llvm-project/clang/lib/Serialization/ASTReaderDecl.cpp

3806 lines
144 KiB
C++

//===--- ASTReaderDecl.cpp - Decl Deserialization ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTReader::ReadDeclRecord method, which is the
// entrypoint for loading a decl.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTReader.h"
#include "ASTCommon.h"
#include "ASTReaderInternals.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
using namespace clang::serialization;
//===----------------------------------------------------------------------===//
// Declaration deserialization
//===----------------------------------------------------------------------===//
namespace clang {
class ASTDeclReader : public DeclVisitor<ASTDeclReader, void> {
ASTReader &Reader;
ModuleFile &F;
const DeclID ThisDeclID;
const unsigned RawLocation;
typedef ASTReader::RecordData RecordData;
const RecordData &Record;
unsigned &Idx;
TypeID TypeIDForTypeDecl;
unsigned AnonymousDeclNumber;
GlobalDeclID NamedDeclForTagDecl;
IdentifierInfo *TypedefNameForLinkage;
bool HasPendingBody;
uint64_t GetCurrentCursorOffset();
SourceLocation ReadSourceLocation(const RecordData &R, unsigned &I) {
return Reader.ReadSourceLocation(F, R, I);
}
SourceRange ReadSourceRange(const RecordData &R, unsigned &I) {
return Reader.ReadSourceRange(F, R, I);
}
TypeSourceInfo *GetTypeSourceInfo(const RecordData &R, unsigned &I) {
return Reader.GetTypeSourceInfo(F, R, I);
}
serialization::DeclID ReadDeclID(const RecordData &R, unsigned &I) {
return Reader.ReadDeclID(F, R, I);
}
void ReadDeclIDList(SmallVectorImpl<DeclID> &IDs) {
for (unsigned I = 0, Size = Record[Idx++]; I != Size; ++I)
IDs.push_back(ReadDeclID(Record, Idx));
}
Decl *ReadDecl(const RecordData &R, unsigned &I) {
return Reader.ReadDecl(F, R, I);
}
template<typename T>
T *ReadDeclAs(const RecordData &R, unsigned &I) {
return Reader.ReadDeclAs<T>(F, R, I);
}
void ReadQualifierInfo(QualifierInfo &Info,
const RecordData &R, unsigned &I) {
Reader.ReadQualifierInfo(F, Info, R, I);
}
void ReadDeclarationNameLoc(DeclarationNameLoc &DNLoc, DeclarationName Name,
const RecordData &R, unsigned &I) {
Reader.ReadDeclarationNameLoc(F, DNLoc, Name, R, I);
}
void ReadDeclarationNameInfo(DeclarationNameInfo &NameInfo,
const RecordData &R, unsigned &I) {
Reader.ReadDeclarationNameInfo(F, NameInfo, R, I);
}
serialization::SubmoduleID readSubmoduleID(const RecordData &R,
unsigned &I) {
if (I >= R.size())
return 0;
return Reader.getGlobalSubmoduleID(F, R[I++]);
}
Module *readModule(const RecordData &R, unsigned &I) {
return Reader.getSubmodule(readSubmoduleID(R, I));
}
void ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update);
void ReadCXXDefinitionData(struct CXXRecordDecl::DefinitionData &Data,
const RecordData &R, unsigned &I);
void MergeDefinitionData(CXXRecordDecl *D,
struct CXXRecordDecl::DefinitionData &&NewDD);
static NamedDecl *getAnonymousDeclForMerging(ASTReader &Reader,
DeclContext *DC,
unsigned Index);
static void setAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC,
unsigned Index, NamedDecl *D);
/// Results from loading a RedeclarableDecl.
class RedeclarableResult {
GlobalDeclID FirstID;
Decl *MergeWith;
bool IsKeyDecl;
public:
RedeclarableResult(GlobalDeclID FirstID, Decl *MergeWith, bool IsKeyDecl)
: FirstID(FirstID), MergeWith(MergeWith), IsKeyDecl(IsKeyDecl) {}
/// \brief Retrieve the first ID.
GlobalDeclID getFirstID() const { return FirstID; }
/// \brief Is this declaration a key declaration?
bool isKeyDecl() const { return IsKeyDecl; }
/// \brief Get a known declaration that this should be merged with, if
/// any.
Decl *getKnownMergeTarget() const { return MergeWith; }
};
/// \brief Class used to capture the result of searching for an existing
/// declaration of a specific kind and name, along with the ability
/// to update the place where this result was found (the declaration
/// chain hanging off an identifier or the DeclContext we searched in)
/// if requested.
class FindExistingResult {
ASTReader &Reader;
NamedDecl *New;
NamedDecl *Existing;
mutable bool AddResult;
unsigned AnonymousDeclNumber;
IdentifierInfo *TypedefNameForLinkage;
void operator=(FindExistingResult&) = delete;
public:
FindExistingResult(ASTReader &Reader)
: Reader(Reader), New(nullptr), Existing(nullptr), AddResult(false),
AnonymousDeclNumber(0), TypedefNameForLinkage(nullptr) {}
FindExistingResult(ASTReader &Reader, NamedDecl *New, NamedDecl *Existing,
unsigned AnonymousDeclNumber,
IdentifierInfo *TypedefNameForLinkage)
: Reader(Reader), New(New), Existing(Existing), AddResult(true),
AnonymousDeclNumber(AnonymousDeclNumber),
TypedefNameForLinkage(TypedefNameForLinkage) {}
FindExistingResult(const FindExistingResult &Other)
: Reader(Other.Reader), New(Other.New), Existing(Other.Existing),
AddResult(Other.AddResult),
AnonymousDeclNumber(Other.AnonymousDeclNumber),
TypedefNameForLinkage(Other.TypedefNameForLinkage) {
Other.AddResult = false;
}
~FindExistingResult();
/// \brief Suppress the addition of this result into the known set of
/// names.
void suppress() { AddResult = false; }
operator NamedDecl*() const { return Existing; }
template<typename T>
operator T*() const { return dyn_cast_or_null<T>(Existing); }
};
static DeclContext *getPrimaryContextForMerging(ASTReader &Reader,
DeclContext *DC);
FindExistingResult findExisting(NamedDecl *D);
public:
ASTDeclReader(ASTReader &Reader, ModuleFile &F, DeclID thisDeclID,
unsigned RawLocation, const RecordData &Record, unsigned &Idx)
: Reader(Reader), F(F), ThisDeclID(thisDeclID),
RawLocation(RawLocation), Record(Record), Idx(Idx),
TypeIDForTypeDecl(0), NamedDeclForTagDecl(0),
TypedefNameForLinkage(nullptr), HasPendingBody(false) {}
template <typename DeclT>
static Decl *getMostRecentDeclImpl(Redeclarable<DeclT> *D);
static Decl *getMostRecentDeclImpl(...);
static Decl *getMostRecentDecl(Decl *D);
template <typename DeclT>
static void attachPreviousDeclImpl(ASTReader &Reader,
Redeclarable<DeclT> *D, Decl *Previous,
Decl *Canon);
static void attachPreviousDeclImpl(ASTReader &Reader, ...);
static void attachPreviousDecl(ASTReader &Reader, Decl *D, Decl *Previous,
Decl *Canon);
template <typename DeclT>
static void attachLatestDeclImpl(Redeclarable<DeclT> *D, Decl *Latest);
static void attachLatestDeclImpl(...);
static void attachLatestDecl(Decl *D, Decl *latest);
template <typename DeclT>
static void markIncompleteDeclChainImpl(Redeclarable<DeclT> *D);
static void markIncompleteDeclChainImpl(...);
/// \brief Determine whether this declaration has a pending body.
bool hasPendingBody() const { return HasPendingBody; }
void Visit(Decl *D);
void UpdateDecl(Decl *D, ModuleFile &ModuleFile,
const RecordData &Record);
static void setNextObjCCategory(ObjCCategoryDecl *Cat,
ObjCCategoryDecl *Next) {
Cat->NextClassCategory = Next;
}
void VisitDecl(Decl *D);
void VisitTranslationUnitDecl(TranslationUnitDecl *TU);
void VisitNamedDecl(NamedDecl *ND);
void VisitLabelDecl(LabelDecl *LD);
void VisitNamespaceDecl(NamespaceDecl *D);
void VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
void VisitTypeDecl(TypeDecl *TD);
RedeclarableResult VisitTypedefNameDecl(TypedefNameDecl *TD);
void VisitTypedefDecl(TypedefDecl *TD);
void VisitTypeAliasDecl(TypeAliasDecl *TD);
void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
RedeclarableResult VisitTagDecl(TagDecl *TD);
void VisitEnumDecl(EnumDecl *ED);
RedeclarableResult VisitRecordDeclImpl(RecordDecl *RD);
void VisitRecordDecl(RecordDecl *RD) { VisitRecordDeclImpl(RD); }
RedeclarableResult VisitCXXRecordDeclImpl(CXXRecordDecl *D);
void VisitCXXRecordDecl(CXXRecordDecl *D) { VisitCXXRecordDeclImpl(D); }
RedeclarableResult VisitClassTemplateSpecializationDeclImpl(
ClassTemplateSpecializationDecl *D);
void VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D) {
VisitClassTemplateSpecializationDeclImpl(D);
}
void VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D);
void VisitClassScopeFunctionSpecializationDecl(
ClassScopeFunctionSpecializationDecl *D);
RedeclarableResult
VisitVarTemplateSpecializationDeclImpl(VarTemplateSpecializationDecl *D);
void VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D) {
VisitVarTemplateSpecializationDeclImpl(D);
}
void VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D);
void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
void VisitValueDecl(ValueDecl *VD);
void VisitEnumConstantDecl(EnumConstantDecl *ECD);
void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
void VisitDeclaratorDecl(DeclaratorDecl *DD);
void VisitFunctionDecl(FunctionDecl *FD);
void VisitCXXMethodDecl(CXXMethodDecl *D);
void VisitCXXConstructorDecl(CXXConstructorDecl *D);
void VisitCXXDestructorDecl(CXXDestructorDecl *D);
void VisitCXXConversionDecl(CXXConversionDecl *D);
void VisitFieldDecl(FieldDecl *FD);
void VisitMSPropertyDecl(MSPropertyDecl *FD);
void VisitIndirectFieldDecl(IndirectFieldDecl *FD);
RedeclarableResult VisitVarDeclImpl(VarDecl *D);
void VisitVarDecl(VarDecl *VD) { VisitVarDeclImpl(VD); }
void VisitImplicitParamDecl(ImplicitParamDecl *PD);
void VisitParmVarDecl(ParmVarDecl *PD);
void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
DeclID VisitTemplateDecl(TemplateDecl *D);
RedeclarableResult VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D);
void VisitClassTemplateDecl(ClassTemplateDecl *D);
void VisitVarTemplateDecl(VarTemplateDecl *D);
void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D);
void VisitUsingDecl(UsingDecl *D);
void VisitUsingShadowDecl(UsingShadowDecl *D);
void VisitLinkageSpecDecl(LinkageSpecDecl *D);
void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD);
void VisitImportDecl(ImportDecl *D);
void VisitAccessSpecDecl(AccessSpecDecl *D);
void VisitFriendDecl(FriendDecl *D);
void VisitFriendTemplateDecl(FriendTemplateDecl *D);
void VisitStaticAssertDecl(StaticAssertDecl *D);
void VisitBlockDecl(BlockDecl *BD);
void VisitCapturedDecl(CapturedDecl *CD);
void VisitEmptyDecl(EmptyDecl *D);
std::pair<uint64_t, uint64_t> VisitDeclContext(DeclContext *DC);
template<typename T>
RedeclarableResult VisitRedeclarable(Redeclarable<T> *D);
template<typename T>
void mergeRedeclarable(Redeclarable<T> *D, RedeclarableResult &Redecl,
DeclID TemplatePatternID = 0);
template<typename T>
void mergeRedeclarable(Redeclarable<T> *D, T *Existing,
RedeclarableResult &Redecl,
DeclID TemplatePatternID = 0);
template<typename T>
void mergeMergeable(Mergeable<T> *D);
void mergeTemplatePattern(RedeclarableTemplateDecl *D,
RedeclarableTemplateDecl *Existing,
DeclID DsID, bool IsKeyDecl);
ObjCTypeParamList *ReadObjCTypeParamList();
// FIXME: Reorder according to DeclNodes.td?
void VisitObjCMethodDecl(ObjCMethodDecl *D);
void VisitObjCTypeParamDecl(ObjCTypeParamDecl *D);
void VisitObjCContainerDecl(ObjCContainerDecl *D);
void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
void VisitObjCIvarDecl(ObjCIvarDecl *D);
void VisitObjCProtocolDecl(ObjCProtocolDecl *D);
void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D);
void VisitObjCCategoryDecl(ObjCCategoryDecl *D);
void VisitObjCImplDecl(ObjCImplDecl *D);
void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
void VisitObjCImplementationDecl(ObjCImplementationDecl *D);
void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D);
void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D);
/// We've merged the definition \p MergedDef into the existing definition
/// \p Def. Ensure that \p Def is made visible whenever \p MergedDef is made
/// visible.
void mergeDefinitionVisibility(NamedDecl *Def, NamedDecl *MergedDef) {
if (Def->isHidden()) {
// If MergedDef is visible or becomes visible, make the definition visible.
if (!MergedDef->isHidden())
Def->Hidden = false;
else if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
Reader.getContext().mergeDefinitionIntoModule(
Def, MergedDef->getImportedOwningModule(),
/*NotifyListeners*/ false);
Reader.PendingMergedDefinitionsToDeduplicate.insert(Def);
} else {
auto SubmoduleID = MergedDef->getOwningModuleID();
assert(SubmoduleID && "hidden definition in no module");
Reader.HiddenNamesMap[Reader.getSubmodule(SubmoduleID)].push_back(Def);
}
}
}
};
} // end namespace clang
namespace {
/// Iterator over the redeclarations of a declaration that have already
/// been merged into the same redeclaration chain.
template<typename DeclT>
class MergedRedeclIterator {
DeclT *Start, *Canonical, *Current;
public:
MergedRedeclIterator() : Current(nullptr) {}
MergedRedeclIterator(DeclT *Start)
: Start(Start), Canonical(nullptr), Current(Start) {}
DeclT *operator*() { return Current; }
MergedRedeclIterator &operator++() {
if (Current->isFirstDecl()) {
Canonical = Current;
Current = Current->getMostRecentDecl();
} else
Current = Current->getPreviousDecl();
// If we started in the merged portion, we'll reach our start position
// eventually. Otherwise, we'll never reach it, but the second declaration
// we reached was the canonical declaration, so stop when we see that one
// again.
if (Current == Start || Current == Canonical)
Current = nullptr;
return *this;
}
friend bool operator!=(const MergedRedeclIterator &A,
const MergedRedeclIterator &B) {
return A.Current != B.Current;
}
};
} // end anonymous namespace
template<typename DeclT>
llvm::iterator_range<MergedRedeclIterator<DeclT>> merged_redecls(DeclT *D) {
return llvm::iterator_range<MergedRedeclIterator<DeclT>>(
MergedRedeclIterator<DeclT>(D),
MergedRedeclIterator<DeclT>());
}
uint64_t ASTDeclReader::GetCurrentCursorOffset() {
return F.DeclsCursor.GetCurrentBitNo() + F.GlobalBitOffset;
}
void ASTDeclReader::Visit(Decl *D) {
DeclVisitor<ASTDeclReader, void>::Visit(D);
if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
if (DD->DeclInfo) {
DeclaratorDecl::ExtInfo *Info =
DD->DeclInfo.get<DeclaratorDecl::ExtInfo *>();
Info->TInfo =
GetTypeSourceInfo(Record, Idx);
}
else {
DD->DeclInfo = GetTypeSourceInfo(Record, Idx);
}
}
if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
// We have a fully initialized TypeDecl. Read its type now.
TD->setTypeForDecl(Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull());
// If this is a tag declaration with a typedef name for linkage, it's safe
// to load that typedef now.
if (NamedDeclForTagDecl)
cast<TagDecl>(D)->TypedefNameDeclOrQualifier =
cast<TypedefNameDecl>(Reader.GetDecl(NamedDeclForTagDecl));
} else if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
// if we have a fully initialized TypeDecl, we can safely read its type now.
ID->TypeForDecl = Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull();
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// FunctionDecl's body was written last after all other Stmts/Exprs.
// We only read it if FD doesn't already have a body (e.g., from another
// module).
// FIXME: Can we diagnose ODR violations somehow?
if (Record[Idx++]) {
if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) {
CD->NumCtorInitializers = Record[Idx++];
if (CD->NumCtorInitializers)
CD->CtorInitializers =
Reader.ReadCXXCtorInitializersRef(F, Record, Idx);
}
Reader.PendingBodies[FD] = GetCurrentCursorOffset();
HasPendingBody = true;
}
}
}
void ASTDeclReader::VisitDecl(Decl *D) {
if (D->isTemplateParameter() || D->isTemplateParameterPack() ||
isa<ParmVarDecl>(D)) {
// We don't want to deserialize the DeclContext of a template
// parameter or of a parameter of a function template immediately. These
// entities might be used in the formulation of its DeclContext (for
// example, a function parameter can be used in decltype() in trailing
// return type of the function). Use the translation unit DeclContext as a
// placeholder.
