llvm-project/clang/lib/AST/Expr.cpp

4976 lines
176 KiB
C++

//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Expr.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/ComputeDependence.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
using namespace clang;
const Expr *Expr::getBestDynamicClassTypeExpr() const {
const Expr *E = this;
while (true) {
E = E->ignoreParenBaseCasts();
// Follow the RHS of a comma operator.
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Comma) {
E = BO->getRHS();
continue;
}
}
// Step into initializer for materialized temporaries.
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
E = MTE->getSubExpr();
continue;
}
break;
}
return E;
}
const CXXRecordDecl *Expr::getBestDynamicClassType() const {
const Expr *E = getBestDynamicClassTypeExpr();
QualType DerivedType = E->getType();
if (const PointerType *PTy = DerivedType->getAs<PointerType>())
DerivedType = PTy->getPointeeType();
if (DerivedType->isDependentType())
return nullptr;
const RecordType *Ty = DerivedType->castAs<RecordType>();
Decl *D = Ty->getDecl();
return cast<CXXRecordDecl>(D);
}
const Expr *Expr::skipRValueSubobjectAdjustments(
SmallVectorImpl<const Expr *> &CommaLHSs,
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
const Expr *E = this;
while (true) {
E = E->IgnoreParens();
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
if ((CE->getCastKind() == CK_DerivedToBase ||
CE->getCastKind() == CK_UncheckedDerivedToBase) &&
E->getType()->isRecordType()) {
E = CE->getSubExpr();
auto *Derived =
cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
Adjustments.push_back(SubobjectAdjustment(CE, Derived));
continue;
}
if (CE->getCastKind() == CK_NoOp) {
E = CE->getSubExpr();
continue;
}
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (!ME->isArrow()) {
assert(ME->getBase()->getType()->isRecordType());
if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
E = ME->getBase();
Adjustments.push_back(SubobjectAdjustment(Field));
continue;
}
}
}
} else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_PtrMemD) {
assert(BO->getRHS()->isRValue());
E = BO->getLHS();
const MemberPointerType *MPT =
BO->getRHS()->getType()->getAs<MemberPointerType>();
Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
continue;
} else if (BO->getOpcode() == BO_Comma) {
CommaLHSs.push_back(BO->getLHS());
E = BO->getRHS();
continue;
}
}
// Nothing changed.
break;
}
return E;
}
bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
const Expr *E = IgnoreParens();
// If this value has _Bool type, it is obvious 0/1.
if (E->getType()->isBooleanType()) return true;
// If this is a non-scalar-integer type, we don't care enough to try.
if (!E->getType()->isIntegralOrEnumerationType()) return false;
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
switch (UO->getOpcode()) {
case UO_Plus:
return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
case UO_LNot:
return true;
default:
return false;
}
}
// Only look through implicit casts. If the user writes
// '(int) (a && b)' treat it as an arbitrary int.
// FIXME: Should we look through any cast expression in !Semantic mode?
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
switch (BO->getOpcode()) {
default: return false;
case BO_LT: // Relational operators.
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ: // Equality operators.
case BO_NE:
case BO_LAnd: // AND operator.
case BO_LOr: // Logical OR operator.
return true;
case BO_And: // Bitwise AND operator.
case BO_Xor: // Bitwise XOR operator.
case BO_Or: // Bitwise OR operator.
// Handle things like (x==2)|(y==12).
return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
case BO_Comma:
case BO_Assign:
return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
}
}
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
if (isa<ObjCBoolLiteralExpr>(E))
return true;
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
if (const FieldDecl *FD = E->getSourceBitField())
if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
!FD->getBitWidth()->isValueDependent() &&
FD->getBitWidthValue(FD->getASTContext()) == 1)
return true;
return false;
}
// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getExprLoc().
//
// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
namespace {
/// This implementation is used when a class provides a custom
/// implementation of getExprLoc.
template <class E, class T>
SourceLocation getExprLocImpl(const Expr *expr,
SourceLocation (T::*v)() const) {
return static_cast<const E*>(expr)->getExprLoc();
}
/// This implementation is used when a class doesn't provide
/// a custom implementation of getExprLoc. Overload resolution
/// should pick it over the implementation above because it's
/// more specialized according to function template partial ordering.
template <class E>
SourceLocation getExprLocImpl(const Expr *expr,
SourceLocation (Expr::*v)() const) {
return static_cast<const E *>(expr)->getBeginLoc();
}
}
SourceLocation Expr::getExprLoc() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: break;
#define EXPR(type, base) \
case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown expression kind");
}
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
assert((Kind == ConstantExpr::RSK_APValue ||
Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
"Invalid StorageKind Value");
}
ConstantExpr::ResultStorageKind
ConstantExpr::getStorageKind(const APValue &Value) {
switch (Value.getKind()) {
case APValue::None:
case APValue::Indeterminate:
return ConstantExpr::RSK_None;
case APValue::Int:
if (!Value.getInt().needsCleanup())
return ConstantExpr::RSK_Int64;
LLVM_FALLTHROUGH;
default:
return ConstantExpr::RSK_APValue;
}
}
ConstantExpr::ResultStorageKind
ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
return ConstantExpr::RSK_Int64;
return ConstantExpr::RSK_APValue;
}
void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
ConstantExprBits.ResultKind = StorageKind;
ConstantExprBits.APValueKind = APValue::None;
ConstantExprBits.HasCleanup = false;
if (StorageKind == ConstantExpr::RSK_APValue)
::new (getTrailingObjects<APValue>()) APValue();
}
ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
: FullExpr(ConstantExprClass, subexpr) {
DefaultInit(StorageKind);
}
ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
ResultStorageKind StorageKind,
bool IsImmediateInvocation) {
assert(!isa<ConstantExpr>(E));
AssertResultStorageKind(StorageKind);
unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
StorageKind == ConstantExpr::RSK_APValue,
StorageKind == ConstantExpr::RSK_Int64);
void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
Self->ConstantExprBits.IsImmediateInvocation =
IsImmediateInvocation;
return Self;
}
ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
const APValue &Result) {
ResultStorageKind StorageKind = getStorageKind(Result);
ConstantExpr *Self = Create(Context, E, StorageKind);
Self->SetResult(Result, Context);
return Self;
}
ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
: FullExpr(ConstantExprClass, Empty) {
DefaultInit(StorageKind);
}
ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
ResultStorageKind StorageKind,
EmptyShell Empty) {
AssertResultStorageKind(StorageKind);
unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
StorageKind == ConstantExpr::RSK_APValue,
StorageKind == ConstantExpr::RSK_Int64);
void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
return Self;
}
void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
"Invalid storage for this value kind");
ConstantExprBits.APValueKind = Value.getKind();
switch (ConstantExprBits.ResultKind) {
case RSK_None:
return;
case RSK_Int64:
Int64Result() = *Value.getInt().getRawData();
ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
return;
case RSK_APValue:
if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
ConstantExprBits.HasCleanup = true;
Context.addDestruction(&APValueResult());
}
APValueResult() = std::move(Value);
return;
}
llvm_unreachable("Invalid ResultKind Bits");
}
llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
switch (ConstantExprBits.ResultKind) {
case ConstantExpr::RSK_APValue:
return APValueResult().getInt();
case ConstantExpr::RSK_Int64:
return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
ConstantExprBits.IsUnsigned);
default:
llvm_unreachable("invalid Accessor");
}
}
APValue ConstantExpr::getAPValueResult() const {
assert(hasAPValueResult());
switch (ConstantExprBits.ResultKind) {
case ConstantExpr::RSK_APValue:
return APValueResult();
case ConstantExpr::RSK_Int64:
return APValue(
llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
ConstantExprBits.IsUnsigned));
case ConstantExpr::RSK_None:
return APValue();
}
llvm_unreachable("invalid ResultKind");
}
DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, QualType T,
ExprValueKind VK, SourceLocation L,
const DeclarationNameLoc &LocInfo,
NonOdrUseReason NOUR)
: Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
DeclRefExprBits.HasQualifier = false;
DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
DeclRefExprBits.HasFoundDecl = false;
DeclRefExprBits.HadMultipleCandidates = false;
DeclRefExprBits.RefersToEnclosingVariableOrCapture =
RefersToEnclosingVariableOrCapture;
DeclRefExprBits.NonOdrUseReason = NOUR;
DeclRefExprBits.Loc = L;
setDependence(computeDependence(this, Ctx));
}
DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
: Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
DNLoc(NameInfo.getInfo()) {
DeclRefExprBits.Loc = NameInfo.getLoc();
DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
if (QualifierLoc)
new (getTrailingObjects<NestedNameSpecifierLoc>())
NestedNameSpecifierLoc(QualifierLoc);
DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
if (FoundD)
*getTrailingObjects<NamedDecl *>() = FoundD;
DeclRefExprBits.HasTemplateKWAndArgsInfo
= (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
DeclRefExprBits.RefersToEnclosingVariableOrCapture =
RefersToEnclosingVariableOrCapture;
DeclRefExprBits.NonOdrUseReason = NOUR;
if (TemplateArgs) {
auto Deps = TemplateArgumentDependence::None;
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
Deps);
assert(!(Deps & TemplateArgumentDependence::Dependent) &&
"built a DeclRefExpr with dependent template args");
} else if (TemplateKWLoc.isValid()) {
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc);
}
DeclRefExprBits.HadMultipleCandidates = 0;
setDependence(computeDependence(this, Ctx));
}
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
SourceLocation NameLoc, QualType T,
ExprValueKind VK, NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
NonOdrUseReason NOUR) {
return Create(Context, QualifierLoc, TemplateKWLoc, D,
RefersToEnclosingVariableOrCapture,
DeclarationNameInfo(D->getDeclName(), NameLoc),
T, VK, FoundD, TemplateArgs, NOUR);
}
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo,
QualType T, ExprValueKind VK,
NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
NonOdrUseReason NOUR) {
// Filter out cases where the found Decl is the same as the value refenenced.
if (D == FoundD)
FoundD = nullptr;
bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
std::size_t Size =
totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
HasTemplateKWAndArgsInfo ? 1 : 0,
TemplateArgs ? TemplateArgs->size() : 0);
void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
RefersToEnclosingVariableOrCapture, NameInfo,
FoundD, TemplateArgs, T, VK, NOUR);
}
DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
std::size_t Size =
totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
return new (Mem) DeclRefExpr(EmptyShell());
}
SourceLocation DeclRefExpr::getBeginLoc() const {
if (hasQualifier())
return getQualifierLoc().getBeginLoc();
return getNameInfo().getBeginLoc();
}
SourceLocation DeclRefExpr::getEndLoc() const {
if (hasExplicitTemplateArgs())
return getRAngleLoc();
return getNameInfo().getEndLoc();
}
PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
StringLiteral *SL)
: Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
PredefinedExprBits.Kind = IK;
assert((getIdentKind() == IK) &&
"IdentKind do not fit in PredefinedExprBitfields!");
bool HasFunctionName = SL != nullptr;
PredefinedExprBits.HasFunctionName = HasFunctionName;
PredefinedExprBits.Loc = L;
if (HasFunctionName)
setFunctionName(SL);
setDependence(computeDependence(this));
}
PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK,
TypeSourceInfo *Info)
: Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) {
PredefinedExprBits.Kind = IK;
assert((getIdentKind() == IK) &&
"IdentKind do not fit in PredefinedExprBitFields!");
assert(IK == UniqueStableNameType &&
"Constructor only valid with UniqueStableNameType");
PredefinedExprBits.HasFunctionName = false;
PredefinedExprBits.Loc = L;
setTypeSourceInfo(Info);
setDependence(computeDependence(this));
}
PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK,
Expr *E)
: Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) {
PredefinedExprBits.Kind = IK;
assert((getIdentKind() == IK) &&
"IdentKind do not fit in PredefinedExprBitFields!");
assert(IK == UniqueStableNameExpr &&
"Constructor only valid with UniqueStableNameExpr");
PredefinedExprBits.HasFunctionName = false;
PredefinedExprBits.Loc = L;
setExpr(E);
setDependence(computeDependence(this));
}
PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
: Expr(PredefinedExprClass, Empty) {
PredefinedExprBits.HasFunctionName = HasFunctionName;
}
PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
QualType FNTy, IdentKind IK,
StringLiteral *SL) {
bool HasFunctionName = SL != nullptr;
void *Mem = Ctx.Allocate(
totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(HasFunctionName, 0, 0),
alignof(PredefinedExpr));
return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
}
PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
QualType FNTy, IdentKind IK,
StringLiteral *SL,
TypeSourceInfo *Info) {
assert(IK == UniqueStableNameType && "Only valid with UniqueStableNameType");
bool HasFunctionName = SL != nullptr;
void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(
HasFunctionName, 0, !HasFunctionName),
alignof(PredefinedExpr));
if (HasFunctionName)
return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
return new (Mem) PredefinedExpr(L, FNTy, IK, Info);
}
PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
QualType FNTy, IdentKind IK,
StringLiteral *SL, Expr *E) {
assert(IK == UniqueStableNameExpr && "Only valid with UniqueStableNameExpr");
bool HasFunctionName = SL != nullptr;
void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(
HasFunctionName, !HasFunctionName, 0),
alignof(PredefinedExpr));
if (HasFunctionName)
return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
return new (Mem) PredefinedExpr(L, FNTy, IK, E);
}
PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
bool HasFunctionName) {
void *Mem = Ctx.Allocate(
totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(HasFunctionName, 0, 0),
alignof(PredefinedExpr));
return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
}
StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
switch (IK) {
case Func:
return "__func__";
case Function:
return "__FUNCTION__";
case FuncDName:
return "__FUNCDNAME__";
case LFunction:
return "L__FUNCTION__";
case PrettyFunction:
return "__PRETTY_FUNCTION__";
case FuncSig:
return "__FUNCSIG__";
case LFuncSig:
return "L__FUNCSIG__";
case UniqueStableNameType:
case UniqueStableNameExpr:
return "__builtin_unique_stable_name";
case PrettyFunctionNoVirtual:
break;
}
llvm_unreachable("Unknown ident kind for PredefinedExpr");
}
std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentKind IK,
QualType Ty) {
std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
Context, Context.getDiagnostics(), /*IsUniqueNameMangler*/ true)};
Ty = Ty.getCanonicalType();
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Ctx->mangleTypeName(Ty, Out);
return std::string(Buffer.str());
}
// FIXME: Maybe this should use DeclPrinter with a special "print predefined
// expr" policy instead.
std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
ASTContext &Context = CurrentDecl->getASTContext();
if (IK == PredefinedExpr::FuncDName) {
if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
std::unique_ptr<MangleContext> MC;
MC.reset(Context.createMangleContext());
if (MC->shouldMangleDeclName(ND)) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
GlobalDecl GD;
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
GD = GlobalDecl(CD, Ctor_Base);
else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
GD = GlobalDecl(DD, Dtor_Base);
else if (ND->hasAttr<CUDAGlobalAttr>())
GD = GlobalDecl(cast<FunctionDecl>(ND));
else
GD = GlobalDecl(ND);
MC->mangleName(GD, Out);
if (!Buffer.empty() && Buffer.front() == '\01')
return std::string(Buffer.substr(1));
return std::string(Buffer.str());
} else
return std::string(ND->getIdentifier()->getName());
}
return "";
}
if (isa<BlockDecl>(CurrentDecl)) {
// For blocks we only emit something if it is enclosed in a function
// For top-level block we'd like to include the name of variable, but we
// don't have it at this point.
auto DC = CurrentDecl->getDeclContext();
if (DC->isFileContext())
return "";
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
// For nested blocks, propagate up to the parent.
