forked from OSchip/llvm-project
2278 lines
75 KiB
C++
2278 lines
75 KiB
C++
//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the Hexagon target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Hexagon.h"
|
|
#include "HexagonISelLowering.h"
|
|
#include "HexagonMachineFunctionInfo.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagon-isel"
|
|
|
|
static
|
|
cl::opt<unsigned>
|
|
MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
|
|
cl::Hidden, cl::init(2),
|
|
cl::desc("Maximum number of uses of a global address such that we still us a"
|
|
"constant extended instruction"));
|
|
|
|
static
|
|
cl::opt<bool>
|
|
EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
|
|
cl::desc("Rebalance address calculation trees to improve "
|
|
"instruction selection"));
|
|
|
|
// Rebalance only if this allows e.g. combining a GA with an offset or
|
|
// factoring out a shift.
|
|
static
|
|
cl::opt<bool>
|
|
RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
|
|
cl::desc("Rebalance address tree only if this allows optimizations"));
|
|
|
|
static
|
|
cl::opt<bool>
|
|
RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
|
|
cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Selector Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
class HexagonDAGToDAGISel : public SelectionDAGISel {
|
|
const HexagonSubtarget *HST;
|
|
const HexagonInstrInfo *HII;
|
|
const HexagonRegisterInfo *HRI;
|
|
public:
|
|
explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel), HST(nullptr), HII(nullptr),
|
|
HRI(nullptr) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
// Reset the subtarget each time through.
|
|
HST = &MF.getSubtarget<HexagonSubtarget>();
|
|
HII = HST->getInstrInfo();
|
|
HRI = HST->getRegisterInfo();
|
|
SelectionDAGISel::runOnMachineFunction(MF);
|
|
return true;
|
|
}
|
|
|
|
virtual void PreprocessISelDAG() override;
|
|
virtual void EmitFunctionEntryCode() override;
|
|
|
|
void Select(SDNode *N) override;
|
|
|
|
// Complex Pattern Selectors.
|
|
inline bool SelectAddrGA(SDValue &N, SDValue &R);
|
|
inline bool SelectAddrGP(SDValue &N, SDValue &R);
|
|
bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
|
|
bool SelectAddrFI(SDValue &N, SDValue &R);
|
|
|
|
const char *getPassName() const override {
|
|
return "Hexagon DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
|
|
// Generate a machine instruction node corresponding to the circ/brev
|
|
// load intrinsic.
|
|
MachineSDNode *LoadInstrForLoadIntrinsic(SDNode *IntN);
|
|
// Given the circ/brev load intrinsic and the already generated machine
|
|
// instruction, generate the appropriate store (that is a part of the
|
|
// intrinsic's functionality).
|
|
SDNode *StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, SDNode *IntN);
|
|
|
|
void SelectFrameIndex(SDNode *N);
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
unsigned ConstraintID,
|
|
std::vector<SDValue> &OutOps) override;
|
|
bool tryLoadOfLoadIntrinsic(LoadSDNode *N);
|
|
void SelectLoad(SDNode *N);
|
|
void SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl);
|
|
void SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl);
|
|
void SelectStore(SDNode *N);
|
|
void SelectSHL(SDNode *N);
|
|
void SelectMul(SDNode *N);
|
|
void SelectZeroExtend(SDNode *N);
|
|
void SelectIntrinsicWChain(SDNode *N);
|
|
void SelectIntrinsicWOChain(SDNode *N);
|
|
void SelectConstant(SDNode *N);
|
|
void SelectConstantFP(SDNode *N);
|
|
void SelectAdd(SDNode *N);
|
|
void SelectBitcast(SDNode *N);
|
|
void SelectBitOp(SDNode *N);
|
|
|
|
// XformMskToBitPosU5Imm - Returns the bit position which
|
|
// the single bit 32 bit mask represents.
|
|
// Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU5Imm(uint32_t Imm, const SDLoc &DL) {
|
|
int32_t bitPos;
|
|
bitPos = Log2_32(Imm);
|
|
assert(bitPos >= 0 && bitPos < 32 &&
|
|
"Constant out of range for 32 BitPos Memops");
|
|
return CurDAG->getTargetConstant(bitPos, DL, MVT::i32);
|
|
}
|
|
|
|
// XformMskToBitPosU4Imm - Returns the bit position which the single-bit
|
|
// 16 bit mask represents. Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU4Imm(uint16_t Imm, const SDLoc &DL) {
|
|
return XformMskToBitPosU5Imm(Imm, DL);
|
|
}
|
|
|
|
// XformMskToBitPosU3Imm - Returns the bit position which the single-bit
|
|
// 8 bit mask represents. Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU3Imm(uint8_t Imm, const SDLoc &DL) {
|
|
return XformMskToBitPosU5Imm(Imm, DL);
|
|
}
|
|
|
|
// Return true if there is exactly one bit set in V, i.e., if V is one of the
|
|
// following integers: 2^0, 2^1, ..., 2^31.
|
|
bool ImmIsSingleBit(uint32_t v) const {
|
|
return isPowerOf2_32(v);
|
|
}
|
|
|
|
// XformM5ToU5Imm - Return a target constant with the specified value, of
|
|
// type i32 where the negative literal is transformed into a positive literal
|
|
// for use in -= memops.
|
|
inline SDValue XformM5ToU5Imm(signed Imm, const SDLoc &DL) {
|
|
assert((Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
|
|
return CurDAG->getTargetConstant(-Imm, DL, MVT::i32);
|
|
}
|
|
|
|
// XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
|
|
// [1..128], used in cmpb.gtu instructions.
|
|
inline SDValue XformU7ToU7M1Imm(signed Imm, const SDLoc &DL) {
|
|
assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
|
|
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i8);
|
|
}
|
|
|
|
// XformS8ToS8M1Imm - Return a target constant decremented by 1.
|
|
inline SDValue XformSToSM1Imm(signed Imm, const SDLoc &DL) {
|
|
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
|
|
}
|
|
|
|
// XformU8ToU8M1Imm - Return a target constant decremented by 1.
|
|
inline SDValue XformUToUM1Imm(unsigned Imm, const SDLoc &DL) {
|
|
assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
|
|
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
|
|
}
|
|
|
|
// XformSToSM2Imm - Return a target constant decremented by 2.
|
|
inline SDValue XformSToSM2Imm(unsigned Imm, const SDLoc &DL) {
|
|
return CurDAG->getTargetConstant(Imm - 2, DL, MVT::i32);
|
|
}
|
|
|
|
// XformSToSM3Imm - Return a target constant decremented by 3.
|
|
inline SDValue XformSToSM3Imm(unsigned Imm, const SDLoc &DL) {
|
|
return CurDAG->getTargetConstant(Imm - 3, DL, MVT::i32);
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "HexagonGenDAGISel.inc"
|
|
|
|
private:
|
|
bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
|
|
bool orIsAdd(const SDNode *N) const;
|
|
bool isAlignedMemNode(const MemSDNode *N) const;
|
|
|
|
SmallDenseMap<SDNode *,int> RootWeights;
|
|
SmallDenseMap<SDNode *,int> RootHeights;
|
|
SmallDenseMap<const Value *,int> GAUsesInFunction;
|
|
int getWeight(SDNode *N);
|
|
int getHeight(SDNode *N);
|
|
SDValue getMultiplierForSHL(SDNode *N);
|
|
SDValue factorOutPowerOf2(SDValue V, unsigned Power);
|
|
unsigned getUsesInFunction(const Value *V);
|
|
SDValue balanceSubTree(SDNode *N, bool Factorize = false);
|
|
void rebalanceAddressTrees();
|
|
}; // end HexagonDAGToDAGISel
|
|
} // end anonymous namespace
|
|
|
|
|
|
/// createHexagonISelDag - This pass converts a legalized DAG into a
|
|
/// Hexagon-specific DAG, ready for instruction scheduling.
|
|
///
|
|
namespace llvm {
|
|
FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new HexagonDAGToDAGISel(TM, OptLevel);
|
|
}
|
|
}
|
|
|
|
// Intrinsics that return a a predicate.