GlobalDeclID SemaDCIDForTemplateParmDecl = ReadDeclID(Record, Idx);
GlobalDeclID LexicalDCIDForTemplateParmDecl = ReadDeclID(Record, Idx);
Reader.addPendingDeclContextInfo(D,
SemaDCIDForTemplateParmDecl,
LexicalDCIDForTemplateParmDecl);
D->setDeclContext(Reader.getContext().getTranslationUnitDecl());
} else {
DeclContext *SemaDC = ReadDeclAs<DeclContext>(Record, Idx);
DeclContext *LexicalDC = ReadDeclAs<DeclContext>(Record, Idx);
DeclContext *MergedSemaDC = Reader.MergedDeclContexts.lookup(SemaDC);
// Avoid calling setLexicalDeclContext() directly because it uses
// Decl::getASTContext() internally which is unsafe during derialization.
D->setDeclContextsImpl(MergedSemaDC ? MergedSemaDC : SemaDC, LexicalDC,
Reader.getContext());
}
D->setLocation(Reader.ReadSourceLocation(F, RawLocation));
D->setInvalidDecl(Record[Idx++]);
if (Record[Idx++]) { // hasAttrs
AttrVec Attrs;
Reader.ReadAttributes(F, Attrs, Record, Idx);
// Avoid calling setAttrs() directly because it uses Decl::getASTContext()
// internally which is unsafe during derialization.
D->setAttrsImpl(Attrs, Reader.getContext());
}
D->setImplicit(Record[Idx++]);
D->Used = Record[Idx++];
D->setReferenced(Record[Idx++]);
D->setTopLevelDeclInObjCContainer(Record[Idx++]);
D->setAccess((AccessSpecifier)Record[Idx++]);
D->FromASTFile = true;
D->setModulePrivate(Record[Idx++]);
D->Hidden = D->isModulePrivate();
// Determine whether this declaration is part of a (sub)module. If so, it
// may not yet be visible.
if (unsigned SubmoduleID = readSubmoduleID(Record, Idx)) {
// Store the owning submodule ID in the declaration.
D->setOwningModuleID(SubmoduleID);
if (D->Hidden) {
// Module-private declarations are never visible, so there is no work to do.
} else if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
// If local visibility is being tracked, this declaration will become
// hidden and visible as the owning module does. Inform Sema that this
// declaration might not be visible.
D->Hidden = true;
} else if (Module *Owner = Reader.getSubmodule(SubmoduleID)) {
if (Owner->NameVisibility != Module::AllVisible) {
// The owning module is not visible. Mark this declaration as hidden.
D->Hidden = true;
// Note that this declaration was hidden because its owning module is
// not yet visible.
Reader.HiddenNamesMap[Owner].push_back(D);
}
}
}
}
void ASTDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) {
llvm_unreachable("Translation units are not serialized");
}
void ASTDeclReader::VisitNamedDecl(NamedDecl *ND) {
VisitDecl(ND);
ND->setDeclName(Reader.ReadDeclarationName(F, Record, Idx));
AnonymousDeclNumber = Record[Idx++];
}
void ASTDeclReader::VisitTypeDecl(TypeDecl *TD) {
VisitNamedDecl(TD);
TD->setLocStart(ReadSourceLocation(Record, Idx));
// Delay type reading until after we have fully initialized the decl.
TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]);
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitTypedefNameDecl(TypedefNameDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TypeSourceInfo *TInfo = GetTypeSourceInfo(Record, Idx);
if (Record[Idx++]) { // isModed
QualType modedT = Reader.readType(F, Record, Idx);
TD->setModedTypeSourceInfo(TInfo, modedT);
} else
TD->setTypeSourceInfo(TInfo);
return Redecl;
}
void ASTDeclReader::VisitTypedefDecl(TypedefDecl *TD) {
RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
mergeRedeclarable(TD, Redecl);
}
void ASTDeclReader::VisitTypeAliasDecl(TypeAliasDecl *TD) {
RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
if (auto *Template = ReadDeclAs<TypeAliasTemplateDecl>(Record, Idx))
// Merged when we merge the template.
TD->setDescribedAliasTemplate(Template);
else
mergeRedeclarable(TD, Redecl);
}
ASTDeclReader::RedeclarableResult ASTDeclReader::VisitTagDecl(TagDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TD->IdentifierNamespace = Record[Idx++];
TD->setTagKind((TagDecl::TagKind)Record[Idx++]);
if (!isa<CXXRecordDecl>(TD))
TD->setCompleteDefinition(Record[Idx++]);
TD->setEmbeddedInDeclarator(Record[Idx++]);
TD->setFreeStanding(Record[Idx++]);
TD->setCompleteDefinitionRequired(Record[Idx++]);
TD->setRBraceLoc(ReadSourceLocation(Record, Idx));
switch (Record[Idx++]) {
case 0:
break;
case 1: { // ExtInfo
TagDecl::ExtInfo *Info = new (Reader.getContext()) TagDecl::ExtInfo();
ReadQualifierInfo(*Info, Record, Idx);
TD->TypedefNameDeclOrQualifier = Info;
break;
}
case 2: // TypedefNameForAnonDecl
NamedDeclForTagDecl = ReadDeclID(Record, Idx);
TypedefNameForLinkage = Reader.GetIdentifierInfo(F, Record, Idx);
break;
default:
llvm_unreachable("unexpected tag info kind");
}
if (!isa<CXXRecordDecl>(TD))
mergeRedeclarable(TD, Redecl);
return Redecl;
}
void ASTDeclReader::VisitEnumDecl(EnumDecl *ED) {
VisitTagDecl(ED);
if (TypeSourceInfo *TI = Reader.GetTypeSourceInfo(F, Record, Idx))
ED->setIntegerTypeSourceInfo(TI);
else
ED->setIntegerType(Reader.readType(F, Record, Idx));
ED->setPromotionType(Reader.readType(F, Record, Idx));
ED->setNumPositiveBits(Record[Idx++]);
ED->setNumNegativeBits(Record[Idx++]);
ED->IsScoped = Record[Idx++];
ED->IsScopedUsingClassTag = Record[Idx++];
ED->IsFixed = Record[Idx++];
// If this is a definition subject to the ODR, and we already have a
// definition, merge this one into it.
if (ED->IsCompleteDefinition &&
Reader.getContext().getLangOpts().Modules &&
Reader.getContext().getLangOpts().CPlusPlus) {
EnumDecl *&OldDef = Reader.EnumDefinitions[ED->getCanonicalDecl()];
if (!OldDef) {
// This is the first time we've seen an imported definition. Look for a
// local definition before deciding that we are the first definition.
for (auto *D : merged_redecls(ED->getCanonicalDecl())) {
if (!D->isFromASTFile() && D->isCompleteDefinition()) {
OldDef = D;
break;
}
}
}
if (OldDef) {
Reader.MergedDeclContexts.insert(std::make_pair(ED, OldDef));
ED->IsCompleteDefinition = false;
mergeDefinitionVisibility(OldDef, ED);
} else {
OldDef = ED;
}
}
if (EnumDecl *InstED = ReadDeclAs<EnumDecl>(Record, Idx)) {
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
ED->setInstantiationOfMemberEnum(Reader.getContext(), InstED, TSK);
ED->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRecordDeclImpl(RecordDecl *RD) {
RedeclarableResult Redecl = VisitTagDecl(RD);
RD->setHasFlexibleArrayMember(Record[Idx++]);
RD->setAnonymousStructOrUnion(Record[Idx++]);
RD->setHasObjectMember(Record[Idx++]);
RD->setHasVolatileMember(Record[Idx++]);
return Redecl;
}
void ASTDeclReader::VisitValueDecl(ValueDecl *VD) {
VisitNamedDecl(VD);
VD->setType(Reader.readType(F, Record, Idx));
}
void ASTDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) {
VisitValueDecl(ECD);
if (Record[Idx++])
ECD->setInitExpr(Reader.ReadExpr(F));
ECD->setInitVal(Reader.ReadAPSInt(Record, Idx));
mergeMergeable(ECD);
}
void ASTDeclReader::VisitDeclaratorDecl(DeclaratorDecl *DD) {
VisitValueDecl(DD);
DD->setInnerLocStart(ReadSourceLocation(Record, Idx));
if (Record[Idx++]) { // hasExtInfo
DeclaratorDecl::ExtInfo *Info
= new (Reader.getContext()) DeclaratorDecl::ExtInfo();
ReadQualifierInfo(*Info, Record, Idx);
DD->DeclInfo = Info;
}
}
void ASTDeclReader::VisitFunctionDecl(FunctionDecl *FD) {
RedeclarableResult Redecl = VisitRedeclarable(FD);
VisitDeclaratorDecl(FD);
ReadDeclarationNameLoc(FD->DNLoc, FD->getDeclName(), Record, Idx);
FD->IdentifierNamespace = Record[Idx++];
// FunctionDecl's body is handled last at ASTDeclReader::Visit,
// after everything else is read.
FD->SClass = (StorageClass)Record[Idx++];
FD->IsInline = Record[Idx++];
FD->IsInlineSpecified = Record[Idx++];
FD->IsVirtualAsWritten = Record[Idx++];
FD->IsPure = Record[Idx++];
FD->HasInheritedPrototype = Record[Idx++];
FD->HasWrittenPrototype = Record[Idx++];
FD->IsDeleted = Record[Idx++];
FD->IsTrivial = Record[Idx++];
FD->IsDefaulted = Record[Idx++];
FD->IsExplicitlyDefaulted = Record[Idx++];
FD->HasImplicitReturnZero = Record[Idx++];
FD->IsConstexpr = Record[Idx++];
FD->HasSkippedBody = Record[Idx++];
FD->IsLateTemplateParsed = Record[Idx++];
FD->setCachedLinkage(Linkage(Record[Idx++]));
FD->EndRangeLoc = ReadSourceLocation(Record, Idx);
switch ((FunctionDecl::TemplatedKind)Record[Idx++]) {
case FunctionDecl::TK_NonTemplate:
mergeRedeclarable(FD, Redecl);
break;
case FunctionDecl::TK_FunctionTemplate:
// Merged when we merge the template.
FD->setDescribedFunctionTemplate(ReadDeclAs<FunctionTemplateDecl>(Record,
Idx));
break;
case FunctionDecl::TK_MemberSpecialization: {
FunctionDecl *InstFD = ReadDeclAs<FunctionDecl>(Record, Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
FD->setInstantiationOfMemberFunction(Reader.getContext(), InstFD, TSK);
FD->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
mergeRedeclarable(FD, Redecl);
break;
}
case FunctionDecl::TK_FunctionTemplateSpecialization: {
FunctionTemplateDecl *Template = ReadDeclAs<FunctionTemplateDecl>(Record,
Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
// Template arguments.
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx,
/*Canonicalize*/ true);
// Template args as written.
SmallVector<TemplateArgumentLoc, 8> TemplArgLocs;
SourceLocation LAngleLoc, RAngleLoc;
bool HasTemplateArgumentsAsWritten = Record[Idx++];
if (HasTemplateArgumentsAsWritten) {
unsigned NumTemplateArgLocs = Record[Idx++];
TemplArgLocs.reserve(NumTemplateArgLocs);
for (unsigned i=0; i != NumTemplateArgLocs; ++i)
TemplArgLocs.push_back(
Reader.ReadTemplateArgumentLoc(F, Record, Idx));
LAngleLoc = ReadSourceLocation(Record, Idx);
RAngleLoc = ReadSourceLocation(Record, Idx);
}
SourceLocation POI = ReadSourceLocation(Record, Idx);
ASTContext &C = Reader.getContext();
TemplateArgumentList *TemplArgList
= TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size());
TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc);
for (unsigned i=0, e = TemplArgLocs.size(); i != e; ++i)
TemplArgsInfo.addArgument(TemplArgLocs[i]);
FunctionTemplateSpecializationInfo *FTInfo
= FunctionTemplateSpecializationInfo::Create(C, FD, Template, TSK,
TemplArgList,
HasTemplateArgumentsAsWritten ? &TemplArgsInfo
: nullptr,
POI);
FD->TemplateOrSpecialization = FTInfo;
if (FD->isCanonicalDecl()) { // if canonical add to template's set.
// The template that contains the specializations set. It's not safe to
// use getCanonicalDecl on Template since it may still be initializing.
FunctionTemplateDecl *CanonTemplate
= ReadDeclAs<FunctionTemplateDecl>(Record, Idx);
// Get the InsertPos by FindNodeOrInsertPos() instead of calling
// InsertNode(FTInfo) directly to avoid the getASTContext() call in
// FunctionTemplateSpecializationInfo's Profile().
// We avoid getASTContext because a decl in the parent hierarchy may
// be initializing.
llvm::FoldingSetNodeID ID;
FunctionTemplateSpecializationInfo::Profile(ID, TemplArgs, C);
void *InsertPos = nullptr;
FunctionTemplateDecl::Common *CommonPtr = CanonTemplate->getCommonPtr();
FunctionTemplateSpecializationInfo *ExistingInfo =
CommonPtr->Specializations.FindNodeOrInsertPos(ID, InsertPos);
if (InsertPos)
CommonPtr->Specializations.InsertNode(FTInfo, InsertPos);
else {
assert(Reader.getContext().getLangOpts().Modules &&
"already deserialized this template specialization");
mergeRedeclarable(FD, ExistingInfo->Function, Redecl);
}
}
break;
}
case FunctionDecl::TK_DependentFunctionTemplateSpecialization: {
// Templates.
UnresolvedSet<8> TemplDecls;
unsigned NumTemplates = Record[Idx++];
while (NumTemplates--)
TemplDecls.addDecl(ReadDeclAs<NamedDecl>(Record, Idx));
// Templates args.
TemplateArgumentListInfo TemplArgs;
unsigned NumArgs = Record[Idx++];
while (NumArgs--)
TemplArgs.addArgument(Reader.ReadTemplateArgumentLoc(F, Record, Idx));
TemplArgs.setLAngleLoc(ReadSourceLocation(Record, Idx));
TemplArgs.setRAngleLoc(ReadSourceLocation(Record, Idx));
FD->setDependentTemplateSpecialization(Reader.getContext(),
TemplDecls, TemplArgs);
// These are not merged; we don't need to merge redeclarations of dependent
// template friends.
break;
}
}
// Read in the parameters.
unsigned NumParams = Record[Idx++];
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
FD->setParams(Reader.getContext(), Params);
}
void ASTDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) {
VisitNamedDecl(MD);
if (Record[Idx++]) {
// Load the body on-demand. Most clients won't care, because method
// definitions rarely show up in headers.
Reader.PendingBodies[MD] = GetCurrentCursorOffset();
HasPendingBody = true;
MD->setSelfDecl(ReadDeclAs<ImplicitParamDecl>(Record, Idx));
MD->setCmdDecl(ReadDeclAs<ImplicitParamDecl>(Record, Idx));
}
MD->setInstanceMethod(Record[Idx++]);
MD->setVariadic(Record[Idx++]);
MD->setPropertyAccessor(Record[Idx++]);
MD->setDefined(Record[Idx++]);
MD->IsOverriding = Record[Idx++];
MD->HasSkippedBody = Record[Idx++];
MD->IsRedeclaration = Record[Idx++];
MD->HasRedeclaration = Record[Idx++];
if (MD->HasRedeclaration)
Reader.getContext().setObjCMethodRedeclaration(MD,
ReadDeclAs<ObjCMethodDecl>(Record, Idx));
MD->setDeclImplementation((ObjCMethodDecl::ImplementationControl)Record[Idx++]);
MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]);
MD->SetRelatedResultType(Record[Idx++]);
MD->setReturnType(Reader.readType(F, Record, Idx));
MD->setReturnTypeSourceInfo(GetTypeSourceInfo(Record, Idx));
MD->DeclEndLoc = ReadSourceLocation(Record, Idx);
unsigned NumParams = Record[Idx++];
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
MD->SelLocsKind = Record[Idx++];
unsigned NumStoredSelLocs = Record[Idx++];
SmallVector<SourceLocation, 16> SelLocs;
SelLocs.reserve(NumStoredSelLocs);
for (unsigned i = 0; i != NumStoredSelLocs; ++i)
SelLocs.push_back(ReadSourceLocation(Record, Idx));
MD->setParamsAndSelLocs(Reader.getContext(), Params, SelLocs);
}
void ASTDeclReader::VisitObjCTypeParamDecl(ObjCTypeParamDecl *D) {
VisitTypedefNameDecl(D);
D->Variance = Record[Idx++];
D->Index = Record[Idx++];
D->VarianceLoc = ReadSourceLocation(Record, Idx);
D->ColonLoc = ReadSourceLocation(Record, Idx);
}
void ASTDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) {
VisitNamedDecl(CD);
CD->setAtStartLoc(ReadSourceLocation(Record, Idx));
CD->setAtEndRange(ReadSourceRange(Record, Idx));
}
ObjCTypeParamList *ASTDeclReader::ReadObjCTypeParamList() {
unsigned numParams = Record[Idx++];
if (numParams == 0)
return nullptr;
SmallVector<ObjCTypeParamDecl *, 4> typeParams;
typeParams.reserve(numParams);
for (unsigned i = 0; i != numParams; ++i) {
auto typeParam = ReadDeclAs<ObjCTypeParamDecl>(Record, Idx);
if (!typeParam)
return nullptr;
typeParams.push_back(typeParam);
}
SourceLocation lAngleLoc = ReadSourceLocation(Record, Idx);
SourceLocation rAngleLoc = ReadSourceLocation(Record, Idx);
return ObjCTypeParamList::create(Reader.getContext(), lAngleLoc,
typeParams, rAngleLoc);
}
void ASTDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) {
RedeclarableResult Redecl = VisitRedeclarable(ID);
VisitObjCContainerDecl(ID);
TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]);
mergeRedeclarable(ID, Redecl);
ID->TypeParamList = ReadObjCTypeParamList();
if (Record[Idx++]) {
// Read the definition.