Out << ComputeName(IK, DCBlock);
else if (auto *DCDecl = dyn_cast<Decl>(DC))
Out << ComputeName(IK, DCDecl) << "_block_invoke";
return std::string(Out.str());
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
IK != FuncSig && IK != LFuncSig)
return FD->getNameAsString();
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
Out << "virtual ";
if (MD->isStatic())
Out << "static ";
}
PrintingPolicy Policy(Context.getLangOpts());
std::string Proto;
llvm::raw_string_ostream POut(Proto);
const FunctionDecl *Decl = FD;
if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
Decl = Pattern;
const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
const FunctionProtoType *FT = nullptr;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(AFT);
if (IK == FuncSig || IK == LFuncSig) {
switch (AFT->getCallConv()) {
case CC_C: POut << "__cdecl "; break;
case CC_X86StdCall: POut << "__stdcall "; break;
case CC_X86FastCall: POut << "__fastcall "; break;
case CC_X86ThisCall: POut << "__thiscall "; break;
case CC_X86VectorCall: POut << "__vectorcall "; break;
case CC_X86RegCall: POut << "__regcall "; break;
// Only bother printing the conventions that MSVC knows about.
default: break;
}
}
FD->printQualifiedName(POut, Policy);
POut << "(";
if (FT) {
for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
if (i) POut << ", ";
POut << Decl->getParamDecl(i)->getType().stream(Policy);
}
if (FT->isVariadic()) {
if (FD->getNumParams()) POut << ", ";
POut << "...";
} else if ((IK == FuncSig || IK == LFuncSig ||
!Context.getLangOpts().CPlusPlus) &&
!Decl->getNumParams()) {
POut << "void";
}
}
POut << ")";
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
assert(FT && "We must have a written prototype in this case.");
if (FT->isConst())
POut << " const";
if (FT->isVolatile())
POut << " volatile";
RefQualifierKind Ref = MD->getRefQualifier();
if (Ref == RQ_LValue)
POut << " &";
else if (Ref == RQ_RValue)
POut << " &&";
}
typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
SpecsTy Specs;
const DeclContext *Ctx = FD->getDeclContext();
while (Ctx && isa<NamedDecl>(Ctx)) {
const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
if (Spec && !Spec->isExplicitSpecialization())
Specs.push_back(Spec);
Ctx = Ctx->getParent();
}
std::string TemplateParams;
llvm::raw_string_ostream TOut(TemplateParams);
for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
I != E; ++I) {
const TemplateParameterList *Params
= (*I)->getSpecializedTemplate()->getTemplateParameters();
const TemplateArgumentList &Args = (*I)->getTemplateArgs();
assert(Params->size() == Args.size());
for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
StringRef Param = Params->getParam(i)->getName();
if (Param.empty()) continue;
TOut << Param << " = ";
Args.get(i).print(Policy, TOut);
TOut << ", ";
}
}
FunctionTemplateSpecializationInfo *FSI
= FD->getTemplateSpecializationInfo();
if (FSI && !FSI->isExplicitSpecialization()) {
const TemplateParameterList* Params
= FSI->getTemplate()->getTemplateParameters();
const TemplateArgumentList* Args = FSI->TemplateArguments;
assert(Params->size() == Args->size());
for (unsigned i = 0, e = Params->size(); i != e; ++i) {
StringRef Param = Params->getParam(i)->getName();
if (Param.empty()) continue;
TOut << Param << " = ";
Args->get(i).print(Policy, TOut);
TOut << ", ";
}
}
TOut.flush();
if (!TemplateParams.empty()) {
// remove the trailing comma and space
TemplateParams.resize(TemplateParams.size() - 2);
POut << " [" << TemplateParams << "]";
}
POut.flush();
// Print "auto" for all deduced return types. This includes C++1y return
// type deduction and lambdas. For trailing return types resolve the
// decltype expression. Otherwise print the real type when this is
// not a constructor or destructor.
if (isa<CXXMethodDecl>(FD) &&
cast<CXXMethodDecl>(FD)->getParent()->isLambda())
Proto = "auto " + Proto;
else if (FT && FT->getReturnType()->getAs<DecltypeType>())
FT->getReturnType()
->getAs<DecltypeType>()
->getUnderlyingType()
.getAsStringInternal(Proto, Policy);
else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
AFT->getReturnType().getAsStringInternal(Proto, Policy);
Out << Proto;
return std::string(Name);
}
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
// Skip to its enclosing function or method, but not its enclosing
// CapturedDecl.
if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
const Decl *D = Decl::castFromDeclContext(DC);
return ComputeName(IK, D);
}
llvm_unreachable("CapturedDecl not inside a function or method");
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
Out << (MD->isInstanceMethod() ? '-' : '+');
Out << '[';
// For incorrect code, there might not be an ObjCInterfaceDecl. Do
// a null check to avoid a crash.
if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
Out << *ID;
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
Out << '(' << *CID << ')';
Out << ' ';
MD->getSelector().print(Out);
Out << ']';
return std::string(Name);
}
if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
return "top level";
}
return "";
}
void APNumericStorage::setIntValue(const ASTContext &C,
const llvm::APInt &Val) {
if (hasAllocation())
C.Deallocate(pVal);
BitWidth = Val.getBitWidth();
unsigned NumWords = Val.getNumWords();
const uint64_t* Words = Val.getRawData();
if (NumWords > 1) {
pVal = new (C) uint64_t[NumWords];
std::copy(Words, Words + NumWords, pVal);
} else if (NumWords == 1)
VAL = Words[0];
else
VAL = 0;
}
IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l)
: Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l) {
assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
assert(V.getBitWidth() == C.getIntWidth(type) &&
"Integer type is not the correct size for constant.");
setValue(C, V);
setDependence(ExprDependence::None);
}
IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l) {
return new (C) IntegerLiteral(C, V, type, l);
}
IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
return new (C) IntegerLiteral(Empty);
}
FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l,
unsigned Scale)
: Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l),
Scale(Scale) {
assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
"Fixed point type is not the correct size for constant.");
setValue(C, V);
setDependence(ExprDependence::None);
}
FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
const llvm::APInt &V,
QualType type,
SourceLocation l,
unsigned Scale) {
return new (C) FixedPointLiteral(C, V, type, l, Scale);
}
FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
EmptyShell Empty) {
return new (C) FixedPointLiteral(Empty);
}
std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
// Currently the longest decimal number that can be printed is the max for an
// unsigned long _Accum: 4294967295.99999999976716935634613037109375
// which is 43 characters.
SmallString<64> S;
FixedPointValueToString(
S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
return std::string(S.str());
}
FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L)
: Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary), Loc(L) {
setSemantics(V.getSemantics());
FloatingLiteralBits.IsExact = isexact;
setValue(C, V);
setDependence(ExprDependence::None);
}
FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
: Expr(FloatingLiteralClass, Empty) {
setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
FloatingLiteralBits.IsExact = false;
}
FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L) {
return new (C) FloatingLiteral(C, V, isexact, Type, L);
}
FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
return new (C) FloatingLiteral(C, Empty);
}
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double FloatingLiteral::getValueAsApproximateDouble() const {
llvm::APFloat V = getValue();
bool ignored;
V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
&ignored);
return V.convertToDouble();
}
unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
StringKind SK) {
unsigned CharByteWidth = 0;
switch (SK) {
case Ascii:
case UTF8:
CharByteWidth = Target.getCharWidth();
break;
case Wide:
CharByteWidth = Target.getWCharWidth();
break;
case UTF16:
CharByteWidth = Target.getChar16Width();
break;
case UTF32:
CharByteWidth = Target.getChar32Width();
break;
}
assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
CharByteWidth /= 8;
assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
"The only supported character byte widths are 1,2 and 4!");
return CharByteWidth;
}
StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc,
unsigned NumConcatenated)
: Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
assert(Ctx.getAsConstantArrayType(Ty) &&
"StringLiteral must be of constant array type!");
unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
unsigned ByteLength = Str.size();
assert((ByteLength % CharByteWidth == 0) &&
"The size of the data must be a multiple of CharByteWidth!");
// Avoid the expensive division. The compiler should be able to figure it
// out by itself. However as of clang 7, even with the appropriate
// llvm_unreachable added just here, it is not able to do so.
unsigned Length;
switch (CharByteWidth) {
case 1:
Length = ByteLength;
break;
case 2:
Length = ByteLength / 2;
break;
case 4:
Length = ByteLength / 4;
break;
default:
llvm_unreachable("Unsupported character width!");
}
StringLiteralBits.Kind = Kind;
StringLiteralBits.CharByteWidth = CharByteWidth;
StringLiteralBits.IsPascal = Pascal;
StringLiteralBits.NumConcatenated = NumConcatenated;
*getTrailingObjects<unsigned>() = Length;
// Initialize the trailing array of SourceLocation.
// This is safe since SourceLocation is POD-like.
std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
NumConcatenated * sizeof(SourceLocation));
// Initialize the trailing array of char holding the string data.
std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
setDependence(ExprDependence::None);
}
StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
unsigned Length, unsigned CharByteWidth)
: Expr(StringLiteralClass, Empty) {
StringLiteralBits.CharByteWidth = CharByteWidth;
StringLiteralBits.NumConcatenated = NumConcatenated;
*getTrailingObjects<unsigned>() = Length;
}
StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc,
unsigned NumConcatenated) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1, NumConcatenated, Str.size()),
alignof(StringLiteral));
return new (Mem)
StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
}
StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
unsigned NumConcatenated,
unsigned Length,
unsigned CharByteWidth) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1, NumConcatenated, Length * CharByteWidth),
alignof(StringLiteral));
return new (Mem)
StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
}
void StringLiteral::outputString(raw_ostream &OS) const {
switch (getKind()) {
case Ascii: break; // no prefix.
case Wide: OS << 'L'; break;
case UTF8: OS << "u8"; break;
case UTF16: OS << 'u'; break;
case UTF32: OS << 'U'; break;
}
OS << '"';
static const char Hex[] = "0123456789ABCDEF";
unsigned LastSlashX = getLength();
for (unsigned I = 0, N = getLength(); I != N; ++I) {
switch (uint32_t Char = getCodeUnit(I)) {
default:
// FIXME: Convert UTF-8 back to codepoints before rendering.
// Convert UTF-16 surrogate pairs back to codepoints before rendering.
// Leave invalid surrogates alone; we'll use \x for those.
if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
Char <= 0xdbff) {
uint32_t Trail = getCodeUnit(I + 1);
if (Trail >= 0xdc00 && Trail <= 0xdfff) {
Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
++I;
}
}
if (Char > 0xff) {
// If this is a wide string, output characters over 0xff using \x
// escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
// codepoint: use \x escapes for invalid codepoints.
if (getKind() == Wide ||
(Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
// FIXME: Is this the best way to print wchar_t?
OS << "\\x";
int Shift = 28;
while ((Char >> Shift) == 0)
Shift -= 4;
for (/**/; Shift >= 0; Shift -= 4)
OS << Hex[(Char >> Shift) & 15];
LastSlashX = I;
break;
}
if (Char > 0xffff)
OS << "\\U00"
<< Hex[(Char >> 20) & 15]
<< Hex[(Char >> 16) & 15];
else
OS << "\\u";
OS << Hex[(Char >> 12) & 15]
<< Hex[(Char >> 8) & 15]
<< Hex[(Char >> 4) & 15]
<< Hex[(Char >> 0) & 15];
break;
}
// If we used \x... for the previous character, and this character is a
// hexadecimal digit, prevent it being slurped as part of the \x.
if (LastSlashX + 1 == I) {
switch (Char) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
OS << "\"\"";
}
}
assert(Char <= 0xff &&
"Characters above 0xff should already have been handled.");
if (isPrintable(Char))
OS << (char)Char;
else // Output anything hard as an octal escape.
OS << '\\'
<< (char)('0' + ((Char >> 6) & 7))
<< (char)('0' + ((Char >> 3) & 7))
<< (char)('0' + ((Char >> 0) & 7));
break;
// Handle some common non-printable cases to make dumps prettier.
case '\\': OS << "\\\\"; break;
case '"': OS << "\\\""; break;
case '\a': OS << "\\a"; break;
case '\b': OS << "\\b"; break;
case '\f': OS << "\\f"; break;
case '\n': OS << "\\n"; break;
case '\r': OS << "\\r"; break;
case '\t': OS << "\\t"; break;
case '\v': OS << "\\v"; break;
}
}
OS << '"';
}
/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business. This routine handles this complexity.
///
/// The *StartToken sets the first token to be searched in this function and
/// the *StartTokenByteOffset is the byte offset of the first token. Before
/// returning, it updates the *StartToken to the TokNo of the token being found
/// and sets *StartTokenByteOffset to the byte offset of the token in the
/// string.
/// Using these two parameters can reduce the time complexity from O(n^2) to
/// O(n) if one wants to get the location of byte for all the tokens in a
/// string.
///
SourceLocation
StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
const LangOptions &Features,
const TargetInfo &Target, unsigned *StartToken,
unsigned *StartTokenByteOffset) const {
assert((getKind() == StringLiteral::Ascii ||
getKind() == StringLiteral::UTF8) &&
"Only narrow string literals are currently supported");
// Loop over all of the tokens in this string until we find the one that
// contains the byte we're looking for.
unsigned TokNo = 0;
unsigned StringOffset = 0;
if (StartToken)
TokNo = *StartToken;
if (StartTokenByteOffset) {
StringOffset = *StartTokenByteOffset;
ByteNo -= StringOffset;
}
while (1) {
assert(TokNo < getNumConcatenated() && "Invalid byte number!");
SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
// Get the spelling of the string so that we can get the data that makes up
// the string literal, not the identifier for the macro it is potentially
// expanded through.
SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
// Re-lex the token to get its length and original spelling.
std::pair<FileID, unsigned> LocInfo =
SM.getDecomposedLoc(StrTokSpellingLoc);
bool Invalid = false;
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
if (Invalid) {
if (StartTokenByteOffset != nullptr)
*StartTokenByteOffset = StringOffset;
if (StartToken != nullptr)
*StartToken = TokNo;
return StrTokSpellingLoc;
}
const char *StrData = Buffer.data()+LocInfo.second;
// Create a lexer starting at the beginning of this token.
Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
Buffer.begin(), StrData, Buffer.end());
Token TheTok;
TheLexer.LexFromRawLexer(TheTok);
// Use the StringLiteralParser to compute the length of the string in bytes.
StringLiteralParser SLP(TheTok, SM, Features, Target);
unsigned TokNumBytes = SLP.GetStringLength();
// If the byte is in this token, return the location of the byte.
if (ByteNo < TokNumBytes ||
(ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
// Now that we know the offset of the token in the spelling, use the
// preprocessor to get the offset in the original source.
if (StartTokenByteOffset != nullptr)
*StartTokenByteOffset = StringOffset;
if (StartToken != nullptr)
*StartToken = TokNo;
return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
}
// Move to the next string token.