|
|
static bool doesIntrinsicReturnPredicate(unsigned ID) {
|
|
switch (ID) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::hexagon_C2_cmpeq:
|
|
case Intrinsic::hexagon_C2_cmpgt:
|
|
case Intrinsic::hexagon_C2_cmpgtu:
|
|
case Intrinsic::hexagon_C2_cmpgtup:
|
|
case Intrinsic::hexagon_C2_cmpgtp:
|
|
case Intrinsic::hexagon_C2_cmpeqp:
|
|
case Intrinsic::hexagon_C2_bitsset:
|
|
case Intrinsic::hexagon_C2_bitsclr:
|
|
case Intrinsic::hexagon_C2_cmpeqi:
|
|
case Intrinsic::hexagon_C2_cmpgti:
|
|
case Intrinsic::hexagon_C2_cmpgtui:
|
|
case Intrinsic::hexagon_C2_cmpgei:
|
|
case Intrinsic::hexagon_C2_cmpgeui:
|
|
case Intrinsic::hexagon_C2_cmplt:
|
|
case Intrinsic::hexagon_C2_cmpltu:
|
|
case Intrinsic::hexagon_C2_bitsclri:
|
|
case Intrinsic::hexagon_C2_and:
|
|
case Intrinsic::hexagon_C2_or:
|
|
case Intrinsic::hexagon_C2_xor:
|
|
case Intrinsic::hexagon_C2_andn:
|
|
case Intrinsic::hexagon_C2_not:
|
|
case Intrinsic::hexagon_C2_orn:
|
|
case Intrinsic::hexagon_C2_pxfer_map:
|
|
case Intrinsic::hexagon_C2_any8:
|
|
case Intrinsic::hexagon_C2_all8:
|
|
case Intrinsic::hexagon_A2_vcmpbeq:
|
|
case Intrinsic::hexagon_A2_vcmpbgtu:
|
|
case Intrinsic::hexagon_A2_vcmpheq:
|
|
case Intrinsic::hexagon_A2_vcmphgt:
|
|
case Intrinsic::hexagon_A2_vcmphgtu:
|
|
case Intrinsic::hexagon_A2_vcmpweq:
|
|
case Intrinsic::hexagon_A2_vcmpwgt:
|
|
case Intrinsic::hexagon_A2_vcmpwgtu:
|
|
case Intrinsic::hexagon_C2_tfrrp:
|
|
case Intrinsic::hexagon_S2_tstbit_i:
|
|
case Intrinsic::hexagon_S2_tstbit_r:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Offset = LD->getOffset();
|
|
int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
unsigned Opcode = 0;
|
|
|
|
// Check for zero extended loads. Treat any-extend loads as zero extended
|
|
// loads.
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
|
|
bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
|
|
|
|
assert(LoadedVT.isSimple());
|
|
switch (LoadedVT.getSimpleVT().SimpleTy) {
|
|
case MVT::i8:
|
|
if (IsZeroExt)
|
|
Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
|
|
else
|
|
Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
|
|
break;
|
|
case MVT::i16:
|
|
if (IsZeroExt)
|
|
Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
|
|
else
|
|
Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
|
|
break;
|
|
case MVT::i32:
|
|
Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
|
|
break;
|
|
case MVT::i64:
|
|
Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
|
|
break;
|
|
// 64B
|
|
case MVT::v64i8:
|
|
case MVT::v32i16:
|
|
case MVT::v16i32:
|
|
case MVT::v8i64:
|
|
if (isAlignedMemNode(LD))
|
|
Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
|
|
else
|
|
Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
|
|
break;
|
|
// 128B
|
|
case MVT::v128i8:
|
|
case MVT::v64i16:
|
|
case MVT::v32i32:
|
|
case MVT::v16i64:
|
|
if (isAlignedMemNode(LD))
|
|
Opcode = IsValidInc ? Hexagon::V6_vL32b_pi_128B
|
|
: Hexagon::V6_vL32b_ai_128B;
|
|
else
|
|
Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi_128B
|
|
: Hexagon::V6_vL32Ub_ai_128B;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected memory type in indexed load");
|
|
}
|
|
|
|
SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
|
|
auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
|
|
-> MachineSDNode* {
|
|
if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
|
|
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
|
|
Zero, SDValue(N, 0));
|
|
}
|
|
if (ExtType == ISD::SEXTLOAD)
|
|
return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
|
|
SDValue(N, 0));
|
|
return N;
|
|
};
|
|
|
|
// Loaded value Next address Chain
|
|
SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
|
|
SDValue To[3];
|
|
|
|
EVT ValueVT = LD->getValueType(0);
|
|
if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
|
|
// A load extending to i64 will actually produce i32, which will then
|
|
// need to be extended to i64.
|
|
assert(LoadedVT.getSizeInBits() <= 32);
|
|
ValueVT = MVT::i32;
|
|
}
|
|
|
|
if (IsValidInc) {
|
|
MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
|
|
MVT::i32, MVT::Other, Base,
|
|
IncV, Chain);
|
|
L->setMemRefs(MemOp, MemOp+1);
|
|
To[1] = SDValue(L, 1); // Next address.
|
|
To[2] = SDValue(L, 2); // Chain.
|
|
// Handle special case for extension to i64.
|
|
if (LD->getValueType(0) == MVT::i64)
|
|
L = getExt64(L, dl);
|
|
To[0] = SDValue(L, 0); // Loaded (extended) value.
|
|
} else {
|
|
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
|
|
Base, Zero, Chain);
|
|
L->setMemRefs(MemOp, MemOp+1);
|
|
To[2] = SDValue(L, 1); // Chain.
|
|
MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
|
|
Base, IncV);
|
|
To[1] = SDValue(A, 0); // Next address.
|
|
// Handle special case for extension to i64.
|
|
if (LD->getValueType(0) == MVT::i64)
|
|
L = getExt64(L, dl);
|
|
To[0] = SDValue(L, 0); // Loaded (extended) value.
|
|
}
|
|
ReplaceUses(From, To, 3);
|
|
CurDAG->RemoveDeadNode(LD);
|
|
}
|
|
|
|
|
|
MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
|
|
if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
|
|
return nullptr;
|
|
|
|
SDLoc dl(IntN);
|
|
unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
|
|
|
|
static std::map<unsigned,unsigned> LoadPciMap = {
|
|
{ Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
|
|
{ Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
|
|
{ Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
|
|
{ Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
|
|
{ Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
|
|
{ Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
|
|
};
|
|
auto FLC = LoadPciMap.find(IntNo);
|
|
if (FLC != LoadPciMap.end()) {
|
|
SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
|
|
IntN->getOperand(4));
|
|
EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
|
|
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
|
|
// Operands: { Base, Increment, Modifier, Chain }
|
|
auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
|
|
SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
|
|
MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
|
|
{ IntN->getOperand(2), I, SDValue(Mod,0), IntN->getOperand(0) });
|
|
return Res;
|
|
}
|
|
|
|
static std::map<unsigned,unsigned> LoadPbrMap = {
|
|
{ Intrinsic::hexagon_brev_ldb, Hexagon::L2_loadrb_pbr },
|
|
{ Intrinsic::hexagon_brev_ldub, Hexagon::L2_loadrub_pbr },
|
|
{ Intrinsic::hexagon_brev_ldh, Hexagon::L2_loadrh_pbr },
|
|
{ Intrinsic::hexagon_brev_lduh, Hexagon::L2_loadruh_pbr },
|
|
{ Intrinsic::hexagon_brev_ldw, Hexagon::L2_loadri_pbr },
|
|
{ Intrinsic::hexagon_brev_ldd, Hexagon::L2_loadrd_pbr },
|
|
};
|
|
auto FLB = LoadPbrMap.find(IntNo);
|
|
if (FLB != LoadPbrMap.end()) {
|
|
SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
|
|
IntN->getOperand(4));
|
|
EVT ValTy = (IntNo == Intrinsic::hexagon_brev_ldd) ? MVT::i64 : MVT::i32;
|
|
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
|
|
// Operands: { Base, Modifier, Chain }
|
|
MachineSDNode *Res = CurDAG->getMachineNode(FLB->second, dl, RTys,
|
|
{ IntN->getOperand(2), SDValue(Mod,0), IntN->getOperand(0) });
|
|
return Res;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
|
|
SDNode *IntN) {
|
|
// The "LoadN" is just a machine load instruction. The intrinsic also
|
|
// involves storing it. Generate an appropriate store to the location
|
|
// given in the intrinsic's operand(3).
|
|
uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
|
|
unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
|
|
HexagonII::MemAccesSizeMask;
|
|
unsigned Size = 1U << (SizeBits-1);
|
|
|
|
SDLoc dl(IntN);
|
|
MachinePointerInfo PI;
|
|
SDValue TS;
|
|
SDValue Loc = IntN->getOperand(3);
|
|
|
|
if (Size >= 4)
|
|
TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
|
|
Size);
|
|
else
|
|
TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
|
|
PI, MVT::getIntegerVT(Size * 8), Size);
|
|
|
|
SDNode *StoreN;
|
|
{
|
|
HandleSDNode Handle(TS);
|
|
SelectStore(TS.getNode());
|
|
StoreN = Handle.getValue().getNode();
|
|
}
|
|
|
|
// Load's results are { Loaded value, Updated pointer, Chain }
|
|
ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
|
|
ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
|
|
return StoreN;
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
|
|
// The intrinsics for load circ/brev perform two operations:
|
|
// 1. Load a value V from the specified location, using the addressing
|
|
// mode corresponding to the intrinsic.
|
|
// 2. Store V into a specified location. This location is typically a
|
|
// local, temporary object.
|
|
// In many cases, the program using these intrinsics will immediately
|
|
// load V again from the local object. In those cases, when certain
|
|
// conditions are met, the last load can be removed.
|
|
// This function identifies and optimizes this pattern. If the pattern
|
|
// cannot be optimized, it returns nullptr, which will cause the load
|
|
// to be selected separately from the intrinsic (which will be handled
|
|
// in SelectIntrinsicWChain).
