag(OM->Method->getLocation(), diag::note_final_overrider)
|
|
<< (const NamedDecl *)M->first << OM->Method->getParent();
|
|
|
|
Record->setInvalidDecl();
|
|
}
|
|
}
|
|
CXXRecord->completeDefinition(&FinalOverriders);
|
|
Completed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Completed)
|
|
Record->completeDefinition();
|
|
|
|
// Handle attributes before checking the layout.
|
|
ProcessDeclAttributeList(S, Record, Attrs);
|
|
|
|
// We may have deferred checking for a deleted destructor. Check now.
|
|
if (CXXRecord) {
|
|
auto *Dtor = CXXRecord->getDestructor();
|
|
if (Dtor && Dtor->isImplicit() &&
|
|
ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
|
|
CXXRecord->setImplicitDestructorIsDeleted();
|
|
SetDeclDeleted(Dtor, CXXRecord->getLocation());
|
|
}
|
|
}
|
|
|
|
if (Record->hasAttrs()) {
|
|
CheckAlignasUnderalignment(Record);
|
|
|
|
if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
|
|
checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
|
|
IA->getRange(), IA->getBestCase(),
|
|
IA->getSemanticSpelling());
|
|
}
|
|
|
|
// Check if the structure/union declaration is a type that can have zero
|
|
// size in C. For C this is a language extension, for C++ it may cause
|
|
// compatibility problems.
|
|
bool CheckForZeroSize;
|
|
if (!getLangOpts().CPlusPlus) {
|
|
CheckForZeroSize = true;
|
|
} else {
|
|
// For C++ filter out types that cannot be referenced in C code.
|
|
CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
|
|
CheckForZeroSize =
|
|
CXXRecord->getLexicalDeclContext()->isExternCContext() &&
|
|
!CXXRecord->isDependentType() &&
|
|
CXXRecord->isCLike();
|
|
}
|
|
if (CheckForZeroSize) {
|
|
bool ZeroSize = true;
|
|
bool IsEmpty = true;
|
|
unsigned NonBitFields = 0;
|
|
for (RecordDecl::field_iterator I = Record->field_begin(),
|
|
E = Record->field_end();
|
|
(NonBitFields == 0 || ZeroSize) && I != E; ++I) {
|
|
IsEmpty = false;
|
|
if (I->isUnnamedBitfield()) {
|
|
if (!I->isZeroLengthBitField(Context))
|
|
ZeroSize = false;
|
|
} else {
|
|
++NonBitFields;
|
|
QualType FieldType = I->getType();
|
|
if (FieldType->isIncompleteType() ||
|
|
!Context.getTypeSizeInChars(FieldType).isZero())
|
|
ZeroSize = false;
|
|
}
|
|
}
|
|
|
|
// Empty structs are an extension in C (C99 6.7.2.1p7). They are
|
|
// allowed in C++, but warn if its declaration is inside
|
|
// extern "C" block.
|
|
if (ZeroSize) {
|
|
Diag(RecLoc, getLangOpts().CPlusPlus ?
|
|
diag::warn_zero_size_struct_union_in_extern_c :
|
|
diag::warn_zero_size_struct_union_compat)
|
|
<< IsEmpty << Record->isUnion() << (NonBitFields > 1);
|
|
}
|
|
|
|
// Structs without named members are extension in C (C99 6.7.2.1p7),
|
|
// but are accepted by GCC.
|
|
if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
|
|
Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
|
|
diag::ext_no_named_members_in_struct_union)
|
|
<< Record->isUnion();
|
|
}
|
|
}
|
|
} else {
|
|
ObjCIvarDecl **ClsFields =
|
|
reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
|
|
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
|
|
ID->setEndOfDefinitionLoc(RBrac);
|
|
// Add ivar's to class's DeclContext.
|
|
for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
|
|
ClsFields[i]->setLexicalDeclContext(ID);
|
|
ID->addDecl(ClsFields[i]);
|
|
}
|
|
// Must enforce the rule that ivars in the base classes may not be
|
|
// duplicates.
|
|
if (ID->getSuperClass())
|
|
DiagnoseDuplicateIvars(ID, ID->getSuperClass());
|
|
} else if (ObjCImplementationDecl *IMPDecl =
|
|
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
|
|
assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
|
|
for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
|
|
// Ivar declared in @implementation never belongs to the implementation.
|
|
// Only it is in implementation's lexical context.
