21 KiB
SPIR-V Dialect to LLVM Dialect conversion manual
This manual describes the conversion from SPIR-V Dialect to LLVM Dialect. It assumes familiarity with both, and describes the design choices behind the modelling of SPIR-V concepts in LLVM Dialect. The conversion is an ongoing work, and is expected to grow as more features are implemented.
Conversion can be performed by invoking an appropriate conversion pass:
mlir-opt -convert-spirv-to-llvm <filename.mlir>
This pass performs type and operation conversions for SPIR-V operations as described in this document.
[TOC]
Type Conversion
This section describes how SPIR-V Dialect types are mapped to LLVM Dialect.
Scalar types
SPIR-V Dialect | LLVM Dialect |
---|---|
i<bitwidth> |
!llvm.i<bitwidth> |
si<bitwidth> |
!llvm.i<bitwidth> |
ui<bitwidth> |
!llvm.i<bitwidth> |
f16 |
!llvm.half |
f32 |
!llvm.float |
f64 |
!llvm.double |
Vector types
SPIR-V Dialect | LLVM Dialect |
---|---|
vector<<count> x <scalar-type>> |
!llvm<"<<count> x <scalar-type>>"> |
Pointer types
A SPIR-V pointer also takes a Storage Class. At the moment, conversion does not take it into account.
SPIR-V Dialect | LLVM Dialect |
---|---|
!spv.ptr< <element-type>, <storage-class> > |
!llvm.element-type* |
Array types
SPIR-V distinguishes between array type and run-time array type, the length of which is not known at compile time. In LLVM, it is possible to index beyond the end of the array. Therfore, runtime array can be implemented as a zero length array type.
Moreover, SPIR-V supports the notion of array stride. Note that this is not supported by type conversion at the moment.
SPIR-V Dialect | LLVM Dialect |
---|---|
!spv.array<<count> x <element-type>> |
!llvm<"[<count> x <element-type>]"> |
!spv.rtarray< <element-type> > |
!llvm<"[0 x <element-type>]"> |
Struct types
Members of SPIR-V struct types may have decorations and offset information. Currently, there is no support of member decorations conversion for structs. For more information see section on Decorations.
Usually we expect that each struct member has a natural size and alignment. However, there are cases (e.g. in graphics) where one would place struct members explicitly at particular offsets. This case is not supported at the moment. Hence, we adhere to the following mapping:
-
Structs with no offset are modelled as LLVM packed structures.
-
Structs with natural offset (i.e. offset that equals to cumulative size of the previous struct elements or is a natural alignment) are mapped to naturally padded structs. Nested structs with offset and structs with offset containing arrays are not supported.
-
Structs with unnatural offset (i.e. offset that is not equal to cumulative size of the previous struct elements) are not supported. In this case, offsets can be emulated with padding fields (e.g. integers). However, such a design would require index recalculation in the conversion of ops that involve memmory addressing.
Examples of SPIR-V struct conversion are:
!spv.struct<i8, i32> => !llvm<"<{ i8, i32> }>">
!spv.struct<i8 [0], i32 [4]> => !llvm<"{ i8, i32> }">
// error
!spv.struct<i8 [0], i32 [8]>
Not implemented types
The rest of the types not mentioned explicitly above are not supported by the
conversion. This includes ImageType
and MatrixType
.
Operation Conversion
This section describes how SPIR-V Dialect operations are converted to LLVM Dialect. It lists already working conversion patterns, as well as those that are an ongoing work.
There are also multiple ops for which there is no clear mapping in LLVM. Conversion for those have to be discussed within the community on the case-by-case basis.
Arithmetic ops
SPIR-V arithmetic ops mostly have a direct equivalent in LLVM Dialect. Such
exceptions as spv.SMod
and spv.FMod
are rare.
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spv.FAdd |
llvm.fadd |
spv.FDiv |
llvm.fdiv |
spv.FNegate |
llvm.fneg |
spv.FMul |
llvm.fmul |
spv.FRem |
llvm.frem |
spv.FSub |
llvm.fsub |
spv.IAdd |
llvm.add |
spv.IMul |
llvm.mul |
spv.ISub |
llvm.sub |
spv.SDiv |
llvm.sdiv |
spv.SRem |
llvm.srem |
spv.UDiv |
llvm.udiv |
spv.UMod |
llvm.urem |
Bitwise ops
SPIR-V has a range of bit ops that are mapped to LLVM dialect ops, intrinsics or may have a specific conversion pattern.
Direct conversion
As with arithmetic ops, most of bitwise ops have a semantically equivalent op in LLVM:
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spv.BitwiseAnd |
llvm.and |
spv.BitwiseOr |
llvm.or |
spv.BitwiseXor |
llvm.xor |
Also, some of bitwise ops can be modelled with LLVM intrinsics:
SPIR-V Dialect op | LLVM Dialect intrinsic |
---|---|
spv.BitCount |
llvm.intr.ctpop |
spv.BitReverse |
llvm.intr.bitreverse |
spv.Not
spv.Not
is modelled with a xor
operation with a mask with all bits set.