ID->allocateDefinitionData();
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
ID->getCanonicalDecl()->Data = ID->Data;
ObjCInterfaceDecl::DefinitionData &Data = ID->data();
// Read the superclass.
Data.SuperClassTInfo = GetTypeSourceInfo(Record, Idx);
Data.EndLoc = ReadSourceLocation(Record, Idx);
Data.HasDesignatedInitializers = Record[Idx++];
// Read the directly referenced protocols and their SourceLocations.
unsigned NumProtocols = Record[Idx++];
SmallVector<ObjCProtocolDecl *, 16> Protocols;
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
ID->setProtocolList(Protocols.data(), NumProtocols, ProtoLocs.data(),
Reader.getContext());
// Read the transitive closure of protocols referenced by this class.
NumProtocols = Record[Idx++];
Protocols.clear();
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
ID->data().AllReferencedProtocols.set(Protocols.data(), NumProtocols,
Reader.getContext());
// We will rebuild this list lazily.
ID->setIvarList(nullptr);
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(ID);
// Note that we've loaded this Objective-C class.
Reader.ObjCClassesLoaded.push_back(ID);
} else {
ID->Data = ID->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) {
VisitFieldDecl(IVD);
IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record[Idx++]);
// This field will be built lazily.
IVD->setNextIvar(nullptr);
bool synth = Record[Idx++];
IVD->setSynthesize(synth);
}
void ASTDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) {
RedeclarableResult Redecl = VisitRedeclarable(PD);
VisitObjCContainerDecl(PD);
mergeRedeclarable(PD, Redecl);
if (Record[Idx++]) {
// Read the definition.
PD->allocateDefinitionData();
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
PD->getCanonicalDecl()->Data = PD->Data;
unsigned NumProtoRefs = Record[Idx++];
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
PD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
Reader.getContext());
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(PD);
} else {
PD->Data = PD->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) {
VisitFieldDecl(FD);
}
void ASTDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) {
VisitObjCContainerDecl(CD);
CD->setCategoryNameLoc(ReadSourceLocation(Record, Idx));
CD->setIvarLBraceLoc(ReadSourceLocation(Record, Idx));
CD->setIvarRBraceLoc(ReadSourceLocation(Record, Idx));
// Note that this category has been deserialized. We do this before
// deserializing the interface declaration, so that it will consider this
/// category.
Reader.CategoriesDeserialized.insert(CD);
CD->ClassInterface = ReadDeclAs<ObjCInterfaceDecl>(Record, Idx);
CD->TypeParamList = ReadObjCTypeParamList();
unsigned NumProtoRefs = Record[Idx++];
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
CD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
Reader.getContext());
}
void ASTDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) {
VisitNamedDecl(CAD);
CAD->setClassInterface(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
}
void ASTDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
VisitNamedDecl(D);
D->setAtLoc(ReadSourceLocation(Record, Idx));
D->setLParenLoc(ReadSourceLocation(Record, Idx));
QualType T = Reader.readType(F, Record, Idx);
TypeSourceInfo *TSI = GetTypeSourceInfo(Record, Idx);
D->setType(T, TSI);
D->setPropertyAttributes(
(ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]);
D->setPropertyAttributesAsWritten(
(ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]);
D->setPropertyImplementation(
(ObjCPropertyDecl::PropertyControl)Record[Idx++]);
D->setGetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector());
D->setSetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector());
D->setGetterMethodDecl(ReadDeclAs<ObjCMethodDecl>(Record, Idx));
D->setSetterMethodDecl(ReadDeclAs<ObjCMethodDecl>(Record, Idx));
D->setPropertyIvarDecl(ReadDeclAs<ObjCIvarDecl>(Record, Idx));
}
void ASTDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) {
VisitObjCContainerDecl(D);
D->setClassInterface(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
}
void ASTDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
VisitObjCImplDecl(D);
D->setIdentifier(Reader.GetIdentifierInfo(F, Record, Idx));
D->CategoryNameLoc = ReadSourceLocation(Record, Idx);
}
void ASTDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
VisitObjCImplDecl(D);
D->setSuperClass(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
D->SuperLoc = ReadSourceLocation(Record, Idx);
D->setIvarLBraceLoc(ReadSourceLocation(Record, Idx));
D->setIvarRBraceLoc(ReadSourceLocation(Record, Idx));
D->setHasNonZeroConstructors(Record[Idx++]);
D->setHasDestructors(Record[Idx++]);
D->NumIvarInitializers = Record[Idx++];
if (D->NumIvarInitializers)
D->IvarInitializers = Reader.ReadCXXCtorInitializersRef(F, Record, Idx);
}
void ASTDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
VisitDecl(D);
D->setAtLoc(ReadSourceLocation(Record, Idx));
D->setPropertyDecl(ReadDeclAs<ObjCPropertyDecl>(Record, Idx));
D->PropertyIvarDecl = ReadDeclAs<ObjCIvarDecl>(Record, Idx);
D->IvarLoc = ReadSourceLocation(Record, Idx);
D->setGetterCXXConstructor(Reader.ReadExpr(F));
D->setSetterCXXAssignment(Reader.ReadExpr(F));
}
void ASTDeclReader::VisitFieldDecl(FieldDecl *FD) {
VisitDeclaratorDecl(FD);
FD->Mutable = Record[Idx++];
if (int BitWidthOrInitializer = Record[Idx++]) {
FD->InitStorage.setInt(
static_cast<FieldDecl::InitStorageKind>(BitWidthOrInitializer - 1));
if (FD->InitStorage.getInt() == FieldDecl::ISK_CapturedVLAType) {
// Read captured variable length array.
FD->InitStorage.setPointer(
Reader.readType(F, Record, Idx).getAsOpaquePtr());
} else {
FD->InitStorage.setPointer(Reader.ReadExpr(F));
}
}
if (!FD->getDeclName()) {
if (FieldDecl *Tmpl = ReadDeclAs<FieldDecl>(Record, Idx))
Reader.getContext().setInstantiatedFromUnnamedFieldDecl(FD, Tmpl);
}
mergeMergeable(FD);
}
void ASTDeclReader::VisitMSPropertyDecl(MSPropertyDecl *PD) {
VisitDeclaratorDecl(PD);
PD->GetterId = Reader.GetIdentifierInfo(F, Record, Idx);
PD->SetterId = Reader.GetIdentifierInfo(F, Record, Idx);
}
void ASTDeclReader::VisitIndirectFieldDecl(IndirectFieldDecl *FD) {
VisitValueDecl(FD);
FD->ChainingSize = Record[Idx++];
assert(FD->ChainingSize >= 2 && "Anonymous chaining must be >= 2");
FD->Chaining = new (Reader.getContext())NamedDecl*[FD->ChainingSize];
for (unsigned I = 0; I != FD->ChainingSize; ++I)
FD->Chaining[I] = ReadDeclAs<NamedDecl>(Record, Idx);
mergeMergeable(FD);
}
ASTDeclReader::RedeclarableResult ASTDeclReader::VisitVarDeclImpl(VarDecl *VD) {
RedeclarableResult Redecl = VisitRedeclarable(VD);
VisitDeclaratorDecl(VD);
VD->VarDeclBits.SClass = (StorageClass)Record[Idx++];
VD->VarDeclBits.TSCSpec = Record[Idx++];
VD->VarDeclBits.InitStyle = Record[Idx++];
if (!isa<ParmVarDecl>(VD)) {
VD->NonParmVarDeclBits.ExceptionVar = Record[Idx++];
VD->NonParmVarDeclBits.NRVOVariable = Record[Idx++];
VD->NonParmVarDeclBits.CXXForRangeDecl = Record[Idx++];
VD->NonParmVarDeclBits.ARCPseudoStrong = Record[Idx++];
VD->NonParmVarDeclBits.IsConstexpr = Record[Idx++];
VD->NonParmVarDeclBits.IsInitCapture = Record[Idx++];
VD->NonParmVarDeclBits.PreviousDeclInSameBlockScope = Record[Idx++];
}
Linkage VarLinkage = Linkage(Record[Idx++]);
VD->setCachedLinkage(VarLinkage);
// Reconstruct the one piece of the IdentifierNamespace that we need.
if (VD->getStorageClass() == SC_Extern && VarLinkage != NoLinkage &&
VD->getLexicalDeclContext()->isFunctionOrMethod())
VD->setLocalExternDecl();
if (uint64_t Val = Record[Idx++]) {
VD->setInit(Reader.ReadExpr(F));
if (Val > 1) {
EvaluatedStmt *Eval = VD->ensureEvaluatedStmt();
Eval->CheckedICE = true;
Eval->IsICE = Val == 3;
}
}
enum VarKind {
VarNotTemplate = 0, VarTemplate, StaticDataMemberSpecialization
};
switch ((VarKind)Record[Idx++]) {
case VarNotTemplate:
// Only true variables (not parameters or implicit parameters) can be
// merged; the other kinds are not really redeclarable at all.
if (!isa<ParmVarDecl>(VD) && !isa<ImplicitParamDecl>(VD) &&
!isa<VarTemplateSpecializationDecl>(VD))
mergeRedeclarable(VD, Redecl);
break;
case VarTemplate:
// Merged when we merge the template.
VD->setDescribedVarTemplate(ReadDeclAs<VarTemplateDecl>(Record, Idx));
break;
case StaticDataMemberSpecialization: { // HasMemberSpecializationInfo.
VarDecl *Tmpl = ReadDeclAs<VarDecl>(Record, Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
Reader.getContext().setInstantiatedFromStaticDataMember(VD, Tmpl, TSK,POI);
mergeRedeclarable(VD, Redecl);
break;
}
}
return Redecl;
}
void ASTDeclReader::VisitImplicitParamDecl(ImplicitParamDecl *PD) {
VisitVarDecl(PD);
}
void ASTDeclReader::VisitParmVarDecl(ParmVarDecl *PD) {
VisitVarDecl(PD);
unsigned isObjCMethodParam = Record[Idx++];
unsigned scopeDepth = Record[Idx++];
unsigned scopeIndex = Record[Idx++];
unsigned declQualifier = Record[Idx++];
if (isObjCMethodParam) {
assert(scopeDepth == 0);
PD->setObjCMethodScopeInfo(scopeIndex);
PD->ParmVarDeclBits.ScopeDepthOrObjCQuals = declQualifier;
} else {
PD->setScopeInfo(scopeDepth, scopeIndex);
}
PD->ParmVarDeclBits.IsKNRPromoted = Record[Idx++];
PD->ParmVarDeclBits.HasInheritedDefaultArg = Record[Idx++];
if (Record[Idx++]) // hasUninstantiatedDefaultArg.
PD->setUninstantiatedDefaultArg(Reader.ReadExpr(F));
// FIXME: If this is a redeclaration of a function from another module, handle
// inheritance of default arguments.
}
void ASTDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) {
VisitDecl(AD);
AD->setAsmString(cast<StringLiteral>(Reader.ReadExpr(F)));
AD->setRParenLoc(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitBlockDecl(BlockDecl *BD) {
VisitDecl(BD);
BD->setBody(cast_or_null<CompoundStmt>(Reader.ReadStmt(F)));
BD->setSignatureAsWritten(GetTypeSourceInfo(Record, Idx));
unsigned NumParams = Record[Idx++];
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
BD->setParams(Params);
BD->setIsVariadic(Record[Idx++]);
BD->setBlockMissingReturnType(Record[Idx++]);
BD->setIsConversionFromLambda(Record[Idx++]);
bool capturesCXXThis = Record[Idx++];
unsigned numCaptures = Record[Idx++];
SmallVector<BlockDecl::Capture, 16> captures;
captures.reserve(numCaptures);
for (unsigned i = 0; i != numCaptures; ++i) {
VarDecl *decl = ReadDeclAs<VarDecl>(Record, Idx);
unsigned flags = Record[Idx++];
bool byRef = (flags & 1);
bool nested = (flags & 2);
Expr *copyExpr = ((flags & 4) ? Reader.ReadExpr(F) : nullptr);
captures.push_back(BlockDecl::Capture(decl, byRef, nested, copyExpr));
}
BD->setCaptures(Reader.getContext(), captures, capturesCXXThis);
}
void ASTDeclReader::VisitCapturedDecl(CapturedDecl *CD) {
VisitDecl(CD);
unsigned ContextParamPos = Record[Idx++];
CD->setNothrow(Record[Idx++] != 0);
// Body is set by VisitCapturedStmt.
for (unsigned I = 0; I < CD->NumParams; ++I) {
if (I != ContextParamPos)
CD->setParam(I, ReadDeclAs<ImplicitParamDecl>(Record, Idx));
else
CD->setContextParam(I, ReadDeclAs<ImplicitParamDecl>(Record, Idx));
}
}
void ASTDeclReader::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
VisitDecl(D);
D->setLanguage((LinkageSpecDecl::LanguageIDs)Record[Idx++]);
D->setExternLoc(ReadSourceLocation(Record, Idx));
D->setRBraceLoc(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitLabelDecl(LabelDecl *D) {
VisitNamedDecl(D);
D->setLocStart(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitNamespaceDecl(NamespaceDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->setInline(Record[Idx++]);
D->LocStart = ReadSourceLocation(Record, Idx);
D->RBraceLoc = ReadSourceLocation(Record, Idx);
// Defer loading the anonymous namespace until we've finished merging
// this namespace; loading it might load a later declaration of the
// same namespace, and we have an invariant that older declarations
// get merged before newer ones try to merge.
GlobalDeclID AnonNamespace = 0;
if (Redecl.getFirstID() == ThisDeclID) {
AnonNamespace = ReadDeclID(Record, Idx);
} else {
// Link this namespace back to the first declaration, which has already
// been deserialized.
D->AnonOrFirstNamespaceAndInline.setPointer(D->getFirstDecl());
}
mergeRedeclarable(D, Redecl);
if (AnonNamespace) {
// Each module has its own anonymous namespace, which is disjoint from
// any other module's anonymous namespaces, so don't attach the anonymous
// namespace at all.
NamespaceDecl *Anon = cast<NamespaceDecl>(Reader.GetDecl(AnonNamespace));
if (F.Kind != MK_ImplicitModule && F.Kind != MK_ExplicitModule)
D->setAnonymousNamespace(Anon);
}
}
void ASTDeclReader::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->NamespaceLoc = ReadSourceLocation(Record, Idx);
D->IdentLoc = ReadSourceLocation(Record, Idx);
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
D->Namespace = ReadDeclAs<NamedDecl>(Record, Idx);
mergeRedeclarable(D, Redecl);
}
void ASTDeclReader::VisitUsingDecl(UsingDecl *D) {
VisitNamedDecl(D);
D->setUsingLoc(ReadSourceLocation(Record, Idx));
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx);
D->FirstUsingShadow.setPointer(ReadDeclAs<UsingShadowDecl>(Record, Idx));
D->setTypename(Record[Idx++]);
if (NamedDecl *Pattern = ReadDeclAs<NamedDecl>(Record, Idx))
Reader.getContext().setInstantiatedFromUsingDecl(D, Pattern);
mergeMergeable(D);
}
void ASTDeclReader::VisitUsingShadowDecl(UsingShadowDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->setTargetDecl(ReadDeclAs<NamedDecl>(Record, Idx));
D->UsingOrNextShadow = ReadDeclAs<NamedDecl>(Record, Idx);
UsingShadowDecl *Pattern = ReadDeclAs<UsingShadowDecl>(Record, Idx);
if (Pattern)
Reader.getContext().setInstantiatedFromUsingShadowDecl(D, Pattern);
mergeRedeclarable(D, Redecl);
}
void ASTDeclReader::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
VisitNamedDecl(D);
D->UsingLoc = ReadSourceLocation(Record, Idx);
D->NamespaceLoc = ReadSourceLocation(Record, Idx);
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
D->NominatedNamespace = ReadDeclAs<NamedDecl>(Record, Idx);
D->CommonAncestor = ReadDeclAs<DeclContext>(Record, Idx);
}
void ASTDeclReader::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
VisitValueDecl(D);
D->setUsingLoc(ReadSourceLocation(Record, Idx));
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx);
mergeMergeable(D);
}
void ASTDeclReader::VisitUnresolvedUsingTypenameDecl(
UnresolvedUsingTypenameDecl *D) {
VisitTypeDecl(D);
D->TypenameLocation = ReadSourceLocation(Record, Idx);
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
mergeMergeable(D);
}
void ASTDeclReader::ReadCXXDefinitionData(
struct CXXRecordDecl::DefinitionData &Data,
const RecordData &Record, unsigned &Idx) {
// Note: the caller has deserialized the IsLambda bit already.