|
|
|
|
SDValue Ch = N->getOperand(0);
|
|
SDValue Loc = N->getOperand(1);
|
|
|
|
// Assume that the load and the intrinsic are connected directly with a
|
|
// chain:
|
|
// t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
|
|
// t2: i32,ch = load t1:1, Loc, ...
|
|
SDNode *C = Ch.getNode();
|
|
|
|
if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
|
|
return false;
|
|
|
|
// The second load can only be eliminated if its extension type matches
|
|
// that of the load instruction corresponding to the intrinsic. The user
|
|
// can provide an address of an unsigned variable to store the result of
|
|
// a sign-extending intrinsic into (or the other way around).
|
|
ISD::LoadExtType IntExt;
|
|
switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::hexagon_brev_ldub:
|
|
case Intrinsic::hexagon_brev_lduh:
|
|
case Intrinsic::hexagon_circ_ldub:
|
|
case Intrinsic::hexagon_circ_lduh:
|
|
IntExt = ISD::ZEXTLOAD;
|
|
break;
|
|
case Intrinsic::hexagon_brev_ldw:
|
|
case Intrinsic::hexagon_brev_ldd:
|
|
case Intrinsic::hexagon_circ_ldw:
|
|
case Intrinsic::hexagon_circ_ldd:
|
|
IntExt = ISD::NON_EXTLOAD;
|
|
break;
|
|
default:
|
|
IntExt = ISD::SEXTLOAD;
|
|
break;
|
|
}
|
|
if (N->getExtensionType() != IntExt)
|
|
return false;
|
|
|
|
// Make sure the target location for the loaded value in the load intrinsic
|
|
// is the location from which LD (or N) is loading.
|
|
if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
|
|
return false;
|
|
|
|
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
|
|
SDNode *S = StoreInstrForLoadIntrinsic(L, C);
|
|
SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
|
|
SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
|
|
ReplaceUses(F, T, array_lengthof(T));
|
|
// This transformation will leave the intrinsic dead. If it remains in
|
|
// the DAG, the selection code will see it again, but without the load,
|
|
// and it will generate a store that is normally required for it.
|
|
CurDAG->RemoveDeadNode(C);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
|
|
SDLoc dl(N);
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
|
|
// Handle indexed loads.
|
|
if (AM != ISD::UNINDEXED) {
|
|
SelectIndexedLoad(LD, dl);
|
|
return;
|
|
}
|
|
|
|
// Handle patterns using circ/brev load intrinsics.
|
|
if (tryLoadOfLoadIntrinsic(LD))
|
|
return;
|
|
|
|
SelectCode(LD);
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Base = ST->getBasePtr();
|
|
SDValue Offset = ST->getOffset();
|
|
SDValue Value = ST->getValue();
|
|
// Get the constant value.
|
|
int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
|
|
EVT StoredVT = ST->getMemoryVT();
|
|
EVT ValueVT = Value.getValueType();
|
|
|
|
bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
|
|
unsigned Opcode = 0;
|
|
|
|
assert(StoredVT.isSimple());
|
|
switch (StoredVT.getSimpleVT().SimpleTy) {
|
|
case MVT::i8:
|
|
Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
|
|
break;
|
|
case MVT::i16:
|
|
Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
|
|
break;
|
|
case MVT::i32:
|
|
Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
|
|
break;
|
|
case MVT::i64:
|
|
Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
|
|
break;
|
|
// 64B
|
|
case MVT::v64i8:
|
|
case MVT::v32i16:
|
|
case MVT::v16i32:
|
|
case MVT::v8i64:
|
|
if (isAlignedMemNode(ST))
|
|
Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
|
|
else
|
|
Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
|
|
break;
|
|
// 128B
|
|
case MVT::v128i8:
|
|
case MVT::v64i16:
|
|
case MVT::v32i32:
|
|
case MVT::v16i64:
|
|
if (isAlignedMemNode(ST))
|
|
Opcode = IsValidInc ? Hexagon::V6_vS32b_pi_128B
|
|
: Hexagon::V6_vS32b_ai_128B;
|
|
else
|
|
Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi_128B
|
|
: Hexagon::V6_vS32Ub_ai_128B;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected memory type in indexed store");
|
|
}
|
|
|
|
if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
|
|
assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
|
|
Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
|
|
dl, MVT::i32, Value);
|
|
}
|
|
|
|
SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = ST->getMemOperand();
|
|
|
|
// Next address Chain
|
|
SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
|
|
SDValue To[2];
|
|
|
|
if (IsValidInc) {
|
|
// Build post increment store.
|
|
SDValue Ops[] = { Base, IncV, Value, Chain };
|
|
MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
|
|
Ops);
|
|
S->setMemRefs(MemOp, MemOp + 1);
|
|
To[0] = SDValue(S, 0);
|
|
To[1] = SDValue(S, 1);
|
|
} else {
|
|
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
SDValue Ops[] = { Base, Zero, Value, Chain };
|
|
MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
|
|
S->setMemRefs(MemOp, MemOp + 1);
|
|
To[1] = SDValue(S, 0);
|
|
MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
|
|
Base, IncV);
|
|
To[0] = SDValue(A, 0);
|
|
}
|
|
|
|
ReplaceUses(From, To, 2);
|
|
CurDAG->RemoveDeadNode(ST);
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
|
|
SDLoc dl(N);
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
ISD::MemIndexedMode AM = ST->getAddressingMode();
|
|
|
|
// Handle indexed stores.
|
|
if (AM != ISD::UNINDEXED) {
|
|
SelectIndexedStore(ST, dl);
|
|
return;
|
|
}
|
|
|
|
SelectCode(ST);
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::SelectMul(SDNode *N) {
|
|
SDLoc dl(N);
|
|
|
|
//
|
|
// %conv.i = sext i32 %tmp1 to i64
|
|
// %conv2.i = sext i32 %add to i64
|
|
// %mul.i = mul nsw i64 %conv2.i, %conv.i
|
|
//
|
|
// --- match with the following ---
|
|
//
|
|
// %mul.i = mpy (%tmp1, %add)
|
|
//
|
|
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
// Shifting a i64 signed multiply.
|
|
SDValue MulOp0 = N->getOperand(0);
|
|
SDValue MulOp1 = N->getOperand(1);
|
|
|
|
SDValue OP0;
|
|
SDValue OP1;
|
|
|
|
// Handle sign_extend and sextload.
|
|
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext0 = MulOp0.getOperand(0);
|
|
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
OP0 = Sext0;
|
|
} else if (MulOp0.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(), TargetConst0,
|
|
Chain), 0);
|
|
} else {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
// Same goes for the second operand.
|
|
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext1 = MulOp1.getOperand(0);
|
|
if (Sext1.getNode()->getValueType(0) != MVT::i32) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
OP1 = Sext1;
|
|
} else if (MulOp1.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(), TargetConst0,
|
|
Chain), 0);
|
|
} else {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
// Generate a mpy instruction.
|
|
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
|
|
OP0, OP1);
|
|
ReplaceNode(N, Result);
|
|
return;
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
SDValue Shl_0 = N->getOperand(0);
|
|
SDValue Shl_1 = N->getOperand(1);
|
|
// RHS is const.
|
|
if (Shl_1.getOpcode() == ISD::Constant) {
|
|
if (Shl_0.getOpcode() == ISD::MUL) {
|
|
SDValue Mul_0 = Shl_0.getOperand(0); // Val
|
|
SDValue Mul_1 = Shl_0.getOperand(1); // Const
|
|
// RHS of mul is const.
|
|
if (Mul_1.getOpcode() == ISD::Constant) {
|
|
int32_t ShlConst =
|
|
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
|
|
int32_t MulConst =
|
|
cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
|
|
int32_t ValConst = MulConst << ShlConst;
|
|
SDValue Val = CurDAG->getTargetConstant(ValConst, dl,
|
|
MVT::i32);
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
|
|
if (isInt<9>(CN->getSExtValue())) {
|
|
SDNode* Result =
|
|
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
|
|
MVT::i32, Mul_0, Val);
|
|
ReplaceNode(N, Result);
|
|
return;
|
|
}
|
|
|
|
}
|
|
} else if (Shl_0.getOpcode() == ISD::SUB) {
|
|
SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
|
|
SDValue Sub_1 = Shl_0.getOperand(1); // Val
|
|
if (Sub_0.getOpcode() == ISD::Constant) {
|
|
int32_t SubConst =
|
|
cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
|
|
if (SubConst == 0) {
|
|
if (Sub_1.getOpcode() == ISD::SHL) {
|
|
SDValue Shl2_0 = Sub_1.getOperand(0); // Val
|
|
SDValue Shl2_1 = Sub_1.getOperand(1); // Const
|
|
if (Shl2_1.getOpcode() == ISD::Constant) {
|
|
int32_t ShlConst =
|
|
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
|
|
int32_t Shl2Const =
|
|
cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
|
|
int32_t ValConst = 1 << (ShlConst+Shl2Const);
|
|
SDValue Val = CurDAG->getTargetConstant(-ValConst, dl,
|
|
MVT::i32);
|
|
if (ConstantSDNode *CN =
|
|
dyn_cast<ConstantSDNode>(Val.getNode()))
|
|
if (isInt<9>(CN->getSExtValue())) {
|
|
SDNode* Result =
|
|
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
|
|
Shl2_0, Val);
|
|
ReplaceNode(N, Result);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// If there is an zero_extend followed an intrinsic in DAG (this means - the
|
|
// result of the intrinsic is predicate); convert the zero_extend to
|
|
// transfer instruction.