StringOffset += TokNumBytes;
++TokNo;
ByteNo -= TokNumBytes;
}
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++".
StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
}
llvm_unreachable("Unknown unary operator");
}
UnaryOperatorKind
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
switch (OO) {
default: llvm_unreachable("No unary operator for overloaded function");
case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
case OO_Amp: return UO_AddrOf;
case OO_Star: return UO_Deref;
case OO_Plus: return UO_Plus;
case OO_Minus: return UO_Minus;
case OO_Tilde: return UO_Not;
case OO_Exclaim: return UO_LNot;
case OO_Coawait: return UO_Coawait;
}
}
OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
switch (Opc) {
case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
case UO_AddrOf: return OO_Amp;
case UO_Deref: return OO_Star;
case UO_Plus: return OO_Plus;
case UO_Minus: return OO_Minus;
case UO_Not: return OO_Tilde;
case UO_LNot: return OO_Exclaim;
case UO_Coawait: return OO_Coawait;
default: return OO_None;
}
}
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc, unsigned MinNumArgs,
ADLCallKind UsesADL)
: Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
unsigned NumPreArgs = PreArgs.size();
CallExprBits.NumPreArgs = NumPreArgs;
assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
"OffsetToTrailingObjects overflow!");
CallExprBits.UsesADL = static_cast<bool>(UsesADL);
setCallee(Fn);
for (unsigned I = 0; I != NumPreArgs; ++I)
setPreArg(I, PreArgs[I]);
for (unsigned I = 0; I != Args.size(); ++I)
setArg(I, Args[I]);
for (unsigned I = Args.size(); I != NumArgs; ++I)
setArg(I, nullptr);
setDependence(computeDependence(this, PreArgs));
}
CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
EmptyShell Empty)
: Expr(SC, Empty), NumArgs(NumArgs) {
CallExprBits.NumPreArgs = NumPreArgs;
assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
"OffsetToTrailingObjects overflow!");
}
CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc, unsigned MinNumArgs,
ADLCallKind UsesADL) {
unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
unsigned SizeOfTrailingObjects =
CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
void *Mem =
Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
RParenLoc, MinNumArgs, UsesADL);
}
CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
ExprValueKind VK, SourceLocation RParenLoc,
ADLCallKind UsesADL) {
assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
"Misaligned memory in CallExpr::CreateTemporary!");
return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
VK, RParenLoc,
/*MinNumArgs=*/0, UsesADL);
}
CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
EmptyShell Empty) {
unsigned SizeOfTrailingObjects =
CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
void *Mem =
Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
}
unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
switch (SC) {
case CallExprClass:
return sizeof(CallExpr);
case CXXOperatorCallExprClass:
return sizeof(CXXOperatorCallExpr);
case CXXMemberCallExprClass:
return sizeof(CXXMemberCallExpr);
case UserDefinedLiteralClass:
return sizeof(UserDefinedLiteral);
case CUDAKernelCallExprClass:
return sizeof(CUDAKernelCallExpr);
default:
llvm_unreachable("unexpected class deriving from CallExpr!");
}
}
Decl *Expr::getReferencedDeclOfCallee() {
Expr *CEE = IgnoreParenImpCasts();
while (SubstNonTypeTemplateParmExpr *NTTP =
dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
}
// If we're calling a dereference, look at the pointer instead.
while (true) {
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
if (BO->isPtrMemOp()) {
CEE = BO->getRHS()->IgnoreParenImpCasts();
continue;
}
} else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
UO->getOpcode() == UO_Plus) {
CEE = UO->getSubExpr()->IgnoreParenImpCasts();
continue;
}
}
break;
}
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
return DRE->getDecl();
if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
return ME->getMemberDecl();
if (auto *BE = dyn_cast<BlockExpr>(CEE))
return BE->getBlockDecl();
return nullptr;
}
/// If this is a call to a builtin, return the builtin ID. If not, return 0.
unsigned CallExpr::getBuiltinCallee() const {
auto *FDecl =
dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
return FDecl ? FDecl->getBuiltinID() : 0;
}
bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
if (unsigned BI = getBuiltinCallee())
return Ctx.BuiltinInfo.isUnevaluated(BI);
return false;
}
QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
const Expr *Callee = getCallee();
QualType CalleeType = Callee->getType();
if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
CalleeType = FnTypePtr->getPointeeType();
} else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
CalleeType = BPT->getPointeeType();
} else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
return Ctx.VoidTy;
// This should never be overloaded and so should never return null.
CalleeType = Expr::findBoundMemberType(Callee);
}
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
return FnType->getReturnType();
}
const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
// If the return type is a struct, union, or enum that is marked nodiscard,
// then return the return type attribute.
if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
return A;
// Otherwise, see if the callee is marked nodiscard and return that attribute
// instead.
const Decl *D = getCalleeDecl();
return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
}
SourceLocation CallExpr::getBeginLoc() const {
if (isa<CXXOperatorCallExpr>(this))
return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
SourceLocation begin = getCallee()->getBeginLoc();
if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
begin = getArg(0)->getBeginLoc();
return begin;
}
SourceLocation CallExpr::getEndLoc() const {
if (isa<CXXOperatorCallExpr>(this))
return cast<CXXOperatorCallExpr>(this)->getEndLoc();
SourceLocation end = getRParenLoc();
if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
end = getArg(getNumArgs() - 1)->getEndLoc();
return end;
}
OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
SourceLocation OperatorLoc,
TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps,
ArrayRef<Expr*> exprs,
SourceLocation RParenLoc) {
void *Mem = C.Allocate(
totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
RParenLoc);
}
OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
unsigned numComps, unsigned numExprs) {
void *Mem =
C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
return new (Mem) OffsetOfExpr(numComps, numExprs);
}
OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
SourceLocation RParenLoc)
: Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary),
OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
NumComps(comps.size()), NumExprs(exprs.size()) {
for (unsigned i = 0; i != comps.size(); ++i)
setComponent(i, comps[i]);
for (unsigned i = 0; i != exprs.size(); ++i)
setIndexExpr(i, exprs[i]);
setDependence(computeDependence(this));
}
IdentifierInfo *OffsetOfNode::getFieldName() const {
assert(getKind() == Field || getKind() == Identifier);
if (getKind() == Field)
return getField()->getIdentifier();
return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
}
UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
SourceLocation op, SourceLocation rp)
: Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary),
OpLoc(op), RParenLoc(rp) {
UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
UnaryExprOrTypeTraitExprBits.IsType = false;
Argument.Ex = E;
setDependence(computeDependence(this));
}
MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
ValueDecl *MemberDecl,
const DeclarationNameInfo &NameInfo, QualType T,
ExprValueKind VK, ExprObjectKind OK,
NonOdrUseReason NOUR)
: Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
assert(!NameInfo.getName() ||
MemberDecl->getDeclName() == NameInfo.getName());
MemberExprBits.IsArrow = IsArrow;
MemberExprBits.HasQualifierOrFoundDecl = false;
MemberExprBits.HasTemplateKWAndArgsInfo = false;
MemberExprBits.HadMultipleCandidates = false;
MemberExprBits.NonOdrUseReason = NOUR;
MemberExprBits.OperatorLoc = OperatorLoc;
setDependence(computeDependence(this));
}
MemberExpr *MemberExpr::Create(
const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
FoundDecl.getAccess() != MemberDecl->getAccess();
bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
std::size_t Size =
totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(
HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
TemplateArgs ? TemplateArgs->size() : 0);
void *Mem = C.Allocate(Size, alignof(MemberExpr));
MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
NameInfo, T, VK, OK, NOUR);
// FIXME: remove remaining dependence computation to computeDependence().
auto Deps = E->getDependence();
if (HasQualOrFound) {
// FIXME: Wrong. We should be looking at the member declaration we found.
if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
Deps |= ExprDependence::TypeValueInstantiation;
else if (QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
Deps |= ExprDependence::Instantiation;
E->MemberExprBits.HasQualifierOrFoundDecl = true;
MemberExprNameQualifier *NQ =
E->getTrailingObjects<MemberExprNameQualifier>();
NQ->QualifierLoc = QualifierLoc;
NQ->FoundDecl = FoundDecl;
}
E->MemberExprBits.HasTemplateKWAndArgsInfo =
TemplateArgs || TemplateKWLoc.isValid();
if (TemplateArgs) {
auto TemplateArgDeps = TemplateArgumentDependence::None;
E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc, *TemplateArgs,
E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
Deps |= ExprDependence::Instantiation;
} else if (TemplateKWLoc.isValid()) {
E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc);
}
E->setDependence(Deps);
return E;
}
MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
bool HasQualifier, bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
"template args but no template arg info?");
bool HasQualOrFound = HasQualifier || HasFoundDecl;
std::size_t Size =
totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
HasTemplateKWAndArgsInfo ? 1 : 0,
NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(MemberExpr));
return new (Mem) MemberExpr(EmptyShell());
}
SourceLocation MemberExpr::getBeginLoc() const {
if (isImplicitAccess()) {
if (hasQualifier())
return getQualifierLoc().getBeginLoc();
return MemberLoc;
}
// FIXME: We don't want this to happen. Rather, we should be able to
// detect all kinds of implicit accesses more cleanly.
SourceLocation BaseStartLoc = getBase()->getBeginLoc();
if (BaseStartLoc.isValid())
return BaseStartLoc;
return MemberLoc;
}
SourceLocation MemberExpr::getEndLoc() const {
SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
if (hasExplicitTemplateArgs())
EndLoc = getRAngleLoc();
else if (EndLoc.isInvalid())
EndLoc = getBase()->getEndLoc();
return EndLoc;
}
bool CastExpr::CastConsistency() const {
switch (getCastKind()) {
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_DerivedToBaseMemberPointer:
case CK_BaseToDerived:
case CK_BaseToDerivedMemberPointer:
assert(!path_empty() && "Cast kind should have a base path!");
break;
case CK_CPointerToObjCPointerCast:
assert(getType()->isObjCObjectPointerType());
assert(getSubExpr()->getType()->isPointerType());
goto CheckNoBasePath;
case CK_BlockPointerToObjCPointerCast:
assert(getType()->isObjCObjectPointerType());
assert(getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_ReinterpretMemberPointer:
assert(getType()->isMemberPointerType());
assert(getSubExpr()->getType()->isMemberPointerType());
goto CheckNoBasePath;
case CK_BitCast:
// Arbitrary casts to C pointer types count as bitcasts.
// Otherwise, we should only have block and ObjC pointer casts
// here if they stay within the type kind.
if (!getType()->isPointerType()) {
assert(getType()->isObjCObjectPointerType() ==
getSubExpr()->getType()->isObjCObjectPointerType());
assert(getType()->isBlockPointerType() ==
getSubExpr()->getType()->isBlockPointerType());
}
goto CheckNoBasePath;
case CK_AnyPointerToBlockPointerCast:
assert(getType()->isBlockPointerType());
assert(getSubExpr()->getType()->isAnyPointerType() &&
!getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_CopyAndAutoreleaseBlockObject:
assert(getType()->isBlockPointerType());
assert(getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_FunctionToPointerDecay:
assert(getType()->isPointerType());
assert(getSubExpr()->getType()->isFunctionType());
goto CheckNoBasePath;
case CK_AddressSpaceConversion: {
auto Ty = getType();
auto SETy = getSubExpr()->getType();
assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
if (isRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
Ty = Ty->getPointeeType();
SETy = SETy->getPointeeType();
}
assert((Ty->isDependentType() || SETy->isDependentType()) ||
(!Ty.isNull() && !SETy.isNull() &&
Ty.getAddressSpace() != SETy.getAddressSpace()));
goto CheckNoBasePath;
}
// These should not have an inheritance path.
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_NullToMemberPointer:
case CK_NullToPointer:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralCast:
case CK_BooleanToSignedIntegral:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingCast:
case CK_ObjCObjectLValueCast:
case CK_FloatingRealToComplex:
case CK_FloatingComplexToReal:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralRealToComplex:
case CK_IntegralComplexToReal:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
case CK_ZeroToOCLOpaqueType:
case CK_IntToOCLSampler:
case CK_FixedPointCast:
case CK_FixedPointToIntegral:
case CK_IntegralToFixedPoint:
assert(!getType()->isBooleanType() && "unheralded conversion to bool");
goto CheckNoBasePath;
case CK_Dependent:
case CK_LValueToRValue:
case CK_NoOp:
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
case CK_PointerToBoolean:
case CK_IntegralToBoolean:
case CK_FloatingToBoolean:
case CK_MemberPointerToBoolean:
case CK_FloatingComplexToBoolean:
case CK_IntegralComplexToBoolean:
case CK_LValueBitCast: // -> bool&
case CK_LValueToRValueBitCast:
case CK_UserDefinedConversion: // operator bool()
case CK_BuiltinFnToFnPtr:
case CK_FixedPointToBoolean:
CheckNoBasePath:
assert(path_empty() && "Cast kind should not have a base path!");
break;
}
return true;
}
const char *CastExpr::getCastKindName(CastKind CK) {
switch (CK) {
#define CAST_OPERATION(Name) case CK_##Name: return #Name;
#include "clang/AST/OperationKinds.def"
}
llvm_unreachable("Unhandled cast kind!");
}
namespace {
const Expr *skipImplicitTemporary(const Expr *E) {
// Skip through reference binding to temporary.
if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
E = Materialize->getSubExpr();
// Skip any temporary bindings; they're implicit.
if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
E = Binder->getSubExpr();
return E;
}
}
Expr *CastExpr::getSubExprAsWritten() {
const Expr *SubExpr = nullptr;
const CastExpr *E = this;
do {
SubExpr = skipImplicitTemporary(E->getSubExpr());
// Conversions by constructor and conversion functions have a
// subexpression describing the call; strip it off.
if (E->getCastKind() == CK_ConstructorConversion)
SubExpr =
skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
else if (E->getCastKind() == CK_UserDefinedConversion) {
assert((isa<CXXMemberCallExpr>(SubExpr) ||
isa<BlockExpr>(SubExpr)) &&
"Unexpected SubExpr for CK_UserDefinedConversion.");
if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
SubExpr = MCE->getImplicitObjectArgument();
}
// If the subexpression we're left with is an implicit cast, look
// through that, too.