|
|
ClsFields[I]->setLexicalDeclContext(IMPDecl);
|
|
CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
|
|
IMPDecl->setIvarLBraceLoc(LBrac);
|
|
IMPDecl->setIvarRBraceLoc(RBrac);
|
|
} else if (ObjCCategoryDecl *CDecl =
|
|
dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
|
|
// case of ivars in class extension; all other cases have been
|
|
// reported as errors elsewhere.
|
|
// FIXME. Class extension does not have a LocEnd field.
|
|
// CDecl->setLocEnd(RBrac);
|
|
// Add ivar's to class extension's DeclContext.
|
|
// Diagnose redeclaration of private ivars.
|
|
ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
|
|
for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
|
|
if (IDecl) {
|
|
if (const ObjCIvarDecl *ClsIvar =
|
|
IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
|
|
Diag(ClsFields[i]->getLocation(),
|
|
diag::err_duplicate_ivar_declaration);
|
|
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
|
|
continue;
|
|
}
|
|
for (const auto *Ext : IDecl->known_extensions()) {
|
|
if (const ObjCIvarDecl *ClsExtIvar
|
|
= Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
|
|
Diag(ClsFields[i]->getLocation(),
|
|
diag::err_duplicate_ivar_declaration);
|
|
Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
ClsFields[i]->setLexicalDeclContext(CDecl);
|
|
CDecl->addDecl(ClsFields[i]);
|
|
}
|
|
CDecl->setIvarLBraceLoc(LBrac);
|
|
CDecl->setIvarRBraceLoc(RBrac);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determine whether the given integral value is representable within
|
|
/// the given type T.
|
|
static bool isRepresentableIntegerValue(ASTContext &Context,
|
|
llvm::APSInt &Value,
|
|
QualType T) {
|
|
assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
|
|
"Integral type required!");
|
|
unsigned BitWidth = Context.getIntWidth(T);
|
|
|
|
if (Value.isUnsigned() || Value.isNonNegative()) {
|
|
if (T->isSignedIntegerOrEnumerationType())
|
|
--BitWidth;
|
|
return Value.getActiveBits() <= BitWidth;
|
|
}
|
|
return Value.getMinSignedBits() <= BitWidth;
|
|
}
|
|
|
|
// Given an integral type, return the next larger integral type
|
|
// (or a NULL type of no such type exists).
|
|
static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
|
|
// FIXME: Int128/UInt128 support, which also needs to be introduced into
|
|
// enum checking below.
|
|
assert((T->isIntegralType(Context) ||
|
|
T->isEnumeralType()) && "Integral type required!");
|
|
const unsigned NumTypes = 4;
|
|
QualType SignedIntegralTypes[NumTypes] = {
|
|
Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
|
|
};
|
|
QualType UnsignedIntegralTypes[NumTypes] = {
|
|
Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
|
|
Context.UnsignedLongLongTy
|
|
};
|
|
|
|
unsigned BitWidth = Context.getTypeSize(T);
|
|
QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
|
|
: UnsignedIntegralTypes;
|
|
for (unsigned I = 0; I != NumTypes; ++I)
|
|
if (Context.getTypeSize(Types[I]) > BitWidth)
|
|
return Types[I];
|
|
|
|
return QualType();
|
|
}
|
|
|
|
EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
|
|
EnumConstantDecl *LastEnumConst,
|
|
SourceLocation IdLoc,
|
|
IdentifierInfo *Id,
|
|
Expr *Val) {
|
|
unsigned IntWidth = Context.getTargetInfo().getIntWidth();
|
|
llvm::APSInt EnumVal(IntWidth);
|
|
QualType EltTy;
|
|
|
|
if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
|
|
Val = nullptr;
|
|
|
|
if (Val)
|
|
Val = DefaultLvalueConversion(Val).get();
|
|
|
|
if (Val) {
|
|
if (Enum->isDependentType() || Val->isTypeDependent())
|
|
EltTy = Context.DependentTy;
|
|
else {
|
|
if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
|
|
!getLangOpts().MSVCCompat) {
|
|
// C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
|
|
// constant-expression in the enumerator-definition shall be a converted
|
|
// constant expression of the underlying type.