|
|
//
|
|
// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
|
|
// converted into a MUX as predicate registers defined as 1 bit in the
|
|
// compiler. Architecture defines them as 8-bit registers.
|
|
// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
|
|
//
|
|
void HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
|
|
SDLoc dl(N);
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
EVT OpVT = Op0.getValueType();
|
|
unsigned OpBW = OpVT.getSizeInBits();
|
|
|
|
// Special handling for zero-extending a vector of booleans.
|
|
if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
|
|
SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
|
|
unsigned NE = OpVT.getVectorNumElements();
|
|
EVT ExVT = N->getValueType(0);
|
|
unsigned ES = ExVT.getVectorElementType().getSizeInBits();
|
|
uint64_t MV = 0, Bit = 1;
|
|
for (unsigned i = 0; i < NE; ++i) {
|
|
MV |= Bit;
|
|
Bit <<= ES;
|
|
}
|
|
SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64);
|
|
SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
|
|
MVT::i64, Ones);
|
|
if (ExVT.getSizeInBits() == 32) {
|
|
SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
|
|
SDValue(Mask,0), SDValue(OnesReg,0));
|
|
SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
|
|
MVT::i32);
|
|
ReplaceNode(N, CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
|
|
SDValue(And, 0), SubR));
|
|
return;
|
|
}
|
|
ReplaceNode(N,
|
|
CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
|
|
SDValue(Mask, 0), SDValue(OnesReg, 0)));
|
|
return;
|
|
}
|
|
|
|
SDNode *IsIntrinsic = N->getOperand(0).getNode();
|
|
if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
|
|
unsigned ID =
|
|
cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
|
|
if (doesIntrinsicReturnPredicate(ID)) {
|
|
// Now we need to differentiate target data types.
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
// Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
|
|
MVT::i32,
|
|
SDValue(IsIntrinsic, 0));
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
|
|
MVT::i32,
|
|
TargetConst0);
|
|
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
|
|
MVT::i64, MVT::Other,
|
|
SDValue(Result_2, 0),
|
|
SDValue(Result_1, 0));
|
|
ReplaceNode(N, Result_3);
|
|
return;
|
|
}
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
// Convert the zero_extend to Rs = Pd
|
|
SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
|
|
MVT::i32,
|
|
SDValue(IsIntrinsic, 0));
|
|
ReplaceNode(N, RsPd);
|
|
return;
|
|
}
|
|
llvm_unreachable("Unexpected value type");
|
|
}
|
|
}
|
|
SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Handling intrinsics for circular load and bitreverse load.
|
|
//
|
|
void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
|
|
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
|
|
StoreInstrForLoadIntrinsic(L, N);
|
|
CurDAG->RemoveDeadNode(N);
|
|
return;
|
|
}
|
|
SelectCode(N);
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
|
|
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
unsigned Bits;
|
|
switch (IID) {
|
|
case Intrinsic::hexagon_S2_vsplatrb:
|
|
Bits = 8;
|
|
break;
|
|
case Intrinsic::hexagon_S2_vsplatrh:
|
|
Bits = 16;
|
|
break;
|
|
default:
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
SDValue V = N->getOperand(1);
|
|
SDValue U;
|
|
if (isValueExtension(V, Bits, U)) {
|
|
SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), U);
|
|
ReplaceNode(N, R.getNode());
|
|
SelectCode(R.getNode());
|
|
return;
|
|
}
|
|
SelectCode(N);
|
|
}
|
|
|
|
//
|
|
// Map floating point constant values.
|
|
//
|
|
void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
|
|
SDLoc dl(N);
|
|
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
|
|
const APFloat &APF = CN->getValueAPF();
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
ReplaceNode(
|
|
N, CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
|
|
CurDAG->getTargetConstantFP(
|
|
APF.convertToFloat(), dl, MVT::f32)));
|
|
return;
|
|
}
|
|
else if (N->getValueType(0) == MVT::f64) {
|
|
ReplaceNode(
|
|
N, CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
|
|
CurDAG->getTargetConstantFP(
|
|
APF.convertToDouble(), dl, MVT::f64)));
|
|
return;
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
//
|
|
// Map predicate true (encoded as -1 in LLVM) to a XOR.
|
|
//
|
|
void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) == MVT::i1) {
|
|
SDNode* Result = 0;
|
|
int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (Val == -1) {
|
|
Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
|
|
} else if (Val == 0) {
|
|
Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
|
|
}
|
|
if (Result) {
|
|
ReplaceNode(N, Result);
|
|
return;
|
|
}
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Map add followed by a asr -> asr +=.
|
|
//
|
|
void HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) != MVT::i32) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
// Identify nodes of the form: add(asr(...)).
|
|
SDNode* Src1 = N->getOperand(0).getNode();
|
|
if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
|
|
|| Src1->getValueType(0) != MVT::i32) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
|
|
// Rd and Rd' are assigned to the same register
|
|
SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
|
|
N->getOperand(1),
|
|
Src1->getOperand(0),
|
|
Src1->getOperand(1));
|
|
ReplaceNode(N, Result);
|
|
}
|
|
|
|
//
|
|
// Map the following, where possible.
|
|
// AND/FABS -> clrbit
|
|
// OR -> setbit
|
|
// XOR/FNEG ->toggle_bit.
|
|
//
|
|
void HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
|
|
SDLoc dl(N);
|
|
EVT ValueVT = N->getValueType(0);
|
|
|
|
// We handle only 32 and 64-bit bit ops.
|
|
if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
|
|
ValueVT == MVT::f32 || ValueVT == MVT::f64)) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
// We handly only fabs and fneg for V5.
|
|
unsigned Opc = N->getOpcode();
|
|
if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps()) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
int64_t Val = 0;
|
|
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
|
|
if (N->getOperand(1).getOpcode() == ISD::Constant)
|
|
Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
|
|
else {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (Opc == ISD::AND) {
|
|
// Check if this is a bit-clearing AND, if not select code the usual way.
|
|
if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
|
|
(ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
|
|
Val = ~Val;
|
|
else {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If OR or AND is being fed by shl, srl and, sra don't do this change,
|
|
// because Hexagon provide |= &= on shl, srl, and sra.
|
|
// Traverse the DAG to see if there is shl, srl and sra.
|
|
if (Opc == ISD::OR || Opc == ISD::AND) {
|
|
switch (N->getOperand(0)->getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Make sure it's power of 2.
|
|
unsigned BitPos = 0;
|
|
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
|
|
if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
|
|
(ValueVT == MVT::i64 && !isPowerOf2_64(Val))) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
// Get the bit position.
|
|
BitPos = countTrailingZeros(uint64_t(Val));
|
|
} else {
|
|
// For fabs and fneg, it's always the 31st bit.
|
|
BitPos = 31;
|
|
}
|
|
|
|
unsigned BitOpc = 0;
|
|
// Set the right opcode for bitwise operations.
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
|
|
case ISD::AND:
|
|
case ISD::FABS:
|
|
BitOpc = Hexagon::S2_clrbit_i;
|
|
break;
|
|
case ISD::OR:
|
|
BitOpc = Hexagon::S2_setbit_i;
|
|
break;
|
|
case ISD::XOR:
|
|
case ISD::FNEG:
|
|
BitOpc = Hexagon::S2_togglebit_i;
|
|
break;
|
|
}
|
|
|
|
SDNode *Result;
|
|
// Get the right SDVal for the opcode.
|
|
SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
|
|
|
|
if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
|
|
Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
|
|
N->getOperand(0), SDVal);
|
|
} else {
|
|
// 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
|
|
EVT SubValueVT;
|
|
if (ValueVT == MVT::i64)
|
|
SubValueVT = MVT::i32;
|
|
else
|
|
SubValueVT = MVT::f32;
|
|
|
|
SDNode *Reg = N->getOperand(0).getNode();
|
|
SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
|
|
dl, MVT::i64);
|
|
|
|
SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
|
|
MVT::i32);
|
|
SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
|
|
MVT::i32);
|
|
|
|
SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
|
|
MVT::i32, SDValue(Reg, 0));
|
|
|
|
SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
|
|
MVT::i32, SDValue(Reg, 0));
|
|
|
|
// Clear/set/toggle hi or lo registers depending on the bit position.