Data.UserDeclaredConstructor = Record[Idx++];
Data.UserDeclaredSpecialMembers = Record[Idx++];
Data.Aggregate = Record[Idx++];
Data.PlainOldData = Record[Idx++];
Data.Empty = Record[Idx++];
Data.Polymorphic = Record[Idx++];
Data.Abstract = Record[Idx++];
Data.IsStandardLayout = Record[Idx++];
Data.HasNoNonEmptyBases = Record[Idx++];
Data.HasPrivateFields = Record[Idx++];
Data.HasProtectedFields = Record[Idx++];
Data.HasPublicFields = Record[Idx++];
Data.HasMutableFields = Record[Idx++];
Data.HasVariantMembers = Record[Idx++];
Data.HasOnlyCMembers = Record[Idx++];
Data.HasInClassInitializer = Record[Idx++];
Data.HasUninitializedReferenceMember = Record[Idx++];
Data.NeedOverloadResolutionForMoveConstructor = Record[Idx++];
Data.NeedOverloadResolutionForMoveAssignment = Record[Idx++];
Data.NeedOverloadResolutionForDestructor = Record[Idx++];
Data.DefaultedMoveConstructorIsDeleted = Record[Idx++];
Data.DefaultedMoveAssignmentIsDeleted = Record[Idx++];
Data.DefaultedDestructorIsDeleted = Record[Idx++];
Data.HasTrivialSpecialMembers = Record[Idx++];
Data.DeclaredNonTrivialSpecialMembers = Record[Idx++];
Data.HasIrrelevantDestructor = Record[Idx++];
Data.HasConstexprNonCopyMoveConstructor = Record[Idx++];
Data.DefaultedDefaultConstructorIsConstexpr = Record[Idx++];
Data.HasConstexprDefaultConstructor = Record[Idx++];
Data.HasNonLiteralTypeFieldsOrBases = Record[Idx++];
Data.ComputedVisibleConversions = Record[Idx++];
Data.UserProvidedDefaultConstructor = Record[Idx++];
Data.DeclaredSpecialMembers = Record[Idx++];
Data.ImplicitCopyConstructorHasConstParam = Record[Idx++];
Data.ImplicitCopyAssignmentHasConstParam = Record[Idx++];
Data.HasDeclaredCopyConstructorWithConstParam = Record[Idx++];
Data.HasDeclaredCopyAssignmentWithConstParam = Record[Idx++];
Data.NumBases = Record[Idx++];
if (Data.NumBases)
Data.Bases = Reader.readCXXBaseSpecifiers(F, Record, Idx);
Data.NumVBases = Record[Idx++];
if (Data.NumVBases)
Data.VBases = Reader.readCXXBaseSpecifiers(F, Record, Idx);
Reader.ReadUnresolvedSet(F, Data.Conversions, Record, Idx);
Reader.ReadUnresolvedSet(F, Data.VisibleConversions, Record, Idx);
assert(Data.Definition && "Data.Definition should be already set!");
Data.FirstFriend = ReadDeclID(Record, Idx);
if (Data.IsLambda) {
typedef LambdaCapture Capture;
CXXRecordDecl::LambdaDefinitionData &Lambda
= static_cast<CXXRecordDecl::LambdaDefinitionData &>(Data);
Lambda.Dependent = Record[Idx++];
Lambda.IsGenericLambda = Record[Idx++];
Lambda.CaptureDefault = Record[Idx++];
Lambda.NumCaptures = Record[Idx++];
Lambda.NumExplicitCaptures = Record[Idx++];
Lambda.ManglingNumber = Record[Idx++];
Lambda.ContextDecl = ReadDecl(Record, Idx);
Lambda.Captures
= (Capture*)Reader.Context.Allocate(sizeof(Capture)*Lambda.NumCaptures);
Capture *ToCapture = Lambda.Captures;
Lambda.MethodTyInfo = GetTypeSourceInfo(Record, Idx);
for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
SourceLocation Loc = ReadSourceLocation(Record, Idx);
bool IsImplicit = Record[Idx++];
LambdaCaptureKind Kind = static_cast<LambdaCaptureKind>(Record[Idx++]);
switch (Kind) {
case LCK_This:
case LCK_VLAType:
*ToCapture++ = Capture(Loc, IsImplicit, Kind, nullptr,SourceLocation());
break;
case LCK_ByCopy:
case LCK_ByRef:
VarDecl *Var = ReadDeclAs<VarDecl>(Record, Idx);
SourceLocation EllipsisLoc = ReadSourceLocation(Record, Idx);
*ToCapture++ = Capture(Loc, IsImplicit, Kind, Var, EllipsisLoc);
break;
}
}
}
}
void ASTDeclReader::MergeDefinitionData(
CXXRecordDecl *D, struct CXXRecordDecl::DefinitionData &&MergeDD) {
assert(D->DefinitionData.getNotUpdated() &&
"merging class definition into non-definition");
auto &DD = *D->DefinitionData.getNotUpdated();
if (DD.Definition != MergeDD.Definition) {
// Track that we merged the definitions.
Reader.MergedDeclContexts.insert(std::make_pair(MergeDD.Definition,
DD.Definition));
Reader.PendingDefinitions.erase(MergeDD.Definition);
MergeDD.Definition->IsCompleteDefinition = false;
mergeDefinitionVisibility(DD.Definition, MergeDD.Definition);
assert(Reader.Lookups.find(MergeDD.Definition) == Reader.Lookups.end() &&
"already loaded pending lookups for merged definition");
}
auto PFDI = Reader.PendingFakeDefinitionData.find(&DD);
if (PFDI != Reader.PendingFakeDefinitionData.end() &&
PFDI->second == ASTReader::PendingFakeDefinitionKind::Fake) {
// We faked up this definition data because we found a class for which we'd
// not yet loaded the definition. Replace it with the real thing now.
assert(!DD.IsLambda && !MergeDD.IsLambda && "faked up lambda definition?");
PFDI->second = ASTReader::PendingFakeDefinitionKind::FakeLoaded;
// Don't change which declaration is the definition; that is required
// to be invariant once we select it.
auto *Def = DD.Definition;
DD = std::move(MergeDD);
DD.Definition = Def;
return;
}
// FIXME: Move this out into a .def file?
bool DetectedOdrViolation = false;
#define OR_FIELD(Field) DD.Field |= MergeDD.Field;
#define MATCH_FIELD(Field) \
DetectedOdrViolation |= DD.Field != MergeDD.Field; \
OR_FIELD(Field)
MATCH_FIELD(UserDeclaredConstructor)
MATCH_FIELD(UserDeclaredSpecialMembers)
MATCH_FIELD(Aggregate)
MATCH_FIELD(PlainOldData)
MATCH_FIELD(Empty)
MATCH_FIELD(Polymorphic)
MATCH_FIELD(Abstract)
MATCH_FIELD(IsStandardLayout)
MATCH_FIELD(HasNoNonEmptyBases)
MATCH_FIELD(HasPrivateFields)
MATCH_FIELD(HasProtectedFields)
MATCH_FIELD(HasPublicFields)
MATCH_FIELD(HasMutableFields)
MATCH_FIELD(HasVariantMembers)
MATCH_FIELD(HasOnlyCMembers)
MATCH_FIELD(HasInClassInitializer)
MATCH_FIELD(HasUninitializedReferenceMember)
MATCH_FIELD(NeedOverloadResolutionForMoveConstructor)
MATCH_FIELD(NeedOverloadResolutionForMoveAssignment)
MATCH_FIELD(NeedOverloadResolutionForDestructor)
MATCH_FIELD(DefaultedMoveConstructorIsDeleted)
MATCH_FIELD(DefaultedMoveAssignmentIsDeleted)
MATCH_FIELD(DefaultedDestructorIsDeleted)
OR_FIELD(HasTrivialSpecialMembers)
OR_FIELD(DeclaredNonTrivialSpecialMembers)
MATCH_FIELD(HasIrrelevantDestructor)
OR_FIELD(HasConstexprNonCopyMoveConstructor)
MATCH_FIELD(DefaultedDefaultConstructorIsConstexpr)
OR_FIELD(HasConstexprDefaultConstructor)
MATCH_FIELD(HasNonLiteralTypeFieldsOrBases)
// ComputedVisibleConversions is handled below.
MATCH_FIELD(UserProvidedDefaultConstructor)
OR_FIELD(DeclaredSpecialMembers)
MATCH_FIELD(ImplicitCopyConstructorHasConstParam)
MATCH_FIELD(ImplicitCopyAssignmentHasConstParam)
OR_FIELD(HasDeclaredCopyConstructorWithConstParam)
OR_FIELD(HasDeclaredCopyAssignmentWithConstParam)
MATCH_FIELD(IsLambda)
#undef OR_FIELD
#undef MATCH_FIELD
if (DD.NumBases != MergeDD.NumBases || DD.NumVBases != MergeDD.NumVBases)
DetectedOdrViolation = true;
// FIXME: Issue a diagnostic if the base classes don't match when we come
// to lazily load them.
// FIXME: Issue a diagnostic if the list of conversion functions doesn't
// match when we come to lazily load them.
if (MergeDD.ComputedVisibleConversions && !DD.ComputedVisibleConversions) {
DD.VisibleConversions = std::move(MergeDD.VisibleConversions);
DD.ComputedVisibleConversions = true;
}
// FIXME: Issue a diagnostic if FirstFriend doesn't match when we come to
// lazily load it.
if (DD.IsLambda) {
// FIXME: ODR-checking for merging lambdas (this happens, for instance,
// when they occur within the body of a function template specialization).
}
if (DetectedOdrViolation)
Reader.PendingOdrMergeFailures[DD.Definition].push_back(MergeDD.Definition);
}
void ASTDeclReader::ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update) {
struct CXXRecordDecl::DefinitionData *DD;
ASTContext &C = Reader.getContext();
// Determine whether this is a lambda closure type, so that we can
// allocate the appropriate DefinitionData structure.
bool IsLambda = Record[Idx++];
if (IsLambda)
DD = new (C) CXXRecordDecl::LambdaDefinitionData(D, nullptr, false, false,
LCD_None);
else
DD = new (C) struct CXXRecordDecl::DefinitionData(D);
ReadCXXDefinitionData(*DD, Record, Idx);
// We might already have a definition for this record. This can happen either
// because we're reading an update record, or because we've already done some
// merging. Either way, just merge into it.
CXXRecordDecl *Canon = D->getCanonicalDecl();
if (Canon->DefinitionData.getNotUpdated()) {
MergeDefinitionData(Canon, std::move(*DD));
D->DefinitionData = Canon->DefinitionData;
return;
}
// Mark this declaration as being a definition.
D->IsCompleteDefinition = true;
D->DefinitionData = DD;
// If this is not the first declaration or is an update record, we can have
// other redeclarations already. Make a note that we need to propagate the
// DefinitionData pointer onto them.
if (Update || Canon != D) {
Canon->DefinitionData = D->DefinitionData;
Reader.PendingDefinitions.insert(D);
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitCXXRecordDeclImpl(CXXRecordDecl *D) {
RedeclarableResult Redecl = VisitRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
enum CXXRecKind {
CXXRecNotTemplate = 0, CXXRecTemplate, CXXRecMemberSpecialization
};
switch ((CXXRecKind)Record[Idx++]) {
case CXXRecNotTemplate:
// Merged when we merge the folding set entry in the primary template.
if (!isa<ClassTemplateSpecializationDecl>(D))
mergeRedeclarable(D, Redecl);
break;
case CXXRecTemplate: {
// Merged when we merge the template.
ClassTemplateDecl *Template = ReadDeclAs<ClassTemplateDecl>(Record, Idx);
D->TemplateOrInstantiation = Template;
if (!Template->getTemplatedDecl()) {
// We've not actually loaded the ClassTemplateDecl yet, because we're
// currently being loaded as its pattern. Rely on it to set up our
// TypeForDecl (see VisitClassTemplateDecl).
//
// Beware: we do not yet know our canonical declaration, and may still
// get merged once the surrounding class template has got off the ground.
TypeIDForTypeDecl = 0;
}
break;
}
case CXXRecMemberSpecialization: {
CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(Record, Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
MemberSpecializationInfo *MSI = new (C) MemberSpecializationInfo(RD, TSK);
MSI->setPointOfInstantiation(POI);
D->TemplateOrInstantiation = MSI;
mergeRedeclarable(D, Redecl);
break;
}
}
bool WasDefinition = Record[Idx++];
if (WasDefinition)
ReadCXXRecordDefinition(D, /*Update*/false);
else
// Propagate DefinitionData pointer from the canonical declaration.
D->DefinitionData = D->getCanonicalDecl()->DefinitionData;
// Lazily load the key function to avoid deserializing every method so we can
// compute it.
if (WasDefinition) {
DeclID KeyFn = ReadDeclID(Record, Idx);
if (KeyFn && D->IsCompleteDefinition)
// FIXME: This is wrong for the ARM ABI, where some other module may have
// made this function no longer be a key function. We need an update
// record or similar for that case.
C.KeyFunctions[D] = KeyFn;
}
return Redecl;
}
void ASTDeclReader::VisitCXXMethodDecl(CXXMethodDecl *D) {
VisitFunctionDecl(D);
unsigned NumOverridenMethods = Record[Idx++];
if (D->isCanonicalDecl()) {
while (NumOverridenMethods--) {
// Avoid invariant checking of CXXMethodDecl::addOverriddenMethod,
// MD may be initializing.
if (CXXMethodDecl *MD = ReadDeclAs<CXXMethodDecl>(Record, Idx))
Reader.getContext().addOverriddenMethod(D, MD->getCanonicalDecl());
}
} else {
// We don't care about which declarations this used to override; we get
// the relevant information from the canonical declaration.
Idx += NumOverridenMethods;
}
}
void ASTDeclReader::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
VisitCXXMethodDecl(D);
if (auto *CD = ReadDeclAs<CXXConstructorDecl>(Record, Idx))
if (D->isCanonicalDecl())
D->setInheritedConstructor(CD->getCanonicalDecl());
D->IsExplicitSpecified = Record[Idx++];
}
void ASTDeclReader::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
VisitCXXMethodDecl(D);
if (auto *OperatorDelete = ReadDeclAs<FunctionDecl>(Record, Idx)) {
auto *Canon = cast<CXXDestructorDecl>(D->getCanonicalDecl());
// FIXME: Check consistency if we have an old and new operator delete.
if (!Canon->OperatorDelete)
Canon->OperatorDelete = OperatorDelete;
}
}
void ASTDeclReader::VisitCXXConversionDecl(CXXConversionDecl *D) {
VisitCXXMethodDecl(D);
D->IsExplicitSpecified = Record[Idx++];
}
void ASTDeclReader::VisitImportDecl(ImportDecl *D) {
VisitDecl(D);
D->ImportedAndComplete.setPointer(readModule(Record, Idx));
D->ImportedAndComplete.setInt(Record[Idx++]);
SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(D + 1);
for (unsigned I = 0, N = Record.back(); I != N; ++I)
StoredLocs[I] = ReadSourceLocation(Record, Idx);
++Idx; // The number of stored source locations.
}
void ASTDeclReader::VisitAccessSpecDecl(AccessSpecDecl *D) {
VisitDecl(D);
D->setColonLoc(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitFriendDecl(FriendDecl *D) {
VisitDecl(D);
if (Record[Idx++]) // hasFriendDecl
D->Friend = ReadDeclAs<NamedDecl>(Record, Idx);
else
D->Friend = GetTypeSourceInfo(Record, Idx);
for (unsigned i = 0; i != D->NumTPLists; ++i)
D->getTPLists()[i] = Reader.ReadTemplateParameterList(F, Record, Idx);
D->NextFriend = ReadDeclID(Record, Idx);
D->UnsupportedFriend = (Record[Idx++] != 0);
D->FriendLoc = ReadSourceLocation(Record, Idx);
}
void ASTDeclReader::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
VisitDecl(D);
unsigned NumParams = Record[Idx++];
D->NumParams = NumParams;
D->Params = new TemplateParameterList*[NumParams];
for (unsigned i = 0; i != NumParams; ++i)
D->Params[i] = Reader.ReadTemplateParameterList(F, Record, Idx);
if (Record[Idx++]) // HasFriendDecl
D->Friend = ReadDeclAs<NamedDecl>(Record, Idx);
else
D->Friend = GetTypeSourceInfo(Record, Idx);
D->FriendLoc = ReadSourceLocation(Record, Idx);
}
DeclID ASTDeclReader::VisitTemplateDecl(TemplateDecl *D) {
VisitNamedDecl(D);
DeclID PatternID = ReadDeclID(Record, Idx);
NamedDecl *TemplatedDecl = cast_or_null<NamedDecl>(Reader.GetDecl(PatternID));
TemplateParameterList* TemplateParams
= Reader.ReadTemplateParameterList(F, Record, Idx);
D->init(TemplatedDecl, TemplateParams);
return PatternID;
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
// Make sure we've allocated the Common pointer first. We do this before
// VisitTemplateDecl so that getCommonPtr() can be used during initialization.
RedeclarableTemplateDecl *CanonD = D->getCanonicalDecl();
if (!CanonD->Common) {
CanonD->Common = CanonD->newCommon(Reader.getContext());
Reader.PendingDefinitions.insert(CanonD);
}
D->Common = CanonD->Common;
// If this is the first declaration of the template, fill in the information
// for the 'common' pointer.
if (ThisDeclID == Redecl.getFirstID()) {
if (RedeclarableTemplateDecl *RTD
= ReadDeclAs<RedeclarableTemplateDecl>(Record, Idx)) {
assert(RTD->getKind() == D->getKind() &&
"InstantiatedFromMemberTemplate kind mismatch");
D->setInstantiatedFromMemberTemplate(RTD);
if (Record[Idx++])
D->setMemberSpecialization();
}
}
DeclID PatternID = VisitTemplateDecl(D);
D->IdentifierNamespace = Record[Idx++];
mergeRedeclarable(D, Redecl, PatternID);
// If we merged the template with a prior declaration chain, merge the common
// pointer.
