llvm-project/llvm/lib/Analysis/IVDescriptors.cpp

1448 lines
56 KiB
C++

//===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file "describes" induction and recurrence variables.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include <set>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "iv-descriptors"
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
SmallPtrSetImpl<Instruction *> &Set) {
for (const Use &Use : I->operands())
if (!Set.count(dyn_cast<Instruction>(Use)))
return false;
return true;
}
bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
switch (Kind) {
default:
break;
case RecurKind::Add:
case RecurKind::Mul:
case RecurKind::Or:
case RecurKind::And:
case RecurKind::Xor:
case RecurKind::SMax:
case RecurKind::SMin:
case RecurKind::UMax:
case RecurKind::UMin:
case RecurKind::SelectICmp:
case RecurKind::SelectFCmp:
return true;
}
return false;
}
bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
}
bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
switch (Kind) {
default:
break;
case RecurKind::Add:
case RecurKind::Mul:
case RecurKind::FAdd:
case RecurKind::FMul:
case RecurKind::FMulAdd:
return true;
}
return false;
}
/// Determines if Phi may have been type-promoted. If Phi has a single user
/// that ANDs the Phi with a type mask, return the user. RT is updated to
/// account for the narrower bit width represented by the mask, and the AND
/// instruction is added to CI.
static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI) {
if (!Phi->hasOneUse())
return Phi;
const APInt *M = nullptr;
Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
// Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
// with a new integer type of the corresponding bit width.
if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
int32_t Bits = (*M + 1).exactLogBase2();
if (Bits > 0) {
RT = IntegerType::get(Phi->getContext(), Bits);
Visited.insert(Phi);
CI.insert(J);
return J;
}
}
return Phi;
}
/// Compute the minimal bit width needed to represent a reduction whose exit
/// instruction is given by Exit.
static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
DemandedBits *DB,
AssumptionCache *AC,
DominatorTree *DT) {
bool IsSigned = false;
const DataLayout &DL = Exit->getModule()->getDataLayout();
uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
if (DB) {
// Use the demanded bits analysis to determine the bits that are live out
// of the exit instruction, rounding up to the nearest power of two. If the
// use of demanded bits results in a smaller bit width, we know the value
// must be positive (i.e., IsSigned = false), because if this were not the
// case, the sign bit would have been demanded.
auto Mask = DB->getDemandedBits(Exit);
MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
}
if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
// If demanded bits wasn't able to limit the bit width, we can try to use
// value tracking instead. This can be the case, for example, if the value
// may be negative.
auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
MaxBitWidth = NumTypeBits - NumSignBits;
KnownBits Bits = computeKnownBits(Exit, DL);
if (!Bits.isNonNegative()) {
// If the value is not known to be non-negative, we set IsSigned to true,
// meaning that we will use sext instructions instead of zext
// instructions to restore the original type.
IsSigned = true;
// Make sure at at least one sign bit is included in the result, so it
// will get properly sign-extended.
++MaxBitWidth;
}
}
if (!isPowerOf2_64(MaxBitWidth))
MaxBitWidth = NextPowerOf2(MaxBitWidth);
return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
IsSigned);
}
/// Collect cast instructions that can be ignored in the vectorizer's cost
/// model, given a reduction exit value and the minimal type in which the
// reduction can be represented. Also search casts to the recurrence type
// to find the minimum width used by the recurrence.
static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
Type *RecurrenceType,
SmallPtrSetImpl<Instruction *> &Casts,
unsigned &MinWidthCastToRecurTy) {
SmallVector<Instruction *, 8> Worklist;
SmallPtrSet<Instruction *, 8> Visited;
Worklist.push_back(Exit);
MinWidthCastToRecurTy = -1U;
while (!Worklist.empty()) {
Instruction *Val = Worklist.pop_back_val();
Visited.insert(Val);
if (auto *Cast = dyn_cast<CastInst>(Val)) {
if (Cast->getSrcTy() == RecurrenceType) {
// If the source type of a cast instruction is equal to the recurrence
// type, it will be eliminated, and should be ignored in the vectorizer
// cost model.
Casts.insert(Cast);
continue;
}
if (Cast->getDestTy() == RecurrenceType) {
// The minimum width used by the recurrence is found by checking for
// casts on its operands. The minimum width is used by the vectorizer
// when finding the widest type for in-loop reductions without any
// loads/stores.
