llvm-project/llvm/lib/Transforms/IPO/Attributor.cpp

1288 lines
43 KiB
C++

//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an inter procedural pass that deduces and/or propagating
// attributes. This is done in an abstract interpretation style fixpoint
// iteration. See the Attributor.h file comment and the class descriptions in
// that file for more information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "attributor"
STATISTIC(NumFnWithExactDefinition,
"Number of function with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
"Number of function without exact definitions");
STATISTIC(NumAttributesTimedOut,
"Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
"Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
"Number of abstract attributes manifested in IR");
STATISTIC(NumFnNoUnwind, "Number of functions marked nounwind");
STATISTIC(NumFnUniqueReturned, "Number of function with unique return");
STATISTIC(NumFnKnownReturns, "Number of function with known return values");
STATISTIC(NumFnArgumentReturned,
"Number of function arguments marked returned");
STATISTIC(NumFnNoSync, "Number of functions marked nosync");
STATISTIC(NumFnNoFree, "Number of functions marked nofree");
// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
// (when run with the first 5 abstract attributes). The results also indicate
// that we never reach 32 iterations but always find a fixpoint sooner.
//
// This will become more evolved once we perform two interleaved fixpoint
// iterations: bottom-up and top-down.
static cl::opt<unsigned>
MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
cl::desc("Maximal number of fixpoint iterations."),
cl::init(32));
static cl::opt<bool> DisableAttributor(
"attributor-disable", cl::Hidden,
cl::desc("Disable the attributor inter-procedural deduction pass."),
cl::init(true));
static cl::opt<bool> VerifyAttributor(
"attributor-verify", cl::Hidden,
cl::desc("Verify the Attributor deduction and "
"manifestation of attributes -- may issue false-positive errors"),
cl::init(false));
/// Logic operators for the change status enum class.
///
///{
ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::CHANGED ? l : r;
}
ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::UNCHANGED ? l : r;
}
///}
/// Helper to adjust the statistics.
static void bookkeeping(AbstractAttribute::ManifestPosition MP,
const Attribute &Attr) {
if (!AreStatisticsEnabled())
return;
if (!Attr.isEnumAttribute())
return;
switch (Attr.getKindAsEnum()) {
case Attribute::NoUnwind:
NumFnNoUnwind++;
return;
case Attribute::Returned:
NumFnArgumentReturned++;
return;
case Attribute::NoSync:
NumFnNoSync++;
break;
case Attribute::NoFree:
NumFnNoFree++;
break;
default:
return;
}
}
template <typename StateTy>
using followValueCB_t = std::function<bool(Value *, StateTy &State)>;
template <typename StateTy>
using visitValueCB_t = std::function<void(Value *, StateTy &State)>;
/// Recursively visit all values that might become \p InitV at some point. This
/// will be done by looking through cast instructions, selects, phis, and calls
/// with the "returned" attribute. The callback \p FollowValueCB is asked before
/// a potential origin value is looked at. If no \p FollowValueCB is passed, a
/// default one is used that will make sure we visit every value only once. Once
/// we cannot look through the value any further, the callback \p VisitValueCB
/// is invoked and passed the current value and the \p State. To limit how much
/// effort is invested, we will never visit more than \p MaxValues values.
template <typename StateTy>
static bool genericValueTraversal(
Value *InitV, StateTy &State, visitValueCB_t<StateTy> &VisitValueCB,
followValueCB_t<StateTy> *FollowValueCB = nullptr, int MaxValues = 8) {
SmallPtrSet<Value *, 16> Visited;
followValueCB_t<bool> DefaultFollowValueCB = [&](Value *Val, bool &) {
return Visited.insert(Val).second;
};
if (!FollowValueCB)
FollowValueCB = &DefaultFollowValueCB;
SmallVector<Value *, 16> Worklist;
Worklist.push_back(InitV);
int Iteration = 0;
do {
Value *V = Worklist.pop_back_val();
// Check if we should process the current value. To prevent endless
// recursion keep a record of the values we followed!
if (!(*FollowValueCB)(V, State))
continue;
// Make sure we limit the compile time for complex expressions.
if (Iteration++ >= MaxValues)
return false;
// Explicitly look through calls with a "returned" attribute if we do
// not have a pointer as stripPointerCasts only works on them.
if (V->getType()->isPointerTy()) {
V = V->stripPointerCasts();
} else {
CallSite CS(V);
if (CS && CS.getCalledFunction()) {
Value *NewV = nullptr;
for (Argument &Arg : CS.getCalledFunction()->args())
if (Arg.hasReturnedAttr()) {
NewV = CS.getArgOperand(Arg.getArgNo());
break;
}
if (NewV) {
Worklist.push_back(NewV);
continue;
}
}
}
// Look through select instructions, visit both potential values.
if (auto *SI = dyn_cast<SelectInst>(V)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
// Look through phi nodes, visit all operands.
if (auto *PHI = dyn_cast<PHINode>(V)) {
Worklist.append(PHI->op_begin(), PHI->op_end());
continue;
}
// Once a leaf is reached we inform the user through the callback.