// FIXME: Actually merge here, don't just overwrite.
D->Common = D->getCanonicalDecl()->Common;
return Redecl;
}
static DeclID *newDeclIDList(ASTContext &Context, DeclID *Old,
SmallVectorImpl<DeclID> &IDs) {
assert(!IDs.empty() && "no IDs to add to list");
if (Old) {
IDs.insert(IDs.end(), Old + 1, Old + 1 + Old[0]);
std::sort(IDs.begin(), IDs.end());
IDs.erase(std::unique(IDs.begin(), IDs.end()), IDs.end());
}
auto *Result = new (Context) DeclID[1 + IDs.size()];
*Result = IDs.size();
std::copy(IDs.begin(), IDs.end(), Result + 1);
return Result;
}
void ASTDeclReader::VisitClassTemplateDecl(ClassTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This ClassTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<serialization::DeclID, 32> SpecIDs;
ReadDeclIDList(SpecIDs);
if (!SpecIDs.empty()) {
auto *CommonPtr = D->getCommonPtr();
CommonPtr->LazySpecializations = newDeclIDList(
Reader.getContext(), CommonPtr->LazySpecializations, SpecIDs);
}
}
if (D->getTemplatedDecl()->TemplateOrInstantiation) {
// We were loaded before our templated declaration was. We've not set up
// its corresponding type yet (see VisitCXXRecordDeclImpl), so reconstruct
// it now.
Reader.Context.getInjectedClassNameType(
D->getTemplatedDecl(), D->getInjectedClassNameSpecialization());
}
}
/// TODO: Unify with ClassTemplateDecl version?
/// May require unifying ClassTemplateDecl and
/// VarTemplateDecl beyond TemplateDecl...
void ASTDeclReader::VisitVarTemplateDecl(VarTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This VarTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<serialization::DeclID, 32> SpecIDs;
ReadDeclIDList(SpecIDs);
if (!SpecIDs.empty()) {
auto *CommonPtr = D->getCommonPtr();
CommonPtr->LazySpecializations = newDeclIDList(
Reader.getContext(), CommonPtr->LazySpecializations, SpecIDs);
}
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitClassTemplateSpecializationDeclImpl(
ClassTemplateSpecializationDecl *D) {
RedeclarableResult Redecl = VisitCXXRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
if (Decl *InstD = ReadDecl(Record, Idx)) {
if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(InstD)) {
D->SpecializedTemplate = CTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
TemplateArgumentList *ArgList
= TemplateArgumentList::CreateCopy(C, TemplArgs.data(),
TemplArgs.size());
ClassTemplateSpecializationDecl::SpecializedPartialSpecialization *PS
= new (C) ClassTemplateSpecializationDecl::
SpecializedPartialSpecialization();
PS->PartialSpecialization
= cast<ClassTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx,
/*Canonicalize*/ true);
D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs.data(),
TemplArgs.size());
D->PointOfInstantiation = ReadSourceLocation(Record, Idx);
D->SpecializationKind = (TemplateSpecializationKind)Record[Idx++];
bool writtenAsCanonicalDecl = Record[Idx++];
if (writtenAsCanonicalDecl) {
ClassTemplateDecl *CanonPattern = ReadDeclAs<ClassTemplateDecl>(Record,Idx);
if (D->isCanonicalDecl()) { // It's kept in the folding set.
// Set this as, or find, the canonical declaration for this specialization
ClassTemplateSpecializationDecl *CanonSpec;
if (ClassTemplatePartialSpecializationDecl *Partial =
dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
CanonSpec = CanonPattern->getCommonPtr()->PartialSpecializations
.GetOrInsertNode(Partial);
} else {
CanonSpec =
CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
}
// If there was already a canonical specialization, merge into it.
if (CanonSpec != D) {
mergeRedeclarable<TagDecl>(D, CanonSpec, Redecl);
// This declaration might be a definition. Merge with any existing
// definition.
if (auto *DDD = D->DefinitionData.getNotUpdated()) {
if (CanonSpec->DefinitionData.getNotUpdated())
MergeDefinitionData(CanonSpec, std::move(*DDD));
else
CanonSpec->DefinitionData = D->DefinitionData;
}
D->DefinitionData = CanonSpec->DefinitionData;
}
}
}
// Explicit info.
if (TypeSourceInfo *TyInfo = GetTypeSourceInfo(Record, Idx)) {
ClassTemplateSpecializationDecl::ExplicitSpecializationInfo *ExplicitInfo
= new (C) ClassTemplateSpecializationDecl::ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = TyInfo;
ExplicitInfo->ExternLoc = ReadSourceLocation(Record, Idx);
ExplicitInfo->TemplateKeywordLoc = ReadSourceLocation(Record, Idx);
D->ExplicitInfo = ExplicitInfo;
}
return Redecl;
}
void ASTDeclReader::VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
RedeclarableResult Redecl = VisitClassTemplateSpecializationDeclImpl(D);
D->TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx);
D->ArgsAsWritten = Reader.ReadASTTemplateArgumentListInfo(F, Record, Idx);
// These are read/set from/to the first declaration.
if (ThisDeclID == Redecl.getFirstID()) {
D->InstantiatedFromMember.setPointer(
ReadDeclAs<ClassTemplatePartialSpecializationDecl>(Record, Idx));
D->InstantiatedFromMember.setInt(Record[Idx++]);
}
}
void ASTDeclReader::VisitClassScopeFunctionSpecializationDecl(
ClassScopeFunctionSpecializationDecl *D) {
VisitDecl(D);
D->Specialization = ReadDeclAs<CXXMethodDecl>(Record, Idx);
}
void ASTDeclReader::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This FunctionTemplateDecl owns a CommonPtr; read it.
SmallVector<serialization::DeclID, 32> SpecIDs;
ReadDeclIDList(SpecIDs);
if (!SpecIDs.empty()) {
auto *CommonPtr = D->getCommonPtr();
CommonPtr->LazySpecializations = newDeclIDList(
Reader.getContext(), CommonPtr->LazySpecializations, SpecIDs);
}
}
}
/// TODO: Unify with ClassTemplateSpecializationDecl version?
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
/// VarTemplate(Partial)SpecializationDecl with a new data
/// structure Template(Partial)SpecializationDecl, and
/// using Template(Partial)SpecializationDecl as input type.
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitVarTemplateSpecializationDeclImpl(
VarTemplateSpecializationDecl *D) {
RedeclarableResult Redecl = VisitVarDeclImpl(D);
ASTContext &C = Reader.getContext();
if (Decl *InstD = ReadDecl(Record, Idx)) {
if (VarTemplateDecl *VTD = dyn_cast<VarTemplateDecl>(InstD)) {
D->SpecializedTemplate = VTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy(
C, TemplArgs.data(), TemplArgs.size());
VarTemplateSpecializationDecl::SpecializedPartialSpecialization *PS =
new (C)
VarTemplateSpecializationDecl::SpecializedPartialSpecialization();
PS->PartialSpecialization =
cast<VarTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
// Explicit info.
if (TypeSourceInfo *TyInfo = GetTypeSourceInfo(Record, Idx)) {
VarTemplateSpecializationDecl::ExplicitSpecializationInfo *ExplicitInfo =
new (C) VarTemplateSpecializationDecl::ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = TyInfo;
ExplicitInfo->ExternLoc = ReadSourceLocation(Record, Idx);
ExplicitInfo->TemplateKeywordLoc = ReadSourceLocation(Record, Idx);
D->ExplicitInfo = ExplicitInfo;
}
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx,
/*Canonicalize*/ true);
D->TemplateArgs =
TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size());
D->PointOfInstantiation = ReadSourceLocation(Record, Idx);
D->SpecializationKind = (TemplateSpecializationKind)Record[Idx++];
bool writtenAsCanonicalDecl = Record[Idx++];
if (writtenAsCanonicalDecl) {
VarTemplateDecl *CanonPattern = ReadDeclAs<VarTemplateDecl>(Record, Idx);
if (D->isCanonicalDecl()) { // It's kept in the folding set.
// FIXME: If it's already present, merge it.
if (VarTemplatePartialSpecializationDecl *Partial =
dyn_cast<VarTemplatePartialSpecializationDecl>(D)) {
CanonPattern->getCommonPtr()->PartialSpecializations
.GetOrInsertNode(Partial);
} else {
CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
}
}
}
return Redecl;
}
/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
/// VarTemplate(Partial)SpecializationDecl with a new data
/// structure Template(Partial)SpecializationDecl, and
/// using Template(Partial)SpecializationDecl as input type.
void ASTDeclReader::VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D) {
RedeclarableResult Redecl = VisitVarTemplateSpecializationDeclImpl(D);
D->TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx);
D->ArgsAsWritten = Reader.ReadASTTemplateArgumentListInfo(F, Record, Idx);
// These are read/set from/to the first declaration.
if (ThisDeclID == Redecl.getFirstID()) {
D->InstantiatedFromMember.setPointer(
ReadDeclAs<VarTemplatePartialSpecializationDecl>(Record, Idx));
D->InstantiatedFromMember.setInt(Record[Idx++]);
}
}
void ASTDeclReader::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
VisitTypeDecl(D);
D->setDeclaredWithTypename(Record[Idx++]);
if (Record[Idx++])
D->setDefaultArgument(GetTypeSourceInfo(Record, Idx));
}
void ASTDeclReader::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
VisitDeclaratorDecl(D);
// TemplateParmPosition.
D->setDepth(Record[Idx++]);
D->setPosition(Record[Idx++]);
if (D->isExpandedParameterPack()) {
void **Data = reinterpret_cast<void **>(D + 1);
for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
Data[2*I] = Reader.readType(F, Record, Idx).getAsOpaquePtr();
Data[2*I + 1] = GetTypeSourceInfo(Record, Idx);
}
} else {
// Rest of NonTypeTemplateParmDecl.
D->ParameterPack = Record[Idx++];
if (Record[Idx++])
D->setDefaultArgument(Reader.ReadExpr(F));
}
}
void ASTDeclReader::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
VisitTemplateDecl(D);
// TemplateParmPosition.
D->setDepth(Record[Idx++]);
D->setPosition(Record[Idx++]);
if (D->isExpandedParameterPack()) {
void **Data = reinterpret_cast<void **>(D + 1);
for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
I != N; ++I)
Data[I] = Reader.ReadTemplateParameterList(F, Record, Idx);
} else {
// Rest of TemplateTemplateParmDecl.
D->ParameterPack = Record[Idx++];
if (Record[Idx++])
D->setDefaultArgument(Reader.getContext(),
Reader.ReadTemplateArgumentLoc(F, Record, Idx));
}
}
void ASTDeclReader::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
VisitRedeclarableTemplateDecl(D);
}
void ASTDeclReader::VisitStaticAssertDecl(StaticAssertDecl *D) {
VisitDecl(D);
D->AssertExprAndFailed.setPointer(Reader.ReadExpr(F));
D->AssertExprAndFailed.setInt(Record[Idx++]);
D->Message = cast<StringLiteral>(Reader.ReadExpr(F));
D->RParenLoc = ReadSourceLocation(Record, Idx);
}
void ASTDeclReader::VisitEmptyDecl(EmptyDecl *D) {
VisitDecl(D);
}
std::pair<uint64_t, uint64_t>
ASTDeclReader::VisitDeclContext(DeclContext *DC) {
uint64_t LexicalOffset = Record[Idx++];
uint64_t VisibleOffset = Record[Idx++];
return std::make_pair(LexicalOffset, VisibleOffset);
}
template <typename T>
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRedeclarable(Redeclarable<T> *D) {
DeclID FirstDeclID = ReadDeclID(Record, Idx);
Decl *MergeWith = nullptr;
bool IsKeyDecl = ThisDeclID == FirstDeclID;
bool IsFirstLocalDecl = false;
uint64_t RedeclOffset = 0;
// 0 indicates that this declaration was the only declaration of its entity,
// and is used for space optimization.
if (FirstDeclID == 0) {
FirstDeclID = ThisDeclID;
IsKeyDecl = true;
IsFirstLocalDecl = true;
} else if (unsigned N = Record[Idx++]) {
// This declaration was the first local declaration, but may have imported
// other declarations.
IsKeyDecl = N == 1;
IsFirstLocalDecl = true;
// We have some declarations that must be before us in our redeclaration
// chain. Read them now, and remember that we ought to merge with one of
// them.
// FIXME: Provide a known merge target to the second and subsequent such
// declaration.
for (unsigned I = 0; I != N - 1; ++I)
MergeWith = ReadDecl(Record, Idx/*, MergeWith*/);
RedeclOffset = Record[Idx++];
} else {
// This declaration was not the first local declaration. Read the first
// local declaration now, to trigger the import of other redeclarations.
(void)ReadDecl(Record, Idx);
}
T *FirstDecl = cast_or_null<T>(Reader.GetDecl(FirstDeclID));
if (FirstDecl != D) {
// We delay loading of the redeclaration chain to avoid deeply nested calls.
// We temporarily set the first (canonical) declaration as the previous one
// which is the one that matters and mark the real previous DeclID to be
// loaded & attached later on.
D->RedeclLink = Redeclarable<T>::PreviousDeclLink(FirstDecl);
D->First = FirstDecl->getCanonicalDecl();
}
T *DAsT = static_cast<T*>(D);
// Note that we need to load local redeclarations of this decl and build a
// decl chain for them. This must happen *after* we perform the preloading
// above; this ensures that the redeclaration chain is built in the correct
// order.
if (IsFirstLocalDecl)
Reader.PendingDeclChains.push_back(std::make_pair(DAsT, RedeclOffset));
return RedeclarableResult(FirstDeclID, MergeWith, IsKeyDecl);
}
/// \brief Attempts to merge the given declaration (D) with another declaration
/// of the same entity.
template<typename T>
void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *DBase,
RedeclarableResult &Redecl,
DeclID TemplatePatternID) {
T *D = static_cast<T*>(DBase);
// If modules are not available, there is no reason to perform this merge.
if (!Reader.getContext().getLangOpts().Modules)
return;
// If we're not the canonical declaration, we don't need to merge.
if (!DBase->isFirstDecl())
return;
if (auto *Existing = Redecl.getKnownMergeTarget())
// We already know of an existing declaration we should merge with.
mergeRedeclarable(D, cast<T>(Existing), Redecl, TemplatePatternID);
else if (FindExistingResult ExistingRes = findExisting(D))
if (T *Existing = ExistingRes)
mergeRedeclarable(D, Existing, Redecl, TemplatePatternID);
}
/// \brief "Cast" to type T, asserting if we don't have an implicit conversion.
/// We use this to put code in a template that will only be valid for certain
/// instantiations.
template<typename T> static T assert_cast(T t) { return t; }
template<typename T> static T assert_cast(...) {
llvm_unreachable("bad assert_cast");
}
/// \brief Merge together the pattern declarations from two template
/// declarations.
void ASTDeclReader::mergeTemplatePattern(RedeclarableTemplateDecl *D,
RedeclarableTemplateDecl *Existing,
DeclID DsID, bool IsKeyDecl) {
auto *DPattern = D->getTemplatedDecl();
auto *ExistingPattern = Existing->getTemplatedDecl();
RedeclarableResult Result(DPattern->getCanonicalDecl()->getGlobalID(),
/*MergeWith*/ ExistingPattern, IsKeyDecl);
if (auto *DClass = dyn_cast<CXXRecordDecl>(DPattern)) {
// Merge with any existing definition.
// FIXME: This is duplicated in several places. Refactor.
auto *ExistingClass =
cast<CXXRecordDecl>(ExistingPattern)->getCanonicalDecl();
if (auto *DDD = DClass->DefinitionData.getNotUpdated()) {
if (ExistingClass->DefinitionData.getNotUpdated()) {
MergeDefinitionData(ExistingClass, std::move(*DDD));
} else {
ExistingClass->DefinitionData = DClass->DefinitionData;
// We may have skipped this before because we thought that DClass
// was the canonical declaration.
Reader.PendingDefinitions.insert(DClass);
}
}
DClass->DefinitionData = ExistingClass->DefinitionData;
return mergeRedeclarable(DClass, cast<TagDecl>(ExistingPattern),
Result);
}
if (auto *DFunction = dyn_cast<FunctionDecl>(DPattern))
return mergeRedeclarable(DFunction, cast<FunctionDecl>(ExistingPattern),
Result);
if (auto *DVar = dyn_cast<VarDecl>(DPattern))
return mergeRedeclarable(DVar, cast<VarDecl>(ExistingPattern), Result);
if (auto *DAlias = dyn_cast<TypeAliasDecl>(DPattern))
return mergeRedeclarable(DAlias, cast<TypedefNameDecl>(ExistingPattern),
Result);
llvm_unreachable("merged an unknown kind of redeclarable template");
}
/// \brief Attempts to merge the given declaration (D) with another declaration
/// of the same entity.
template<typename T>
void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *DBase, T *Existing,
RedeclarableResult &Redecl,
DeclID TemplatePatternID) {
T *D = static_cast<T*>(DBase);
T *ExistingCanon = Existing->getCanonicalDecl();
T *DCanon = D->getCanonicalDecl();
if (ExistingCanon != DCanon) {
assert(DCanon->getGlobalID() == Redecl.getFirstID() &&
"already merged this declaration");
// Have our redeclaration link point back at the canonical declaration
// of the existing declaration, so that this declaration has the
// appropriate canonical declaration.
D->RedeclLink = Redeclarable<T>::PreviousDeclLink(ExistingCanon);
D->First = ExistingCanon;
// When we merge a namespace, update its pointer to the first namespace.