|
|
if (SubValueVT != MVT::f32 && BitPos < 32) {
|
|
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
|
|
SubregLO, SDVal);
|
|
const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
|
|
SDValue(Result0, 0), SubregLoIdx };
|
|
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
|
|
dl, ValueVT, Ops);
|
|
} else {
|
|
if (Opc != ISD::FABS && Opc != ISD::FNEG)
|
|
SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
|
|
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
|
|
SubregHI, SDVal);
|
|
const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
|
|
SubregLO, SubregLoIdx };
|
|
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
|
|
dl, ValueVT, Ops);
|
|
}
|
|
}
|
|
|
|
ReplaceNode(N, Result);
|
|
}
|
|
|
|
|
|
void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
const HexagonFrameLowering *HFI = HST->getFrameLowering();
|
|
int FX = cast<FrameIndexSDNode>(N)->getIndex();
|
|
unsigned StkA = HFI->getStackAlignment();
|
|
unsigned MaxA = MFI.getMaxAlignment();
|
|
SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
|
|
SDLoc DL(N);
|
|
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
SDNode *R = 0;
|
|
|
|
// Use TFR_FI when:
|
|
// - the object is fixed, or
|
|
// - there are no objects with higher-than-default alignment, or
|
|
// - there are no dynamically allocated objects.
|
|
// Otherwise, use TFR_FIA.
|
|
if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
|
|
R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);
|
|
} else {
|
|
auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
|
|
unsigned AR = HMFI.getStackAlignBaseVReg();
|
|
SDValue CH = CurDAG->getEntryNode();
|
|
SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
|
|
R = CurDAG->getMachineNode(Hexagon::TFR_FIA, DL, MVT::i32, Ops);
|
|
}
|
|
|
|
ReplaceNode(N, R);
|
|
}
|
|
|
|
|
|
void HexagonDAGToDAGISel::SelectBitcast(SDNode *N) {
|
|
EVT SVT = N->getOperand(0).getValueType();
|
|
EVT DVT = N->getValueType(0);
|
|
if (!SVT.isVector() || !DVT.isVector() ||
|
|
SVT.getVectorElementType() == MVT::i1 ||
|
|
DVT.getVectorElementType() == MVT::i1 ||
|
|
SVT.getSizeInBits() != DVT.getSizeInBits()) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N,0), N->getOperand(0));
|
|
CurDAG->RemoveDeadNode(N);
|
|
}
|
|
|
|
|
|
void HexagonDAGToDAGISel::Select(SDNode *N) {
|
|
if (N->isMachineOpcode()) {
|
|
N->setNodeId(-1);
|
|
return; // Already selected.
|
|
}
|
|
|
|
switch (N->getOpcode()) {
|
|
case ISD::Constant:
|
|
SelectConstant(N);
|
|
return;
|
|
|
|
case ISD::ConstantFP:
|
|
SelectConstantFP(N);
|
|
return;
|
|
|
|
case ISD::FrameIndex:
|
|
SelectFrameIndex(N);
|
|
return;
|
|
|
|
case ISD::ADD:
|
|
SelectAdd(N);
|
|
return;
|
|
|
|
case ISD::BITCAST:
|
|
SelectBitcast(N);
|
|
return;
|
|
|
|
case ISD::SHL:
|
|
SelectSHL(N);
|
|
return;
|
|
|
|
case ISD::LOAD:
|
|
SelectLoad(N);
|
|
return;
|
|
|
|
case ISD::STORE:
|
|
SelectStore(N);
|
|
return;
|
|
|
|
case ISD::MUL:
|
|
SelectMul(N);
|
|
return;
|
|
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::FABS:
|
|
case ISD::FNEG:
|
|
SelectBitOp(N);
|
|
return;
|
|
|
|
case ISD::ZERO_EXTEND:
|
|
SelectZeroExtend(N);
|
|
return;
|
|
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
SelectIntrinsicWChain(N);
|
|
return;
|
|
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
SelectIntrinsicWOChain(N);
|
|
return;
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
|
|
std::vector<SDValue> &OutOps) {
|
|
SDValue Inp = Op, Res;
|
|
|
|
switch (ConstraintID) {
|
|
default:
|
|
return true;
|
|
case InlineAsm::Constraint_i:
|
|
case InlineAsm::Constraint_o: // Offsetable.
|
|
case InlineAsm::Constraint_v: // Not offsetable.
|
|
case InlineAsm::Constraint_m: // Memory.
|
|
if (SelectAddrFI(Inp, Res))
|
|
OutOps.push_back(Res);
|
|
else
|
|
OutOps.push_back(Inp);
|
|
break;
|
|
}
|
|
|
|
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
|
|
return false;
|
|
}
|
|
|
|
|
|
void HexagonDAGToDAGISel::PreprocessISelDAG() {
|
|
SelectionDAG &DAG = *CurDAG;
|
|
std::vector<SDNode*> Nodes;
|
|
for (SDNode &Node : DAG.allnodes())
|
|
Nodes.push_back(&Node);
|
|
|
|
// Simplify: (or (select c x 0) z) -> (select c (or x z) z)
|
|
// (or (select c 0 y) z) -> (select c z (or y z))
|
|
// This may not be the right thing for all targets, so do it here.
|
|
for (auto I : Nodes) {
|
|
if (I->getOpcode() != ISD::OR)
|
|
continue;
|
|
|
|
auto IsZero = [] (const SDValue &V) -> bool {
|
|
if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
|
|
return SC->isNullValue();
|
|
return false;
|
|
};
|
|
auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
|
|
if (Op.getOpcode() != ISD::SELECT)
|
|
return false;
|
|
return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
|
|
};
|
|
|
|
SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
|
|
EVT VT = I->getValueType(0);
|
|
bool SelN0 = IsSelect0(N0);
|
|
SDValue SOp = SelN0 ? N0 : N1;
|
|
SDValue VOp = SelN0 ? N1 : N0;
|
|
|
|
if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
|
|
SDValue SC = SOp.getOperand(0);
|
|
SDValue SX = SOp.getOperand(1);
|
|
SDValue SY = SOp.getOperand(2);
|
|
SDLoc DLS = SOp;
|
|
if (IsZero(SY)) {
|
|
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
|
|
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
|
|
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
|
|
} else if (IsZero(SX)) {
|
|
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
|
|
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
|
|
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transform: (store ch addr (add x (add (shl y c) e)))
|
|
// to: (store ch addr (add x (shl (add y d) c))),
|
|
// where e = (shl d c) for some integer d.
|
|
// The purpose of this is to enable generation of loads/stores with
|
|
// shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
|
|
// value c must be 0, 1 or 2.
|
|
for (auto I : Nodes) {
|
|
if (I->getOpcode() != ISD::STORE)
|
|
continue;
|
|
|
|
// I matched: (store ch addr Off)
|
|
SDValue Off = I->getOperand(2);
|
|
// Off needs to match: (add x (add (shl y c) (shl d c))))
|
|
if (Off.getOpcode() != ISD::ADD)
|
|
continue;
|
|
// Off matched: (add x T0)
|
|
SDValue T0 = Off.getOperand(1);
|
|
// T0 needs to match: (add T1 T2):
|
|
if (T0.getOpcode() != ISD::ADD)
|
|
continue;
|
|
// T0 matched: (add T1 T2)
|
|
SDValue T1 = T0.getOperand(0);
|
|
SDValue T2 = T0.getOperand(1);
|
|
// T1 needs to match: (shl y c)
|
|
if (T1.getOpcode() != ISD::SHL)
|
|
continue;
|
|
SDValue C = T1.getOperand(1);
|
|
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
|
|
if (CN == nullptr)
|
|
continue;
|
|
unsigned CV = CN->getZExtValue();
|
|
if (CV > 2)
|
|
continue;
|
|
// T2 needs to match e, where e = (shl d c) for some d.
|
|
ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
|
|
if (EN == nullptr)
|
|
continue;
|
|
unsigned EV = EN->getZExtValue();
|
|
if (EV % (1 << CV) != 0)
|
|
continue;
|
|
unsigned DV = EV / (1 << CV);
|
|
|
|
// Replace T0 with: (shl (add y d) c)
|
|
SDLoc DL = SDLoc(I);
|
|
EVT VT = T0.getValueType();
|
|
SDValue D = DAG.getConstant(DV, DL, VT);
|
|
// NewAdd = (add y d)
|
|
SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
|
|
// NewShl = (shl NewAdd c)
|
|
SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
|
|
ReplaceNode(T0.getNode(), NewShl.getNode());
|
|
}
|
|
|
|
if (EnableAddressRebalancing) {
|
|
rebalanceAddressTrees();
|
|
|
|
DEBUG(
|
|
dbgs() << "************* SelectionDAG after preprocessing: ***********\n";
|
|
CurDAG->dump();
|
|
dbgs() << "************* End SelectionDAG after preprocessing ********\n";
|
|
);
|
|
}
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
|
|
auto &HFI = *HST.getFrameLowering();
|
|
if (!HFI.needsAligna(*MF))
|
|
return;
|
|
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
MachineBasicBlock *EntryBB = &MF->front();
|
|
unsigned AR = FuncInfo->CreateReg(MVT::i32);
|
|
unsigned MaxA = MFI.getMaxAlignment();
|
|
BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::ALIGNA), AR)
|
|
.addImm(MaxA);
|
|
MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
|
|
}
|
|
|
|
// Match a frame index that can be used in an addressing mode.
