llvm-project/llvm/lib/Analysis/SyncDependenceAnalysis.cpp

481 lines
16 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===--- SyncDependenceAnalysis.cpp - Compute Control Divergence Effects --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an algorithm that returns for a divergent branch
// the set of basic blocks whose phi nodes become divergent due to divergent
// control. These are the blocks that are reachable by two disjoint paths from
// the branch or loop exits that have a reaching path that is disjoint from a
// path to the loop latch.
//
// The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
// control-induced divergence in phi nodes.
//
//
// -- Reference --
// The algorithm is presented in Section 5 of
//
// An abstract interpretation for SPMD divergence
// on reducible control flow graphs.
// Julian Rosemann, Simon Moll and Sebastian Hack
// POPL '21
//
//
// -- Sync dependence --
// Sync dependence characterizes the control flow aspect of the
// propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
//
// -- Reduction to SSA construction --
// There are two disjoint paths from A to X, if a certain variant of SSA
// construction places a phi node in X under the following set-up scheme.
//
// This variant of SSA construction ignores incoming undef values.
// That is paths from the entry without a definition do not result in
// phi nodes.
//
// entry
// / \
// A \
// / \ Y
// B C /
// \ / \ /
// D E
// \ /
// F
//
// Assume that A contains a divergent branch. We are interested
// in the set of all blocks where each block is reachable from A
// via two disjoint paths. This would be the set {D, F} in this
// case.
// To generally reduce this query to SSA construction we introduce
// a virtual variable x and assign to x different values in each
// successor block of A.
//
// entry
// / \
// A \
// / \ Y
// x = 0 x = 1 /
// \ / \ /
// D E
// \ /
// F
//
// Our flavor of SSA construction for x will construct the following
//
// entry
// / \
// A \
// / \ Y
// x0 = 0 x1 = 1 /
// \ / \ /
// x2 = phi E
// \ /
// x3 = phi
//
// The blocks D and F contain phi nodes and are thus each reachable
// by two disjoins paths from A.
//
// -- Remarks --
// * In case of loop exits we need to check the disjoint path criterion for loops.
// To this end, we check whether the definition of x differs between the
// loop exit and the loop header (_after_ SSA construction).
//
// -- Known Limitations & Future Work --
// * The algorithm requires reducible loops because the implementation
// implicitly performs a single iteration of the underlying data flow analysis.
// This was done for pragmatism, simplicity and speed.
//
// Relevant related work for extending the algorithm to irreducible control:
// A simple algorithm for global data flow analysis problems.
// Matthew S. Hecht and Jeffrey D. Ullman.
// SIAM Journal on Computing, 4(4):519532, December 1975.
//
// * Another reason for requiring reducible loops is that points of
// synchronization in irreducible loops aren't 'obvious' - there is no unique
// header where threads 'should' synchronize when entering or coming back
// around from the latch.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/SyncDependenceAnalysis.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include <functional>
#include <stack>
#include <unordered_set>
#define DEBUG_TYPE "sync-dependence"
// The SDA algorithm operates on a modified CFG - we modify the edges leaving
// loop headers as follows:
//
// * We remove all edges leaving all loop headers.
// * We add additional edges from the loop headers to their exit blocks.
//
// The modification is virtual, that is whenever we visit a loop header we
// pretend it had different successors.
namespace {
using namespace llvm;
// Custom Post-Order Traveral
//
// We cannot use the vanilla (R)PO computation of LLVM because:
// * We (virtually) modify the CFG.