// We cannot have loaded any redeclarations of this declaration yet, so
// there's nothing else that needs to be updated.
if (auto *Namespace = dyn_cast<NamespaceDecl>(D))
Namespace->AnonOrFirstNamespaceAndInline.setPointer(
assert_cast<NamespaceDecl*>(ExistingCanon));
// When we merge a template, merge its pattern.
if (auto *DTemplate = dyn_cast<RedeclarableTemplateDecl>(D))
mergeTemplatePattern(
DTemplate, assert_cast<RedeclarableTemplateDecl*>(ExistingCanon),
TemplatePatternID, Redecl.isKeyDecl());
// If this declaration is a key declaration, make a note of that.
if (Redecl.isKeyDecl())
Reader.KeyDecls[ExistingCanon].push_back(Redecl.getFirstID());
}
}
/// \brief Attempts to merge the given declaration (D) with another declaration
/// of the same entity, for the case where the entity is not actually
/// redeclarable. This happens, for instance, when merging the fields of
/// identical class definitions from two different modules.
template<typename T>
void ASTDeclReader::mergeMergeable(Mergeable<T> *D) {
// If modules are not available, there is no reason to perform this merge.
if (!Reader.getContext().getLangOpts().Modules)
return;
// ODR-based merging is only performed in C++. In C, identically-named things
// in different translation units are not redeclarations (but may still have
// compatible types).
if (!Reader.getContext().getLangOpts().CPlusPlus)
return;
if (FindExistingResult ExistingRes = findExisting(static_cast<T*>(D)))
if (T *Existing = ExistingRes)
Reader.Context.setPrimaryMergedDecl(static_cast<T*>(D),
Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) {
VisitDecl(D);
unsigned NumVars = D->varlist_size();
SmallVector<Expr *, 16> Vars;
Vars.reserve(NumVars);
for (unsigned i = 0; i != NumVars; ++i) {
Vars.push_back(Reader.ReadExpr(F));
}
D->setVars(Vars);
}
//===----------------------------------------------------------------------===//
// Attribute Reading
//===----------------------------------------------------------------------===//
/// \brief Reads attributes from the current stream position.
void ASTReader::ReadAttributes(ModuleFile &F, AttrVec &Attrs,
const RecordData &Record, unsigned &Idx) {
for (unsigned i = 0, e = Record[Idx++]; i != e; ++i) {
Attr *New = nullptr;
attr::Kind Kind = (attr::Kind)Record[Idx++];
SourceRange Range = ReadSourceRange(F, Record, Idx);
#include "clang/Serialization/AttrPCHRead.inc"
assert(New && "Unable to decode attribute?");
Attrs.push_back(New);
}
}
//===----------------------------------------------------------------------===//
// ASTReader Implementation
//===----------------------------------------------------------------------===//
/// \brief Note that we have loaded the declaration with the given
/// Index.
///
/// This routine notes that this declaration has already been loaded,
/// so that future GetDecl calls will return this declaration rather
/// than trying to load a new declaration.
inline void ASTReader::LoadedDecl(unsigned Index, Decl *D) {
assert(!DeclsLoaded[Index] && "Decl loaded twice?");
DeclsLoaded[Index] = D;
}
/// \brief Determine whether the consumer will be interested in seeing
/// this declaration (via HandleTopLevelDecl).
///
/// This routine should return true for anything that might affect
/// code generation, e.g., inline function definitions, Objective-C
/// declarations with metadata, etc.
static bool isConsumerInterestedIn(Decl *D, bool HasBody) {
// An ObjCMethodDecl is never considered as "interesting" because its
// implementation container always is.
if (isa<FileScopeAsmDecl>(D) ||
isa<ObjCProtocolDecl>(D) ||
isa<ObjCImplDecl>(D) ||
isa<ImportDecl>(D) ||
isa<OMPThreadPrivateDecl>(D))
return true;
if (VarDecl *Var = dyn_cast<VarDecl>(D))
return Var->isFileVarDecl() &&
Var->isThisDeclarationADefinition() == VarDecl::Definition;
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
return Func->doesThisDeclarationHaveABody() || HasBody;
return false;
}
/// \brief Get the correct cursor and offset for loading a declaration.
ASTReader::RecordLocation
ASTReader::DeclCursorForID(DeclID ID, unsigned &RawLocation) {
// See if there's an override.
DeclReplacementMap::iterator It = ReplacedDecls.find(ID);
if (It != ReplacedDecls.end()) {
RawLocation = It->second.RawLoc;
return RecordLocation(It->second.Mod, It->second.Offset);
}
GlobalDeclMapType::iterator I = GlobalDeclMap.find(ID);
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
ModuleFile *M = I->second;
const DeclOffset &
DOffs = M->DeclOffsets[ID - M->BaseDeclID - NUM_PREDEF_DECL_IDS];
RawLocation = DOffs.Loc;
return RecordLocation(M, DOffs.BitOffset);
}
ASTReader::RecordLocation ASTReader::getLocalBitOffset(uint64_t GlobalOffset) {
ContinuousRangeMap<uint64_t, ModuleFile*, 4>::iterator I
= GlobalBitOffsetsMap.find(GlobalOffset);
assert(I != GlobalBitOffsetsMap.end() && "Corrupted global bit offsets map");
return RecordLocation(I->second, GlobalOffset - I->second->GlobalBitOffset);
}
uint64_t ASTReader::getGlobalBitOffset(ModuleFile &M, uint32_t LocalOffset) {
return LocalOffset + M.GlobalBitOffset;
}
static bool isSameTemplateParameterList(const TemplateParameterList *X,
const TemplateParameterList *Y);
/// \brief Determine whether two template parameters are similar enough
/// that they may be used in declarations of the same template.
static bool isSameTemplateParameter(const NamedDecl *X,
const NamedDecl *Y) {
if (X->getKind() != Y->getKind())
return false;
if (const TemplateTypeParmDecl *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
const TemplateTypeParmDecl *TY = cast<TemplateTypeParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack();
}
if (const NonTypeTemplateParmDecl *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
const NonTypeTemplateParmDecl *TY = cast<NonTypeTemplateParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack() &&
TX->getASTContext().hasSameType(TX->getType(), TY->getType());
}
const TemplateTemplateParmDecl *TX = cast<TemplateTemplateParmDecl>(X);
const TemplateTemplateParmDecl *TY = cast<TemplateTemplateParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack() &&
isSameTemplateParameterList(TX->getTemplateParameters(),
TY->getTemplateParameters());
}
static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
if (auto *NS = X->getAsNamespace())
return NS;
if (auto *NAS = X->getAsNamespaceAlias())
return NAS->getNamespace();
return nullptr;
}
static bool isSameQualifier(const NestedNameSpecifier *X,
const NestedNameSpecifier *Y) {
if (auto *NSX = getNamespace(X)) {
auto *NSY = getNamespace(Y);
if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
return false;
} else if (X->getKind() != Y->getKind())
return false;
// FIXME: For namespaces and types, we're permitted to check that the entity
// is named via the same tokens. We should probably do so.
switch (X->getKind()) {
case NestedNameSpecifier::Identifier:
if (X->getAsIdentifier() != Y->getAsIdentifier())
return false;
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
// We've already checked that we named the same namespace.
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (X->getAsType()->getCanonicalTypeInternal() !=
Y->getAsType()->getCanonicalTypeInternal())
return false;
break;
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
}
// Recurse into earlier portion of NNS, if any.
auto *PX = X->getPrefix();
auto *PY = Y->getPrefix();
if (PX && PY)
return isSameQualifier(PX, PY);
return !PX && !PY;
}
/// \brief Determine whether two template parameter lists are similar enough
/// that they may be used in declarations of the same template.
static bool isSameTemplateParameterList(const TemplateParameterList *X,
const TemplateParameterList *Y) {
if (X->size() != Y->size())
return false;
for (unsigned I = 0, N = X->size(); I != N; ++I)
if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
return false;
return true;
}
/// \brief Determine whether the two declarations refer to the same entity.
static bool isSameEntity(NamedDecl *X, NamedDecl *Y) {
assert(X->getDeclName() == Y->getDeclName() && "Declaration name mismatch!");
if (X == Y)
return true;
// Must be in the same context.
if (!X->getDeclContext()->getRedeclContext()->Equals(
Y->getDeclContext()->getRedeclContext()))
return false;
// Two typedefs refer to the same entity if they have the same underlying
// type.
if (TypedefNameDecl *TypedefX = dyn_cast<TypedefNameDecl>(X))
if (TypedefNameDecl *TypedefY = dyn_cast<TypedefNameDecl>(Y))
return X->getASTContext().hasSameType(TypedefX->getUnderlyingType(),
TypedefY->getUnderlyingType());
// Must have the same kind.
if (X->getKind() != Y->getKind())
return false;
// Objective-C classes and protocols with the same name always match.
if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
return true;
if (isa<ClassTemplateSpecializationDecl>(X)) {
// No need to handle these here: we merge them when adding them to the
// template.
return false;
}
// Compatible tags match.
if (TagDecl *TagX = dyn_cast<TagDecl>(X)) {
TagDecl *TagY = cast<TagDecl>(Y);
return (TagX->getTagKind() == TagY->getTagKind()) ||
((TagX->getTagKind() == TTK_Struct || TagX->getTagKind() == TTK_Class ||
TagX->getTagKind() == TTK_Interface) &&
(TagY->getTagKind() == TTK_Struct || TagY->getTagKind() == TTK_Class ||
TagY->getTagKind() == TTK_Interface));
}
// Functions with the same type and linkage match.
// FIXME: This needs to cope with merging of prototyped/non-prototyped
// functions, etc.
if (FunctionDecl *FuncX = dyn_cast<FunctionDecl>(X)) {
FunctionDecl *FuncY = cast<FunctionDecl>(Y);
return (FuncX->getLinkageInternal() == FuncY->getLinkageInternal()) &&
FuncX->getASTContext().hasSameType(FuncX->getType(), FuncY->getType());
}
// Variables with the same type and linkage match.
if (VarDecl *VarX = dyn_cast<VarDecl>(X)) {
VarDecl *VarY = cast<VarDecl>(Y);
return (VarX->getLinkageInternal() == VarY->getLinkageInternal()) &&
VarX->getASTContext().hasSameType(VarX->getType(), VarY->getType());
}
// Namespaces with the same name and inlinedness match.
if (NamespaceDecl *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
NamespaceDecl *NamespaceY = cast<NamespaceDecl>(Y);
return NamespaceX->isInline() == NamespaceY->isInline();
}
// Identical template names and kinds match if their template parameter lists
// and patterns match.
if (TemplateDecl *TemplateX = dyn_cast<TemplateDecl>(X)) {
TemplateDecl *TemplateY = cast<TemplateDecl>(Y);
return isSameEntity(TemplateX->getTemplatedDecl(),
TemplateY->getTemplatedDecl()) &&
isSameTemplateParameterList(TemplateX->getTemplateParameters(),
TemplateY->getTemplateParameters());
}
// Fields with the same name and the same type match.
if (FieldDecl *FDX = dyn_cast<FieldDecl>(X)) {
FieldDecl *FDY = cast<FieldDecl>(Y);
// FIXME: Also check the bitwidth is odr-equivalent, if any.
return X->getASTContext().hasSameType(FDX->getType(), FDY->getType());
}
// Indirect fields with the same target field match.
if (auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
auto *IFDY = cast<IndirectFieldDecl>(Y);
return IFDX->getAnonField()->getCanonicalDecl() ==
IFDY->getAnonField()->getCanonicalDecl();
}
// Enumerators with the same name match.
if (isa<EnumConstantDecl>(X))
// FIXME: Also check the value is odr-equivalent.
return true;
// Using shadow declarations with the same target match.
if (UsingShadowDecl *USX = dyn_cast<UsingShadowDecl>(X)) {
UsingShadowDecl *USY = cast<UsingShadowDecl>(Y);
return USX->getTargetDecl() == USY->getTargetDecl();
}
// Using declarations with the same qualifier match. (We already know that
// the name matches.)
if (auto *UX = dyn_cast<UsingDecl>(X)) {
auto *UY = cast<UsingDecl>(Y);
return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
UX->hasTypename() == UY->hasTypename() &&
UX->isAccessDeclaration() == UY->isAccessDeclaration();
}
if (auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
auto *UY = cast<UnresolvedUsingValueDecl>(Y);
return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
UX->isAccessDeclaration() == UY->isAccessDeclaration();
}
if (auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X))
return isSameQualifier(
UX->getQualifier(),
cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
// Namespace alias definitions with the same target match.
if (auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
auto *NAY = cast<NamespaceAliasDecl>(Y);
return NAX->getNamespace()->Equals(NAY->getNamespace());
}
return false;
}
/// Find the context in which we should search for previous declarations when
/// looking for declarations to merge.
DeclContext *ASTDeclReader::getPrimaryContextForMerging(ASTReader &Reader,
DeclContext *DC) {
if (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC))
return ND->getOriginalNamespace();
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
// Try to dig out the definition.
auto *DD = RD->DefinitionData.getNotUpdated();
if (!DD)
DD = RD->getCanonicalDecl()->DefinitionData.getNotUpdated();
// If there's no definition yet, then DC's definition is added by an update
// record, but we've not yet loaded that update record. In this case, we
// commit to DC being the canonical definition now, and will fix this when
// we load the update record.
if (!DD) {
DD = new (Reader.Context) struct CXXRecordDecl::DefinitionData(RD);
RD->IsCompleteDefinition = true;
RD->DefinitionData = DD;
RD->getCanonicalDecl()->DefinitionData = DD;
// Track that we did this horrible thing so that we can fix it later.
Reader.PendingFakeDefinitionData.insert(
std::make_pair(DD, ASTReader::PendingFakeDefinitionKind::Fake));
}
return DD->Definition;
}
if (EnumDecl *ED = dyn_cast<EnumDecl>(DC))
return ED->getASTContext().getLangOpts().CPlusPlus? ED->getDefinition()
: nullptr;
// We can see the TU here only if we have no Sema object. In that case,
// there's no TU scope to look in, so using the DC alone is sufficient.
if (auto *TU = dyn_cast<TranslationUnitDecl>(DC))
return TU;
return nullptr;
}
ASTDeclReader::FindExistingResult::~FindExistingResult() {
// Record that we had a typedef name for linkage whether or not we merge
// with that declaration.
if (TypedefNameForLinkage) {
DeclContext *DC = New->getDeclContext()->getRedeclContext();
Reader.ImportedTypedefNamesForLinkage.insert(
std::make_pair(std::make_pair(DC, TypedefNameForLinkage), New));
return;
}
if (!AddResult || Existing)
return;
DeclarationName Name = New->getDeclName();
DeclContext *DC = New->getDeclContext()->getRedeclContext();
if (needsAnonymousDeclarationNumber(New)) {
setAnonymousDeclForMerging(Reader, New->getLexicalDeclContext(),
AnonymousDeclNumber, New);
} else if (DC->isTranslationUnit() && Reader.SemaObj &&
!Reader.getContext().getLangOpts().CPlusPlus) {
if (Reader.SemaObj->IdResolver.tryAddTopLevelDecl(New, Name))
Reader.PendingFakeLookupResults[Name.getAsIdentifierInfo()]
.push_back(New);
} else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) {
// Add the declaration to its redeclaration context so later merging
// lookups will find it.
MergeDC->makeDeclVisibleInContextImpl(New, /*Internal*/true);
}
}
/// Find the declaration that should be merged into, given the declaration found
/// by name lookup. If we're merging an anonymous declaration within a typedef,
/// we need a matching typedef, and we merge with the type inside it.
static NamedDecl *getDeclForMerging(NamedDecl *Found,
bool IsTypedefNameForLinkage) {
if (!IsTypedefNameForLinkage)
return Found;
// If we found a typedef declaration that gives a name to some other
// declaration, then we want that inner declaration. Declarations from
// AST files are handled via ImportedTypedefNamesForLinkage.
if (Found->isFromASTFile())
return nullptr;
if (auto *TND = dyn_cast<TypedefNameDecl>(Found))
return TND->getAnonDeclWithTypedefName();
return nullptr;
}
NamedDecl *ASTDeclReader::getAnonymousDeclForMerging(ASTReader &Reader,
DeclContext *DC,
unsigned Index) {
// If the lexical context has been merged, look into the now-canonical
// definition.
if (auto *Merged = Reader.MergedDeclContexts.lookup(DC))
DC = Merged;
// If we've seen this before, return the canonical declaration.
auto &Previous = Reader.AnonymousDeclarationsForMerging[DC];
if (Index < Previous.size() && Previous[Index])
return Previous[Index];
// If this is the first time, but we have parsed a declaration of the context,
// build the anonymous declaration list from the parsed declaration.
if (!cast<Decl>(DC)->isFromASTFile()) {
numberAnonymousDeclsWithin(DC, [&](NamedDecl *ND, unsigned Number) {
if (Previous.size() == Number)
Previous.push_back(cast<NamedDecl>(ND->getCanonicalDecl()));
else
Previous[Number] = cast<NamedDecl>(ND->getCanonicalDecl());
});
}
return Index < Previous.size() ? Previous[Index] : nullptr;
}
void ASTDeclReader::setAnonymousDeclForMerging(ASTReader &Reader,
DeclContext *DC, unsigned Index,
NamedDecl *D) {
if (auto *Merged = Reader.MergedDeclContexts.lookup(DC))
DC = Merged;
auto &Previous = Reader.AnonymousDeclarationsForMerging[DC];
if (Index >= Previous.size())
Previous.resize(Index + 1);
if (!Previous[Index])
Previous[Index] = D;
}
ASTDeclReader::FindExistingResult ASTDeclReader::findExisting(NamedDecl *D) {
DeclarationName Name = TypedefNameForLinkage ? TypedefNameForLinkage
: D->getDeclName();
if (!Name && !needsAnonymousDeclarationNumber(D)) {
// Don't bother trying to find unnamed declarations that are in
// unmergeable contexts.