MinWidthCastToRecurTy = std::min<unsigned>(
MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
continue;
}
}
// Add all operands to the work list if they are loop-varying values that
// we haven't yet visited.
for (Value *O : cast<User>(Val)->operands())
if (auto *I = dyn_cast<Instruction>(O))
if (TheLoop->contains(I) && !Visited.count(I))
Worklist.push_back(I);
}
}
// Check if a given Phi node can be recognized as an ordered reduction for
// vectorizing floating point operations without unsafe math.
static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
Instruction *Exit, PHINode *Phi) {
// Currently only FAdd and FMulAdd are supported.
if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
return false;
if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
return false;
if (Kind == RecurKind::FMulAdd &&
!RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
return false;
// Ensure the exit instruction has only one user other than the reduction PHI
if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
return false;
// The only pattern accepted is the one in which the reduction PHI
// is used as one of the operands of the exit instruction
auto *Op0 = Exit->getOperand(0);
auto *Op1 = Exit->getOperand(1);
if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
return false;
if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
return false;
LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
<< ", ExitInst: " << *Exit << "\n");
return true;
}
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
Loop *TheLoop, FastMathFlags FuncFMF,
RecurrenceDescriptor &RedDes,
DemandedBits *DB,
AssumptionCache *AC,
DominatorTree *DT) {
if (Phi->getNumIncomingValues() != 2)
return false;
// Reduction variables are only found in the loop header block.
if (Phi->getParent() != TheLoop->getHeader())
return false;
// Obtain the reduction start value from the value that comes from the loop
// preheader.
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = nullptr;
// Indicates that we found a reduction operation in our scan.
bool FoundReduxOp = false;
// We start with the PHI node and scan for all of the users of this
// instruction. All users must be instructions that can be used as reduction
// variables (such as ADD). We must have a single out-of-block user. The cycle
// must include the original PHI.
bool FoundStartPHI = false;
// To recognize min/max patterns formed by a icmp select sequence, we store
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
InstDesc ReduxDesc(false, nullptr);
// Data used for determining if the recurrence has been type-promoted.
Type *RecurrenceType = Phi->getType();
SmallPtrSet<Instruction *, 4> CastInsts;
unsigned MinWidthCastToRecurrenceType;
Instruction *Start = Phi;
bool IsSigned = false;
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
// Return early if the recurrence kind does not match the type of Phi. If the
// recurrence kind is arithmetic, we attempt to look through AND operations
// resulting from the type promotion performed by InstCombine. Vector
// operations are not limited to the legal integer widths, so we may be able
// to evaluate the reduction in the narrower width.
if (RecurrenceType->isFloatingPointTy()) {
if (!isFloatingPointRecurrenceKind(Kind))
return false;
} else if (RecurrenceType->isIntegerTy()) {
if (!isIntegerRecurrenceKind(Kind))
return false;
if (!isMinMaxRecurrenceKind(Kind))
Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
} else {
// Pointer min/max may exist, but it is not supported as a reduction op.
return false;
}
Worklist.push_back(Start);
VisitedInsts.insert(Start);
// Start with all flags set because we will intersect this with the reduction
// flags from all the reduction operations.
FastMathFlags FMF = FastMathFlags::getFast();
// The first instruction in the use-def chain of the Phi node that requires
// exact floating point operations.
Instruction *ExactFPMathInst = nullptr;
// A value in the reduction can be used:
// - By the reduction:
// - Reduction operation:
// - One use of reduction value (safe).
// - Multiple use of reduction value (not safe).
// - PHI:
// - All uses of the PHI must be the reduction (safe).
// - Otherwise, not safe.
// - By instructions outside of the loop (safe).
// * One value may have several outside users, but all outside
// uses must be of the same value.
// - By an instruction that is not part of the reduction (not safe).
// This is either:
// * An instruction type other than PHI or the reduction operation.
// * A PHI in the header other than the initial PHI.
while (!Worklist.empty()) {
Instruction *Cur = Worklist.pop_back_val();
// No Users.
// If the instruction has no users then this is a broken chain and can't be
// a reduction variable.
if (Cur->use_empty())
return false;
bool IsAPhi = isa<PHINode>(Cur);
// A header PHI use other than the original PHI.
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
return false;
// Reductions of instructions such as Div, and Sub is only possible if the
// LHS is the reduction variable.
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
return false;
// Any reduction instruction must be of one of the allowed kinds. We ignore
// the starting value (the Phi or an AND instruction if the Phi has been
// type-promoted).
if (Cur != Start) {
ReduxDesc =
isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
ExactFPMathInst = ExactFPMathInst == nullptr
? ReduxDesc.getExactFPMathInst()
: ExactFPMathInst;
if (!ReduxDesc.isRecurrence())
return false;
// FIXME: FMF is allowed on phi, but propagation is not handled correctly.
if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
// Accept FMF on either fcmp or select of a min/max idiom.
// TODO: This is a hack to work-around the fact that FMF may not be
// assigned/propagated correctly. If that problem is fixed or we
// standardize on fmin/fmax via intrinsics, this can be removed.
if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
CurFMF |= FCmp->getFastMathFlags();
}
FMF &= CurFMF;
}
// Update this reduction kind if we matched a new instruction.
// TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
// state accurate while processing the worklist?
if (ReduxDesc.getRecKind() != RecurKind::None)
Kind = ReduxDesc.getRecKind();
}
bool IsASelect = isa<SelectInst>(Cur);
// A conditional reduction operation must only have 2 or less uses in
// VisitedInsts.
if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
hasMultipleUsesOf(Cur, VisitedInsts, 2))
return false;
// A reduction operation must only have one use of the reduction value.
if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
!isSelectCmpRecurrenceKind(Kind) &&
hasMultipleUsesOf(Cur, VisitedInsts, 1))
return false;
// All inputs to a PHI node must be a reduction value.
if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
return false;
if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) &&
(isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) &&
(isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
// Check whether we found a reduction operator.
FoundReduxOp |= !IsAPhi && Cur != Start;
// Process users of current instruction. Push non-PHI nodes after PHI nodes
// onto the stack. This way we are going to have seen all inputs to PHI
// nodes once we get to them.
SmallVector<Instruction *, 8> NonPHIs;
SmallVector<Instruction *, 8> PHIs;
for (User *U : Cur->users()) {
Instruction *UI = cast<Instruction>(U);
// If the user is a call to llvm.fmuladd then the instruction can only be
// the final operand.
if (isFMulAddIntrinsic(UI))
if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
return false;
// Check if we found the exit user.
BasicBlock *Parent = UI->getParent();
if (!TheLoop->contains(Parent)) {
// If we already know this instruction is used externally, move on to
// the next user.
if (ExitInstruction == Cur)
continue;
// Exit if you find multiple values used outside or if the header phi
// node is being used. In this case the user uses the value of the
// previous iteration, in which case we would loose "VF-1" iterations of
// the reduction operation if we vectorize.
if (ExitInstruction != nullptr || Cur == Phi)
return false;
// The instruction used by an outside user must be the last instruction
// before we feed back to the reduction phi. Otherwise, we loose VF-1
// operations on the value.
if (!is_contained(Phi->operands(), Cur))
return false;
ExitInstruction = Cur;
continue;
}
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
InstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
else
NonPHIs.push_back(UI);
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
(!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
!isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal)
.isRecurrence() &&
!isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
return false;
// Remember that we completed the cycle.
if (UI == Phi)
FoundStartPHI = true;
}
Worklist.append(PHIs.begin(), PHIs.end());
Worklist.append(NonPHIs.begin(), NonPHIs.end());
}
// This means we have seen one but not the other instruction of the
// pattern or more than just a select and cmp. Zero implies that we saw a
// llvm.min/max instrinsic, which is always OK.
if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
NumCmpSelectPatternInst != 0)
return false;
if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
return false;
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
return false;
const bool IsOrdered =
checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
if (Start != Phi) {
// If the starting value is not the same as the phi node, we speculatively
// looked through an 'and' instruction when evaluating a potential
// arithmetic reduction to determine if it may have been type-promoted.
//
// We now compute the minimal bit width that is required to represent the
// reduction. If this is the same width that was indicated by the 'and', we
// can represent the reduction in the smaller type. The 'and' instruction
// will be eliminated since it will essentially be a cast instruction that
// can be ignore in the cost model. If we compute a different type than we
// did when evaluating the 'and', the 'and' will not be eliminated, and we
// will end up with different kinds of operations in the recurrence
// expression (e.g., IntegerAND, IntegerADD). We give up if this is
// the case.
//
// The vectorizer relies on InstCombine to perform the actual
// type-shrinking. It does this by inserting instructions to truncate the
// exit value of the reduction to the width indicated by RecurrenceType and
// then extend this value back to the original width. If IsSigned is false,
// a 'zext' instruction will be generated; otherwise, a 'sext' will be
// used.
//
// TODO: We should not rely on InstCombine to rewrite the reduction in the
// smaller type. We should just generate a correctly typed expression
// to begin with.
Type *ComputedType;
std::tie(ComputedType, IsSigned) =
computeRecurrenceType(ExitInstruction, DB, AC, DT);
if (ComputedType != RecurrenceType)
return false;
}
// Collect cast instructions and the minimum width used by the recurrence.
// If the starting value is not the same as the phi node and the computed
// recurrence type is equal to the recurrence type, the recurrence expression
// will be represented in a narrower or wider type. If there are any cast
// instructions that will be unnecessary, collect them in CastsFromRecurTy.
// Note that the 'and' instruction was already included in this list.
//
// TODO: A better way to represent this may be to tag in some way all the
// instructions that are a part of the reduction. The vectorizer cost
// model could then apply the recurrence type to these instructions,
// without needing a white list of instructions to ignore.