|
|
bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
|
|
if (N.getOpcode() != ISD::FrameIndex)
|
|
return false;
|
|
auto &HFI = *HST->getFrameLowering();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
int FX = cast<FrameIndexSDNode>(N)->getIndex();
|
|
if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
|
|
return false;
|
|
R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
|
|
return SelectGlobalAddress(N, R, false);
|
|
}
|
|
|
|
inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
|
|
return SelectGlobalAddress(N, R, true);
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
|
|
bool UseGP) {
|
|
switch (N.getOpcode()) {
|
|
case ISD::ADD: {
|
|
SDValue N0 = N.getOperand(0);
|
|
SDValue N1 = N.getOperand(1);
|
|
unsigned GAOpc = N0.getOpcode();
|
|
if (UseGP && GAOpc != HexagonISD::CONST32_GP)
|
|
return false;
|
|
if (!UseGP && GAOpc != HexagonISD::CONST32)
|
|
return false;
|
|
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
|
|
SDValue Addr = N0.getOperand(0);
|
|
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
|
|
if (GA->getOpcode() == ISD::TargetGlobalAddress) {
|
|
uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
|
|
R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
|
|
N.getValueType(), NewOff);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case HexagonISD::CONST32:
|
|
// The operand(0) of CONST32 is TargetGlobalAddress, which is what we
|
|
// want in the instruction.
|
|
if (!UseGP)
|
|
R = N.getOperand(0);
|
|
return !UseGP;
|
|
case HexagonISD::CONST32_GP:
|
|
if (UseGP)
|
|
R = N.getOperand(0);
|
|
return UseGP;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
|
|
unsigned FromBits, SDValue &Src) {
|
|
unsigned Opc = Val.getOpcode();
|
|
switch (Opc) {
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND: {
|
|
SDValue const &Op0 = Val.getOperand(0);
|
|
EVT T = Op0.getValueType();
|
|
if (T.isInteger() && T.getSizeInBits() == FromBits) {
|
|
Src = Op0;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::AssertSext:
|
|
case ISD::AssertZext:
|
|
if (Val.getOperand(0).getValueType().isInteger()) {
|
|
VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
|
|
if (T->getVT().getSizeInBits() == FromBits) {
|
|
Src = Val.getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
case ISD::AND: {
|
|
// Check if this is an AND with "FromBits" of lower bits set to 1.
|
|
uint64_t FromMask = (1 << FromBits) - 1;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
|
|
if (C->getZExtValue() == FromMask) {
|
|
Src = Val.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
|
|
if (C->getZExtValue() == FromMask) {
|
|
Src = Val.getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
// OR/XOR with the lower "FromBits" bits set to 0.
|
|
uint64_t FromMask = (1 << FromBits) - 1;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
|
|
if ((C->getZExtValue() & FromMask) == 0) {
|
|
Src = Val.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
|
|
if ((C->getZExtValue() & FromMask) == 0) {
|
|
Src = Val.getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::orIsAdd(const SDNode *N) const {
|
|
assert(N->getOpcode() == ISD::OR);
|
|
auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
assert(C);
|
|
|
|
// Detect when "or" is used to add an offset to a stack object.
|
|
if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
unsigned A = MFI.getObjectAlignment(FN->getIndex());
|
|
assert(isPowerOf2_32(A));
|
|
int32_t Off = C->getSExtValue();
|
|
// If the alleged offset fits in the zero bits guaranteed by
|
|
// the alignment, then this or is really an add.
|
|
return (Off >= 0) && (((A-1) & Off) == unsigned(Off));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
|
|
return N->getAlignment() >= N->getMemoryVT().getStoreSize();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Rebalancing of address calculation trees
|
|
|
|
static bool isOpcodeHandled(const SDNode *N) {
|
|
switch (N->getOpcode()) {
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
return true;
|
|
case ISD::SHL:
|
|
// We only handle constant shifts because these can be easily flattened
|
|
// into multiplications by 2^Op1.
|
|
return isa<ConstantSDNode>(N->getOperand(1).getNode());
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Return the weight of an SDNode
|
|
int HexagonDAGToDAGISel::getWeight(SDNode *N) {
|
|
if (!isOpcodeHandled(N))
|
|
return 1;
|
|
assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
|
|
assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
|
|
assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
|
|
return RootWeights[N];
|
|
}
|
|
|
|
int HexagonDAGToDAGISel::getHeight(SDNode *N) {
|
|
if (!isOpcodeHandled(N))
|
|
return 0;
|
|
assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
|
|
"Cannot query height of unvisited/RAUW'd node!");
|
|
return RootHeights[N];
|
|
}
|
|
|
|
struct WeightedLeaf {
|
|
SDValue Value;
|
|
int Weight;
|
|
int InsertionOrder;
|
|
|
|
WeightedLeaf() : Value(SDValue()) { }
|
|
|
|
WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
|
|
Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
|
|
assert(Weight >= 0 && "Weight must be >= 0");
|
|
}
|
|
|
|
static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
|
|
assert(A.Value.getNode() && B.Value.getNode());
|
|
return A.Weight == B.Weight ?
|
|
(A.InsertionOrder > B.InsertionOrder) :
|
|
(A.Weight > B.Weight);
|
|
}
|
|
};
|
|
|
|
/// A specialized priority queue for WeigthedLeaves. It automatically folds
|
|
/// constants and allows removal of non-top elements while maintaining the
|
|
/// priority order.
|
|
class LeafPrioQueue {
|
|
SmallVector<WeightedLeaf, 8> Q;
|
|
bool HaveConst;
|
|
WeightedLeaf ConstElt;
|
|
unsigned Opcode;
|
|
|
|
public:
|
|
bool empty() {
|
|
return (!HaveConst && Q.empty());
|
|
}
|
|
|
|
size_t size() {
|
|
return Q.size() + HaveConst;
|
|
}
|
|
|
|
bool hasConst() {
|
|
return HaveConst;
|
|
}
|
|
|
|
const WeightedLeaf &top() {
|
|
if (HaveConst)
|
|
return ConstElt;
|
|
return Q.front();
|
|
}
|
|
|
|
WeightedLeaf pop() {
|
|
if (HaveConst) {
|
|
HaveConst = false;
|
|
return ConstElt;
|
|
}
|
|
std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
|
|
return Q.pop_back_val();
|
|
}
|
|
|
|
void push(WeightedLeaf L, bool SeparateConst=true) {
|
|
if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
|
|
if (Opcode == ISD::MUL &&
|
|
cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
|
|
return;
|
|
if (Opcode == ISD::ADD &&
|
|
cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
|
|
return;
|
|
|
|
HaveConst = true;
|
|
ConstElt = L;
|
|
} else {
|
|
Q.push_back(L);
|
|
std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
|
|
}
|
|
}
|
|
|
|
/// Push L to the bottom of the queue regardless of its weight. If L is
|
|
/// constant, it will not be folded with other constants in the queue.
|
|
void pushToBottom(WeightedLeaf L) {
|
|
L.Weight = 1000;
|
|
push(L, false);
|
|
}
|
|
|
|
/// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
|
|
/// lowest weight and remove it from the queue.