FindExistingResult Result(Reader, D, /*Existing=*/nullptr,
AnonymousDeclNumber, TypedefNameForLinkage);
Result.suppress();
return Result;
}
DeclContext *DC = D->getDeclContext()->getRedeclContext();
if (TypedefNameForLinkage) {
auto It = Reader.ImportedTypedefNamesForLinkage.find(
std::make_pair(DC, TypedefNameForLinkage));
if (It != Reader.ImportedTypedefNamesForLinkage.end())
if (isSameEntity(It->second, D))
return FindExistingResult(Reader, D, It->second, AnonymousDeclNumber,
TypedefNameForLinkage);
// Go on to check in other places in case an existing typedef name
// was not imported.
}
if (needsAnonymousDeclarationNumber(D)) {
// This is an anonymous declaration that we may need to merge. Look it up
// in its context by number.
if (auto *Existing = getAnonymousDeclForMerging(
Reader, D->getLexicalDeclContext(), AnonymousDeclNumber))
if (isSameEntity(Existing, D))
return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
TypedefNameForLinkage);
} else if (DC->isTranslationUnit() && Reader.SemaObj &&
!Reader.getContext().getLangOpts().CPlusPlus) {
IdentifierResolver &IdResolver = Reader.SemaObj->IdResolver;
// Temporarily consider the identifier to be up-to-date. We don't want to
// cause additional lookups here.
class UpToDateIdentifierRAII {
IdentifierInfo *II;
bool WasOutToDate;
public:
explicit UpToDateIdentifierRAII(IdentifierInfo *II)
: II(II), WasOutToDate(false)
{
if (II) {
WasOutToDate = II->isOutOfDate();
if (WasOutToDate)
II->setOutOfDate(false);
}
}
~UpToDateIdentifierRAII() {
if (WasOutToDate)
II->setOutOfDate(true);
}
} UpToDate(Name.getAsIdentifierInfo());
for (IdentifierResolver::iterator I = IdResolver.begin(Name),
IEnd = IdResolver.end();
I != IEnd; ++I) {
if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage))
if (isSameEntity(Existing, D))
return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
TypedefNameForLinkage);
}
} else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) {
DeclContext::lookup_result R = MergeDC->noload_lookup(Name);
for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage))
if (isSameEntity(Existing, D))
return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
TypedefNameForLinkage);
}
} else {
// Not in a mergeable context.
return FindExistingResult(Reader);
}
// If this declaration is from a merged context, make a note that we need to
// check that the canonical definition of that context contains the decl.
//
// FIXME: We should do something similar if we merge two definitions of the
// same template specialization into the same CXXRecordDecl.
auto MergedDCIt = Reader.MergedDeclContexts.find(D->getLexicalDeclContext());
if (MergedDCIt != Reader.MergedDeclContexts.end() &&
MergedDCIt->second == D->getDeclContext())
Reader.PendingOdrMergeChecks.push_back(D);
return FindExistingResult(Reader, D, /*Existing=*/nullptr,
AnonymousDeclNumber, TypedefNameForLinkage);
}
template<typename DeclT>
Decl *ASTDeclReader::getMostRecentDeclImpl(Redeclarable<DeclT> *D) {
return D->RedeclLink.getLatestNotUpdated();
}
Decl *ASTDeclReader::getMostRecentDeclImpl(...) {
llvm_unreachable("getMostRecentDecl on non-redeclarable declaration");
}
Decl *ASTDeclReader::getMostRecentDecl(Decl *D) {
assert(D);
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
return getMostRecentDeclImpl(cast<TYPE##Decl>(D));
#include "clang/AST/DeclNodes.inc"
}
llvm_unreachable("unknown decl kind");
}
Decl *ASTReader::getMostRecentExistingDecl(Decl *D) {
return ASTDeclReader::getMostRecentDecl(D->getCanonicalDecl());
}
template<typename DeclT>
void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader,
Redeclarable<DeclT> *D,
Decl *Previous, Decl *Canon) {
D->RedeclLink.setPrevious(cast<DeclT>(Previous));
D->First = cast<DeclT>(Previous)->First;
}
namespace clang {
template<>
void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader,
Redeclarable<FunctionDecl> *D,
Decl *Previous, Decl *Canon) {
FunctionDecl *FD = static_cast<FunctionDecl*>(D);
FunctionDecl *PrevFD = cast<FunctionDecl>(Previous);
FD->RedeclLink.setPrevious(PrevFD);
FD->First = PrevFD->First;
// If the previous declaration is an inline function declaration, then this
// declaration is too.
if (PrevFD->IsInline != FD->IsInline) {
// FIXME: [dcl.fct.spec]p4:
// If a function with external linkage is declared inline in one
// translation unit, it shall be declared inline in all translation
// units in which it appears.
//
// Be careful of this case:
//
// module A:
// template<typename T> struct X { void f(); };
// template<typename T> inline void X<T>::f() {}
//
// module B instantiates the declaration of X<int>::f
// module C instantiates the definition of X<int>::f
//
// If module B and C are merged, we do not have a violation of this rule.
FD->IsInline = true;
}
// If we need to propagate an exception specification along the redecl
// chain, make a note of that so that we can do so later.
auto *FPT = FD->getType()->getAs<FunctionProtoType>();
auto *PrevFPT = PrevFD->getType()->getAs<FunctionProtoType>();
if (FPT && PrevFPT) {
bool IsUnresolved = isUnresolvedExceptionSpec(FPT->getExceptionSpecType());
bool WasUnresolved =
isUnresolvedExceptionSpec(PrevFPT->getExceptionSpecType());
if (IsUnresolved != WasUnresolved)
Reader.PendingExceptionSpecUpdates.insert(
std::make_pair(Canon, IsUnresolved ? PrevFD : FD));
}
}
} // end namespace clang
void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader, ...) {
llvm_unreachable("attachPreviousDecl on non-redeclarable declaration");
}
/// Inherit the default template argument from \p From to \p To. Returns
/// \c false if there is no default template for \p From.
template <typename ParmDecl>
static bool inheritDefaultTemplateArgument(ASTContext &Context, ParmDecl *From,
Decl *ToD) {
auto *To = cast<ParmDecl>(ToD);
if (!From->hasDefaultArgument())
return false;
To->setInheritedDefaultArgument(Context, From);
return true;
}
static void inheritDefaultTemplateArguments(ASTContext &Context,
TemplateDecl *From,
TemplateDecl *To) {
auto *FromTP = From->getTemplateParameters();
auto *ToTP = To->getTemplateParameters();
assert(FromTP->size() == ToTP->size() && "merged mismatched templates?");
for (unsigned I = 0, N = FromTP->size(); I != N; ++I) {
NamedDecl *FromParam = FromTP->getParam(N - I - 1);
NamedDecl *ToParam = ToTP->getParam(N - I - 1);
if (auto *FTTP = dyn_cast<TemplateTypeParmDecl>(FromParam)) {
if (!inheritDefaultTemplateArgument(Context, FTTP, ToParam))
break;
} else if (auto *FNTTP = dyn_cast<NonTypeTemplateParmDecl>(FromParam)) {
if (!inheritDefaultTemplateArgument(Context, FNTTP, ToParam))
break;
} else {
if (!inheritDefaultTemplateArgument(
Context, cast<TemplateTemplateParmDecl>(FromParam), ToParam))
break;
}
}
}
void ASTDeclReader::attachPreviousDecl(ASTReader &Reader, Decl *D,
Decl *Previous, Decl *Canon) {
assert(D && Previous);
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
attachPreviousDeclImpl(Reader, cast<TYPE##Decl>(D), Previous, Canon); \
break;
#include "clang/AST/DeclNodes.inc"
}
// If the declaration was visible in one module, a redeclaration of it in
// another module remains visible even if it wouldn't be visible by itself.
//
// FIXME: In this case, the declaration should only be visible if a module
// that makes it visible has been imported.
D->IdentifierNamespace |=
Previous->IdentifierNamespace &
(Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
// If the previous declaration is marked as used, then this declaration should
// be too.
if (Previous->Used)
D->Used = true;
// If the declaration declares a template, it may inherit default arguments
// from the previous declaration.
if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
inheritDefaultTemplateArguments(Reader.getContext(),
cast<TemplateDecl>(Previous), TD);
}
template<typename DeclT>
void ASTDeclReader::attachLatestDeclImpl(Redeclarable<DeclT> *D, Decl *Latest) {
D->RedeclLink.setLatest(cast<DeclT>(Latest));
}
void ASTDeclReader::attachLatestDeclImpl(...) {
llvm_unreachable("attachLatestDecl on non-redeclarable declaration");
}
void ASTDeclReader::attachLatestDecl(Decl *D, Decl *Latest) {
assert(D && Latest);
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
attachLatestDeclImpl(cast<TYPE##Decl>(D), Latest); \
break;
#include "clang/AST/DeclNodes.inc"
}
}
template<typename DeclT>
void ASTDeclReader::markIncompleteDeclChainImpl(Redeclarable<DeclT> *D) {
D->RedeclLink.markIncomplete();
}
void ASTDeclReader::markIncompleteDeclChainImpl(...) {
llvm_unreachable("markIncompleteDeclChain on non-redeclarable declaration");
}
void ASTReader::markIncompleteDeclChain(Decl *D) {
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
ASTDeclReader::markIncompleteDeclChainImpl(cast<TYPE##Decl>(D)); \
break;
#include "clang/AST/DeclNodes.inc"
}
}
/// \brief Read the declaration at the given offset from the AST file.
Decl *ASTReader::ReadDeclRecord(DeclID ID) {
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
unsigned RawLocation = 0;
RecordLocation Loc = DeclCursorForID(ID, RawLocation);
llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this declaration.
SavedStreamPosition SavedPosition(DeclsCursor);
ReadingKindTracker ReadingKind(Read_Decl, *this);
// Note that we are loading a declaration record.
Deserializing ADecl(this);
DeclsCursor.JumpToBit(Loc.Offset);
RecordData Record;
unsigned Code = DeclsCursor.ReadCode();
unsigned Idx = 0;
ASTDeclReader Reader(*this, *Loc.F, ID, RawLocation, Record,Idx);
Decl *D = nullptr;
switch ((DeclCode)DeclsCursor.readRecord(Code, Record)) {
case DECL_CONTEXT_LEXICAL:
case DECL_CONTEXT_VISIBLE:
llvm_unreachable("Record cannot be de-serialized with ReadDeclRecord");
case DECL_TYPEDEF:
D = TypedefDecl::CreateDeserialized(Context, ID);
break;
case DECL_TYPEALIAS:
D = TypeAliasDecl::CreateDeserialized(Context, ID);
break;
case DECL_ENUM:
D = EnumDecl::CreateDeserialized(Context, ID);
break;
case DECL_RECORD:
D = RecordDecl::CreateDeserialized(Context, ID);
break;
case DECL_ENUM_CONSTANT:
D = EnumConstantDecl::CreateDeserialized(Context, ID);
break;
case DECL_FUNCTION:
D = FunctionDecl::CreateDeserialized(Context, ID);
break;
case DECL_LINKAGE_SPEC:
D = LinkageSpecDecl::CreateDeserialized(Context, ID);
break;
case DECL_LABEL:
D = LabelDecl::CreateDeserialized(Context, ID);
break;
case DECL_NAMESPACE:
D = NamespaceDecl::CreateDeserialized(Context, ID);
break;
case DECL_NAMESPACE_ALIAS:
D = NamespaceAliasDecl::CreateDeserialized(Context, ID);
break;
case DECL_USING:
D = UsingDecl::CreateDeserialized(Context, ID);
break;
case DECL_USING_SHADOW:
D = UsingShadowDecl::CreateDeserialized(Context, ID);
break;
case DECL_USING_DIRECTIVE:
D = UsingDirectiveDecl::CreateDeserialized(Context, ID);
break;
case DECL_UNRESOLVED_USING_VALUE:
D = UnresolvedUsingValueDecl::CreateDeserialized(Context, ID);
break;
case DECL_UNRESOLVED_USING_TYPENAME:
D = UnresolvedUsingTypenameDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_RECORD:
D = CXXRecordDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_METHOD:
D = CXXMethodDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_CONSTRUCTOR:
D = CXXConstructorDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_DESTRUCTOR:
D = CXXDestructorDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_CONVERSION:
D = CXXConversionDecl::CreateDeserialized(Context, ID);
break;
case DECL_ACCESS_SPEC:
D = AccessSpecDecl::CreateDeserialized(Context, ID);
break;
case DECL_FRIEND:
D = FriendDecl::CreateDeserialized(Context, ID, Record[Idx++]);
break;
case DECL_FRIEND_TEMPLATE:
D = FriendTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_TEMPLATE:
D = ClassTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_TEMPLATE_SPECIALIZATION:
D = ClassTemplateSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION:
D = ClassTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR_TEMPLATE:
D = VarTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR_TEMPLATE_SPECIALIZATION:
D = VarTemplateSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION:
D = VarTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_SCOPE_FUNCTION_SPECIALIZATION:
D = ClassScopeFunctionSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_FUNCTION_TEMPLATE:
D = FunctionTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_TEMPLATE_TYPE_PARM:
D = TemplateTypeParmDecl::CreateDeserialized(Context, ID);
break;
case DECL_NON_TYPE_TEMPLATE_PARM:
D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID);
break;
case DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK:
D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID, Record[Idx++]);
break;
case DECL_TEMPLATE_TEMPLATE_PARM:
D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID);
break;
case DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK:
D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID,
Record[Idx++]);
break;
case DECL_TYPE_ALIAS_TEMPLATE:
D = TypeAliasTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_STATIC_ASSERT:
D = StaticAssertDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_METHOD:
D = ObjCMethodDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_INTERFACE:
D = ObjCInterfaceDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_IVAR:
D = ObjCIvarDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_PROTOCOL:
D = ObjCProtocolDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_AT_DEFS_FIELD:
D = ObjCAtDefsFieldDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_CATEGORY:
D = ObjCCategoryDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_CATEGORY_IMPL:
D = ObjCCategoryImplDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_IMPLEMENTATION:
D = ObjCImplementationDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_COMPATIBLE_ALIAS:
D = ObjCCompatibleAliasDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_PROPERTY:
D = ObjCPropertyDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_PROPERTY_IMPL:
D = ObjCPropertyImplDecl::CreateDeserialized(Context, ID);
break;
case DECL_FIELD:
D = FieldDecl::CreateDeserialized(Context, ID);
break;
case DECL_INDIRECTFIELD:
D = IndirectFieldDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR:
D = VarDecl::CreateDeserialized(Context, ID);
break;
case DECL_IMPLICIT_PARAM:
D = ImplicitParamDecl::CreateDeserialized(Context, ID);
break;
case DECL_PARM_VAR:
D = ParmVarDecl::CreateDeserialized(Context, ID);
break;
case DECL_FILE_SCOPE_ASM:
D = FileScopeAsmDecl::CreateDeserialized(Context, ID);
break;
case DECL_BLOCK:
D = BlockDecl::CreateDeserialized(Context, ID);
break;
case DECL_MS_PROPERTY:
D = MSPropertyDecl::CreateDeserialized(Context, ID);
break;
case DECL_CAPTURED:
D = CapturedDecl::CreateDeserialized(Context, ID, Record[Idx++]);
break;
case DECL_CXX_BASE_SPECIFIERS:
Error("attempt to read a C++ base-specifier record as a declaration");
return nullptr;
case DECL_CXX_CTOR_INITIALIZERS:
Error("attempt to read a C++ ctor initializer record as a declaration");
return nullptr;
case DECL_IMPORT:
// Note: last entry of the ImportDecl record is the number of stored source
// locations.
D = ImportDecl::CreateDeserialized(Context, ID, Record.back());
break;
case DECL_OMP_THREADPRIVATE:
D = OMPThreadPrivateDecl::CreateDeserialized(Context, ID, Record[Idx++]);
break;
case DECL_EMPTY:
D = EmptyDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_TYPE_PARAM:
D = ObjCTypeParamDecl::CreateDeserialized(Context, ID);
break;
}
assert(D && "Unknown declaration reading AST file");
LoadedDecl(Index, D);
// Set the DeclContext before doing any deserialization, to make sure internal
// calls to Decl::getASTContext() by Decl's methods will find the
// TranslationUnitDecl without crashing.
D->setDeclContext(Context.getTranslationUnitDecl());
Reader.Visit(D);
// If this declaration is also a declaration context, get the
// offsets for its tables of lexical and visible declarations.
if (DeclContext *DC = dyn_cast<DeclContext>(D)) {
std::pair<uint64_t, uint64_t> Offsets = Reader.VisitDeclContext(DC);
if (Offsets.first &&
ReadLexicalDeclContextStorage(*Loc.F, DeclsCursor, Offsets.first, DC))
return nullptr;
if (Offsets.second &&
ReadVisibleDeclContextStorage(*Loc.F, DeclsCursor, Offsets.second, ID))
return nullptr;
}
assert(Idx == Record.size());
// Load any relevant update records.