// This may also be useful for the inloop reductions, if it can be
// kept simple enough.
collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
MinWidthCastToRecurrenceType);
// We found a reduction var if we have reached the original phi node and we
// only have a single instruction with out-of-loop users.
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
// is saved as part of the RecurrenceDescriptor.
// Save the description of this reduction variable.
RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, ExactFPMathInst,
RecurrenceType, IsSigned, IsOrdered, CastInsts,
MinWidthCastToRecurrenceType);
RedDes = RD;
return true;
}
// We are looking for loops that do something like this:
// int r = 0;
// for (int i = 0; i < n; i++) {
// if (src[i] > 3)
// r = 3;
// }
// where the reduction value (r) only has two states, in this example 0 or 3.
// The generated LLVM IR for this type of loop will be like this:
// for.body:
// %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
// ...
// %cmp = icmp sgt i32 %5, 3
// %spec.select = select i1 %cmp, i32 3, i32 %r
// ...
// In general we can support vectorization of loops where 'r' flips between
// any two non-constants, provided they are loop invariant. The only thing
// we actually care about at the end of the loop is whether or not any lane
// in the selected vector is different from the start value. The final
// across-vector reduction after the loop simply involves choosing the start
// value if nothing changed (0 in the example above) or the other selected
// value (3 in the example above).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
Instruction *I, InstDesc &Prev) {
// We must handle the select(cmp(),x,y) as a single instruction. Advance to
// the select.
CmpInst::Predicate Pred;
if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
return InstDesc(Select, Prev.getRecKind());
}
// Only match select with single use cmp condition.
if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
m_Value())))
return InstDesc(false, I);
SelectInst *SI = cast<SelectInst>(I);
Value *NonPhi = nullptr;
if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
NonPhi = SI->getFalseValue();
else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
NonPhi = SI->getTrueValue();
else
return InstDesc(false, I);
// We are looking for selects of the form:
// select(cmp(), phi, loop_invariant) or
// select(cmp(), loop_invariant, phi)
if (!Loop->isLoopInvariant(NonPhi))
return InstDesc(false, I);
return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp
: RecurKind::SelectFCmp);
}
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
const InstDesc &Prev) {
assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
"Expected a cmp or select or call instruction");
if (!isMinMaxRecurrenceKind(Kind))
return InstDesc(false, I);
// We must handle the select(cmp()) as a single instruction. Advance to the
// select.
CmpInst::Predicate Pred;
if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
return InstDesc(Select, Prev.getRecKind());
}
// Only match select with single use cmp condition, or a min/max intrinsic.
if (!isa<IntrinsicInst>(I) &&
!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
m_Value())))
return InstDesc(false, I);
// Look for a min/max pattern.
if (match(I, m_UMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::UMin, I);
if (match(I, m_UMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::UMax, I);
if (match(I, m_SMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::SMax, I);
if (match(I, m_SMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::SMin, I);
if (match(I, m_OrdFMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMin, I);
if (match(I, m_OrdFMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMax, I);
if (match(I, m_UnordFMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMin, I);
if (match(I, m_UnordFMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMax, I);
if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMin, I);
if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMax, I);
return InstDesc(false, I);
}
/// Returns true if the select instruction has users in the compare-and-add
/// reduction pattern below. The select instruction argument is the last one
/// in the sequence.
///
/// %sum.1 = phi ...
/// ...
/// %cmp = fcmp pred %0, %CFP
/// %add = fadd %0, %sum.1
/// %sum.2 = select %cmp, %add, %sum.1
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
SelectInst *SI = dyn_cast<SelectInst>(I);
if (!SI)
return InstDesc(false, I);
CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
// Only handle single use cases for now.
if (!CI || !CI->hasOneUse())
return InstDesc(false, I);
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
// Handle only when either of operands of select instruction is a PHI
// node for now.