%mask = llvm.mlir.constant(-1 : i32) : !llvm.i32
%0 = spv.Not %op : i32 => %0 = llvm.xor %op, %mask : !llvm.i32
Bitfield ops
SPIR-V dialect has three bitfield ops: spv.BitFieldInsert
,
spv.BitFieldSExtract
and spv.BitFieldUExtract
. This section will first
outline the general design of conversion patterns for this ops, and then
describe each of them.
All of these ops take base
, offset
and count
(insert
for
spv.BitFieldInsert
) as arguments. There are two important things
to note:
-
offset
andcount
are always scalar. This means that we can have the following case:%0 = spv.BitFieldSExtract %base, %offset, %count : vector<2xi32>, i8, i8
To be able to proceed with conversion algorithms described below, all operands have to be of the same type and bitwidth. This requires broadcasting of
offset
andcount
to vectors, for example for the case above it gives:// Broadcasting offset %offset0 = llvm.mlir.undef : !llvm<"<2 x i8>"> %zero = llvm.mlir.constant(0 : i32) : !llvm.i32 %offset1 = llvm.insertelement %offset, %offset0[%zero : !llvm.i32] : !llvm<"<2 x i8>"> %one = llvm.mlir.constant(1 : i32) : !llvm.i32 %vec_offset = llvm.insertelement %offset, %offset1[%one : !llvm.i32] : !llvm<"<2 x i8>"> // Broadcasting count // ...
-
offset
andcount
may have different bitwidths frombase
. In this case, both of these operands have to be zero extended (since they are treated as unsigned by the specification) or truncated. For the above example it would be:// Zero extending offest after broadcasting %res_offset = llvm.zext %vec_offset: !llvm<"<2 x i8>"> to !llvm<"<2 x i32>">
Also, note that if the bitwidth of
offset
orcount
is greater than the bitwidth ofbase
, truncation is still permitted. This is because the ops have a defined behaviour withoffset
andcount
being less than the size ofbase
. It creates a natural upper bound on what valuesoffset
andcount
can take, which is 64. This can be expressed in less than 8 bits.
Now, having these two cases in mind, we can proceed with conversion for the ops and their operands.
spv.BitFieldInsert
This operation is implemented as a series of LLVM Dialect operations. First step
would be to create a mask with bits set outside
[offset
, offset
+ count
- 1]. Then, unchanged bits are extracted from
base
that are outside of [offset
, offset
+ count
- 1]. The result is
or
ed with shifted insert
.
// Create mask
// %minus_one = llvm.mlir.constant(-1 : i32) : !llvm.i32
// %t0 = llvm.shl %minus_one, %count : !llvm.i32
// %t1 = llvm.xor %t0, %minus_one : !llvm.i32
// %t2 = llvm.shl %t1, %offset : !llvm.i32
// %mask = llvm.xor %t2, %minus_one : !llvm.i32
// Extract unchanged bits from the Base
// %new_base = llvm.and %base, %mask : !llvm.i32
// Insert new bits
// %sh_insert = llvm.shl %insert, %offset : !llvm.i32
// %res = llvm.or %new_base, %sh_insert : !llvm.i32
%res = spv.BitFieldInsert %base, %insert, %offset, %count : i32, i32, i32
spv.BitFieldSExtract
To implement spv.BitFieldSExtract
, base
is shifted left by [sizeof(base
) -
(count
+ offset
)], so that the bit at offset
+ count
- 1 is the most
significant bit. After, the result is shifted right, filling the bits with the
sign bit.
// Calculate the amount to shift left.
// %size = llvm.mlir.constant(32 : i32) : !llvm.i32
// %t0 = llvm.add %count, %offset : !llvm.i32
// %t1 = llvm.sub %size, %t0 : !llvm.i32
// Shift left and then right to extract the bits
// %sh_left = llvm.shl %base, %t1 : !llvm.i32
// %t2 = llvm.add %offset, %t1 : !llvm.i32
// %res = llvm.ashr %sh_left, %t2 : !llvm.i32
%res = spv.BitFieldSExtract %base, %offset, %count : i32, i32, i32
spv.BitFieldUExtract
For this op a similar pattern as for spv.BitFieldInsert
is used. First, a mask
with bits set at [0, count
- 1] is created. Then base
is shifted by offset
and the mask is applied.