|
|
EltTy = Enum->getIntegerType();
|
|
ExprResult Converted =
|
|
CheckConvertedConstantExpression(Val, EltTy, EnumVal,
|
|
CCEK_Enumerator);
|
|
if (Converted.isInvalid())
|
|
Val = nullptr;
|
|
else
|
|
Val = Converted.get();
|
|
} else if (!Val->isValueDependent() &&
|
|
!(Val = VerifyIntegerConstantExpression(Val,
|
|
&EnumVal).get())) {
|
|
// C99 6.7.2.2p2: Make sure we have an integer constant expression.
|
|
} else {
|
|
if (Enum->isComplete()) {
|
|
EltTy = Enum->getIntegerType();
|
|
|
|
// In Obj-C and Microsoft mode, require the enumeration value to be
|
|
// representable in the underlying type of the enumeration. In C++11,
|
|
// we perform a non-narrowing conversion as part of converted constant
|
|
// expression checking.
|
|
if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
|
|
if (getLangOpts().MSVCCompat) {
|
|
Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
|
|
Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
|
|
} else
|
|
Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
|
|
} else
|
|
Val = ImpCastExprToType(Val, EltTy,
|
|
EltTy->isBooleanType() ?
|
|
CK_IntegralToBoolean : CK_IntegralCast)
|
|
.get();
|
|
} else if (getLangOpts().CPlusPlus) {
|
|
// C++11 [dcl.enum]p5:
|
|
// If the underlying type is not fixed, the type of each enumerator
|
|
// is the type of its initializing value:
|
|
// - If an initializer is specified for an enumerator, the
|
|
// initializing value has the same type as the expression.
|
|
EltTy = Val->getType();
|
|
} else {
|
|
// C99 6.7.2.2p2:
|
|
// The expression that defines the value of an enumeration constant
|
|
// shall be an integer constant expression that has a value
|
|
// representable as an int.
|
|
|
|
// Complain if the value is not representable in an int.
|
|
if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
|
|
Diag(IdLoc, diag::ext_enum_value_not_int)
|
|
<< EnumVal.toString(10) << Val->getSourceRange()
|
|
<< (EnumVal.isUnsigned() || EnumVal.isNonNegative());
|
|
else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
|
|
// Force the type of the expression to 'int'.
|
|
Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
|
|
}
|
|
EltTy = Val->getType();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Val) {
|
|
if (Enum->isDependentType())
|
|
EltTy = Context.DependentTy;
|
|
else if (!LastEnumConst) {
|
|
// C++0x [dcl.enum]p5:
|
|
// If the underlying type is not fixed, the type of each enumerator
|
|
// is the type of its initializing value:
|
|
// - If no initializer is specified for the first enumerator, the
|
|
// initializing value has an unspecified integral type.
|
|
//
|
|
// GCC uses 'int' for its unspecified integral type, as does
|
|
// C99 6.7.2.2p3.
|
|
if (Enum->isFixed()) {
|
|
EltTy = Enum->getIntegerType();
|
|
}
|
|
else {
|
|
EltTy = Context.IntTy;
|
|
}
|
|
} else {
|
|
// Assign the last value + 1.
|
|
EnumVal = LastEnumConst->getInitVal();
|
|
++EnumVal;
|
|
EltTy = LastEnumConst->getType();
|
|
|
|
// Check for overflow on increment.
|
|
if (EnumVal < LastEnumConst->getInitVal()) {
|
|
// C++0x [dcl.enum]p5:
|
|
// If the underlying type is not fixed, the type of each enumerator
|
|
// is the type of its initializing value:
|
|
//
|
|
// - Otherwise the type of the initializing value is the same as
|
|
// the type of the initializing value of the preceding enumerator
|
|
// unless the incremented value is not representable in that type,
|
|
// in which case the type is an unspecified integral type
|
|
// sufficient to contain the incremented value. If no such type
|
|
// exists, the program is ill-formed.
|
|
QualType T = getNextLargerIntegralType(Context, EltTy);
|
|
if (T.isNull() || Enum->isFixed()) {
|
|
// There is no integral type larger enough to represent this
|
|
// value. Complain, then allow the value to wrap around.
|
|
EnumVal = LastEnumConst->getInitVal();
|
|
EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
|
|
++EnumVal;
|
|
if (Enum->isFixed())
|
|
// When the underlying type is fixed, this is ill-formed.
|
|
Diag(IdLoc, diag::err_enumerator_wrapped)
|
|
<< EnumVal.toString(10)
|
|
<< EltTy;
|
|
else
|
|
Diag(IdLoc, diag::ext_enumerator_increment_too_large)
|
|
<< EnumVal.toString(10);
|
|
} else {
|
|
EltTy = T;
|
|
}
|
|
|
|
// Retrieve the last enumerator's value, extent that type to the
|
|
// type that is supposed to be large enough to represent the incremented
|
|
// value, then increment.