if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
(!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
return InstDesc(false, I);
Instruction *I1 =
isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
: dyn_cast<Instruction>(TrueVal);
if (!I1 || !I1->isBinaryOp())
return InstDesc(false, I);
Value *Op1, *Op2;
if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
I1->isFast())
return InstDesc(Kind == RecurKind::FAdd, SI);
if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
return InstDesc(Kind == RecurKind::FMul, SI);
return InstDesc(false, I);
}
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
Instruction *I, RecurKind Kind,
InstDesc &Prev, FastMathFlags FuncFMF) {
assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
switch (I->getOpcode()) {
default:
return InstDesc(false, I);
case Instruction::PHI:
return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
case Instruction::Sub:
case Instruction::Add:
return InstDesc(Kind == RecurKind::Add, I);
case Instruction::Mul:
return InstDesc(Kind == RecurKind::Mul, I);
case Instruction::And:
return InstDesc(Kind == RecurKind::And, I);
case Instruction::Or:
return InstDesc(Kind == RecurKind::Or, I);
case Instruction::Xor:
return InstDesc(Kind == RecurKind::Xor, I);
case Instruction::FDiv:
case Instruction::FMul:
return InstDesc(Kind == RecurKind::FMul, I,
I->hasAllowReassoc() ? nullptr : I);
case Instruction::FSub:
case Instruction::FAdd:
return InstDesc(Kind == RecurKind::FAdd, I,
I->hasAllowReassoc() ? nullptr : I);
case Instruction::Select:
if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
return isConditionalRdxPattern(Kind, I);
LLVM_FALLTHROUGH;
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Call:
if (isSelectCmpRecurrenceKind(Kind))
return isSelectCmpPattern(L, OrigPhi, I, Prev);
if (isIntMinMaxRecurrenceKind(Kind) ||
(((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) ||
(isa<FPMathOperator>(I) && I->hasNoNaNs() &&
I->hasNoSignedZeros())) &&
isFPMinMaxRecurrenceKind(Kind)))
return isMinMaxPattern(I, Kind, Prev);
else if (isFMulAddIntrinsic(I))
return InstDesc(Kind == RecurKind::FMulAdd, I,
I->hasAllowReassoc() ? nullptr : I);
return InstDesc(false, I);
}
}
bool RecurrenceDescriptor::hasMultipleUsesOf(
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
unsigned MaxNumUses) {
unsigned NumUses = 0;
for (const Use &U : I->operands()) {
if (Insts.count(dyn_cast<Instruction>(U)))
++NumUses;
if (NumUses > MaxNumUses)
return true;
}
return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes,
DemandedBits *DB, AssumptionCache *AC,
DominatorTree *DT) {
BasicBlock *Header = TheLoop->getHeader();
Function &F = *Header->getParent();
FastMathFlags FMF;
FMF.setNoNaNs(
F.getFnAttribute("no-nans-fp-math").getValueAsBool());
FMF.setNoSignedZeros(
F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC,
DT)) {
LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
<< *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC,
DT)) {
LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
<< " PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC,
DT)) {
LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
return true;
}
// Not a reduction of known type.
return false;
}
bool RecurrenceDescriptor::isFirstOrderRecurrence(
PHINode *Phi, Loop *TheLoop,
MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
// Ensure the phi node is in the loop header and has two incoming values.
if (Phi->getParent() != TheLoop->getHeader() ||
Phi->getNumIncomingValues() != 2)
return false;
// Ensure the loop has a preheader and a single latch block. The loop
// vectorizer will need the latch to set up the next iteration of the loop.
auto *Preheader = TheLoop->getLoopPreheader();
auto *Latch = TheLoop->getLoopLatch();
if (!Preheader || !Latch)
return false;
// Ensure the phi node's incoming blocks are the loop preheader and latch.
if (Phi->getBasicBlockIndex(Preheader) < 0 ||
Phi->getBasicBlockIndex(Latch) < 0)
return false;
// Get the previous value. The previous value comes from the latch edge while
// the initial value comes form the preheader edge.
auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
return false;
// Ensure every user of the phi node (recursively) is dominated by the
// previous value. The dominance requirement ensures the loop vectorizer will
// not need to vectorize the initial value prior to the first iteration of the
// loop.
// TODO: Consider extending this sinking to handle memory instructions.
// We optimistically assume we can sink all users after Previous. Keep a set
// of instructions to sink after Previous ordered by dominance in the common
// basic block. It will be applied to SinkAfter if all users can be sunk.
auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
return A->comesBefore(B);
};
std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
CompareByComesBefore);
BasicBlock *PhiBB = Phi->getParent();
SmallVector<Instruction *, 8> WorkList;
auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
// Already sunk SinkCandidate.
if (SinkCandidate->getParent() == PhiBB &&
InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
return true;
// Cyclic dependence.
if (Previous == SinkCandidate)
return false;
if (DT->dominates(Previous,
SinkCandidate)) // We already are good w/o sinking.
return true;
if (SinkCandidate->getParent() != PhiBB ||
SinkCandidate->mayHaveSideEffects() ||
SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
return false;
// Do not try to sink an instruction multiple times (if multiple operands
// are first order recurrences).