// Create a mask
// %minus_one = llvm.mlir.constant(-1 : i32) : !llvm.i32
// %t0 = llvm.shl %minus_one, %count : !llvm.i32
// mask = llvm.xor %t0, %minus_one : !llvm.i32
// Shift Base and apply mask
// %sh_base = llvm.lshr %base, %offset : !llvm.i32
// %res = llvm.and %sh_base, %mask : !llvm.i32
%res = spv.BitFieldUExtract %base, %offset, %count : i32, i32, i32
Cast ops
Direct conversions
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spv.ConvertFToS |
llvm.fptosi |
spv.ConvertFToU |
llvm.fptoui |
spv.ConvertSToF |
llvm.sitofp |
spv.ConvertUToF |
llvm.uitofp |
spv.Bitcast
This operation has a direct counterpart in LLVM: llvm.bitcast
. It is treated
separately since it also supports pointer to pointer bit pattern-preserving type
conversion, apart from regular scalar or vector of numerical type.
Special cases
Special cases include spv.FConvert
, spv.SConvert
and spv.UConvert
. These
operations are either a truncate or extend. Let's denote the operand component
width as A, and result component width as R. Then, the following mappings are
used:
spv.FConvert
Case | LLVM Dialect op |
---|---|
A < R | llvm.fpext |
A > R | llvm.fptrunc |
spv.SConvert
Case | LLVM Dialect op |
---|---|
A < R | llvm.sext |
A > R | llvm.trunc |
spv.UConvert
Case | LLVM Dialect op |
---|---|
A < R | llvm.zext |
A > R | llvm.trunc |
The case when A = R is not possible, based on SPIR-V Dialect specification:
The component width cannot equal the component width in Result Type.
Comparison ops
SPIR-V comparison ops are mapped to LLVM icmp
and fcmp
operations.
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spv.IEqual |
llvm.icmp "eq" |
spv.INotEqual |
llvm.icmp "ne" |
spv.FOrdEqual |
llvm.fcmp "oeq" |
spv.FOrdGreaterThan |
llvm.fcmp "ogt" |
spv.FOrdGreaterThanEqual |
llvm.fcmp "oge" |
spv.FOrdLessThan |
llvm.fcmp "olt" |
spv.FOrdLessThanEqual |
llvm.fcmp "ole" |
spv.FOrdNotEqual |
llvm.fcmp "one" |
spv.FUnordEqual |
llvm.fcmp "ueq" |
spv.FUnordGreaterThan |
llvm.fcmp "ugt" |
spv.FUnordGreaterThanEqual |
llvm.fcmp "uge" |
spv.FUnordLessThan |
llvm.fcmp "ult" |
spv.FUnordLessThanEqual |
llvm.fcmp "ule" |
spv.FUnordNotEqual |
llvm.fcmp "une" |
spv.SGreaterThan |
llvm.icmp "sgt" |
spv.SGreaterThanEqual |
llvm.icmp "sge" |
spv.SLessThan |
llvm.icmp "slt" |
spv.SLessThanEqual |
llvm.icmp "sle" |
spv.UGreaterThan |
llvm.icmp "ugt" |
spv.UGreaterThanEqual |
llvm.icmp "uge" |
spv.ULessThan |
llvm.icmp "ult" |
spv.ULessThanEqual |
llvm.icmp "ule" |
Logical ops
Logical ops follow a similar pattern as bitwise ops, with the difference that
they operate on i1
or vector of i1
values. The following mapping is used to
emulate SPIR-V ops behaviour:
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spv.LogicalAnd |
llvm.and |
spv.LogicalOr |
llvm.or |
spv.LogicalEqual |
llvm.icmp "eq" |
spv.LogicalNotEqual |
llvm.icmp "ne" |
spv.LogicalNot
has the same conversion pattern as bitwise spv.Not
. It is
modelled with xor
operation with a mask with all bits set.
%mask = llvm.mlir.constant(-1 : i1) : !llvm.i1
%0 = spv.LogicalNot %op : i1 => %0 = llvm.xor %op, %mask : !llvm.i1
Miscellaneous ops with direct conversions
There are multiple SPIR-V ops that do not fit in a particular group but can be converted directly to LLVM dialect. Their conversion is addressed in this section.
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spv.Select |
llvm.select |
spv.Undef |
llvm.mlir.undef |
Shift ops
Shift operates on two operands: shift
and base
.
In SPIR-V dialect, shift
and base
may have different bit width. On the
contrary, in LLVM Dialect both base
and shift
have to be of the same
bitwidth. This leads to the following conversions:
-
if
base
has the same bitwidth asshift
, the conversion is straightforward. -
if
base
has a greater bit width thanshift
, shift is sign or zero extended first. Then the extended value is passed to the shift. -
otherwise, the conversion is considered to be illegal.