PendingUpdateRecords.push_back(std::make_pair(ID, D));
// Load the categories after recursive loading is finished.
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(D))
if (Class->isThisDeclarationADefinition())
loadObjCCategories(ID, Class);
// If we have deserialized a declaration that has a definition the
// AST consumer might need to know about, queue it.
// We don't pass it to the consumer immediately because we may be in recursive
// loading, and some declarations may still be initializing.
if (isConsumerInterestedIn(D, Reader.hasPendingBody()))
InterestingDecls.push_back(D);
return D;
}
void ASTReader::loadDeclUpdateRecords(serialization::DeclID ID, Decl *D) {
// Load the pending visible updates for this decl context, if it has any.
auto I = PendingVisibleUpdates.find(ID);
if (I != PendingVisibleUpdates.end()) {
auto VisibleUpdates = std::move(I->second);
PendingVisibleUpdates.erase(I);
auto *DC = cast<DeclContext>(D)->getPrimaryContext();
for (const PendingVisibleUpdate &Update : VisibleUpdates)
Lookups[DC].Table.add(
Update.Mod, Update.Data,
reader::ASTDeclContextNameLookupTrait(*this, *Update.Mod));
DC->setHasExternalVisibleStorage(true);
}
// The declaration may have been modified by files later in the chain.
// If this is the case, read the record containing the updates from each file
// and pass it to ASTDeclReader to make the modifications.
DeclUpdateOffsetsMap::iterator UpdI = DeclUpdateOffsets.find(ID);
if (UpdI != DeclUpdateOffsets.end()) {
auto UpdateOffsets = std::move(UpdI->second);
DeclUpdateOffsets.erase(UpdI);
bool WasInteresting = isConsumerInterestedIn(D, false);
for (auto &FileAndOffset : UpdateOffsets) {
ModuleFile *F = FileAndOffset.first;
uint64_t Offset = FileAndOffset.second;
llvm::BitstreamCursor &Cursor = F->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Offset);
RecordData Record;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record);
(void)RecCode;
assert(RecCode == DECL_UPDATES && "Expected DECL_UPDATES record!");
unsigned Idx = 0;
ASTDeclReader Reader(*this, *F, ID, 0, Record, Idx);
Reader.UpdateDecl(D, *F, Record);
// We might have made this declaration interesting. If so, remember that
// we need to hand it off to the consumer.
if (!WasInteresting &&
isConsumerInterestedIn(D, Reader.hasPendingBody())) {
InterestingDecls.push_back(D);
WasInteresting = true;
}
}
}
}
void ASTReader::loadPendingDeclChain(Decl *FirstLocal, uint64_t LocalOffset) {
// Attach FirstLocal to the end of the decl chain.
Decl *CanonDecl = FirstLocal->getCanonicalDecl();
if (FirstLocal != CanonDecl) {
Decl *PrevMostRecent = ASTDeclReader::getMostRecentDecl(CanonDecl);
ASTDeclReader::attachPreviousDecl(
*this, FirstLocal, PrevMostRecent ? PrevMostRecent : CanonDecl,
CanonDecl);
}
if (!LocalOffset) {
ASTDeclReader::attachLatestDecl(CanonDecl, FirstLocal);
return;
}
// Load the list of other redeclarations from this module file.
ModuleFile *M = getOwningModuleFile(FirstLocal);
assert(M && "imported decl from no module file");
llvm::BitstreamCursor &Cursor = M->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(LocalOffset);
RecordData Record;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record);
(void)RecCode;
assert(RecCode == LOCAL_REDECLARATIONS && "expected LOCAL_REDECLARATIONS record!");
// FIXME: We have several different dispatches on decl kind here; maybe
// we should instead generate one loop per kind and dispatch up-front?
Decl *MostRecent = FirstLocal;
for (unsigned I = 0, N = Record.size(); I != N; ++I) {
auto *D = GetLocalDecl(*M, Record[N - I - 1]);
ASTDeclReader::attachPreviousDecl(*this, D, MostRecent, CanonDecl);
MostRecent = D;
}
ASTDeclReader::attachLatestDecl(CanonDecl, MostRecent);
}
namespace {
/// \brief Given an ObjC interface, goes through the modules and links to the
/// interface all the categories for it.
class ObjCCategoriesVisitor {
ASTReader &Reader;
serialization::GlobalDeclID InterfaceID;
ObjCInterfaceDecl *Interface;
llvm::SmallPtrSetImpl<ObjCCategoryDecl *> &Deserialized;
unsigned PreviousGeneration;
ObjCCategoryDecl *Tail;
llvm::DenseMap<DeclarationName, ObjCCategoryDecl *> NameCategoryMap;
void add(ObjCCategoryDecl *Cat) {
// Only process each category once.
if (!Deserialized.erase(Cat))
return;
// Check for duplicate categories.
if (Cat->getDeclName()) {
ObjCCategoryDecl *&Existing = NameCategoryMap[Cat->getDeclName()];
if (Existing &&
Reader.getOwningModuleFile(Existing)
!= Reader.getOwningModuleFile(Cat)) {
// FIXME: We should not warn for duplicates in diamond:
//
// MT //
// / \ //
// ML MR //
// \ / //
// MB //
//
// If there are duplicates in ML/MR, there will be warning when
// creating MB *and* when importing MB. We should not warn when
// importing.
Reader.Diag(Cat->getLocation(), diag::warn_dup_category_def)
<< Interface->getDeclName() << Cat->getDeclName();
Reader.Diag(Existing->getLocation(), diag::note_previous_definition);
} else if (!Existing) {
// Record this category.
Existing = Cat;
}
}
// Add this category to the end of the chain.
if (Tail)
ASTDeclReader::setNextObjCCategory(Tail, Cat);
else
Interface->setCategoryListRaw(Cat);
Tail = Cat;
}
public:
ObjCCategoriesVisitor(ASTReader &Reader,
serialization::GlobalDeclID InterfaceID,
ObjCInterfaceDecl *Interface,
llvm::SmallPtrSetImpl<ObjCCategoryDecl *> &Deserialized,
unsigned PreviousGeneration)
: Reader(Reader), InterfaceID(InterfaceID), Interface(Interface),
Deserialized(Deserialized), PreviousGeneration(PreviousGeneration),
Tail(nullptr)
{
// Populate the name -> category map with the set of known categories.
for (auto *Cat : Interface->known_categories()) {
if (Cat->getDeclName())
NameCategoryMap[Cat->getDeclName()] = Cat;
// Keep track of the tail of the category list.
Tail = Cat;
}
}
bool operator()(ModuleFile &M) {
// If we've loaded all of the category information we care about from
// this module file, we're done.
if (M.Generation <= PreviousGeneration)
return true;
// Map global ID of the definition down to the local ID used in this
// module file. If there is no such mapping, we'll find nothing here
// (or in any module it imports).
DeclID LocalID = Reader.mapGlobalIDToModuleFileGlobalID(M, InterfaceID);
if (!LocalID)
return true;
// Perform a binary search to find the local redeclarations for this
// declaration (if any).
const ObjCCategoriesInfo Compare = { LocalID, 0 };
const ObjCCategoriesInfo *Result
= std::lower_bound(M.ObjCCategoriesMap,
M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap,
Compare);
if (Result == M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap ||
Result->DefinitionID != LocalID) {
// We didn't find anything. If the class definition is in this module
// file, then the module files it depends on cannot have any categories,
// so suppress further lookup.
return Reader.isDeclIDFromModule(InterfaceID, M);
}
// We found something. Dig out all of the categories.
unsigned Offset = Result->Offset;
unsigned N = M.ObjCCategories[Offset];
M.ObjCCategories[Offset++] = 0; // Don't try to deserialize again
for (unsigned I = 0; I != N; ++I)
add(cast_or_null<ObjCCategoryDecl>(
Reader.GetLocalDecl(M, M.ObjCCategories[Offset++])));
return true;
}
};
} // end anonymous namespace
void ASTReader::loadObjCCategories(serialization::GlobalDeclID ID,
ObjCInterfaceDecl *D,
unsigned PreviousGeneration) {
ObjCCategoriesVisitor Visitor(*this, ID, D, CategoriesDeserialized,
PreviousGeneration);
ModuleMgr.visit(Visitor);
}
template<typename DeclT, typename Fn>
static void forAllLaterRedecls(DeclT *D, Fn F) {
F(D);
// Check whether we've already merged D into its redeclaration chain.
// MostRecent may or may not be nullptr if D has not been merged. If
// not, walk the merged redecl chain and see if it's there.
auto *MostRecent = D->getMostRecentDecl();
bool Found = false;
for (auto *Redecl = MostRecent; Redecl && !Found;
Redecl = Redecl->getPreviousDecl())
Found = (Redecl == D);
// If this declaration is merged, apply the functor to all later decls.
if (Found) {
for (auto *Redecl = MostRecent; Redecl != D;
Redecl = Redecl->getPreviousDecl())
F(Redecl);
}
}
void ASTDeclReader::UpdateDecl(Decl *D, ModuleFile &ModuleFile,
const RecordData &Record) {
while (Idx < Record.size()) {
switch ((DeclUpdateKind)Record[Idx++]) {
case UPD_CXX_ADDED_IMPLICIT_MEMBER: {
auto *RD = cast<CXXRecordDecl>(D);
// FIXME: If we also have an update record for instantiating the
// definition of D, we need that to happen before we get here.
Decl *MD = Reader.ReadDecl(ModuleFile, Record, Idx);
assert(MD && "couldn't read decl from update record");
// FIXME: We should call addHiddenDecl instead, to add the member
// to its DeclContext.
RD->addedMember(MD);
break;
}
case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION:
// It will be added to the template's specializations set when loaded.
(void)Reader.ReadDecl(ModuleFile, Record, Idx);
break;
case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: {
NamespaceDecl *Anon
= Reader.ReadDeclAs<NamespaceDecl>(ModuleFile, Record, Idx);
// Each module has its own anonymous namespace, which is disjoint from
// any other module's anonymous namespaces, so don't attach the anonymous
// namespace at all.
if (ModuleFile.Kind != MK_ImplicitModule &&
ModuleFile.Kind != MK_ExplicitModule) {
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(D))
TU->setAnonymousNamespace(Anon);
else
cast<NamespaceDecl>(D)->setAnonymousNamespace(Anon);
}
break;
}
case UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER:
cast<VarDecl>(D)->getMemberSpecializationInfo()->setPointOfInstantiation(
Reader.ReadSourceLocation(ModuleFile, Record, Idx));
break;
case UPD_CXX_ADDED_FUNCTION_DEFINITION: {
FunctionDecl *FD = cast<FunctionDecl>(D);
if (Reader.PendingBodies[FD]) {
// FIXME: Maybe check for ODR violations.
// It's safe to stop now because this update record is always last.
return;
}
if (Record[Idx++]) {
// Maintain AST consistency: any later redeclarations of this function
// are inline if this one is. (We might have merged another declaration
// into this one.)
forAllLaterRedecls(FD, [](FunctionDecl *FD) {
FD->setImplicitlyInline();
});
}
FD->setInnerLocStart(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) {
CD->NumCtorInitializers = Record[Idx++];
if (CD->NumCtorInitializers)
CD->CtorInitializers =
Reader.ReadCXXCtorInitializersRef(F, Record, Idx);
}
// Store the offset of the body so we can lazily load it later.
Reader.PendingBodies[FD] = GetCurrentCursorOffset();
HasPendingBody = true;
assert(Idx == Record.size() && "lazy body must be last");
break;
}
case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: {
auto *RD = cast<CXXRecordDecl>(D);
auto *OldDD = RD->DefinitionData.getNotUpdated();
bool HadRealDefinition =
OldDD && (OldDD->Definition != RD ||
!Reader.PendingFakeDefinitionData.count(OldDD));
ReadCXXRecordDefinition(RD, /*Update*/true);
// Visible update is handled separately.
uint64_t LexicalOffset = Record[Idx++];
if (!HadRealDefinition && LexicalOffset) {
Reader.ReadLexicalDeclContextStorage(ModuleFile, ModuleFile.DeclsCursor,
LexicalOffset, RD);
Reader.PendingFakeDefinitionData.erase(OldDD);
}
auto TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = Reader.ReadSourceLocation(ModuleFile, Record, Idx);
if (MemberSpecializationInfo *MSInfo =
RD->getMemberSpecializationInfo()) {
MSInfo->setTemplateSpecializationKind(TSK);
MSInfo->setPointOfInstantiation(POI);
} else {
ClassTemplateSpecializationDecl *Spec =
cast<ClassTemplateSpecializationDecl>(RD);
Spec->setTemplateSpecializationKind(TSK);
Spec->setPointOfInstantiation(POI);
if (Record[Idx++]) {
auto PartialSpec =
ReadDeclAs<ClassTemplatePartialSpecializationDecl>(Record, Idx);
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
auto *TemplArgList = TemplateArgumentList::CreateCopy(
Reader.getContext(), TemplArgs.data(), TemplArgs.size());
// FIXME: If we already have a partial specialization set,
// check that it matches.
if (!Spec->getSpecializedTemplateOrPartial()
.is<ClassTemplatePartialSpecializationDecl *>())
Spec->setInstantiationOf(PartialSpec, TemplArgList);
}
}
RD->setTagKind((TagTypeKind)Record[Idx++]);
RD->setLocation(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
RD->setLocStart(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
RD->setRBraceLoc(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
if (Record[Idx++]) {
AttrVec Attrs;
Reader.ReadAttributes(F, Attrs, Record, Idx);
D->setAttrsImpl(Attrs, Reader.getContext());
}
break;
}
case UPD_CXX_RESOLVED_DTOR_DELETE: {
// Set the 'operator delete' directly to avoid emitting another update
// record.
auto *Del = Reader.ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
auto *First = cast<CXXDestructorDecl>(D->getCanonicalDecl());
// FIXME: Check consistency if we have an old and new operator delete.
if (!First->OperatorDelete)
First->OperatorDelete = Del;
break;
}
case UPD_CXX_RESOLVED_EXCEPTION_SPEC: {
FunctionProtoType::ExceptionSpecInfo ESI;
SmallVector<QualType, 8> ExceptionStorage;
Reader.readExceptionSpec(ModuleFile, ExceptionStorage, ESI, Record, Idx);
// Update this declaration's exception specification, if needed.
auto *FD = cast<FunctionDecl>(D);
auto *FPT = FD->getType()->castAs<FunctionProtoType>();
// FIXME: If the exception specification is already present, check that it
// matches.
if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
FD->setType(Reader.Context.getFunctionType(
FPT->getReturnType(), FPT->getParamTypes(),
FPT->getExtProtoInfo().withExceptionSpec(ESI)));
// When we get to the end of deserializing, see if there are other decls
// that we need to propagate this exception specification onto.
Reader.PendingExceptionSpecUpdates.insert(
std::make_pair(FD->getCanonicalDecl(), FD));
}
break;
}
case UPD_CXX_DEDUCED_RETURN_TYPE: {
// FIXME: Also do this when merging redecls.
QualType DeducedResultType = Reader.readType(ModuleFile, Record, Idx);
for (auto *Redecl : merged_redecls(D)) {
// FIXME: If the return type is already deduced, check that it matches.
FunctionDecl *FD = cast<FunctionDecl>(Redecl);
Reader.Context.adjustDeducedFunctionResultType(FD, DeducedResultType);
}
break;
}
case UPD_DECL_MARKED_USED: {
// FIXME: This doesn't send the right notifications if there are
// ASTMutationListeners other than an ASTWriter.
// Maintain AST consistency: any later redeclarations are used too.
forAllLaterRedecls(D, [](Decl *D) { D->Used = true; });
break;
}
case UPD_MANGLING_NUMBER:
Reader.Context.setManglingNumber(cast<NamedDecl>(D), Record[Idx++]);
break;
case UPD_STATIC_LOCAL_NUMBER:
Reader.Context.setStaticLocalNumber(cast<VarDecl>(D), Record[Idx++]);
break;
case UPD_DECL_MARKED_OPENMP_THREADPRIVATE:
D->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit(
Reader.Context, ReadSourceRange(Record, Idx)));
break;
case UPD_DECL_EXPORTED: {
unsigned SubmoduleID = readSubmoduleID(Record, Idx);
auto *Exported = cast<NamedDecl>(D);
if (auto *TD = dyn_cast<TagDecl>(Exported))
Exported = TD->getDefinition();
Module *Owner = SubmoduleID ? Reader.getSubmodule(SubmoduleID) : nullptr;
if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
// FIXME: This doesn't send the right notifications if there are
// ASTMutationListeners other than an ASTWriter.
Reader.getContext().mergeDefinitionIntoModule(
cast<NamedDecl>(Exported), Owner,
/*NotifyListeners*/ false);
Reader.PendingMergedDefinitionsToDeduplicate.insert(
cast<NamedDecl>(Exported));
} else if (Owner && Owner->NameVisibility != Module::AllVisible) {
// If Owner is made visible at some later point, make this declaration
// visible too.
Reader.HiddenNamesMap[Owner].push_back(Exported);
} else {
// The declaration is now visible.
Exported->Hidden = false;
}
break;
}
case UPD_ADDED_ATTR_TO_RECORD:
AttrVec Attrs;
Reader.ReadAttributes(F, Attrs, Record, Idx);
assert(Attrs.size() == 1);
D->addAttr(Attrs[0]);
break;
}
}
}