} while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
return const_cast<Expr*>(SubExpr);
}
NamedDecl *CastExpr::getConversionFunction() const {
const Expr *SubExpr = nullptr;
for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
SubExpr = skipImplicitTemporary(E->getSubExpr());
if (E->getCastKind() == CK_ConstructorConversion)
return cast<CXXConstructExpr>(SubExpr)->getConstructor();
if (E->getCastKind() == CK_UserDefinedConversion) {
if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
return MCE->getMethodDecl();
}
}
return nullptr;
}
CXXBaseSpecifier **CastExpr::path_buffer() {
switch (getStmtClass()) {
#define ABSTRACT_STMT(x)
#define CASTEXPR(Type, Base) \
case Stmt::Type##Class: \
return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
#define STMT(Type, Base)
#include "clang/AST/StmtNodes.inc"
default:
llvm_unreachable("non-cast expressions not possible here");
}
}
const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
QualType opType) {
auto RD = unionType->castAs<RecordType>()->getDecl();
return getTargetFieldForToUnionCast(RD, opType);
}
const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
QualType OpType) {
auto &Ctx = RD->getASTContext();
RecordDecl::field_iterator Field, FieldEnd;
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
!Field->isUnnamedBitfield()) {
return *Field;
}
}
return nullptr;
}
ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind VK) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
// Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
// std::nullptr_t have special semantics not captured by CK_LValueToRValue.
assert((Kind != CK_LValueToRValue ||
!(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
"invalid type for lvalue-to-rvalue conversion");
ImplicitCastExpr *E =
new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
unsigned PathSize) {
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
}
CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
ExprValueKind VK, CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L, SourceLocation R) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
CStyleCastExpr *E =
new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
unsigned PathSize) {
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
}
llvm_unreachable("Invalid OpCode!");
}
BinaryOperatorKind
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
switch (OO) {
default: llvm_unreachable("Not an overloadable binary operator");
case OO_Plus: return BO_Add;
case OO_Minus: return BO_Sub;
case OO_Star: return BO_Mul;
case OO_Slash: return BO_Div;
case OO_Percent: return BO_Rem;
case OO_Caret: return BO_Xor;
case OO_Amp: return BO_And;
case OO_Pipe: return BO_Or;
case OO_Equal: return BO_Assign;
case OO_Spaceship: return BO_Cmp;
case OO_Less: return BO_LT;
case OO_Greater: return BO_GT;
case OO_PlusEqual: return BO_AddAssign;
case OO_MinusEqual: return BO_SubAssign;
case OO_StarEqual: return BO_MulAssign;
case OO_SlashEqual: return BO_DivAssign;
case OO_PercentEqual: return BO_RemAssign;
case OO_CaretEqual: return BO_XorAssign;
case OO_AmpEqual: return BO_AndAssign;
case OO_PipeEqual: return BO_OrAssign;
case OO_LessLess: return BO_Shl;
case OO_GreaterGreater: return BO_Shr;
case OO_LessLessEqual: return BO_ShlAssign;
case OO_GreaterGreaterEqual: return BO_ShrAssign;
case OO_EqualEqual: return BO_EQ;
case OO_ExclaimEqual: return BO_NE;
case OO_LessEqual: return BO_LE;
case OO_GreaterEqual: return BO_GE;
case OO_AmpAmp: return BO_LAnd;
case OO_PipePipe: return BO_LOr;
case OO_Comma: return BO_Comma;
case OO_ArrowStar: return BO_PtrMemI;
}
}
OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
static const OverloadedOperatorKind OverOps[] = {
/* .* Cannot be overloaded */OO_None, OO_ArrowStar,
OO_Star, OO_Slash, OO_Percent,
OO_Plus, OO_Minus,
OO_LessLess, OO_GreaterGreater,
OO_Spaceship,
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
OO_EqualEqual, OO_ExclaimEqual,
OO_Amp,
OO_Caret,
OO_Pipe,
OO_AmpAmp,
OO_PipePipe,
OO_Equal, OO_StarEqual,
OO_SlashEqual, OO_PercentEqual,
OO_PlusEqual, OO_MinusEqual,
OO_LessLessEqual, OO_GreaterGreaterEqual,
OO_AmpEqual, OO_CaretEqual,
OO_PipeEqual,
OO_Comma
};
return OverOps[Opc];
}
bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
Opcode Opc,
Expr *LHS, Expr *RHS) {
if (Opc != BO_Add)
return false;
// Check that we have one pointer and one integer operand.
Expr *PExp;
if (LHS->getType()->isPointerType()) {
if (!RHS->getType()->isIntegerType())
return false;
PExp = LHS;
} else if (RHS->getType()->isPointerType()) {
if (!LHS->getType()->isIntegerType())
return false;
PExp = RHS;
} else {
return false;
}
// Check that the pointer is a nullptr.
if (!PExp->IgnoreParenCasts()
->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
return false;
// Check that the pointee type is char-sized.
const PointerType *PTy = PExp->getType()->getAs<PointerType>();
if (!PTy || !PTy->getPointeeType()->isCharType())
return false;
return true;
}
static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
SourceLocExpr::IdentKind Kind) {
switch (Kind) {
case SourceLocExpr::File:
case SourceLocExpr::Function: {
QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
}
case SourceLocExpr::Line:
case SourceLocExpr::Column:
return Ctx.UnsignedIntTy;
}
llvm_unreachable("unhandled case");
}
SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
SourceLocation BLoc, SourceLocation RParenLoc,
DeclContext *ParentContext)
: Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
VK_RValue, OK_Ordinary),
BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
SourceLocExprBits.Kind = Kind;
setDependence(ExprDependence::None);
}
StringRef SourceLocExpr::getBuiltinStr() const {
switch (getIdentKind()) {
case File:
return "__builtin_FILE";
case Function:
return "__builtin_FUNCTION";
case Line:
return "__builtin_LINE";
case Column:
return "__builtin_COLUMN";
}
llvm_unreachable("unexpected IdentKind!");
}
APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
const Expr *DefaultExpr) const {
SourceLocation Loc;
const DeclContext *Context;
std::tie(Loc,
Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
return {DIE->getUsedLocation(), DIE->getUsedContext()};
if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
return {DAE->getUsedLocation(), DAE->getUsedContext()};
return {this->getLocation(), this->getParentContext()};
}();
PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
auto MakeStringLiteral = [&](StringRef Tmp) {
using LValuePathEntry = APValue::LValuePathEntry;
StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
// Decay the string to a pointer to the first character.
LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
};
switch (getIdentKind()) {
case SourceLocExpr::File:
return MakeStringLiteral(PLoc.getFilename());
case SourceLocExpr::Function: {
const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
return MakeStringLiteral(
CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
: std::string(""));
}
case SourceLocExpr::Line:
case SourceLocExpr::Column: {
llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
/*isUnsigned=*/true);
IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
: PLoc.getColumn();
return APValue(IntVal);
}
}
llvm_unreachable("unhandled case");
}
InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
: Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary),
InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
RBraceLoc(rbraceloc), AltForm(nullptr, true) {
sawArrayRangeDesignator(false);
InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
setDependence(computeDependence(this));
}
void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
if (NumInits > InitExprs.size())
InitExprs.reserve(C, NumInits);
}
void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
InitExprs.resize(C, NumInits, nullptr);
}
Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
if (Init >= InitExprs.size()) {
InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
setInit(Init, expr);
return nullptr;
}
Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
setInit(Init, expr);
return Result;
}
void InitListExpr::setArrayFiller(Expr *filler) {
assert(!hasArrayFiller() && "Filler already set!");
ArrayFillerOrUnionFieldInit = filler;
// Fill out any "holes" in the array due to designated initializers.
Expr **inits = getInits();
for (unsigned i = 0, e = getNumInits(); i != e; ++i)
if (inits[i] == nullptr)
inits[i] = filler;
}
bool InitListExpr::isStringLiteralInit() const {
if (getNumInits() != 1)
return false;
const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
if (!AT || !AT->getElementType()->isIntegerType())
return false;
// It is possible for getInit() to return null.
const Expr *Init = getInit(0);
if (!Init)
return false;
Init = Init->IgnoreParens();
return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
}
bool InitListExpr::isTransparent() const {
assert(isSemanticForm() && "syntactic form never semantically transparent");
// A glvalue InitListExpr is always just sugar.
if (isGLValue()) {
assert(getNumInits() == 1 && "multiple inits in glvalue init list");
return true;
}
// Otherwise, we're sugar if and only if we have exactly one initializer that
// is of the same type.
if (getNumInits() != 1 || !getInit(0))
return false;
// Don't confuse aggregate initialization of a struct X { X &x; }; with a
// transparent struct copy.
if (!getInit(0)->isRValue() && getType()->isRecordType())
return false;
return getType().getCanonicalType() ==
getInit(0)->getType().getCanonicalType();
}
bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
assert(isSyntacticForm() && "only test syntactic form as zero initializer");
if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
return false;
}
const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
return Lit && Lit->getValue() == 0;
}
SourceLocation InitListExpr::getBeginLoc() const {
if (InitListExpr *SyntacticForm = getSyntacticForm())
return SyntacticForm->getBeginLoc();
SourceLocation Beg = LBraceLoc;
if (Beg.isInvalid()) {
// Find the first non-null initializer.
for (InitExprsTy::const_iterator I = InitExprs.begin(),
E = InitExprs.end();
I != E; ++I) {
if (Stmt *S = *I) {
Beg = S->getBeginLoc();
break;
}
}
}
return Beg;
}
SourceLocation InitListExpr::getEndLoc() const {
if (InitListExpr *SyntacticForm = getSyntacticForm())
return SyntacticForm->getEndLoc();
SourceLocation End = RBraceLoc;
if (End.isInvalid()) {
// Find the first non-null initializer from the end.
for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
E = InitExprs.rend();
I != E; ++I) {
if (Stmt *S = *I) {
End = S->getEndLoc();
break;
}
}
}
return End;
}
/// getFunctionType - Return the underlying function type for this block.
///
const FunctionProtoType *BlockExpr::getFunctionType() const {
// The block pointer is never sugared, but the function type might be.
return cast<BlockPointerType>(getType())
->getPointeeType()->castAs<FunctionProtoType>();
}
SourceLocation BlockExpr::getCaretLocation() const {
return TheBlock->getCaretLocation();
}
const Stmt *BlockExpr::getBody() const {
return TheBlock->getBody();
}
Stmt *BlockExpr::getBody() {
return TheBlock->getBody();
}
//===----------------------------------------------------------------------===//
// Generic Expression Routines
//===----------------------------------------------------------------------===//
bool Expr::isReadIfDiscardedInCPlusPlus11() const {
// In C++11, discarded-value expressions of a certain form are special,
// according to [expr]p10:
// The lvalue-to-rvalue conversion (4.1) is applied only if the
// expression is an lvalue of volatile-qualified type and it has
// one of the following forms:
if (!isGLValue() || !getType().isVolatileQualified())
return false;
const Expr *E = IgnoreParens();
// - id-expression (5.1.1),
if (isa<DeclRefExpr>(E))
return true;
// - subscripting (5.2.1),
if (isa<ArraySubscriptExpr>(E))
return true;
// - class member access (5.2.5),
if (isa<MemberExpr>(E))
return true;
// - indirection (5.3.1),
if (auto *UO = dyn_cast<UnaryOperator>(E))
if (UO->getOpcode() == UO_Deref)
return true;
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
// - pointer-to-member operation (5.5),
if (BO->isPtrMemOp())
return true;
// - comma expression (5.18) where the right operand is one of the above.
if (BO->getOpcode() == BO_Comma)
return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
}
// - conditional expression (5.16) where both the second and the third
// operands are one of the above, or
if (auto *CO = dyn_cast<ConditionalOperator>(E))
return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
// The related edge case of "*x ?: *x".
if (auto *BCO =
dyn_cast<BinaryConditionalOperator>(E)) {
if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
}
// Objective-C++ extensions to the rule.
if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
return true;
return false;
}
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
SourceRange &R1, SourceRange &R2,
ASTContext &Ctx) const {
// Don't warn if the expr is type dependent. The type could end up
// instantiating to void.
if (isTypeDependent())
return false;
switch (getStmtClass()) {
default:
if (getType()->isVoidType())
return false;
WarnE = this;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case GenericSelectionExprClass:
return cast<GenericSelectionExpr>(this)->getResultExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case CoawaitExprClass:
case CoyieldExprClass:
return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case ChooseExprClass:
return cast<ChooseExpr>(this)->getChosenSubExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(this);
switch (UO->getOpcode()) {
case UO_Plus:
case UO_Minus:
case UO_AddrOf:
case UO_Not:
case UO_LNot:
case UO_Deref:
break;
case UO_Coawait:
// This is just the 'operator co_await' call inside the guts of a
// dependent co_await call.
case UO_PostInc:
case UO_PostDec:
case UO_PreInc:
case UO_PreDec: // ++/--
return false; // Not a warning.
case UO_Real:
case UO_Imag:
// accessing a piece of a volatile complex is a side-effect.
if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
.isVolatileQualified())
return false;
break;
case UO_Extension:
return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
WarnE = this;
Loc = UO->getOperatorLoc();
R1 = UO->getSubExpr()->getSourceRange();
return true;
}
case BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(this);
switch (BO->getOpcode()) {
default:
break;
// Consider the RHS of comma for side effects. LHS was checked by
// Sema::CheckCommaOperands.
case BO_Comma:
// ((foo = <blah>), 0) is an idiom for hiding the result (and
// lvalue-ness) of an assignment written in a macro.
if (IntegerLiteral *IE =
dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
if (IE->getValue() == 0)
return false;
return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
// Consider '||', '&&' to have side effects if the LHS or RHS does.
case BO_LAnd:
case BO_LOr:
if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
!BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
return false;
break;
}
if (BO->isAssignmentOp())
return false;
WarnE = this;
Loc = BO->getOperatorLoc();
R1 = BO->getLHS()->getSourceRange();
R2 = BO->getRHS()->getSourceRange();
return true;
}
case CompoundAssignOperatorClass:
case VAArgExprClass:
case AtomicExprClass:
return false;
case ConditionalOperatorClass: {
// If only one of the LHS or RHS is a warning, the operator might
// be being used for control flow. Only warn if both the LHS and
// RHS are warnings.
const auto *Exp = cast<ConditionalOperator>(this);
return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
case BinaryConditionalOperatorClass: {
const auto *Exp = cast<BinaryConditionalOperator>(this);
return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
case MemberExprClass:
WarnE = this;
Loc = cast<MemberExpr>(this)->getMemberLoc();
R1 = SourceRange(Loc, Loc);
R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
return true;
case ArraySubscriptExprClass:
WarnE = this;
Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
return true;
case CXXOperatorCallExprClass: {
// Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
// overloads as there is no reasonable way to define these such that they
// have non-trivial, desirable side-effects. See the -Wunused-comparison
// warning: operators == and != are commonly typo'ed, and so warning on them
// provides additional value as well. If this list is updated,
// DiagnoseUnusedComparison should be as well.
const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
switch (Op->getOperator()) {
default:
break;
case OO_EqualEqual:
case OO_ExclaimEqual:
case OO_Less:
case OO_Greater:
case OO_GreaterEqual:
case OO_LessEqual:
if (Op->getCallReturnType(Ctx)->isReferenceType() ||
Op->getCallReturnType(Ctx)->isVoidType())
break;
WarnE = this;
Loc = Op->getOperatorLoc();
R1 = Op->getSourceRange();
return true;
}
// Fallthrough for generic call handling.
LLVM_FALLTHROUGH;
}
case CallExprClass:
case CXXMemberCallExprClass:
case UserDefinedLiteralClass: {
// If this is a direct call, get the callee.
const CallExpr *CE = cast<CallExpr>(this);
if (const Decl *FD = CE->getCalleeDecl()) {
// If the callee has attribute pure, const, or warn_unused_result, warn
// about it. void foo() { strlen("bar"); } should warn.