// TODO: We can support this case, by sinking the instruction after the
// 'deepest' previous instruction.
if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
return false;
// If we reach a PHI node that is not dominated by Previous, we reached a
// header PHI. No need for sinking.
if (isa<PHINode>(SinkCandidate))
return true;
// Sink User tentatively and check its users
InstrsToSink.insert(SinkCandidate);
WorkList.push_back(SinkCandidate);
return true;
};
WorkList.push_back(Phi);
// Try to recursively sink instructions and their users after Previous.
while (!WorkList.empty()) {
Instruction *Current = WorkList.pop_back_val();
for (User *User : Current->users()) {
if (!TryToPushSinkCandidate(cast<Instruction>(User)))
return false;
}
}
// We can sink all users of Phi. Update the mapping.
for (Instruction *I : InstrsToSink) {
SinkAfter[I] = Previous;
Previous = I;
}
return true;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
FastMathFlags FMF) const {
switch (K) {
case RecurKind::Xor:
case RecurKind::Add:
case RecurKind::Or:
// Adding, Xoring, Oring zero to a number does not change it.
return ConstantInt::get(Tp, 0);
case RecurKind::Mul:
// Multiplying a number by 1 does not change it.
return ConstantInt::get(Tp, 1);
case RecurKind::And:
// AND-ing a number with an all-1 value does not change it.
return ConstantInt::get(Tp, -1, true);
case RecurKind::FMul:
// Multiplying a number by 1 does not change it.
return ConstantFP::get(Tp, 1.0L);
case RecurKind::FMulAdd:
case RecurKind::FAdd:
// Adding zero to a number does not change it.
// FIXME: Ideally we should not need to check FMF for FAdd and should always
// use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
// Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
// nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
// mean we can then remove the check for noSignedZeros() below (see D98963).
if (FMF.noSignedZeros())
return ConstantFP::get(Tp, 0.0L);
return ConstantFP::get(Tp, -0.0L);
case RecurKind::UMin:
return ConstantInt::get(Tp, -1);
case RecurKind::UMax:
return ConstantInt::get(Tp, 0);
case RecurKind::SMin:
return ConstantInt::get(Tp,
APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
case RecurKind::SMax:
return ConstantInt::get(Tp,
APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
case RecurKind::FMin:
return ConstantFP::getInfinity(Tp, true);
case RecurKind::FMax:
return ConstantFP::getInfinity(Tp, false);
case RecurKind::SelectICmp:
case RecurKind::SelectFCmp:
return getRecurrenceStartValue();
break;
default:
llvm_unreachable("Unknown recurrence kind");
}
}
unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
switch (Kind) {
case RecurKind::Add:
return Instruction::Add;
case RecurKind::Mul:
return Instruction::Mul;
case RecurKind::Or:
return Instruction::Or;
case RecurKind::And:
return Instruction::And;
case RecurKind::Xor:
return Instruction::Xor;
case RecurKind::FMul:
return Instruction::FMul;
case RecurKind::FMulAdd:
case RecurKind::FAdd:
return Instruction::FAdd;
case RecurKind::SMax:
case RecurKind::SMin:
case RecurKind::UMax:
case RecurKind::UMin:
case RecurKind::SelectICmp:
return Instruction::ICmp;
case RecurKind::FMax:
case RecurKind::FMin:
case RecurKind::SelectFCmp:
return Instruction::FCmp;
default:
llvm_unreachable("Unknown recurrence operation");
}
}
SmallVector<Instruction *, 4>
RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
SmallVector<Instruction *, 4> ReductionOperations;
unsigned RedOp = getOpcode(Kind);
// Search down from the Phi to the LoopExitInstr, looking for instructions
// with a single user of the correct type for the reduction.
// Note that we check that the type of the operand is correct for each item in
// the chain, including the last (the loop exit value). This can come up from
// sub, which would otherwise be treated as an add reduction. MinMax also need
// to check for a pair of icmp/select, for which we use getNextInstruction and
// isCorrectOpcode functions to step the right number of instruction, and
// check the icmp/select pair.
// FIXME: We also do not attempt to look through Phi/Select's yet, which might
// be part of the reduction chain, or attempt to looks through And's to find a
// smaller bitwidth. Subs are also currently not allowed (which are usually
// treated as part of a add reduction) as they are expected to generally be
// more expensive than out-of-loop reductions, and need to be costed more
// carefully.
unsigned ExpectedUses = 1;
if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
ExpectedUses = 2;
auto getNextInstruction = [&](Instruction *Cur) {
if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
// We are expecting a icmp/select pair, which we go to the next select
// instruction if we can. We already know that Cur has 2 uses.
if (isa<SelectInst>(*Cur->user_begin()))
return cast<Instruction>(*Cur->user_begin());
else
return cast<Instruction>(*std::next(Cur->user_begin()));
}
return cast<Instruction>(*Cur->user_begin());
};
auto isCorrectOpcode = [&](Instruction *Cur) {
if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
Value *LHS, *RHS;
return SelectPatternResult::isMinOrMax(
matchSelectPattern(Cur, LHS, RHS).Flavor);
}
// Recognize a call to the llvm.fmuladd intrinsic.