// * We want a loop-compact block enumeration, that is the numbers assigned to
// blocks of a loop form an interval
//
using POCB = std::function<void(const BasicBlock &)>;
using VisitedSet = std::set<const BasicBlock *>;
using BlockStack = std::vector<const BasicBlock *>;
// forward
static void computeLoopPO(const LoopInfo &LI, Loop &Loop, POCB CallBack,
VisitedSet &Finalized);
// for a nested region (top-level loop or nested loop)
static void computeStackPO(BlockStack &Stack, const LoopInfo &LI, Loop *Loop,
POCB CallBack, VisitedSet &Finalized) {
const auto *LoopHeader = Loop ? Loop->getHeader() : nullptr;
while (!Stack.empty()) {
const auto *NextBB = Stack.back();
auto *NestedLoop = LI.getLoopFor(NextBB);
bool IsNestedLoop = NestedLoop != Loop;
// Treat the loop as a node
if (IsNestedLoop) {
SmallVector<BasicBlock *, 3> NestedExits;
NestedLoop->getUniqueExitBlocks(NestedExits);
bool PushedNodes = false;
for (const auto *NestedExitBB : NestedExits) {
if (NestedExitBB == LoopHeader)
continue;
if (Loop && !Loop->contains(NestedExitBB))
continue;
if (Finalized.count(NestedExitBB))
continue;
PushedNodes = true;
Stack.push_back(NestedExitBB);
}
if (!PushedNodes) {
// All loop exits finalized -> finish this node
Stack.pop_back();
computeLoopPO(LI, *NestedLoop, CallBack, Finalized);
}
continue;
}
// DAG-style
bool PushedNodes = false;
for (const auto *SuccBB : successors(NextBB)) {
if (SuccBB == LoopHeader)
continue;
if (Loop && !Loop->contains(SuccBB))
continue;
if (Finalized.count(SuccBB))
continue;
PushedNodes = true;
Stack.push_back(SuccBB);
}
if (!PushedNodes) {
// Never push nodes twice
Stack.pop_back();
if (!Finalized.insert(NextBB).second)
continue;
CallBack(*NextBB);
}
}
}
static void computeTopLevelPO(Function &F, const LoopInfo &LI, POCB CallBack) {
VisitedSet Finalized;
BlockStack Stack;
Stack.reserve(24); // FIXME made-up number
Stack.push_back(&F.getEntryBlock());
computeStackPO(Stack, LI, nullptr, CallBack, Finalized);
}
static void computeLoopPO(const LoopInfo &LI, Loop &Loop, POCB CallBack,
VisitedSet &Finalized) {
/// Call CallBack on all loop blocks.
std::vector<const BasicBlock *> Stack;
const auto *LoopHeader = Loop.getHeader();
// Visit the header last
Finalized.insert(LoopHeader);
CallBack(*LoopHeader);
// Initialize with immediate successors
for (const auto *BB : successors(LoopHeader)) {
if (!Loop.contains(BB))
continue;
if (BB == LoopHeader)
continue;
Stack.push_back(BB);
}
// Compute PO inside region
computeStackPO(Stack, LI, &Loop, CallBack, Finalized);
}
} // namespace
namespace llvm {
ControlDivergenceDesc SyncDependenceAnalysis::EmptyDivergenceDesc;
SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI)
: DT(DT), PDT(PDT), LI(LI) {
computeTopLevelPO(*DT.getRoot()->getParent(), LI,
[&](const BasicBlock &BB) { LoopPO.appendBlock(BB); });
}
SyncDependenceAnalysis::~SyncDependenceAnalysis() = default;
// divergence propagator for reducible CFGs
struct DivergencePropagator {
const ModifiedPO &LoopPOT;
const DominatorTree &DT;
const PostDominatorTree &PDT;
const LoopInfo &LI;
const BasicBlock &DivTermBlock;
// * if BlockLabels[IndexOf(B)] == C then C is the dominating definition at
// block B
// * if BlockLabels[IndexOf(B)] ~ undef then we haven't seen B yet
// * if BlockLabels[IndexOf(B)] == B then B is a join point of disjoint paths
// from X or B is an immediate successor of X (initial value).
using BlockLabelVec = std::vector<const BasicBlock *>;
BlockLabelVec BlockLabels;
// divergent join and loop exit descriptor.