//
// Note: If new cases are added here, DiagnoseUnusedExprResult should be
// updated to match for QoI.
if (CE->hasUnusedResultAttr(Ctx) ||
FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
WarnE = this;
Loc = CE->getCallee()->getBeginLoc();
R1 = CE->getCallee()->getSourceRange();
if (unsigned NumArgs = CE->getNumArgs())
R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
CE->getArg(NumArgs - 1)->getEndLoc());
return true;
}
}
return false;
}
// If we don't know precisely what we're looking at, let's not warn.
case UnresolvedLookupExprClass:
case CXXUnresolvedConstructExprClass:
case RecoveryExprClass:
return false;
case CXXTemporaryObjectExprClass:
case CXXConstructExprClass: {
if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
if (Type->hasAttr<WarnUnusedAttr>() ||
(WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
WarnE = this;
Loc = getBeginLoc();
R1 = getSourceRange();
return true;
}
}
const auto *CE = cast<CXXConstructExpr>(this);
if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
WarnE = this;
Loc = getBeginLoc();
R1 = getSourceRange();
if (unsigned NumArgs = CE->getNumArgs())
R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
CE->getArg(NumArgs - 1)->getEndLoc());
return true;
}
}
return false;
}
case ObjCMessageExprClass: {
const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
if (Ctx.getLangOpts().ObjCAutoRefCount &&
ME->isInstanceMessage() &&
!ME->getType()->isVoidType() &&
ME->getMethodFamily() == OMF_init) {
WarnE = this;
Loc = getExprLoc();
R1 = ME->getSourceRange();
return true;
}
if (const ObjCMethodDecl *MD = ME->getMethodDecl())
if (MD->hasAttr<WarnUnusedResultAttr>()) {
WarnE = this;
Loc = getExprLoc();
return true;
}
return false;
}
case ObjCPropertyRefExprClass:
WarnE = this;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
case PseudoObjectExprClass: {
const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
// Only complain about things that have the form of a getter.
if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
isa<BinaryOperator>(PO->getSyntacticForm()))
return false;
WarnE = this;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
}
case StmtExprClass: {
// Statement exprs don't logically have side effects themselves, but are
// sometimes used in macros in ways that give them a type that is unused.
// For example ({ blah; foo(); }) will end up with a type if foo has a type.
// however, if the result of the stmt expr is dead, we don't want to emit a
// warning.
const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
if (!CS->body_empty()) {
if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
if (getType()->isVoidType())
return false;
WarnE = this;
Loc = cast<StmtExpr>(this)->getLParenLoc();
R1 = getSourceRange();
return true;
}
case CXXFunctionalCastExprClass:
case CStyleCastExprClass: {
// Ignore an explicit cast to void, except in C++98 if the operand is a
// volatile glvalue for which we would trigger an implicit read in any
// other language mode. (Such an implicit read always happens as part of
// the lvalue conversion in C, and happens in C++ for expressions of all
// forms where it seems likely the user intended to trigger a volatile
// load.)
const CastExpr *CE = cast<CastExpr>(this);
const Expr *SubE = CE->getSubExpr()->IgnoreParens();
if (CE->getCastKind() == CK_ToVoid) {
if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
SubE->isReadIfDiscardedInCPlusPlus11()) {
// Suppress the "unused value" warning for idiomatic usage of
// '(void)var;' used to suppress "unused variable" warnings.
if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
if (!VD->isExternallyVisible())
return false;
// The lvalue-to-rvalue conversion would have no effect for an array.
// It's implausible that the programmer expected this to result in a
// volatile array load, so don't warn.
if (SubE->getType()->isArrayType())
return false;
return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
return false;
}
// If this is a cast to a constructor conversion, check the operand.
// Otherwise, the result of the cast is unused.
if (CE->getCastKind() == CK_ConstructorConversion)
return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
WarnE = this;
if (const CXXFunctionalCastExpr *CXXCE =
dyn_cast<CXXFunctionalCastExpr>(this)) {
Loc = CXXCE->getBeginLoc();
R1 = CXXCE->getSubExpr()->getSourceRange();
} else {
const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
Loc = CStyleCE->getLParenLoc();
R1 = CStyleCE->getSubExpr()->getSourceRange();
}
return true;
}
case ImplicitCastExprClass: {
const CastExpr *ICE = cast<ImplicitCastExpr>(this);
// lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
if (ICE->getCastKind() == CK_LValueToRValue &&
ICE->getSubExpr()->getType().isVolatileQualified())
return false;
return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
case CXXDefaultArgExprClass:
return (cast<CXXDefaultArgExpr>(this)
->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
case CXXDefaultInitExprClass:
return (cast<CXXDefaultInitExpr>(this)
->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
case CXXNewExprClass:
// FIXME: In theory, there might be new expressions that don't have side
// effects (e.g. a placement new with an uninitialized POD).
case CXXDeleteExprClass:
return false;
case MaterializeTemporaryExprClass:
return cast<MaterializeTemporaryExpr>(this)
->getSubExpr()
->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case CXXBindTemporaryExprClass:
return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case ExprWithCleanupsClass:
return cast<ExprWithCleanups>(this)->getSubExpr()
->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
}
/// isOBJCGCCandidate - Check if an expression is objc gc'able.
/// returns true, if it is; false otherwise.
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
const Expr *E = IgnoreParens();
switch (E->getStmtClass()) {
default:
return false;
case ObjCIvarRefExprClass:
return true;
case Expr::UnaryOperatorClass:
return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
case ImplicitCastExprClass:
return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
case MaterializeTemporaryExprClass:
return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
Ctx);
case CStyleCastExprClass:
return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
case DeclRefExprClass: {
const Decl *D = cast<DeclRefExpr>(E)->getDecl();
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasGlobalStorage())
return true;
QualType T = VD->getType();
// dereferencing to a pointer is always a gc'able candidate,
// unless it is __weak.
return T->isPointerType() &&
(Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
}
return false;
}
case MemberExprClass: {
const MemberExpr *M = cast<MemberExpr>(E);
return M->getBase()->isOBJCGCCandidate(Ctx);
}
case ArraySubscriptExprClass:
return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
}
}
bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
if (isTypeDependent())
return false;
return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
}
QualType Expr::findBoundMemberType(const Expr *expr) {
assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
// Bound member expressions are always one of these possibilities:
// x->m x.m x->*y x.*y
// (possibly parenthesized)
expr = expr->IgnoreParens();
if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
return mem->getMemberDecl()->getType();
}
if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
->getPointeeType();
assert(type->isFunctionType());
return type;
}
assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
return QualType();
}
static Expr *IgnoreImpCastsSingleStep(Expr *E) {
if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
return ICE->getSubExpr();
if (auto *FE = dyn_cast<FullExpr>(E))
return FE->getSubExpr();
return E;
}
static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
// FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
// addition to what IgnoreImpCasts() skips to account for the current
// behaviour of IgnoreParenImpCasts().
Expr *SubE = IgnoreImpCastsSingleStep(E);
if (SubE != E)
return SubE;
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
return MTE->getSubExpr();
if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
return NTTP->getReplacement();
return E;
}
static Expr *IgnoreCastsSingleStep(Expr *E) {
if (auto *CE = dyn_cast<CastExpr>(E))
return CE->getSubExpr();
if (auto *FE = dyn_cast<FullExpr>(E))
return FE->getSubExpr();
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
return MTE->getSubExpr();
if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
return NTTP->getReplacement();
return E;
}
static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
// Skip what IgnoreCastsSingleStep skips, except that only
// lvalue-to-rvalue casts are skipped.
if (auto *CE = dyn_cast<CastExpr>(E))
if (CE->getCastKind() != CK_LValueToRValue)
return E;
return IgnoreCastsSingleStep(E);
}
static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
if (auto *CE = dyn_cast<CastExpr>(E))
if (CE->getCastKind() == CK_DerivedToBase ||
CE->getCastKind() == CK_UncheckedDerivedToBase ||
CE->getCastKind() == CK_NoOp)
return CE->getSubExpr();
return E;
}
static Expr *IgnoreImplicitSingleStep(Expr *E) {
Expr *SubE = IgnoreImpCastsSingleStep(E);
if (SubE != E)
return SubE;
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
return MTE->getSubExpr();
if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
return BTE->getSubExpr();
return E;
}
static Expr *IgnoreImplicitAsWrittenSingleStep(Expr *E) {
if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
return ICE->getSubExprAsWritten();
return IgnoreImplicitSingleStep(E);
}
static Expr *IgnoreParensOnlySingleStep(Expr *E) {
if (auto *PE = dyn_cast<ParenExpr>(E))
return PE->getSubExpr();
return E;
}
static Expr *IgnoreParensSingleStep(Expr *E) {
if (auto *PE = dyn_cast<ParenExpr>(E))
return PE->getSubExpr();
if (auto *UO = dyn_cast<UnaryOperator>(E)) {
if (UO->getOpcode() == UO_Extension)
return UO->getSubExpr();
}
else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
if (!GSE->isResultDependent())
return GSE->getResultExpr();
}
else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
if (!CE->isConditionDependent())
return CE->getChosenSubExpr();
}
return E;
}
static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
if (auto *CE = dyn_cast<CastExpr>(E)) {
// We ignore integer <-> casts that are of the same width, ptr<->ptr and
// ptr<->int casts of the same width. We also ignore all identity casts.
Expr *SubExpr = CE->getSubExpr();
bool IsIdentityCast =
Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
bool IsSameWidthCast =
(E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
(SubExpr->getType()->isPointerType() ||
SubExpr->getType()->isIntegralType(Ctx)) &&
(Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
if (IsIdentityCast || IsSameWidthCast)
return SubExpr;
}
else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
return NTTP->getReplacement();
return E;
}
static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
template <typename FnTy, typename... FnTys>
static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
}
/// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
/// Recursively apply each of the functions to E until reaching a fixed point.
/// Note that a null E is valid; in this case nothing is done.
template <typename... FnTys>
static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
Expr *LastE = nullptr;
while (E != LastE) {
LastE = E;
E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
}
return E;
}
Expr *Expr::IgnoreImpCasts() {
return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
}
Expr *Expr::IgnoreCasts() {
return IgnoreExprNodes(this, IgnoreCastsSingleStep);
}
Expr *Expr::IgnoreImplicit() {
return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
}
Expr *Expr::IgnoreImplicitAsWritten() {
return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
}
Expr *Expr::IgnoreParens() {
return IgnoreExprNodes(this, IgnoreParensSingleStep);
}
Expr *Expr::IgnoreParenImpCasts() {
return IgnoreExprNodes(this, IgnoreParensSingleStep,
IgnoreImpCastsExtraSingleStep);
}
Expr *Expr::IgnoreParenCasts() {
return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
}
Expr *Expr::IgnoreConversionOperator() {
if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
return MCE->getImplicitObjectArgument();
}
return this;
}
Expr *Expr::IgnoreParenLValueCasts() {
return IgnoreExprNodes(this, IgnoreParensSingleStep,
IgnoreLValueCastsSingleStep);
}
Expr *Expr::ignoreParenBaseCasts() {
return IgnoreExprNodes(this, IgnoreParensSingleStep,
IgnoreBaseCastsSingleStep);
}
Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
return IgnoreNoopCastsSingleStep(Ctx, E);
});
}
Expr *Expr::IgnoreUnlessSpelledInSource() {
Expr *E = this;
Expr *LastE = nullptr;
while (E != LastE) {
LastE = E;
E = IgnoreExprNodes(E, IgnoreImplicitSingleStep,
IgnoreImpCastsExtraSingleStep,
IgnoreParensOnlySingleStep);
auto SR = E->getSourceRange();
if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
auto NumArgs = C->getNumArgs();
if (NumArgs == 1 ||
(NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
Expr *A = C->getArg(0);
if (A->getSourceRange() == SR || !isa<CXXTemporaryObjectExpr>(C))
E = A;
}
}
if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
Expr *ExprNode = C->getImplicitObjectArgument();
if (ExprNode->getSourceRange() == SR) {
E = ExprNode;
continue;
}
if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
if (PE->getSourceRange() == C->getSourceRange()) {
E = PE;
continue;
}
}
ExprNode = ExprNode->IgnoreParenImpCasts();
if (ExprNode->getSourceRange() == SR)
E = ExprNode;
}
}
return E;
}
bool Expr::isDefaultArgument() const {
const Expr *E = this;
if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
E = M->getSubExpr();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
E = ICE->getSubExprAsWritten();
return isa<CXXDefaultArgExpr>(E);
}
/// Skip over any no-op casts and any temporary-binding
/// expressions.
static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
E = M->getSubExpr();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_NoOp)
E = ICE->getSubExpr();
else
break;
}
while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
E = BE->getSubExpr();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_NoOp)
E = ICE->getSubExpr();
else
break;
}
return E->IgnoreParens();
}
/// isTemporaryObject - Determines if this expression produces a
/// temporary of the given class type.
bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
return false;
const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
// Temporaries are by definition pr-values of class type.
if (!E->Classify(C).isPRValue()) {
// In this context, property reference is a message call and is pr-value.
if (!isa<ObjCPropertyRefExpr>(E))
return false;
}
// Black-list a few cases which yield pr-values of class type that don't
// refer to temporaries of that type:
// - implicit derived-to-base conversions
if (isa<ImplicitCastExpr>(E)) {
switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
return false;
default:
break;
}
}
// - member expressions (all)
if (isa<MemberExpr>(E))
return false;
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
if (BO->isPtrMemOp())
return false;
// - opaque values (all)
if (isa<OpaqueValueExpr>(E))
return false;
return true;
}
bool Expr::isImplicitCXXThis() const {
const Expr *E = this;
// Strip away parentheses and casts we don't care about.
while (true) {
if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
E = Paren->getSubExpr();
continue;
}
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_NoOp ||
ICE->getCastKind() == CK_LValueToRValue ||
ICE->getCastKind() == CK_DerivedToBase ||
ICE->getCastKind() == CK_UncheckedDerivedToBase) {
E = ICE->getSubExpr();
continue;
}
}
if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
if (UnOp->getOpcode() == UO_Extension) {
E = UnOp->getSubExpr();
continue;
}
}
if (const MaterializeTemporaryExpr *M
= dyn_cast<MaterializeTemporaryExpr>(E)) {
E = M->getSubExpr();
continue;
}
break;
}
if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
return This->isImplicit();
return false;
}
/// hasAnyTypeDependentArguments - Determines if any of the expressions
/// in Exprs is type-dependent.
bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
for (unsigned I = 0; I < Exprs.size(); ++I)
if (Exprs[I]->isTypeDependent())
return true;
return false;
}
bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
const Expr **Culprit) const {
assert(!isValueDependent() &&
"Expression evaluator can't be called on a dependent expression.");
// This function is attempting whether an expression is an initializer
// which can be evaluated at compile-time. It very closely parallels
// ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
// will lead to unexpected results. Like ConstExprEmitter, it falls back
// to isEvaluatable most of the time.