|
|
EnumVal = LastEnumConst->getInitVal();
|
|
EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
|
|
EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
|
|
++EnumVal;
|
|
|
|
// If we're not in C++, diagnose the overflow of enumerator values,
|
|
// which in C99 means that the enumerator value is not representable in
|
|
// an int (C99 6.7.2.2p2). However, we support GCC's extension that
|
|
// permits enumerator values that are representable in some larger
|
|
// integral type.
|
|
if (!getLangOpts().CPlusPlus && !T.isNull())
|
|
Diag(IdLoc, diag::warn_enum_value_overflow);
|
|
} else if (!getLangOpts().CPlusPlus &&
|
|
!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
|
|
// Enforce C99 6.7.2.2p2 even when we compute the next value.
|
|
Diag(IdLoc, diag::ext_enum_value_not_int)
|
|
<< EnumVal.toString(10) << 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!EltTy->isDependentType()) {
|
|
// Make the enumerator value match the signedness and size of the
|
|
// enumerator's type.
|
|
EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
|
|
EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
|
|
}
|
|
|
|
return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
|
|
Val, EnumVal);
|
|
}
|
|
|
|
Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
|
|
SourceLocation IILoc) {
|
|
if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
|
|
!getLangOpts().CPlusPlus)
|
|
return SkipBodyInfo();
|
|
|
|
// We have an anonymous enum definition. Look up the first enumerator to
|
|
// determine if we should merge the definition with an existing one and
|
|
// skip the body.
|
|
NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
|
|
forRedeclarationInCurContext());
|
|
auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
|
|
if (!PrevECD)
|
|
return SkipBodyInfo();
|
|
|
|
EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
|
|
NamedDecl *Hidden;
|
|
if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
|
|
SkipBodyInfo Skip;
|
|
Skip.Previous = Hidden;
|
|
return Skip;
|
|
}
|
|
|
|
return SkipBodyInfo();
|
|
}
|
|
|
|
Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
const ParsedAttributesView &Attrs,
|
|
SourceLocation EqualLoc, Expr *Val) {
|
|
EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
|
|
EnumConstantDecl *LastEnumConst =
|
|
cast_or_null<EnumConstantDecl>(lastEnumConst);
|
|
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
S = getNonFieldDeclScope(S);
|
|
|
|
// Verify that there isn't already something declared with this name in this
|
|
// scope.
|
|
LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
|
|
LookupName(R, S);
|
|
NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
|
|
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = nullptr;
|
|
}
|
|
|
|
// C++ [class.mem]p15:
|
|
// If T is the name of a class, then each of the following shall have a name
|
|
// different from T:
|
|
// - every enumerator of every member of class T that is an unscoped
|
|
// enumerated type
|
|
if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
|
|
DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
|
|
DeclarationNameInfo(Id, IdLoc));
|
|
|
|
EnumConstantDecl *New =
|
|
CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
|
|
if (!New)
|
|
return nullptr;
|
|
|
|
if (PrevDecl) {
|
|
if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
|
|
// Check for other kinds of shadowing not already handled.
|
|
CheckShadow(New, PrevDecl, R);
|
|
}
|
|
|
|
// When in C++, we may get a TagDecl with the same name; in this case the
|
|
// enum constant will 'hide' the tag.
|
|
assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
|
|
"Received TagDecl when not in C++!");
|
|
if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
|
|
if (isa<EnumConstantDecl>(PrevDecl))
|
|
Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
|
|
else
|
|
Diag(IdLoc, diag::err_redefinition) << Id;
|
|
notePreviousDefinition(PrevDecl, IdLoc);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Process attributes.
|
|
ProcessDeclAttributeList(S, New, Attrs);
|
|
AddPragmaAttributes(S, New);
|
|
|
|
// Register this decl in the current scope stack.
|
|
New->setAccess(TheEnumDecl->getAccess());
|
|
PushOnScopeChains(New, S);
|
|
|
|
ActOnDocumentableDecl(New);
|
|
|
|
return New;
|
|
}
|
|
|
|
// Returns true when the enum initial expression does not trigger the
|
|
// duplicate enum warning. A few common cases are exempted as follows:
|
|
// Element2 = Element1
|
|
// Element2 = Element1 + 1
|
|
// Element2 = Element1 - 1
|
|
// Where Element2 and Element1 are from the same enum.