|
|
WeightedLeaf findSHL(uint64_t MaxAmount);
|
|
|
|
WeightedLeaf findMULbyConst();
|
|
|
|
LeafPrioQueue(unsigned Opcode) :
|
|
HaveConst(false), Opcode(Opcode) { }
|
|
};
|
|
|
|
WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
|
|
int ResultPos;
|
|
WeightedLeaf Result;
|
|
|
|
for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
|
|
const WeightedLeaf &L = Q[Pos];
|
|
const SDValue &Val = L.Value;
|
|
if (Val.getOpcode() != ISD::SHL ||
|
|
!isa<ConstantSDNode>(Val.getOperand(1)) ||
|
|
Val.getConstantOperandVal(1) > MaxAmount)
|
|
continue;
|
|
if (!Result.Value.getNode() || Result.Weight > L.Weight ||
|
|
(Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
|
|
{
|
|
Result = L;
|
|
ResultPos = Pos;
|
|
}
|
|
}
|
|
|
|
if (Result.Value.getNode()) {
|
|
Q.erase(&Q[ResultPos]);
|
|
std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
WeightedLeaf LeafPrioQueue::findMULbyConst() {
|
|
int ResultPos;
|
|
WeightedLeaf Result;
|
|
|
|
for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
|
|
const WeightedLeaf &L = Q[Pos];
|
|
const SDValue &Val = L.Value;
|
|
if (Val.getOpcode() != ISD::MUL ||
|
|
!isa<ConstantSDNode>(Val.getOperand(1)) ||
|
|
Val.getConstantOperandVal(1) > 127)
|
|
continue;
|
|
if (!Result.Value.getNode() || Result.Weight > L.Weight ||
|
|
(Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
|
|
{
|
|
Result = L;
|
|
ResultPos = Pos;
|
|
}
|
|
}
|
|
|
|
if (Result.Value.getNode()) {
|
|
Q.erase(&Q[ResultPos]);
|
|
std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
|
|
uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
|
|
return CurDAG->getConstant(MulFactor, SDLoc(N),
|
|
N->getOperand(1).getValueType());
|
|
}
|
|
|
|
/// @returns the value x for which 2^x is a factor of Val
|
|
static unsigned getPowerOf2Factor(SDValue Val) {
|
|
if (Val.getOpcode() == ISD::MUL) {
|
|
unsigned MaxFactor = 0;
|
|
for (int i=0; i < 2; ++i) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
|
|
if (!C)
|
|
continue;
|
|
const APInt &CInt = C->getAPIntValue();
|
|
if (CInt.getBoolValue())
|
|
MaxFactor = CInt.countTrailingZeros();
|
|
}
|
|
return MaxFactor;
|
|
}
|
|
if (Val.getOpcode() == ISD::SHL) {
|
|
if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
|
|
return 0;
|
|
return (unsigned) Val.getConstantOperandVal(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// @returns true if V>>Amount will eliminate V's operation on its child
|
|
static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
|
|
if (V.getOpcode() == ISD::MUL) {
|
|
SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
|
|
for (int i=0; i < 2; ++i)
|
|
if (isa<ConstantSDNode>(Ops[i].getNode()) &&
|
|
V.getConstantOperandVal(i) % ((uint64_t)1 << Amount) == 0) {
|
|
uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
|
|
return (NewConst == 1);
|
|
}
|
|
} else if (V.getOpcode() == ISD::SHL) {
|
|
return (Amount == V.getConstantOperandVal(1));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
|
|
SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
|
|
if (V.getOpcode() == ISD::MUL) {
|
|
for (int i=0; i < 2; ++i) {
|
|
if (isa<ConstantSDNode>(Ops[i].getNode()) &&
|
|
V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
|
|
uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
|
|
if (NewConst == 1)
|
|
return Ops[!i];
|
|
Ops[i] = CurDAG->getConstant(NewConst,
|
|
SDLoc(V), V.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
} else if (V.getOpcode() == ISD::SHL) {
|
|
uint64_t ShiftAmount = V.getConstantOperandVal(1);
|
|
if (ShiftAmount == Power)
|
|
return Ops[0];
|
|
Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
|
|
SDLoc(V), V.getValueType());
|
|
}
|
|
|
|
return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
|
|
}
|
|
|
|
static bool isTargetConstant(const SDValue &V) {
|
|
return V.getOpcode() == HexagonISD::CONST32 ||
|
|
V.getOpcode() == HexagonISD::CONST32_GP;
|
|
}
|
|
|
|
unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
|
|
if (GAUsesInFunction.count(V))
|
|
return GAUsesInFunction[V];
|
|
|
|
unsigned Result = 0;
|
|
const Function *CurF = CurDAG->getMachineFunction().getFunction();
|
|
for (const User *U : V->users()) {
|
|
if (isa<Instruction>(U) &&
|
|
cast<Instruction>(U)->getParent()->getParent() == CurF)
|
|
++Result;
|
|
}
|
|
|
|
GAUsesInFunction[V] = Result;
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Note - After calling this, N may be dead. It may have been replaced by a
|
|
/// new node, so always use the returned value in place of N.
|
|
///
|
|
/// @returns The SDValue taking the place of N (which could be N if it is
|
|
/// unchanged)
|
|
SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
|
|
assert(RootWeights.count(N) && "Cannot balance non-root node.");
|
|
assert(RootWeights[N] != -2 && "This node was RAUW'd!");
|
|
assert(!TopLevel || N->getOpcode() == ISD::ADD);
|
|
|
|
// Return early if this node was already visited
|
|
if (RootWeights[N] != -1)
|
|
return SDValue(N, 0);
|
|
|
|
assert(isOpcodeHandled(N));
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
// Return early if the operands will remain unchanged or are all roots
|
|
if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
|
|
(!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
|
|
SDNode *Op0N = Op0.getNode();
|
|
int Weight;
|
|
if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
|
|
Weight = getWeight(balanceSubTree(Op0N).getNode());
|
|
// Weight = calculateWeight(Op0N);
|
|
} else
|
|
Weight = getWeight(Op0N);
|
|
|
|
SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
|
|
if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
|
|
Weight += getWeight(balanceSubTree(Op1N).getNode());
|
|
// Weight += calculateWeight(Op1N);
|
|
} else
|
|
Weight += getWeight(Op1N);
|
|
|
|
RootWeights[N] = Weight;
|
|
RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
|
|
getHeight(N->getOperand(1).getNode())) + 1;
|
|
|
|
DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
|
|
<< " Height=" << RootHeights[N] << "): ");
|
|
DEBUG(N->dump());
|
|
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
DEBUG(dbgs() << "** Balancing root node: ");
|
|
DEBUG(N->dump());
|
|
|
|
unsigned NOpcode = N->getOpcode();
|
|
|
|
LeafPrioQueue Leaves(NOpcode);
|
|
SmallVector<SDValue, 4> Worklist;
|
|
Worklist.push_back(SDValue(N, 0));
|
|
|
|
// SHL nodes will be converted to MUL nodes
|
|
if (NOpcode == ISD::SHL)
|
|
NOpcode = ISD::MUL;
|
|
|
|
bool CanFactorize = false;
|
|
WeightedLeaf Mul1, Mul2;
|
|
unsigned MaxPowerOf2 = 0;
|
|
WeightedLeaf GA;
|
|
|
|
// Do not try to factor out a shift if there is already a shift at the tip of
|
|
// the tree.
|
|
bool HaveTopLevelShift = false;
|
|
if (TopLevel &&
|
|
((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
|
|
Op0.getConstantOperandVal(1) < 4) ||
|
|
(isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
|
|
Op1.getConstantOperandVal(1) < 4)))
|
|
HaveTopLevelShift = true;
|
|
|
|
// Flatten the subtree into an ordered list of leaves; at the same time
|
|
// determine whether the tree is already balanced.
|
|
int InsertionOrder = 0;
|
|
SmallDenseMap<SDValue, int> NodeHeights;
|
|
bool Imbalanced = false;
|
|
int CurrentWeight = 0;
|
|
while (!Worklist.empty()) {
|
|
SDValue Child = Worklist.pop_back_val();
|
|
|
|
if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
|
|
// CASE 1: Child is a root note
|
|
|
|
int Weight = RootWeights[Child.getNode()];
|
|
if (Weight == -1) {
|
|
Child = balanceSubTree(Child.getNode());
|
|
// calculateWeight(Child.getNode());
|
|
Weight = getWeight(Child.getNode());
|
|
} else if (Weight == -2) {
|
|
// Whoops, this node was RAUWd by one of the balanceSubTree calls we
|
|
// made. Our worklist isn't up to date anymore.
|
|
// Restart the whole process.
|
|
DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
|
|
return balanceSubTree(N, TopLevel);
|
|
}
|
|
|
|
NodeHeights[Child] = 1;
|
|
CurrentWeight += Weight;
|
|
|
|
unsigned PowerOf2;
|
|
if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
|
|
(Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
|
|
Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
|
|
// Try to identify two factorizable MUL/SHL children greedily. Leave
|
|
// them out of the priority queue for now so we can deal with them
|
|
// after.
|
|
if (!Mul1.Value.getNode()) {
|
|
Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
|
|
MaxPowerOf2 = PowerOf2;
|
|
} else {
|
|
Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
|
|
MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
|
|
|
|
// Our addressing modes can only shift by a maximum of 3
|
|
if (MaxPowerOf2 > 3)
|
|
MaxPowerOf2 = 3;
|
|
|
|
CanFactorize = true;
|
|
}
|
|
} else
|
|
Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
|
|
} else if (!isOpcodeHandled(Child.getNode())) {
|
|
// CASE 2: Child is an unhandled kind of node (e.g. constant)
|
|
int Weight = getWeight(Child.getNode());
|
|
|
|
NodeHeights[Child] = getHeight(Child.getNode());
|
|
CurrentWeight += Weight;
|
|
|
|
if (isTargetConstant(Child) && !GA.Value.getNode())
|
|
GA = WeightedLeaf(Child, Weight, InsertionOrder++);
|
|
else
|
|
Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
|
|
} else {
|
|
// CASE 3: Child is a subtree of same opcode
|
|
// Visit children first, then flatten.
|
|
unsigned ChildOpcode = Child.getOpcode();
|
|
assert(ChildOpcode == NOpcode ||
|
|
(NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
|
|
|
|
// Convert SHL to MUL
|
|
SDValue Op1;
|
|
if (ChildOpcode == ISD::SHL)
|
|
Op1 = getMultiplierForSHL(Child.getNode());
|
|
else
|
|
Op1 = Child->getOperand(1);
|
|
|
|
if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
|
|
assert(!NodeHeights.count(Child) && "Parent visited before children?");
|
|
// Visit children first, then re-visit this node
|
|
Worklist.push_back(Child);
|
|
Worklist.push_back(Op1);
|
|
Worklist.push_back(Child->getOperand(0));
|
|
} else {
|
|
// Back at this node after visiting the children
|
|
if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
|
|
Imbalanced = true;
|
|
|
|
NodeHeights[Child] = std::max(NodeHeights[Op1],
|
|
NodeHeights[Child->getOperand(0)]) + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
|
|
<< " weight=" << CurrentWeight << " imbalanced="
|
|
<< Imbalanced << "\n");
|
|
|
|
// Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
|
|
// This factors out a shift in order to match memw(a<<Y+b).