//
// If we ever capture reference-binding directly in the AST, we can
// kill the second parameter.
if (IsForRef) {
EvalResult Result;
if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
return true;
if (Culprit)
*Culprit = this;
return false;
}
switch (getStmtClass()) {
default: break;
case Stmt::ExprWithCleanupsClass:
return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
Ctx, IsForRef, Culprit);
case StringLiteralClass:
case ObjCEncodeExprClass:
return true;
case CXXTemporaryObjectExprClass:
case CXXConstructExprClass: {
const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
if (CE->getConstructor()->isTrivial() &&
CE->getConstructor()->getParent()->hasTrivialDestructor()) {
// Trivial default constructor
if (!CE->getNumArgs()) return true;
// Trivial copy constructor
assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
}
break;
}
case ConstantExprClass: {
// FIXME: We should be able to return "true" here, but it can lead to extra
// error messages. E.g. in Sema/array-init.c.
const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
return Exp->isConstantInitializer(Ctx, false, Culprit);
}
case CompoundLiteralExprClass: {
// This handles gcc's extension that allows global initializers like
// "struct x {int x;} x = (struct x) {};".
// FIXME: This accepts other cases it shouldn't!
const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
return Exp->isConstantInitializer(Ctx, false, Culprit);
}
case DesignatedInitUpdateExprClass: {
const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
}
case InitListExprClass: {
const InitListExpr *ILE = cast<InitListExpr>(this);
assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
if (ILE->getType()->isArrayType()) {
unsigned numInits = ILE->getNumInits();
for (unsigned i = 0; i < numInits; i++) {
if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
return false;
}
return true;
}
if (ILE->getType()->isRecordType()) {
unsigned ElementNo = 0;
RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
for (const auto *Field : RD->fields()) {
// If this is a union, skip all the fields that aren't being initialized.
if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
continue;
// Don't emit anonymous bitfields, they just affect layout.
if (Field->isUnnamedBitfield())
continue;
if (ElementNo < ILE->getNumInits()) {
const Expr *Elt = ILE->getInit(ElementNo++);
if (Field->isBitField()) {
// Bitfields have to evaluate to an integer.
EvalResult Result;
if (!Elt->EvaluateAsInt(Result, Ctx)) {
if (Culprit)
*Culprit = Elt;
return false;
}
} else {
bool RefType = Field->getType()->isReferenceType();
if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
return false;
}
}
}
return true;
}
break;
}
case ImplicitValueInitExprClass:
case NoInitExprClass:
return true;
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()
->isConstantInitializer(Ctx, IsForRef, Culprit);
case GenericSelectionExprClass:
return cast<GenericSelectionExpr>(this)->getResultExpr()
->isConstantInitializer(Ctx, IsForRef, Culprit);
case ChooseExprClass:
if (cast<ChooseExpr>(this)->isConditionDependent()) {
if (Culprit)
*Culprit = this;
return false;
}
return cast<ChooseExpr>(this)->getChosenSubExpr()
->isConstantInitializer(Ctx, IsForRef, Culprit);
case UnaryOperatorClass: {
const UnaryOperator* Exp = cast<UnaryOperator>(this);
if (Exp->getOpcode() == UO_Extension)
return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
break;
}
case CXXFunctionalCastExprClass:
case CXXStaticCastExprClass:
case ImplicitCastExprClass:
case CStyleCastExprClass:
case ObjCBridgedCastExprClass:
case CXXDynamicCastExprClass:
case CXXReinterpretCastExprClass:
case CXXAddrspaceCastExprClass:
case CXXConstCastExprClass: {
const CastExpr *CE = cast<CastExpr>(this);
// Handle misc casts we want to ignore.
if (CE->getCastKind() == CK_NoOp ||
CE->getCastKind() == CK_LValueToRValue ||
CE->getCastKind() == CK_ToUnion ||
CE->getCastKind() == CK_ConstructorConversion ||
CE->getCastKind() == CK_NonAtomicToAtomic ||
CE->getCastKind() == CK_AtomicToNonAtomic ||
CE->getCastKind() == CK_IntToOCLSampler)
return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
break;
}
case MaterializeTemporaryExprClass:
return cast<MaterializeTemporaryExpr>(this)
->getSubExpr()
->isConstantInitializer(Ctx, false, Culprit);
case SubstNonTypeTemplateParmExprClass:
return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
->isConstantInitializer(Ctx, false, Culprit);
case CXXDefaultArgExprClass:
return cast<CXXDefaultArgExpr>(this)->getExpr()
->isConstantInitializer(Ctx, false, Culprit);
case CXXDefaultInitExprClass:
return cast<CXXDefaultInitExpr>(this)->getExpr()
->isConstantInitializer(Ctx, false, Culprit);
}
// Allow certain forms of UB in constant initializers: signed integer
// overflow and floating-point division by zero. We'll give a warning on
// these, but they're common enough that we have to accept them.
if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
return true;
if (Culprit)
*Culprit = this;
return false;
}
bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
const FunctionDecl* FD = getDirectCallee();
if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
FD->getBuiltinID() != Builtin::BI__builtin_assume))
return false;
const Expr* Arg = getArg(0);
bool ArgVal;
return !Arg->isValueDependent() &&
Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
}
namespace {
/// Look for any side effects within a Stmt.
class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
const bool IncludePossibleEffects;
bool HasSideEffects;
public:
explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
: Inherited(Context),
IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
bool hasSideEffects() const { return HasSideEffects; }
void VisitDecl(const Decl *D) {
if (!D)
return;
// We assume the caller checks subexpressions (eg, the initializer, VLA
// bounds) for side-effects on our behalf.
if (auto *VD = dyn_cast<VarDecl>(D)) {
// Registering a destructor is a side-effect.
if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
VD->needsDestruction(Context))
HasSideEffects = true;
}
}
void VisitDeclStmt(const DeclStmt *DS) {
for (auto *D : DS->decls())
VisitDecl(D);
Inherited::VisitDeclStmt(DS);
}
void VisitExpr(const Expr *E) {
if (!HasSideEffects &&
E->HasSideEffects(Context, IncludePossibleEffects))
HasSideEffects = true;
}
};
}
bool Expr::HasSideEffects(const ASTContext &Ctx,
bool IncludePossibleEffects) const {
// In circumstances where we care about definite side effects instead of
// potential side effects, we want to ignore expressions that are part of a
// macro expansion as a potential side effect.
if (!IncludePossibleEffects && getExprLoc().isMacroID())
return false;
if (isInstantiationDependent())
return IncludePossibleEffects;
switch (getStmtClass()) {
case NoStmtClass:
#define ABSTRACT_STMT(Type)
#define STMT(Type, Base) case Type##Class:
#define EXPR(Type, Base)
#include "clang/AST/StmtNodes.inc"
llvm_unreachable("unexpected Expr kind");
case DependentScopeDeclRefExprClass:
case CXXUnresolvedConstructExprClass:
case CXXDependentScopeMemberExprClass:
case UnresolvedLookupExprClass:
case UnresolvedMemberExprClass:
case PackExpansionExprClass:
case SubstNonTypeTemplateParmPackExprClass:
case FunctionParmPackExprClass:
case TypoExprClass:
case RecoveryExprClass:
case CXXFoldExprClass:
llvm_unreachable("shouldn't see dependent / unresolved nodes here");
case DeclRefExprClass:
case ObjCIvarRefExprClass:
case PredefinedExprClass:
case IntegerLiteralClass:
case FixedPointLiteralClass:
case FloatingLiteralClass:
case ImaginaryLiteralClass:
case StringLiteralClass:
case CharacterLiteralClass:
case OffsetOfExprClass:
case ImplicitValueInitExprClass:
case UnaryExprOrTypeTraitExprClass:
case AddrLabelExprClass:
case GNUNullExprClass:
case ArrayInitIndexExprClass:
case NoInitExprClass:
case CXXBoolLiteralExprClass:
case CXXNullPtrLiteralExprClass:
case CXXThisExprClass:
case CXXScalarValueInitExprClass:
case TypeTraitExprClass:
case ArrayTypeTraitExprClass:
case ExpressionTraitExprClass:
case CXXNoexceptExprClass:
case SizeOfPackExprClass:
case ObjCStringLiteralClass:
case ObjCEncodeExprClass:
case ObjCBoolLiteralExprClass:
case ObjCAvailabilityCheckExprClass:
case CXXUuidofExprClass:
case OpaqueValueExprClass:
case SourceLocExprClass:
case ConceptSpecializationExprClass:
case RequiresExprClass:
// These never have a side-effect.
return false;
case ConstantExprClass:
// FIXME: Move this into the "return false;" block above.
return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
Ctx, IncludePossibleEffects);
case CallExprClass:
case CXXOperatorCallExprClass:
case CXXMemberCallExprClass:
case CUDAKernelCallExprClass:
case UserDefinedLiteralClass: {
// We don't know a call definitely has side effects, except for calls
// to pure/const functions that definitely don't.
// If the call itself is considered side-effect free, check the operands.
const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
if (IsPure || !IncludePossibleEffects)
break;
return true;
}
case BlockExprClass:
case CXXBindTemporaryExprClass:
if (!IncludePossibleEffects)
break;
return true;
case MSPropertyRefExprClass:
case MSPropertySubscriptExprClass:
case CompoundAssignOperatorClass:
case VAArgExprClass:
case AtomicExprClass:
case CXXThrowExprClass:
case CXXNewExprClass:
case CXXDeleteExprClass:
case CoawaitExprClass:
case DependentCoawaitExprClass:
case CoyieldExprClass:
// These always have a side-effect.
return true;
case StmtExprClass: {
// StmtExprs have a side-effect if any substatement does.
SideEffectFinder Finder(Ctx, IncludePossibleEffects);
Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
return Finder.hasSideEffects();
}
case ExprWithCleanupsClass:
if (IncludePossibleEffects)
if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
return true;
break;
case ParenExprClass:
case ArraySubscriptExprClass:
case MatrixSubscriptExprClass:
case OMPArraySectionExprClass:
case OMPArrayShapingExprClass:
case OMPIteratorExprClass:
case MemberExprClass:
case ConditionalOperatorClass:
case BinaryConditionalOperatorClass:
case CompoundLiteralExprClass:
case ExtVectorElementExprClass:
case DesignatedInitExprClass:
case DesignatedInitUpdateExprClass:
case ArrayInitLoopExprClass:
case ParenListExprClass:
case CXXPseudoDestructorExprClass:
case CXXRewrittenBinaryOperatorClass:
case CXXStdInitializerListExprClass:
case SubstNonTypeTemplateParmExprClass:
case MaterializeTemporaryExprClass:
case ShuffleVectorExprClass:
case ConvertVectorExprClass:
case AsTypeExprClass:
// These have a side-effect if any subexpression does.
break;
case UnaryOperatorClass:
if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
return true;
break;
case BinaryOperatorClass:
if (cast<BinaryOperator>(this)->isAssignmentOp())
return true;
break;
case InitListExprClass:
// FIXME: The children for an InitListExpr doesn't include the array filler.
if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
if (E->HasSideEffects(Ctx, IncludePossibleEffects))
return true;
break;
case GenericSelectionExprClass:
return cast<GenericSelectionExpr>(this)->getResultExpr()->
HasSideEffects(Ctx, IncludePossibleEffects);
case ChooseExprClass:
return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
Ctx, IncludePossibleEffects);
case CXXDefaultArgExprClass:
return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
Ctx, IncludePossibleEffects);
case CXXDefaultInitExprClass: {
const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
if (const Expr *E = FD->getInClassInitializer())
return E->HasSideEffects(Ctx, IncludePossibleEffects);
// If we've not yet parsed the initializer, assume it has side-effects.
return true;
}
case CXXDynamicCastExprClass: {
// A dynamic_cast expression has side-effects if it can throw.
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
if (DCE->getTypeAsWritten()->isReferenceType() &&
DCE->getCastKind() == CK_Dynamic)
return true;
}
LLVM_FALLTHROUGH;
case ImplicitCastExprClass:
case CStyleCastExprClass:
case CXXStaticCastExprClass:
case CXXReinterpretCastExprClass:
case CXXConstCastExprClass:
case CXXAddrspaceCastExprClass:
case CXXFunctionalCastExprClass:
case BuiltinBitCastExprClass: {
// While volatile reads are side-effecting in both C and C++, we treat them
// as having possible (not definite) side-effects. This allows idiomatic
// code to behave without warning, such as sizeof(*v) for a volatile-
// qualified pointer.
if (!IncludePossibleEffects)
break;
const CastExpr *CE = cast<CastExpr>(this);
if (CE->getCastKind() == CK_LValueToRValue &&
CE->getSubExpr()->getType().isVolatileQualified())
return true;
break;
}
case CXXTypeidExprClass:
// typeid might throw if its subexpression is potentially-evaluated, so has
// side-effects in that case whether or not its subexpression does.
return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
case CXXConstructExprClass:
case CXXTemporaryObjectExprClass: {
const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
return true;
// A trivial constructor does not add any side-effects of its own. Just look
// at its arguments.
break;
}
case CXXInheritedCtorInitExprClass: {
const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
return true;
break;
}
case LambdaExprClass: {
const LambdaExpr *LE = cast<LambdaExpr>(this);
for (Expr *E : LE->capture_inits())
if (E->HasSideEffects(Ctx, IncludePossibleEffects))
return true;
return false;
}
case PseudoObjectExprClass: {
// Only look for side-effects in the semantic form, and look past
// OpaqueValueExpr bindings in that form.
const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
E = PO->semantics_end();
I != E; ++I) {
const Expr *Subexpr = *I;
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
Subexpr = OVE->getSourceExpr();
if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
return true;
}
return false;
}
case ObjCBoxedExprClass:
case ObjCArrayLiteralClass:
case ObjCDictionaryLiteralClass:
case ObjCSelectorExprClass:
case ObjCProtocolExprClass:
case ObjCIsaExprClass:
case ObjCIndirectCopyRestoreExprClass:
case ObjCSubscriptRefExprClass:
case ObjCBridgedCastExprClass:
case ObjCMessageExprClass:
case ObjCPropertyRefExprClass:
// FIXME: Classify these cases better.
if (IncludePossibleEffects)
return true;
break;
}
// Recurse to children.
for (const Stmt *SubStmt : children())
if (SubStmt &&
cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
return true;
return false;
}
namespace {
/// Look for a call to a non-trivial function within an expression.
class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
{
typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
bool NonTrivial;
public:
explicit NonTrivialCallFinder(const ASTContext &Context)
: Inherited(Context), NonTrivial(false) { }
bool hasNonTrivialCall() const { return NonTrivial; }
void VisitCallExpr(const CallExpr *E) {
if (const CXXMethodDecl *Method
= dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
if (Method->isTrivial()) {
// Recurse to children of the call.
Inherited::VisitStmt(E);
return;
}
}
NonTrivial = true;
}
void VisitCXXConstructExpr(const CXXConstructExpr *E) {
if (E->getConstructor()->isTrivial()) {
// Recurse to children of the call.
Inherited::VisitStmt(E);
return;
}
NonTrivial = true;
}
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
if (E->getTemporary()->getDestructor()->isTrivial()) {
Inherited::VisitStmt(E);
return;
}
NonTrivial = true;
}
};
}
bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
NonTrivialCallFinder Finder(Ctx);
Finder.Visit(this);
return Finder.hasNonTrivialCall();
}
/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
/// pointer constant or not, as well as the specific kind of constant detected.