|
|
static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
|
|
Expr *InitExpr = ECD->getInitExpr();
|
|
if (!InitExpr)
|
|
return true;
|
|
InitExpr = InitExpr->IgnoreImpCasts();
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
|
|
if (!BO->isAdditiveOp())
|
|
return true;
|
|
IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
|
|
if (!IL)
|
|
return true;
|
|
if (IL->getValue() != 1)
|
|
return true;
|
|
|
|
InitExpr = BO->getLHS();
|
|
}
|
|
|
|
// This checks if the elements are from the same enum.
|
|
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
|
|
if (!DRE)
|
|
return true;
|
|
|
|
EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
|
|
if (!EnumConstant)
|
|
return true;
|
|
|
|
if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
|
|
Enum)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Emits a warning when an element is implicitly set a value that
|
|
// a previous element has already been set to.
|
|
static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
|
|
EnumDecl *Enum, QualType EnumType) {
|
|
// Avoid anonymous enums
|
|
if (!Enum->getIdentifier())
|
|
return;
|
|
|
|
// Only check for small enums.
|
|
if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
|
|
return;
|
|
|
|
if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
|
|
return;
|
|
|
|
typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
|
|
typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
|
|
|
|
typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
|
|
typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
|
|
|
|
// Use int64_t as a key to avoid needing special handling for DenseMap keys.
|
|
auto EnumConstantToKey = [](const EnumConstantDecl *D) {
|
|
llvm::APSInt Val = D->getInitVal();
|
|
return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
|
|
};
|
|
|
|
DuplicatesVector DupVector;
|
|
ValueToVectorMap EnumMap;
|
|
|
|
// Populate the EnumMap with all values represented by enum constants without
|
|
// an initializer.
|
|
for (auto *Element : Elements) {
|
|
EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
|
|
|
|
// Null EnumConstantDecl means a previous diagnostic has been emitted for
|
|
// this constant. Skip this enum since it may be ill-formed.
|
|
if (!ECD) {
|
|
return;
|
|
}
|
|
|
|
// Constants with initalizers are handled in the next loop.
|
|
if (ECD->getInitExpr())
|
|
continue;
|
|
|
|
// Duplicate values are handled in the next loop.
|
|
EnumMap.insert({EnumConstantToKey(ECD), ECD});
|
|
}
|
|
|
|
if (EnumMap.size() == 0)
|
|
return;
|
|
|
|
// Create vectors for any values that has duplicates.
|
|
for (auto *Element : Elements) {
|
|
// The last loop returned if any constant was null.
|
|
EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
|
|
if (!ValidDuplicateEnum(ECD, Enum))
|
|
continue;
|
|
|
|
auto Iter = EnumMap.find(EnumConstantToKey(ECD));
|
|
if (Iter == EnumMap.end())
|
|
continue;
|
|
|
|
DeclOrVector& Entry = Iter->second;
|
|
if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
|
|
// Ensure constants are different.
|
|
if (D == ECD)
|
|
continue;
|
|
|
|
// Create new vector and push values onto it.
|
|
auto Vec = llvm::make_unique<ECDVector>();
|
|
Vec->push_back(D);
|
|
Vec->push_back(ECD);
|
|
|
|
// Update entry to point to the duplicates vector.
|
|
Entry = Vec.get();
|
|
|
|
// Store the vector somewhere we can consult later for quick emission of
|
|
// diagnostics.
|
|
DupVector.emplace_back(std::move(Vec));
|
|
continue;
|
|
}
|
|
|
|
ECDVector *Vec = Entry.get<ECDVector*>();
|
|
// Make sure constants are not added more than once.
|
|
if (*Vec->begin() == ECD)
|
|
continue;
|
|
|
|
Vec->push_back(ECD);
|
|
}
|
|
|
|
// Emit diagnostics.
|
|
for (const auto &Vec : DupVector) {
|
|
assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
|
|
|
|
// Emit warning for one enum constant.
|
|
auto *FirstECD = Vec->front();
|
|
S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
|
|
<< FirstECD << FirstECD->getInitVal().toString(10)
|
|
<< FirstECD->getSourceRange();
|
|
|
|
// Emit one note for each of the remaining enum constants with
|
|
// the same value.