std::unique_ptr<ControlDivergenceDesc> DivDesc;
DivergencePropagator(const ModifiedPO &LoopPOT, const DominatorTree &DT,
const PostDominatorTree &PDT, const LoopInfo &LI,
const BasicBlock &DivTermBlock)
: LoopPOT(LoopPOT), DT(DT), PDT(PDT), LI(LI), DivTermBlock(DivTermBlock),
BlockLabels(LoopPOT.size(), nullptr),
DivDesc(new ControlDivergenceDesc) {}
void printDefs(raw_ostream &Out) {
Out << "Propagator::BlockLabels {\n";
for (int BlockIdx = (int)BlockLabels.size() - 1; BlockIdx > 0; --BlockIdx) {
const auto *Label = BlockLabels[BlockIdx];
Out << LoopPOT.getBlockAt(BlockIdx)->getName().str() << "(" << BlockIdx
<< ") : ";
if (!Label) {
Out << "<null>\n";
} else {
Out << Label->getName() << "\n";
}
}
Out << "}\n";
}
// Push a definition (\p PushedLabel) to \p SuccBlock and return whether this
// causes a divergent join.
bool computeJoin(const BasicBlock &SuccBlock, const BasicBlock &PushedLabel) {
auto SuccIdx = LoopPOT.getIndexOf(SuccBlock);
// unset or same reaching label
const auto *OldLabel = BlockLabels[SuccIdx];
if (!OldLabel || (OldLabel == &PushedLabel)) {
BlockLabels[SuccIdx] = &PushedLabel;
return false;
}
// Update the definition
BlockLabels[SuccIdx] = &SuccBlock;
return true;
}
// visiting a virtual loop exit edge from the loop header --> temporal
// divergence on join
bool visitLoopExitEdge(const BasicBlock &ExitBlock,
const BasicBlock &DefBlock, bool FromParentLoop) {
// Pushing from a non-parent loop cannot cause temporal divergence.
if (!FromParentLoop)
return visitEdge(ExitBlock, DefBlock);
if (!computeJoin(ExitBlock, DefBlock))
return false;
// Identified a divergent loop exit
DivDesc->LoopDivBlocks.insert(&ExitBlock);
LLVM_DEBUG(dbgs() << "\tDivergent loop exit: " << ExitBlock.getName()
<< "\n");
return true;
}
// process \p SuccBlock with reaching definition \p DefBlock
bool visitEdge(const BasicBlock &SuccBlock, const BasicBlock &DefBlock) {
if (!computeJoin(SuccBlock, DefBlock))
return false;
// Divergent, disjoint paths join.
DivDesc->JoinDivBlocks.insert(&SuccBlock);
LLVM_DEBUG(dbgs() << "\tDivergent join: " << SuccBlock.getName());
return true;
}
std::unique_ptr<ControlDivergenceDesc> computeJoinPoints() {
assert(DivDesc);
LLVM_DEBUG(dbgs() << "SDA:computeJoinPoints: " << DivTermBlock.getName()
<< "\n");
const auto *DivBlockLoop = LI.getLoopFor(&DivTermBlock);
// Early stopping criterion
int FloorIdx = LoopPOT.size() - 1;
const BasicBlock *FloorLabel = nullptr;
// bootstrap with branch targets
int BlockIdx = 0;
for (const auto *SuccBlock : successors(&DivTermBlock)) {
auto SuccIdx = LoopPOT.getIndexOf(*SuccBlock);
BlockLabels[SuccIdx] = SuccBlock;
// Find the successor with the highest index to start with
BlockIdx = std::max<int>(BlockIdx, SuccIdx);
FloorIdx = std::min<int>(FloorIdx, SuccIdx);
// Identify immediate divergent loop exits
if (!DivBlockLoop)
continue;
const auto *BlockLoop = LI.getLoopFor(SuccBlock);
if (BlockLoop && DivBlockLoop->contains(BlockLoop))
continue;
DivDesc->LoopDivBlocks.insert(SuccBlock);
LLVM_DEBUG(dbgs() << "\tImmediate divergent loop exit: "
<< SuccBlock->getName() << "\n");
}
// propagate definitions at the immediate successors of the node in RPO
for (; BlockIdx >= FloorIdx; --BlockIdx) {
LLVM_DEBUG(dbgs() << "Before next visit:\n"; printDefs(dbgs()));
// Any label available here
const auto *Label = BlockLabels[BlockIdx];
if (!Label)
continue;
// Ok. Get the block
const auto *Block = LoopPOT.getBlockAt(BlockIdx);
LLVM_DEBUG(dbgs() << "SDA::joins. visiting " << Block->getName() << "\n");
auto *BlockLoop = LI.getLoopFor(Block);
bool IsLoopHeader = BlockLoop && BlockLoop->getHeader() == Block;
bool CausedJoin = false;
int LoweredFloorIdx = FloorIdx;
if (IsLoopHeader) {
// Disconnect from immediate successors and propagate directly to loop
// exits.