/// Null pointer constants can be integer constant expressions with the
/// value zero, casts of zero to void*, nullptr (C++0X), or __null
/// (a GNU extension).
Expr::NullPointerConstantKind
Expr::isNullPointerConstant(ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const {
if (isValueDependent() &&
(!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
switch (NPC) {
case NPC_NeverValueDependent:
llvm_unreachable("Unexpected value dependent expression!");
case NPC_ValueDependentIsNull:
if (isTypeDependent() || getType()->isIntegralType(Ctx))
return NPCK_ZeroExpression;
else
return NPCK_NotNull;
case NPC_ValueDependentIsNotNull:
return NPCK_NotNull;
}
}
// Strip off a cast to void*, if it exists. Except in C++.
if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
if (!Ctx.getLangOpts().CPlusPlus) {
// Check that it is a cast to void*.
if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
QualType Pointee = PT->getPointeeType();
Qualifiers Qs = Pointee.getQualifiers();
// Only (void*)0 or equivalent are treated as nullptr. If pointee type
// has non-default address space it is not treated as nullptr.
// (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
// since it cannot be assigned to a pointer to constant address space.
if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
Pointee.getAddressSpace() == LangAS::opencl_generic) ||
(Ctx.getLangOpts().OpenCL &&
Ctx.getLangOpts().OpenCLVersion < 200 &&
Pointee.getAddressSpace() == LangAS::opencl_private))
Qs.removeAddressSpace();
if (Pointee->isVoidType() && Qs.empty() && // to void*
CE->getSubExpr()->getType()->isIntegerType()) // from int
return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
}
}
} else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
// Ignore the ImplicitCastExpr type entirely.
return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
// Accept ((void*)0) as a null pointer constant, as many other
// implementations do.
return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const GenericSelectionExpr *GE =
dyn_cast<GenericSelectionExpr>(this)) {
if (GE->isResultDependent())
return NPCK_NotNull;
return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
if (CE->isConditionDependent())
return NPCK_NotNull;
return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const CXXDefaultArgExpr *DefaultArg
= dyn_cast<CXXDefaultArgExpr>(this)) {
// See through default argument expressions.
return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const CXXDefaultInitExpr *DefaultInit
= dyn_cast<CXXDefaultInitExpr>(this)) {
// See through default initializer expressions.
return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
} else if (isa<GNUNullExpr>(this)) {
// The GNU __null extension is always a null pointer constant.
return NPCK_GNUNull;
} else if (const MaterializeTemporaryExpr *M
= dyn_cast<MaterializeTemporaryExpr>(this)) {
return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
if (const Expr *Source = OVE->getSourceExpr())
return Source->isNullPointerConstant(Ctx, NPC);
}
// C++11 nullptr_t is always a null pointer constant.
if (getType()->isNullPtrType())
return NPCK_CXX11_nullptr;
if (const RecordType *UT = getType()->getAsUnionType())
if (!Ctx.getLangOpts().CPlusPlus11 &&
UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
const Expr *InitExpr = CLE->getInitializer();
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
}
// This expression must be an integer type.
if (!getType()->isIntegerType() ||
(Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
return NPCK_NotNull;
if (Ctx.getLangOpts().CPlusPlus11) {
// C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
// value zero or a prvalue of type std::nullptr_t.
// Microsoft mode permits C++98 rules reflecting MSVC behavior.
const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
if (Lit && !Lit->getValue())
return NPCK_ZeroLiteral;
else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
return NPCK_NotNull;
} else {
// If we have an integer constant expression, we need to *evaluate* it and
// test for the value 0.
if (!isIntegerConstantExpr(Ctx))
return NPCK_NotNull;
}
if (EvaluateKnownConstInt(Ctx) != 0)
return NPCK_NotNull;
if (isa<IntegerLiteral>(this))
return NPCK_ZeroLiteral;
return NPCK_ZeroExpression;
}
/// If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
const Expr *E = this;
while (true) {
assert((E->getValueKind() == VK_LValue &&
E->getObjectKind() == OK_ObjCProperty) &&
"expression is not a property reference");
E = E->IgnoreParenCasts();
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Comma) {
E = BO->getRHS();
continue;
}
}
break;
}
return cast<ObjCPropertyRefExpr>(E);
}
bool Expr::isObjCSelfExpr() const {
const Expr *E = IgnoreParenImpCasts();
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE)
return false;
const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
if (!Param)
return false;
const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
if (!M)
return false;
return M->getSelfDecl() == Param;
}
FieldDecl *Expr::getSourceBitField() {
Expr *E = this->IgnoreParens();
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_LValueToRValue ||
(ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
E = ICE->getSubExpr()->IgnoreParens();
else
break;
}
if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
if (Field->isBitField())
return Field;
if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
FieldDecl *Ivar = IvarRef->getDecl();
if (Ivar->isBitField())
return Ivar;
}
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
if (Field->isBitField())
return Field;
if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
if (Expr *E = BD->getBinding())
return E->getSourceBitField();
}
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
if (BinOp->isAssignmentOp() && BinOp->getLHS())
return BinOp->getLHS()->getSourceBitField();
if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
return BinOp->getRHS()->getSourceBitField();
}
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
return UnOp->getSubExpr()->getSourceBitField();
return nullptr;
}
bool Expr::refersToVectorElement() const {
// FIXME: Why do we not just look at the ObjectKind here?
const Expr *E = this->IgnoreParens();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getValueKind() != VK_RValue &&
ICE->getCastKind() == CK_NoOp)
E = ICE->getSubExpr()->IgnoreParens();
else
break;
}
if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
return ASE->getBase()->getType()->isVectorType();
if (isa<ExtVectorElementExpr>(E))
return true;
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
if (auto *E = BD->getBinding())
return E->refersToVectorElement();
return false;
}
bool Expr::refersToGlobalRegisterVar() const {
const Expr *E = this->IgnoreParenImpCasts();
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
if (VD->getStorageClass() == SC_Register &&
VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
return true;
return false;
}
bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
E1 = E1->IgnoreParens();
E2 = E2->IgnoreParens();
if (E1->getStmtClass() != E2->getStmtClass())
return false;
switch (E1->getStmtClass()) {
default:
return false;
case CXXThisExprClass:
return true;
case DeclRefExprClass: {
// DeclRefExpr without an ImplicitCastExpr can happen for integral
// template parameters.
const auto *DRE1 = cast<DeclRefExpr>(E1);
const auto *DRE2 = cast<DeclRefExpr>(E2);
return DRE1->isRValue() && DRE2->isRValue() &&
DRE1->getDecl() == DRE2->getDecl();
}
case ImplicitCastExprClass: {
// Peel off implicit casts.
while (true) {
const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
if (!ICE1 || !ICE2)
return false;
if (ICE1->getCastKind() != ICE2->getCastKind())
return false;
E1 = ICE1->getSubExpr()->IgnoreParens();
E2 = ICE2->getSubExpr()->IgnoreParens();
// The final cast must be one of these types.
if (ICE1->getCastKind() == CK_LValueToRValue ||
ICE1->getCastKind() == CK_ArrayToPointerDecay ||
ICE1->getCastKind() == CK_FunctionToPointerDecay) {
break;
}
}
const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
if (DRE1 && DRE2)
return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
if (Ivar1 && Ivar2) {
return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
}
const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
if (Array1 && Array2) {
if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
return false;
auto Idx1 = Array1->getIdx();
auto Idx2 = Array2->getIdx();
const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
if (Integer1 && Integer2) {
if (!llvm::APInt::isSameValue(Integer1->getValue(),
Integer2->getValue()))
return false;
} else {
if (!isSameComparisonOperand(Idx1, Idx2))
return false;
}
return true;
}
// Walk the MemberExpr chain.
while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
const auto *ME1 = cast<MemberExpr>(E1);
const auto *ME2 = cast<MemberExpr>(E2);
if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
return false;
if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
if (D->isStaticDataMember())
return true;
E1 = ME1->getBase()->IgnoreParenImpCasts();
E2 = ME2->getBase()->IgnoreParenImpCasts();
}
if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
return true;
// A static member variable can end the MemberExpr chain with either
// a MemberExpr or a DeclRefExpr.
auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getDecl();
if (const auto *ME = dyn_cast<MemberExpr>(E))
return ME->getMemberDecl();
return nullptr;
};
const ValueDecl *VD1 = getAnyDecl(E1);
const ValueDecl *VD2 = getAnyDecl(E2);
return declaresSameEntity(VD1, VD2);
}
}
}
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool ExtVectorElementExpr::isArrow() const {
return getBase()->getType()->isPointerType();
}
unsigned ExtVectorElementExpr::getNumElements() const {
if (const VectorType *VT = getType()->getAs<VectorType>())
return VT->getNumElements();
return 1;
}
/// containsDuplicateElements - Return true if any element access is repeated.
bool ExtVectorElementExpr::containsDuplicateElements() const {
// FIXME: Refactor this code to an accessor on the AST node which returns the
// "type" of component access, and share with code below and in Sema.
StringRef Comp = Accessor->getName();
// Halving swizzles do not contain duplicate elements.
if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
return false;
// Advance past s-char prefix on hex swizzles.
if (Comp[0] == 's' || Comp[0] == 'S')
Comp = Comp.substr(1);
for (unsigned i = 0, e = Comp.size(); i != e; ++i)
if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
return true;
return false;
}
/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
void ExtVectorElementExpr::getEncodedElementAccess(
SmallVectorImpl<uint32_t> &Elts) const {
StringRef Comp = Accessor->getName();
bool isNumericAccessor = false;
if (Comp[0] == 's' || Comp[0] == 'S') {
Comp = Comp.substr(1);
isNumericAccessor = true;
}
bool isHi = Comp == "hi";
bool isLo = Comp == "lo";
bool isEven = Comp == "even";
bool isOdd = Comp == "odd";
for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
uint64_t Index;
if (isHi)
Index = e + i;
else if (isLo)
Index = i;
else if (isEven)
Index = 2 * i;
else if (isOdd)
Index = 2 * i + 1;
else
Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
Elts.push_back(Index);
}
}
ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
QualType Type, SourceLocation BLoc,
SourceLocation RP)
: Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary),
BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
SubExprs = new (C) Stmt*[args.size()];
for (unsigned i = 0; i != args.size(); i++)
SubExprs[i] = args[i];
setDependence(computeDependence(this));
}
void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
if (SubExprs) C.Deallocate(SubExprs);
this->NumExprs = Exprs.size();
SubExprs = new (C) Stmt*[NumExprs];
memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
}
GenericSelectionExpr::GenericSelectionExpr(
const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
: Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
AssocExprs[ResultIndex]->getValueKind(),
AssocExprs[ResultIndex]->getObjectKind()),
NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
assert(AssocTypes.size() == AssocExprs.size() &&
"Must have the same number of association expressions"
" and TypeSourceInfo!");
assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
GenericSelectionExprBits.GenericLoc = GenericLoc;
getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
std::copy(AssocExprs.begin(), AssocExprs.end(),
getTrailingObjects<Stmt *>() + AssocExprStartIndex);
std::copy(AssocTypes.begin(), AssocTypes.end(),
getTrailingObjects<TypeSourceInfo *>());
setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
}
GenericSelectionExpr::GenericSelectionExpr(
const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack)
: Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
OK_Ordinary),
NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
assert(AssocTypes.size() == AssocExprs.size() &&
"Must have the same number of association expressions"
" and TypeSourceInfo!");
GenericSelectionExprBits.GenericLoc = GenericLoc;
getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
std::copy(AssocExprs.begin(), AssocExprs.end(),
getTrailingObjects<Stmt *>() + AssocExprStartIndex);
std::copy(AssocTypes.begin(), AssocTypes.end(),
getTrailingObjects<TypeSourceInfo *>());
setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
}
GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
: Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
GenericSelectionExpr *GenericSelectionExpr::Create(
const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
unsigned NumAssocs = AssocExprs.size();
void *Mem = Context.Allocate(
totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
alignof(GenericSelectionExpr));
return new (Mem) GenericSelectionExpr(
Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
}
GenericSelectionExpr *GenericSelectionExpr::Create(
const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack) {
unsigned NumAssocs = AssocExprs.size();
void *Mem = Context.Allocate(
totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
alignof(GenericSelectionExpr));
return new (Mem) GenericSelectionExpr(
Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
RParenLoc, ContainsUnexpandedParameterPack);
}
GenericSelectionExpr *
GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
unsigned NumAssocs) {
void *Mem = Context.Allocate(
totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
alignof(GenericSelectionExpr));
return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
}
//===----------------------------------------------------------------------===//
// DesignatedInitExpr
//===----------------------------------------------------------------------===//
IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
if (Field.NameOrField & 0x01)
return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
else
return getField()->getIdentifier();
}
DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
llvm::ArrayRef<Designator> Designators,
SourceLocation EqualOrColonLoc,
bool GNUSyntax,
ArrayRef<Expr *> IndexExprs, Expr *Init)
: Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
Init->getObjectKind()),
EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
this->Designators = new (C) Designator[NumDesignators];
// Record the initializer itself.
child_iterator Child = child_begin();
*Child++ = Init;
// Copy the designators and their subexpressions, computing
// value-dependence along the way.
unsigned IndexIdx = 0;
for (unsigned I = 0; I != NumDesignators; ++I) {
this->Designators[I] = Designators[I];
if (this->Designators[I].isArrayDesignator()) {
// Copy the index expressions into permanent storage.
*Child++ = IndexExprs[IndexIdx++];
} else if (this->Designators[I].isArrayRangeDesignator()) {
// Copy the start/end expressions into permanent storage.