if (isFMulAddIntrinsic(Cur))
return true;
return Cur->getOpcode() == RedOp;
};
// The loop exit instruction we check first (as a quick test) but add last. We
// check the opcode is correct (and dont allow them to be Subs) and that they
// have expected to have the expected number of uses. They will have one use
// from the phi and one from a LCSSA value, no matter the type.
if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
return {};
// Check that the Phi has one (or two for min/max) uses.
if (!Phi->hasNUses(ExpectedUses))
return {};
Instruction *Cur = getNextInstruction(Phi);
// Each other instruction in the chain should have the expected number of uses
// and be the correct opcode.
while (Cur != LoopExitInstr) {
if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
return {};
ReductionOperations.push_back(Cur);
Cur = getNextInstruction(Cur);
}
ReductionOperations.push_back(Cur);
return ReductionOperations;
}
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
const SCEV *Step, BinaryOperator *BOp,
Type *ElementType,
SmallVectorImpl<Instruction *> *Casts)
: StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp),
ElementType(ElementType) {
assert(IK != IK_NoInduction && "Not an induction");
// Start value type should match the induction kind and the value
// itself should not be null.
assert(StartValue && "StartValue is null");
assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
"StartValue is not a pointer for pointer induction");
assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
"StartValue is not an integer for integer induction");
// Check the Step Value. It should be non-zero integer value.
assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
"Step value is zero");
assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
"Step value should be constant for pointer induction");
assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
"StepValue is not an integer");
assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
"StepValue is not FP for FpInduction");
assert((IK != IK_FpInduction ||
(InductionBinOp &&
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction");
if (IK == IK_PtrInduction)
assert(ElementType && "Pointer induction must have element type");
else
assert(!ElementType && "Non-pointer induction cannot have element type");
if (Casts) {
for (auto &Inst : *Casts) {
RedundantCasts.push_back(Inst);
}
}
}
ConstantInt *InductionDescriptor::getConstIntStepValue() const {
if (isa<SCEVConstant>(Step))
return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
return nullptr;
}
bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
ScalarEvolution *SE,
InductionDescriptor &D) {
// Here we only handle FP induction variables.
assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
if (TheLoop->getHeader() != Phi->getParent())
return false;
// The loop may have multiple entrances or multiple exits; we can analyze
// this phi if it has a unique entry value and a unique backedge value.
if (Phi->getNumIncomingValues() != 2)
return false;
Value *BEValue = nullptr, *StartValue = nullptr;
if (TheLoop->contains(Phi->getIncomingBlock(0))) {
BEValue = Phi->getIncomingValue(0);
StartValue = Phi->getIncomingValue(1);
} else {
assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
"Unexpected Phi node in the loop");
BEValue = Phi->getIncomingValue(1);
StartValue = Phi->getIncomingValue(0);
}
BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
if (!BOp)
return false;
Value *Addend = nullptr;
if (BOp->getOpcode() == Instruction::FAdd) {
if (BOp->getOperand(0) == Phi)
Addend = BOp->getOperand(1);
else if (BOp->getOperand(1) == Phi)
Addend = BOp->getOperand(0);
} else if (BOp->getOpcode() == Instruction::FSub)
if (BOp->getOperand(0) == Phi)
Addend = BOp->getOperand(1);
if (!Addend)
return false;
// The addend should be loop invariant
if (auto *I = dyn_cast<Instruction>(Addend))
if (TheLoop->contains(I))
return false;
// FP Step has unknown SCEV
const SCEV *Step = SE->getUnknown(Addend);
D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
return true;
}
/// This function is called when we suspect that the update-chain of a phi node
/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
/// predicate P under which the SCEV expression for the phi can be the
/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
/// cast instructions that are involved in the update-chain of this induction.
/// A caller that adds the required runtime predicate can be free to drop these
/// cast instructions, and compute the phi using \p AR (instead of some scev
/// expression with casts).
///
/// For example, without a predicate the scev expression can take the following
/// form:
/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
///
/// It corresponds to the following IR sequence:
/// %for.body:
/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
/// %casted_phi = "ExtTrunc i64 %x"
/// %add = add i64 %casted_phi, %step
///
/// where %x is given in \p PN,
/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
/// several forms, for example, such as:
/// ExtTrunc1: %casted_phi = and %x, 2^n-1
/// or:
/// ExtTrunc2: %t = shl %x, m
/// %casted_phi = ashr %t, m
///
/// If we are able to find such sequence, we return the instructions
/// we found, namely %casted_phi and the instructions on its use-def chain up
/// to the phi (not including the phi).
static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
const SCEVUnknown *PhiScev,
const SCEVAddRecExpr *AR,
SmallVectorImpl<Instruction *> &CastInsts) {
assert(CastInsts.empty() && "CastInsts is expected to be empty.");
auto *PN = cast<PHINode>(PhiScev->getValue());
assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
const Loop *L = AR->getLoop();
// Find any cast instructions that participate in the def-use chain of
// PhiScev in the loop.