|
|
for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
|
|
S.Diag(ECD->getLocation(), diag::note_duplicate_element)
|
|
<< ECD << ECD->getInitVal().toString(10)
|
|
<< ECD->getSourceRange();
|
|
}
|
|
}
|
|
|
|
bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
|
|
bool AllowMask) const {
|
|
assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
|
|
assert(ED->isCompleteDefinition() && "expected enum definition");
|
|
|
|
auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
|
|
llvm::APInt &FlagBits = R.first->second;
|
|
|
|
if (R.second) {
|
|
for (auto *E : ED->enumerators()) {
|
|
const auto &EVal = E->getInitVal();
|
|
// Only single-bit enumerators introduce new flag values.
|
|
if (EVal.isPowerOf2())
|
|
FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
|
|
}
|
|
}
|
|
|
|
// A value is in a flag enum if either its bits are a subset of the enum's
|
|
// flag bits (the first condition) or we are allowing masks and the same is
|
|
// true of its complement (the second condition). When masks are allowed, we
|
|
// allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
|
|
//
|
|
// While it's true that any value could be used as a mask, the assumption is
|
|
// that a mask will have all of the insignificant bits set. Anything else is
|
|
// likely a logic error.
|
|
llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
|
|
return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
|
|
}
|
|
|
|
void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
|
|
Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
|
|
const ParsedAttributesView &Attrs) {
|
|
EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
|
|
QualType EnumType = Context.getTypeDeclType(Enum);
|
|
|
|
ProcessDeclAttributeList(S, Enum, Attrs);
|
|
|
|
if (Enum->isDependentType()) {
|
|
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
|
|
EnumConstantDecl *ECD =
|
|
cast_or_null<EnumConstantDecl>(Elements[i]);
|
|
if (!ECD) continue;
|
|
|
|
ECD->setType(EnumType);
|
|
}
|
|
|
|
Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
|
|
return;
|
|
}
|
|
|
|
// TODO: If the result value doesn't fit in an int, it must be a long or long
|
|
// long value. ISO C does not support this, but GCC does as an extension,
|
|
// emit a warning.
|
|
unsigned IntWidth = Context.getTargetInfo().getIntWidth();
|
|
unsigned CharWidth = Context.getTargetInfo().getCharWidth();
|
|
unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
|
|
|
|
// Verify that all the values are okay, compute the size of the values, and
|
|
// reverse the list.
|
|
unsigned NumNegativeBits = 0;
|
|
unsigned NumPositiveBits = 0;
|
|
|
|
// Keep track of whether all elements have type int.
|
|
bool AllElementsInt = true;
|
|
|
|
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
|
|
EnumConstantDecl *ECD =
|
|
cast_or_null<EnumConstantDecl>(Elements[i]);
|
|
if (!ECD) continue; // Already issued a diagnostic.
|
|
|
|
const llvm::APSInt &InitVal = ECD->getInitVal();
|
|
|
|
// Keep track of the size of positive and negative values.
|
|
if (InitVal.isUnsigned() || InitVal.isNonNegative())
|
|
NumPositiveBits = std::max(NumPositiveBits,
|
|
(unsigned)InitVal.getActiveBits());
|
|
else
|
|
NumNegativeBits = std::max(NumNegativeBits,
|
|
(unsigned)InitVal.getMinSignedBits());
|
|
|
|
// Keep track of whether every enum element has type int (very common).
|
|
if (AllElementsInt)
|
|
AllElementsInt = ECD->getType() == Context.IntTy;
|
|
}
|
|
|
|
// Figure out the type that should be used for this enum.
|
|
QualType BestType;
|
|
unsigned BestWidth;
|
|
|
|
// C++0x N3000 [conv.prom]p3:
|
|
// An rvalue of an unscoped enumeration type whose underlying
|
|
// type is not fixed can be converted to an rvalue of the first
|
|
// of the following types that can represent all the values of
|
|
// the enumeration: int, unsigned int, long int, unsigned long
|
|
// int, long long int, or unsigned long long int.
|
|
// C99 6.4.4.3p2:
|
|
// An identifier declared as an enumeration constant has type int.
|
|
// The C99 rule is modified by a gcc extension
|
|
QualType BestPromotionType;
|
|
|
|
bool Packed = Enum->hasAttr<PackedAttr>();
|
|
// -fshort-enums is the equivalent to specifying the packed attribute on all
|
|
// enum definitions.