*Child++ = IndexExprs[IndexIdx++];
*Child++ = IndexExprs[IndexIdx++];
}
}
assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
setDependence(computeDependence(this));
}
DesignatedInitExpr *
DesignatedInitExpr::Create(const ASTContext &C,
llvm::ArrayRef<Designator> Designators,
ArrayRef<Expr*> IndexExprs,
SourceLocation ColonOrEqualLoc,
bool UsesColonSyntax, Expr *Init) {
void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
alignof(DesignatedInitExpr));
return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
ColonOrEqualLoc, UsesColonSyntax,
IndexExprs, Init);
}
DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
unsigned NumIndexExprs) {
void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
alignof(DesignatedInitExpr));
return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
}
void DesignatedInitExpr::setDesignators(const ASTContext &C,
const Designator *Desigs,
unsigned NumDesigs) {
Designators = new (C) Designator[NumDesigs];
NumDesignators = NumDesigs;
for (unsigned I = 0; I != NumDesigs; ++I)
Designators[I] = Desigs[I];
}
SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
if (size() == 1)
return DIE->getDesignator(0)->getSourceRange();
return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
DIE->getDesignator(size() - 1)->getEndLoc());
}
SourceLocation DesignatedInitExpr::getBeginLoc() const {
SourceLocation StartLoc;
auto *DIE = const_cast<DesignatedInitExpr *>(this);
Designator &First = *DIE->getDesignator(0);
if (First.isFieldDesignator()) {
if (GNUSyntax)
StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
else
StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
} else
StartLoc =
SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
return StartLoc;
}
SourceLocation DesignatedInitExpr::getEndLoc() const {
return getInit()->getEndLoc();
}
Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
return getSubExpr(D.ArrayOrRange.Index + 1);
}
Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
assert(D.Kind == Designator::ArrayRangeDesignator &&
"Requires array range designator");
return getSubExpr(D.ArrayOrRange.Index + 1);
}
Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
assert(D.Kind == Designator::ArrayRangeDesignator &&
"Requires array range designator");
return getSubExpr(D.ArrayOrRange.Index + 2);
}
/// Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
const Designator *First,
const Designator *Last) {
unsigned NumNewDesignators = Last - First;
if (NumNewDesignators == 0) {
std::copy_backward(Designators + Idx + 1,
Designators + NumDesignators,
Designators + Idx);
--NumNewDesignators;
return;
} else if (NumNewDesignators == 1) {
Designators[Idx] = *First;
return;
}
Designator *NewDesignators
= new (C) Designator[NumDesignators - 1 + NumNewDesignators];
std::copy(Designators, Designators + Idx, NewDesignators);
std::copy(First, Last, NewDesignators + Idx);
std::copy(Designators + Idx + 1, Designators + NumDesignators,
NewDesignators + Idx + NumNewDesignators);
Designators = NewDesignators;
NumDesignators = NumDesignators - 1 + NumNewDesignators;
}
DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
SourceLocation lBraceLoc,
Expr *baseExpr,
SourceLocation rBraceLoc)
: Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
OK_Ordinary) {
BaseAndUpdaterExprs[0] = baseExpr;
InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
ILE->setType(baseExpr->getType());
BaseAndUpdaterExprs[1] = ILE;
// FIXME: this is wrong, set it correctly.
setDependence(ExprDependence::None);
}
SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
return getBase()->getBeginLoc();
}
SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
return getBase()->getEndLoc();
}
ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
SourceLocation RParenLoc)
: Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary),
LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
ParenListExprBits.NumExprs = Exprs.size();
for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
getTrailingObjects<Stmt *>()[I] = Exprs[I];
setDependence(computeDependence(this));
}
ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
: Expr(ParenListExprClass, Empty) {
ParenListExprBits.NumExprs = NumExprs;
}
ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
SourceLocation LParenLoc,
ArrayRef<Expr *> Exprs,
SourceLocation RParenLoc) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
alignof(ParenListExpr));
return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
}
ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
unsigned NumExprs) {
void *Mem =
Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
}
BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
Opcode opc, QualType ResTy, ExprValueKind VK,
ExprObjectKind OK, SourceLocation opLoc,
FPOptions FPFeatures)
: Expr(BinaryOperatorClass, ResTy, VK, OK) {
BinaryOperatorBits.Opc = opc;
assert(!isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments");
BinaryOperatorBits.OpLoc = opLoc;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
BinaryOperatorBits.HasFPFeatures =
FPFeatures.requiresTrailingStorage(Ctx.getLangOpts());
if (BinaryOperatorBits.HasFPFeatures)
*getTrailingFPFeatures() = FPFeatures;
setDependence(computeDependence(this));
}
BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
Opcode opc, QualType ResTy, ExprValueKind VK,
ExprObjectKind OK, SourceLocation opLoc,
FPOptions FPFeatures, bool dead2)
: Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
BinaryOperatorBits.Opc = opc;
assert(isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments");
BinaryOperatorBits.OpLoc = opLoc;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
BinaryOperatorBits.HasFPFeatures =
FPFeatures.requiresTrailingStorage(Ctx.getLangOpts());
if (BinaryOperatorBits.HasFPFeatures)
*getTrailingFPFeatures() = FPFeatures;
setDependence(computeDependence(this));
}
BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
bool HasFPFeatures) {
unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
void *Mem =
C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
return new (Mem) BinaryOperator(EmptyShell());
}
BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc,
FPOptions FPFeatures) {
bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts());
unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
void *Mem =
C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
return new (Mem)
BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
}
CompoundAssignOperator *
CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
alignof(CompoundAssignOperator));
return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
}
CompoundAssignOperator *CompoundAssignOperator::Create(
const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc,
FPOptions FPFeatures, QualType CompLHSType, QualType CompResultType) {
bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts());
unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
alignof(CompoundAssignOperator));
return new (Mem)
CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
CompLHSType, CompResultType);
}
UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
bool hasFPFeatures) {
void *Mem = C.Allocate(totalSizeToAlloc<FPOptions>(hasFPFeatures),
alignof(UnaryOperator));
return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
}
UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
QualType type, ExprValueKind VK, ExprObjectKind OK,
SourceLocation l, bool CanOverflow,
FPOptions FPFeatures)
: Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
UnaryOperatorBits.Opc = opc;
UnaryOperatorBits.CanOverflow = CanOverflow;
UnaryOperatorBits.Loc = l;
UnaryOperatorBits.HasFPFeatures =
FPFeatures.requiresTrailingStorage(Ctx.getLangOpts());
setDependence(computeDependence(this));
}
UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
Opcode opc, QualType type,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation l, bool CanOverflow,
FPOptions FPFeatures) {
bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts());
unsigned Size = totalSizeToAlloc<FPOptions>(HasFPFeatures);
void *Mem = C.Allocate(Size, alignof(UnaryOperator));
return new (Mem)
UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
}
const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
e = ewc->getSubExpr();
if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
e = m->getSubExpr();
e = cast<CXXConstructExpr>(e)->getArg(0);
while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
e = ice->getSubExpr();
return cast<OpaqueValueExpr>(e);
}
PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
EmptyShell sh,
unsigned numSemanticExprs) {
void *buffer =
Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
alignof(PseudoObjectExpr));
return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
}
PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
: Expr(PseudoObjectExprClass, shell) {
PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
}
PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
ArrayRef<Expr*> semantics,
unsigned resultIndex) {
assert(syntax && "no syntactic expression!");
assert(semantics.size() && "no semantic expressions!");
QualType type;
ExprValueKind VK;
if (resultIndex == NoResult) {
type = C.VoidTy;
VK = VK_RValue;
} else {
assert(resultIndex < semantics.size());
type = semantics[resultIndex]->getType();
VK = semantics[resultIndex]->getValueKind();
assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
}
void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
alignof(PseudoObjectExpr));
return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
resultIndex);
}
PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
Expr *syntax, ArrayRef<Expr *> semantics,
unsigned resultIndex)
: Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
PseudoObjectExprBits.ResultIndex = resultIndex + 1;
for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
Expr *E = (i == 0 ? syntax : semantics[i-1]);
getSubExprsBuffer()[i] = E;
if (isa<OpaqueValueExpr>(E))
assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
"opaque-value semantic expressions for pseudo-object "
"operations must have sources");
}
setDependence(computeDependence(this));
}
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
// UnaryExprOrTypeTraitExpr
Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
const_child_range CCR =
const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
}
Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
// If this is of a type and the type is a VLA type (and not a typedef), the
// size expression of the VLA needs to be treated as an executable expression.
// Why isn't this weirdness documented better in StmtIterator?
if (isArgumentType()) {
if (const VariableArrayType *T =
dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
return const_child_range(const_child_iterator(T), const_child_iterator());
return const_child_range(const_child_iterator(), const_child_iterator());
}
return const_child_range(&Argument.Ex, &Argument.Ex + 1);
}
AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
AtomicOp op, SourceLocation RP)
: Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary),
NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
for (unsigned i = 0; i != args.size(); i++)
SubExprs[i] = args[i];
setDependence(computeDependence(this));
}
unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
switch (Op) {
case AO__c11_atomic_init:
case AO__opencl_atomic_init:
case AO__c11_atomic_load:
case AO__atomic_load_n:
return 2;
case AO__opencl_atomic_load:
case AO__c11_atomic_store:
case AO__c11_atomic_exchange:
case AO__atomic_load:
case AO__atomic_store:
case AO__atomic_store_n:
case AO__atomic_exchange_n:
case AO__c11_atomic_fetch_add:
case AO__c11_atomic_fetch_sub:
case AO__c11_atomic_fetch_and:
case AO__c11_atomic_fetch_or:
case AO__c11_atomic_fetch_xor:
case AO__c11_atomic_fetch_max:
case AO__c11_atomic_fetch_min:
case AO__atomic_fetch_add:
case AO__atomic_fetch_sub:
case AO__atomic_fetch_and:
case AO__atomic_fetch_or:
case AO__atomic_fetch_xor:
case AO__atomic_fetch_nand:
case AO__atomic_add_fetch:
case AO__atomic_sub_fetch:
case AO__atomic_and_fetch:
case AO__atomic_or_fetch:
case AO__atomic_xor_fetch:
case AO__atomic_nand_fetch:
case AO__atomic_min_fetch:
case AO__atomic_max_fetch:
case AO__atomic_fetch_min:
case AO__atomic_fetch_max:
return 3;
case AO__opencl_atomic_store:
case AO__opencl_atomic_exchange:
case AO__opencl_atomic_fetch_add:
case AO__opencl_atomic_fetch_sub:
case AO__opencl_atomic_fetch_and:
case AO__opencl_atomic_fetch_or:
case AO__opencl_atomic_fetch_xor:
case AO__opencl_atomic_fetch_min:
case AO__opencl_atomic_fetch_max:
case AO__atomic_exchange:
return 4;
case AO__c11_atomic_compare_exchange_strong:
case AO__c11_atomic_compare_exchange_weak:
return 5;
case AO__opencl_atomic_compare_exchange_strong:
case AO__opencl_atomic_compare_exchange_weak:
case AO__atomic_compare_exchange:
case AO__atomic_compare_exchange_n:
return 6;
}
llvm_unreachable("unknown atomic op");
}
QualType AtomicExpr::getValueType() const {
auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
if (auto AT = T->getAs<AtomicType>())
return AT->getValueType();
return T;
}
QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
unsigned ArraySectionCount = 0;
while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
Base = OASE->getBase();
++ArraySectionCount;
}
while (auto *ASE =
dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
Base = ASE->getBase();
++ArraySectionCount;
}
Base = Base->IgnoreParenImpCasts();
auto OriginalTy = Base->getType();
if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
OriginalTy = PVD->getOriginalType().getNonReferenceType();
for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
if (OriginalTy->isAnyPointerType())
OriginalTy = OriginalTy->getPointeeType();
else {
assert (OriginalTy->isArrayType());
OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
}
}
return OriginalTy;
}
RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
: Expr(RecoveryExprClass, T, VK_LValue, OK_Ordinary), BeginLoc(BeginLoc),
EndLoc(EndLoc), NumExprs(SubExprs.size()) {
assert(!T.isNull());
assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
llvm::copy(SubExprs, getTrailingObjects<Expr *>());
setDependence(computeDependence(this));
}
RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
SourceLocation BeginLoc,
SourceLocation EndLoc,
ArrayRef<Expr *> SubExprs) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
alignof(RecoveryExpr));
return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
}
RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
alignof(RecoveryExpr));
return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
}
void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
assert(
NumDims == Dims.size() &&
"Preallocated number of dimensions is different from the provided one.");
llvm::copy(Dims, getTrailingObjects<Expr *>());
}
void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
assert(
NumDims == BR.size() &&
"Preallocated number of dimensions is different from the provided one.");
llvm::copy(BR, getTrailingObjects<SourceRange>());
}
OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
SourceLocation L, SourceLocation R,
ArrayRef<Expr *> Dims)
: Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
RPLoc(R), NumDims(Dims.size()) {
setBase(Op);
setDimensions(Dims);
setDependence(computeDependence(this));
}
OMPArrayShapingExpr *
OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
SourceLocation L, SourceLocation R,
ArrayRef<Expr *> Dims,
ArrayRef<SourceRange> BracketRanges) {
assert(Dims.size() == BracketRanges.size() &&
"Different number of dimensions and brackets ranges.");
void *Mem = Context.Allocate(
totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
alignof(OMPArrayShapingExpr));
auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
E->setBracketsRanges(BracketRanges);
return E;
}
OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
unsigned NumDims) {
void *Mem = Context.Allocate(
totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
alignof(OMPArrayShapingExpr));
return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
}
void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
assert(I < NumIterators &&
"Idx is greater or equal the number of iterators definitions.");
getTrailingObjects<Decl *>()[I] = D;
}
void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
assert(I < NumIterators &&
"Idx is greater or equal the number of iterators definitions.");
getTrailingObjects<
SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
}
void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
SourceLocation ColonLoc, Expr *End,
SourceLocation SecondColonLoc,
Expr *Step) {
assert(I < NumIterators &&
"Idx is greater or equal the number of iterators definitions.");
getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
static_cast<int>(RangeExprOffset::Begin)] =
Begin;
getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
static_cast<int>(RangeExprOffset::End)] = End;
getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
static_cast<int>(RangeExprOffset::Step)] = Step;
getTrailingObjects<
SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
static_cast<int>(RangeLocOffset::FirstColonLoc)] =
ColonLoc;
getTrailingObjects<
SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
static_cast<int>(RangeLocOffset::SecondColonLoc)] =
SecondColonLoc;
}
Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
return getTrailingObjects<Decl *>()[I];
}
OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
IteratorRange Res;
Res.Begin =
getTrailingObjects<Expr *>()[I * static_cast<int>(
RangeExprOffset::Total) +
static_cast<int>(RangeExprOffset::Begin)];
Res.End =
getTrailingObjects<Expr *>()[I * static_cast<int>(
RangeExprOffset::Total) +
static_cast<int>(RangeExprOffset::End)];
Res.Step =
getTrailingObjects<Expr *>()[I * static_cast<int>(
RangeExprOffset::Total) +
static_cast<int>(RangeExprOffset::Step)];
return Res;
}
SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
return getTrailingObjects<
SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
static_cast<int>(RangeLocOffset::AssignLoc)];
}
SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
return getTrailingObjects<
SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
static_cast<int>(RangeLocOffset::FirstColonLoc)];
}
SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
return getTrailingObjects<
SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
static_cast<int>(RangeLocOffset::SecondColonLoc)];
}
void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
getTrailingObjects<OMPIteratorHelperData>()[I] = D;
}
OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
return getTrailingObjects<OMPIteratorHelperData>()[I];
}
const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
return getTrailingObjects<OMPIteratorHelperData>()[I];
}
OMPIteratorExpr::OMPIteratorExpr(
QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
ArrayRef<OMPIteratorHelperData> Helpers)
: Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
NumIterators(Data.size()) {
for (unsigned I = 0, E = Data.size(); I < E; ++I) {
const IteratorDefinition &D = Data[I];
setIteratorDeclaration(I, D.IteratorDecl);
setAssignmentLoc(I, D.AssignmentLoc);
setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
D.SecondColonLoc, D.Range.Step);
setHelper(I, Helpers[I]);
}
setDependence(computeDependence(this));
}
OMPIteratorExpr *
OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
SourceLocation IteratorKwLoc, SourceLocation L,
SourceLocation R,
ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
ArrayRef<OMPIteratorHelperData> Helpers) {
assert(Data.size() == Helpers.size() &&
"Data and helpers must have the same size.");
void *Mem = Context.Allocate(
totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
Data.size() * static_cast<int>(RangeLocOffset::Total),
Helpers.size()),
alignof(OMPIteratorExpr));
return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
}
OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
unsigned NumIterators) {
void *Mem = Context.Allocate(
totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
alignof(OMPIteratorExpr));
return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
}