// FORNOW/TODO: We currently expect the def-use chain to include only
// two-operand instructions, where one of the operands is an invariant.
// createAddRecFromPHIWithCasts() currently does not support anything more
// involved than that, so we keep the search simple. This can be
// extended/generalized as needed.
auto getDef = [&](const Value *Val) -> Value * {
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
if (!BinOp)
return nullptr;
Value *Op0 = BinOp->getOperand(0);
Value *Op1 = BinOp->getOperand(1);
Value *Def = nullptr;
if (L->isLoopInvariant(Op0))
Def = Op1;
else if (L->isLoopInvariant(Op1))
Def = Op0;
return Def;
};
// Look for the instruction that defines the induction via the
// loop backedge.
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return false;
Value *Val = PN->getIncomingValueForBlock(Latch);
if (!Val)
return false;
// Follow the def-use chain until the induction phi is reached.
// If on the way we encounter a Value that has the same SCEV Expr as the
// phi node, we can consider the instructions we visit from that point
// as part of the cast-sequence that can be ignored.
bool InCastSequence = false;
auto *Inst = dyn_cast<Instruction>(Val);
while (Val != PN) {
// If we encountered a phi node other than PN, or if we left the loop,
// we bail out.
if (!Inst || !L->contains(Inst)) {
return false;
}
auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
InCastSequence = true;
if (InCastSequence) {
// Only the last instruction in the cast sequence is expected to have
// uses outside the induction def-use chain.
if (!CastInsts.empty())
if (!Inst->hasOneUse())
return false;
CastInsts.push_back(Inst);
}
Val = getDef(Val);
if (!Val)
return false;
Inst = dyn_cast<Instruction>(Val);
}
return InCastSequence;
}
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
PredicatedScalarEvolution &PSE,
InductionDescriptor &D, bool Assume) {
Type *PhiTy = Phi->getType();
// Handle integer and pointer inductions variables.
// Now we handle also FP induction but not trying to make a
// recurrent expression from the PHI node in-place.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
!PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
return false;
if (PhiTy->isFloatingPointTy())
return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
const SCEV *PhiScev = PSE.getSCEV(Phi);
const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
// We need this expression to be an AddRecExpr.
if (Assume && !AR)
AR = PSE.getAsAddRec(Phi);
if (!AR) {
LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
// Record any Cast instructions that participate in the induction update
const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
// If we started from an UnknownSCEV, and managed to build an addRecurrence
// only after enabling Assume with PSCEV, this means we may have encountered
// cast instructions that required adding a runtime check in order to
// guarantee the correctness of the AddRecurrence respresentation of the
// induction.
if (PhiScev != AR && SymbolicPhi) {
SmallVector<Instruction *, 2> Casts;
if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
}
return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}
bool InductionDescriptor::isInductionPHI(
PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
InductionDescriptor &D, const SCEV *Expr,
SmallVectorImpl<Instruction *> *CastsToIgnore) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
return false;
// Check that the PHI is consecutive.
const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
if (AR->getLoop() != TheLoop) {
// FIXME: We should treat this as a uniform. Unfortunately, we
// don't currently know how to handled uniform PHIs.
LLVM_DEBUG(
dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
return false;
}
Value *StartValue =
Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
BasicBlock *Latch = AR->getLoop()->getLoopLatch();
if (!Latch)
return false;
const SCEV *Step = AR->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
// The stride may be a constant or a loop invariant integer value.
const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
return false;
if (PhiTy->isIntegerTy()) {
BinaryOperator *BOp =
dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
/* ElementType */ nullptr, CastsToIgnore);
return true;
}
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
// Pointer induction should be a constant.
if (!ConstStep)
return false;
// Always use i8 element type for opaque pointer inductions.
PointerType *PtrTy = cast<PointerType>(PhiTy);
Type *ElementType = PtrTy->isOpaque()
? Type::getInt8Ty(PtrTy->getContext())
: PtrTy->getNonOpaquePointerElementType();
if (!ElementType->isSized())
return false;
ConstantInt *CV = ConstStep->getValue();
const DataLayout &DL = Phi->getModule()->getDataLayout();
TypeSize TySize = DL.getTypeAllocSize(ElementType);
// TODO: We could potentially support this for scalable vectors if we can
// prove at compile time that the constant step is always a multiple of
// the scalable type.
if (TySize.isZero() || TySize.isScalable())
return false;
int64_t Size = static_cast<int64_t>(TySize.getFixedSize());
int64_t CVSize = CV->getSExtValue();
if (CVSize % Size)
return false;
auto *StepValue =
SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue,
/* BinOp */ nullptr, ElementType);
return true;
}