|
|
if (LangOpts.ShortEnums)
|
|
Packed = true;
|
|
|
|
// If the enum already has a type because it is fixed or dictated by the
|
|
// target, promote that type instead of analyzing the enumerators.
|
|
if (Enum->isComplete()) {
|
|
BestType = Enum->getIntegerType();
|
|
if (BestType->isPromotableIntegerType())
|
|
BestPromotionType = Context.getPromotedIntegerType(BestType);
|
|
else
|
|
BestPromotionType = BestType;
|
|
|
|
BestWidth = Context.getIntWidth(BestType);
|
|
}
|
|
else if (NumNegativeBits) {
|
|
// If there is a negative value, figure out the smallest integer type (of
|
|
// int/long/longlong) that fits.
|
|
// If it's packed, check also if it fits a char or a short.
|
|
if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
|
|
BestType = Context.SignedCharTy;
|
|
BestWidth = CharWidth;
|
|
} else if (Packed && NumNegativeBits <= ShortWidth &&
|
|
NumPositiveBits < ShortWidth) {
|
|
BestType = Context.ShortTy;
|
|
BestWidth = ShortWidth;
|
|
} else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
|
|
BestType = Context.IntTy;
|
|
BestWidth = IntWidth;
|
|
} else {
|
|
BestWidth = Context.getTargetInfo().getLongWidth();
|
|
|
|
if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
|
|
BestType = Context.LongTy;
|
|
} else {
|
|
BestWidth = Context.getTargetInfo().getLongLongWidth();
|
|
|
|
if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
|
|
Diag(Enum->getLocation(), diag::ext_enum_too_large);
|
|
BestType = Context.LongLongTy;
|
|
}
|
|
}
|
|
BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
|
|
} else {
|
|
// If there is no negative value, figure out the smallest type that fits
|
|
// all of the enumerator values.
|
|
// If it's packed, check also if it fits a char or a short.
|
|
if (Packed && NumPositiveBits <= CharWidth) {
|
|
BestType = Context.UnsignedCharTy;
|
|
BestPromotionType = Context.IntTy;
|
|
BestWidth = CharWidth;
|
|
} else if (Packed && NumPositiveBits <= ShortWidth) {
|
|
BestType = Context.UnsignedShortTy;
|
|
BestPromotionType = Context.IntTy;
|
|
BestWidth = ShortWidth;
|
|
} else if (NumPositiveBits <= IntWidth) {
|
|
BestType = Context.UnsignedIntTy;
|
|
BestWidth = IntWidth;
|
|
BestPromotionType
|
|
= (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
|
|
? Context.UnsignedIntTy : Context.IntTy;
|
|
} else if (NumPositiveBits <=
|
|
(BestWidth = Context.getTargetInfo().getLongWidth())) {
|
|
BestType = Context.UnsignedLongTy;
|
|
BestPromotionType
|
|
= (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
|
|
? Context.UnsignedLongTy : Context.LongTy;
|
|
} else {
|
|
BestWidth = Context.getTargetInfo().getLongLongWidth();
|
|
assert(NumPositiveBits <= BestWidth &&
|
|
"How could an initializer get larger than ULL?");
|
|
BestType = Context.UnsignedLongLongTy;
|
|
BestPromotionType
|
|
= (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
|
|
? Context.UnsignedLongLongTy : Context.LongLongTy;
|
|
}
|
|
}
|
|
|
|
// Loop over all of the enumerator constants, changing their types to match
|
|
// the type of the enum if needed.
|
|
for (auto *D : Elements) {
|
|
auto *ECD = cast_or_null<EnumConstantDecl>(D);
|
|
if (!ECD) continue; // Already issued a diagnostic.
|
|
|
|
// Standard C says the enumerators have int type, but we allow, as an
|
|
// extension, the enumerators to be larger than int size. If each
|
|
// enumerator value fits in an int, type it as an int, otherwise type it the
|
|
// same as the enumerator decl itself. This means that in "enum { X = 1U }"
|
|
// that X has type 'int', not 'unsigned'.
|
|
|
|
// Determine whether the value fits into an int.
|
|
llvm::APSInt InitVal = ECD->getInitVal();
|
|
|
|
// If it fits into an integer type, force it. Otherwise force it to match
|
|
// the enum decl type.