|
|
if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
|
|
willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
|
|
DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
|
|
int Weight = Mul1.Weight + Mul2.Weight;
|
|
int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
|
|
SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
|
|
SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
|
|
SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
|
|
Mul1Factored, Mul2Factored);
|
|
SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
|
|
Mul1.Value.getValueType());
|
|
SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
|
|
Sum, Const);
|
|
NodeHeights[New] = Height;
|
|
Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
|
|
} else if (Mul1.Value.getNode()) {
|
|
// We failed to factorize two MULs, so now the Muls are left outside the
|
|
// queue... add them back.
|
|
Leaves.push(Mul1);
|
|
if (Mul2.Value.getNode())
|
|
Leaves.push(Mul2);
|
|
CanFactorize = false;
|
|
}
|
|
|
|
// Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
|
|
// and the root node itself is not used more than twice. This reduces the
|
|
// amount of additional constant extenders introduced by this optimization.
|
|
bool CombinedGA = false;
|
|
if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
|
|
GA.Value.hasOneUse() && N->use_size() < 3) {
|
|
GlobalAddressSDNode *GANode =
|
|
cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
|
|
ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
|
|
|
|
if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
|
|
getTargetLowering()->isOffsetFoldingLegal(GANode)) {
|
|
DEBUG(dbgs() << "--> Combining GA and offset (" << Offset->getSExtValue()
|
|
<< "): ");
|
|
DEBUG(GANode->dump());
|
|
|
|
SDValue NewTGA =
|
|
CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
|
|
GANode->getValueType(0),
|
|
GANode->getOffset() + (uint64_t)Offset->getSExtValue());
|
|
GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
|
|
GA.Value.getValueType(), NewTGA);
|
|
GA.Weight += Leaves.top().Weight;
|
|
|
|
NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
|
|
CombinedGA = true;
|
|
|
|
Leaves.pop(); // Remove the offset constant from the queue
|
|
}
|
|
}
|
|
|
|
if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
|
|
(RebalanceOnlyImbalancedTrees && !Imbalanced)) {
|
|
RootWeights[N] = CurrentWeight;
|
|
RootHeights[N] = NodeHeights[SDValue(N, 0)];
|
|
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
// Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
|
|
if (NOpcode == ISD::ADD && GA.Value.getNode()) {
|
|
WeightedLeaf SHL = Leaves.findSHL(31);
|
|
if (SHL.Value.getNode()) {
|
|
int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
|
|
GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
|
|
GA.Value.getValueType(),
|
|
GA.Value, SHL.Value);
|
|
GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
|
|
NodeHeights[GA.Value] = Height;
|
|
}
|
|
}
|
|
|
|
if (GA.Value.getNode())
|
|
Leaves.push(GA);
|
|
|
|
// If this is the top level and we haven't factored out a shift, we should try
|
|
// to move a constant to the bottom to match addressing modes like memw(rX+C)
|
|
if (TopLevel && !CanFactorize && Leaves.hasConst()) {
|
|
DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
|
|
Leaves.pushToBottom(Leaves.pop());
|
|
}
|
|
|
|
// Rebuild the tree using Huffman's algorithm
|
|
while (Leaves.size() > 1) {
|
|
WeightedLeaf L0 = Leaves.pop();
|
|
|
|
// See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
|
|
// otherwise just get the next leaf
|
|
WeightedLeaf L1 = Leaves.findMULbyConst();
|
|
if (!L1.Value.getNode())
|
|
L1 = Leaves.pop();
|
|
|
|
assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
|
|
|
|
SDValue V0 = L0.Value;
|
|
int V0Weight = L0.Weight;
|
|
SDValue V1 = L1.Value;
|
|
int V1Weight = L1.Weight;
|
|
|
|
// Make sure that none of these nodes have been RAUW'd
|
|
if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
|
|
(RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
|
|
DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
|
|
return balanceSubTree(N, TopLevel);
|
|
}
|
|
|
|
ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
|
|
ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue NewNode;
|
|
|
|
if (V0C && !V1C) {
|
|
std::swap(V0, V1);
|
|
std::swap(V0C, V1C);
|
|
}
|
|
|
|
// Calculate height of this node
|
|
assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
|
|
"Children must have been visited before re-combining them!");
|
|
int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
|
|
|
|
// Rebuild this node (and restore SHL from MUL if needed)
|
|
if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
|
|
NewNode = CurDAG->getNode(
|
|
ISD::SHL, SDLoc(V0), VT, V0,
|
|
CurDAG->getConstant(
|
|
V1C->getAPIntValue().logBase2(), SDLoc(N),
|
|
getTargetLowering()->getScalarShiftAmountTy(CurDAG->getDataLayout(), V0.getValueType())));
|
|
else
|
|
NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
|
|
|
|
NodeHeights[NewNode] = Height;
|
|
|
|
int Weight = V0Weight + V1Weight;
|
|
Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
|
|
|
|
DEBUG(dbgs() << "--> Built new node (Weight=" << Weight << ",Height="
|
|
<< Height << "):\n");
|
|
DEBUG(NewNode.dump());
|
|
}
|
|
|
|
assert(Leaves.size() == 1);
|
|
SDValue NewRoot = Leaves.top().Value;
|
|
|
|
assert(NodeHeights.count(NewRoot));
|
|
int Height = NodeHeights[NewRoot];
|
|
|
|
// Restore SHL if we earlier converted it to a MUL
|
|
if (NewRoot.getOpcode() == ISD::MUL) {
|
|
ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
|
|
if (V1C && V1C->getAPIntValue().isPowerOf2()) {
|
|
EVT VT = NewRoot.getValueType();
|
|
SDValue V0 = NewRoot.getOperand(0);
|
|
NewRoot = CurDAG->getNode(
|
|
ISD::SHL, SDLoc(NewRoot), VT, V0,
|
|
CurDAG->getConstant(V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
|
|
getTargetLowering()->getScalarShiftAmountTy(
|
|
CurDAG->getDataLayout(), V0.getValueType())));
|
|
}
|
|
}
|
|
|
|
if (N != NewRoot.getNode()) {
|
|
DEBUG(dbgs() << "--> Root is now: ");
|
|
DEBUG(NewRoot.dump());
|
|
|
|
// Replace all uses of old root by new root
|
|
CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
|
|
// Mark that we have RAUW'd N
|
|
RootWeights[N] = -2;
|
|
} else {
|
|
DEBUG(dbgs() << "--> Root unchanged.\n");
|
|
}
|
|
|
|
RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
|
|
RootHeights[NewRoot.getNode()] = Height;
|
|
|
|
return NewRoot;
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::rebalanceAddressTrees() {
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E;) {
|
|
SDNode *N = &*I++;
|
|
if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
|
|
continue;
|
|
|
|
SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
|
|
if (BasePtr.getOpcode() != ISD::ADD)
|
|
continue;
|
|
|
|
// We've already processed this node
|
|
if (RootWeights.count(BasePtr.getNode()))
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
|
|
DEBUG(N->dump());
|
|
|
|
// FindRoots
|
|
SmallVector<SDNode *, 4> Worklist;
|
|
|
|
Worklist.push_back(BasePtr.getOperand(0).getNode());
|
|
Worklist.push_back(BasePtr.getOperand(1).getNode());
|
|
|
|
while (!Worklist.empty()) {
|
|
SDNode *N = Worklist.pop_back_val();
|
|
unsigned Opcode = N->getOpcode();
|
|
|
|
if (!isOpcodeHandled(N))
|
|
continue;
|
|
|
|
Worklist.push_back(N->getOperand(0).getNode());
|
|
Worklist.push_back(N->getOperand(1).getNode());
|
|
|
|
// Not a root if it has only one use and same opcode as its parent
|
|
if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
|
|
continue;
|
|
|
|
// This root node has already been processed
|
|
if (RootWeights.count(N))
|
|
continue;
|
|
|
|
RootWeights[N] = -1;
|
|
}
|
|
|
|
// Balance node itself
|
|
RootWeights[BasePtr.getNode()] = -1;
|
|
SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
|
|
|
|
if (N->getOpcode() == ISD::LOAD)
|
|
N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
|
|
NewBasePtr, N->getOperand(2));
|
|
else
|
|
N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
|
|
NewBasePtr, N->getOperand(3));
|
|
|
|
DEBUG(dbgs() << "--> Final node: ");
|
|
DEBUG(N->dump());
|
|
}
|
|
|
|
CurDAG->RemoveDeadNodes();
|
|
GAUsesInFunction.clear();
|
|
RootHeights.clear();
|
|
RootWeights.clear();
|
|
}
|
|
|
|
|