SmallVector<BasicBlock *, 4> BlockLoopExits;
BlockLoop->getExitBlocks(BlockLoopExits);
bool IsParentLoop = BlockLoop->contains(&DivTermBlock);
for (const auto *BlockLoopExit : BlockLoopExits) {
CausedJoin |= visitLoopExitEdge(*BlockLoopExit, *Label, IsParentLoop);
LoweredFloorIdx = std::min<int>(LoweredFloorIdx,
LoopPOT.getIndexOf(*BlockLoopExit));
}
} else {
// Acyclic successor case
for (const auto *SuccBlock : successors(Block)) {
CausedJoin |= visitEdge(*SuccBlock, *Label);
LoweredFloorIdx =
std::min<int>(LoweredFloorIdx, LoopPOT.getIndexOf(*SuccBlock));
}
}
// Floor update
if (CausedJoin) {
// 1. Different labels pushed to successors
FloorIdx = LoweredFloorIdx;
} else if (FloorLabel != Label) {
// 2. No join caused BUT we pushed a label that is different than the
// last pushed label
FloorIdx = LoweredFloorIdx;
FloorLabel = Label;
}
}
LLVM_DEBUG(dbgs() << "SDA::joins. After propagation:\n"; printDefs(dbgs()));
return std::move(DivDesc);
}
};
#ifndef NDEBUG
static void printBlockSet(ConstBlockSet &Blocks, raw_ostream &Out) {
Out << "[";
ListSeparator LS;
for (const auto *BB : Blocks)
Out << LS << BB->getName();
Out << "]";
}
#endif
const ControlDivergenceDesc &
SyncDependenceAnalysis::getJoinBlocks(const Instruction &Term) {
// trivial case
if (Term.getNumSuccessors() <= 1) {
return EmptyDivergenceDesc;
}
// already available in cache?
auto ItCached = CachedControlDivDescs.find(&Term);
if (ItCached != CachedControlDivDescs.end())
return *ItCached->second;
// compute all join points
// Special handling of divergent loop exits is not needed for LCSSA
const auto &TermBlock = *Term.getParent();
DivergencePropagator Propagator(LoopPO, DT, PDT, LI, TermBlock);
auto DivDesc = Propagator.computeJoinPoints();
LLVM_DEBUG(dbgs() << "Result (" << Term.getParent()->getName() << "):\n";
dbgs() << "JoinDivBlocks: ";
printBlockSet(DivDesc->JoinDivBlocks, dbgs());
dbgs() << "\nLoopDivBlocks: ";
printBlockSet(DivDesc->LoopDivBlocks, dbgs()); dbgs() << "\n";);
auto ItInserted = CachedControlDivDescs.emplace(&Term, std::move(DivDesc));
assert(ItInserted.second);
return *ItInserted.first->second;
}
} // namespace llvm