|
|
QualType NewTy;
|
|
unsigned NewWidth;
|
|
bool NewSign;
|
|
if (!getLangOpts().CPlusPlus &&
|
|
!Enum->isFixed() &&
|
|
isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
|
|
NewTy = Context.IntTy;
|
|
NewWidth = IntWidth;
|
|
NewSign = true;
|
|
} else if (ECD->getType() == BestType) {
|
|
// Already the right type!
|
|
if (getLangOpts().CPlusPlus)
|
|
// C++ [dcl.enum]p4: Following the closing brace of an
|
|
// enum-specifier, each enumerator has the type of its
|
|
// enumeration.
|
|
ECD->setType(EnumType);
|
|
continue;
|
|
} else {
|
|
NewTy = BestType;
|
|
NewWidth = BestWidth;
|
|
NewSign = BestType->isSignedIntegerOrEnumerationType();
|
|
}
|
|
|
|
// Adjust the APSInt value.
|
|
InitVal = InitVal.extOrTrunc(NewWidth);
|
|
InitVal.setIsSigned(NewSign);
|
|
ECD->setInitVal(InitVal);
|
|
|
|
// Adjust the Expr initializer and type.
|
|
if (ECD->getInitExpr() &&
|
|
!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
|
|
ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
|
|
CK_IntegralCast,
|
|
ECD->getInitExpr(),
|
|
/*base paths*/ nullptr,
|
|
VK_RValue));
|
|
if (getLangOpts().CPlusPlus)
|
|
// C++ [dcl.enum]p4: Following the closing brace of an
|
|
// enum-specifier, each enumerator has the type of its
|
|
// enumeration.
|
|
ECD->setType(EnumType);
|
|
else
|
|
ECD->setType(NewTy);
|
|
}
|
|
|
|
Enum->completeDefinition(BestType, BestPromotionType,
|
|
NumPositiveBits, NumNegativeBits);
|
|
|
|
CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
|
|
|
|
if (Enum->isClosedFlag()) {
|
|
for (Decl *D : Elements) {
|
|
EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
|
|
if (!ECD) continue; // Already issued a diagnostic.
|
|
|
|
llvm::APSInt InitVal = ECD->getInitVal();
|
|
if (InitVal != 0 && !InitVal.isPowerOf2() &&
|
|
!IsValueInFlagEnum(Enum, InitVal, true))
|
|
Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
|
|
<< ECD << Enum;
|
|
}
|
|
}
|
|
|
|
// Now that the enum type is defined, ensure it's not been underaligned.
|
|
if (Enum->hasAttrs())
|
|
CheckAlignasUnderalignment(Enum);
|
|
}
|
|
|
|
Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc) {
|
|
StringLiteral *AsmString = cast<StringLiteral>(expr);
|
|
|
|
FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
|
|
AsmString, StartLoc,
|
|
EndLoc);
|
|
CurContext->addDecl(New);
|
|
return New;
|
|
}
|
|
|
|
void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
|
|
IdentifierInfo* AliasName,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation NameLoc,
|
|
SourceLocation AliasNameLoc) {
|
|
NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
|
|
LookupOrdinaryName);
|
|
AsmLabelAttr *Attr =
|
|
AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
|
|
|
|
// If a declaration that:
|
|
// 1) declares a function or a variable
|
|
// 2) has external linkage
|
|
// already exists, add a label attribute to it.
|
|
if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
|
|
if (isDeclExternC(PrevDecl))
|
|
PrevDecl->addAttr(Attr);
|
|
else
|
|
Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
|
|
<< /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
|
|
// Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
|
|
} else
|
|
(void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
|
|
}
|
|
|
|
void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation NameLoc) {
|
|
Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
|
|
|
|
if (PrevDecl) {
|
|
PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
|
|
} else {
|
|
(void)WeakUndeclaredIdentifiers.insert(
|
|
std::pair<IdentifierInfo*,WeakInfo>
|
|
(Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
|
|
IdentifierInfo* AliasName,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation NameLoc,
|
|
SourceLocation AliasNameLoc) {
|
|
Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
|
|
LookupOrdinaryName);
|
|
WeakInfo W = WeakInfo(Name, NameLoc);
|
|
|
|
if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
|
|
if (!PrevDecl->hasAttr<AliasAttr>())
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
|
|
DeclApplyPragmaWeak(TUScope, ND, W);
|
|
} else {
|
|
(void)WeakUndeclaredIdentifiers.insert(
|
|
std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
|
|
}
|
|
}
|
|
|
|
Decl *Sema::getObjCDeclContext() const {
|
|
return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
|
|
}
|