// Shift without extension
%res0 = spv.ShiftRightArithmetic %0, %2 : i32, i32 => %res0 = llvm.ashr %0, %2 : !llvm.i32
// Shift with extension
%ext = llvm.sext %1 : !llvm.i16 to !llvm.i32
%res1 = spv.ShiftRightArithmetic %0, %1 : i32, i16 => %res1 = llvm.ashr %0, %ext: !llvm.i32
spv.constant
At the moment spv.constant
conversion supports scalar and vector constants
only.
Mapping
spv.constant
is mapped to llvm.mlir.constant
. This is a straightforward
conversion pattern with a special case when the argument is signed or unsigned.
Special case
SPIR-V constant can be a signed or unsigned integer. Since LLVM Dialect does not have signedness semantics, this case should be handled separately.
The conversion casts constant value attribute to a signless integer or a vector of signless integers. This is correct because in SPIR-V, like in LLVM, how to interpret an integer number is also dictated by the opcode. However, in reality hardware implementation might show unexpected behavior. Therefore, it is better to handle it case-by-case, given that the purpose of the conversion is not to cover all possible corner cases.
// %0 = llvm.mlir.constant(0 : i8) : !llvm.i8
%0 = spv.constant 0 : i8
// %1 = llvm.mlir.constant(dense<[2, 3, 4]> : vector<3xi32>) : !llvm<"<3 x i32>">
%1 = spv.constant dense<[2, 3, 4]> : vector<3xui32>
Not implemented ops
There is no support of the following ops:
- All Atomic ops
- All matrix ops
- All GLSL ops
- All GroupNonUniform ops
- spv.AccessChain
- spv._address_of
- spv.Branch
- spv.BranchConditional
- spv.CompositeConstruct
- spv.CompositeExtract
- spv.CompositeInsert
- spv.ControlBarrier
- spv.CopyMemory
- spv.EntryPoint
- spv.ExecutionMode
- spv.FMod
- spv.globalVariable
- spv.Load
- spv.loop
- spv.MemoryBarrier
- spv._merge
- spv._reference_of
- spv.selection
- spv.SMod
- spv.specConstant
- spv.Store
- spv.SubgroupBallotKHR
- spv.Variable
- spv.Unreachable
Control flow conversion
Note: these conversions have not been implemented yet
Decorations conversion
Note: these conversions have not been implemented yet
GLSL extended instruction set
Note: these conversions have not been implemented yet
This section describes how SPIR-V ops from GLSL extended instructions set are mapped to LLVM Dialect.
Direct conversions
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spv.GLSL.Ceil |
llvm.intr.ceil |
spv.GLSL.Cos |
llvm.intr.cos |
spv.GLSL.Exp |
llvm.intr.exp |
spv.GLSL.FAbs |
llvm.intr.fabs |
spv.GLSL.Floor |
llvm.intr.floor |
spv.GLSL.FMax |
llvm.intr.maxnum |
spv.GLSL.FMin |
llvm.intr.minnum |
spv.GLSL.Log |
llvm.intr.log |
spv.GLSL.Sin |
llvm.intr.sin |
spv.GLSL.Sqrt |
llvm.intr.sqrt |
Special cases
TODO: add more patterns for special cases.
spv.Tan
is mapped to:
%sin = "llvm.intr.sin"(%arg) : (!llvm.float) -> !llvm.float
%cos = "llvm.intr.cos"(%arg) : (!llvm.float) -> !llvm.float
%res = spv.Tan %arg : f32 => %res = fdiv %sin, %cos : !llvm.float
Function conversion and related ops
This section describes the conversion of function-related operations from SPIR-V to LLVM dialect.
spv.func
This op declares or defines a SPIR-V function and it is converted to llvm.func
.
This conversion handles signarture conversion, and function control attributes
remapping to LLVM dialect function passthrough
attribute.
The following mapping is used to map SPIR-V function control to LLVM function attributes:
SPIR-V Function Control Attributes | LLVM Function Attributes |
---|---|
None | No function attributes passed |
Inline | alwaysinline |
DontInline | noinline |
Pure | readonly |
Const | readnone |
spv.FunctionCall
spv.FunctionCall
maps to llvm.call
. For example:
%0 = spv.FunctionCall @foo() : () -> i32 => %0 = llvm.call @foo() : () -> !llvm.float
spv.FunctionCall @bar(%0) : (i32) -> () => llvm.call @bar(%0) : (!llvm.float) -> ()
spv.Return
and spv.ReturnValue
In LLVM IR, functions may return either 1 or 0 value. Hence, we map both ops to
llvm.return
with or without a return value.
Module ops
Module in SPIR-V has one region that contains one block. It is defined via
spv.module
op that also takes a range of attributes:
- Addressing model
- Memory model
- Version-Capability-Extension attribute
spv.module
is converted into ModuleOp
. This plays a role of enclosing scope
to LLVM ops. At the moment, SPIR-V module attributes are ignored.
spv._module_end
is mapped to an equivalent terminator ModuleTerminatorOp
.