VisitValueCB(V, State);
} while (!Worklist.empty());
// All values have been visited.
return true;
}
/// Helper to identify the correct offset into an attribute list.
static unsigned getAttrIndex(AbstractAttribute::ManifestPosition MP,
unsigned ArgNo = 0) {
switch (MP) {
case AbstractAttribute::MP_ARGUMENT:
case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
return ArgNo + AttributeList::FirstArgIndex;
case AbstractAttribute::MP_FUNCTION:
return AttributeList::FunctionIndex;
case AbstractAttribute::MP_RETURNED:
return AttributeList::ReturnIndex;
}
llvm_unreachable("Unknown manifest position!");
}
/// Return true if \p New is equal or worse than \p Old.
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
if (!Old.isIntAttribute())
return true;
return Old.getValueAsInt() >= New.getValueAsInt();
}
/// Return true if the information provided by \p Attr was added to the
/// attribute list \p Attrs. This is only the case if it was not already present
/// in \p Attrs at the position describe by \p MP and \p ArgNo.
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
AttributeList &Attrs,
AbstractAttribute::ManifestPosition MP,
unsigned ArgNo = 0) {
unsigned AttrIdx = getAttrIndex(MP, ArgNo);
if (Attr.isEnumAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isStringAttribute()) {
StringRef Kind = Attr.getKindAsString();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
llvm_unreachable("Expected enum or string attribute!");
}
ChangeStatus AbstractAttribute::update(Attributor &A) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
if (getState().isAtFixpoint())
return HasChanged;
LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
HasChanged = updateImpl(A);
LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
<< "\n");
return HasChanged;
}
ChangeStatus AbstractAttribute::manifest(Attributor &A) {
assert(getState().isValidState() &&
"Attempted to manifest an invalid state!");
assert(getAssociatedValue() &&
"Attempted to manifest an attribute without associated value!");
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
SmallVector<Attribute, 4> DeducedAttrs;
getDeducedAttributes(DeducedAttrs);
Function &ScopeFn = getAnchorScope();
LLVMContext &Ctx = ScopeFn.getContext();
ManifestPosition MP = getManifestPosition();
AttributeList Attrs;
SmallVector<unsigned, 4> ArgNos;
// In the following some generic code that will manifest attributes in
// DeducedAttrs if they improve the current IR. Due to the different
// annotation positions we use the underlying AttributeList interface.
// Note that MP_CALL_SITE_ARGUMENT can annotate multiple locations.
switch (MP) {
case MP_ARGUMENT:
ArgNos.push_back(cast<Argument>(getAssociatedValue())->getArgNo());
Attrs = ScopeFn.getAttributes();
break;
case MP_FUNCTION:
case MP_RETURNED:
ArgNos.push_back(0);
Attrs = ScopeFn.getAttributes();
break;
case MP_CALL_SITE_ARGUMENT: {
CallSite CS(&getAnchoredValue());
for (unsigned u = 0, e = CS.getNumArgOperands(); u != e; u++)
if (CS.getArgOperand(u) == getAssociatedValue())
ArgNos.push_back(u);
Attrs = CS.getAttributes();
}
}
for (const Attribute &Attr : DeducedAttrs) {
for (unsigned ArgNo : ArgNos) {
if (!addIfNotExistent(Ctx, Attr, Attrs, MP, ArgNo))
continue;
HasChanged = ChangeStatus::CHANGED;
bookkeeping(MP, Attr);
}
}
if (HasChanged == ChangeStatus::UNCHANGED)
return HasChanged;
switch (MP) {
case MP_ARGUMENT:
case MP_FUNCTION:
case MP_RETURNED:
ScopeFn.setAttributes(Attrs);
break;
case MP_CALL_SITE_ARGUMENT:
CallSite(&getAnchoredValue()).setAttributes(Attrs);
}
return HasChanged;
}
Function &AbstractAttribute::getAnchorScope() {
Value &V = getAnchoredValue();
if (isa<Function>(V))
return cast<Function>(V);
if (isa<Argument>(V))
return *cast<Argument>(V).getParent();
if (isa<Instruction>(V))
return *cast<Instruction>(V).getFunction();
llvm_unreachable("No scope for anchored value found!");
}
const Function &AbstractAttribute::getAnchorScope() const {
return const_cast<AbstractAttribute *>(this)->getAnchorScope();
}
/// -----------------------NoUnwind Function Attribute--------------------------
struct AANoUnwindFunction : AANoUnwind, BooleanState {
AANoUnwindFunction(Function &F, InformationCache &InfoCache)
: AANoUnwind(F, InfoCache) {}
/// See AbstractAttribute::getState()
/// {
AbstractState &getState() override { return *this; }
const AbstractState &getState() const override { return *this; }
/// }
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }
const std::string getAsStr() const override {
return getAssumed() ? "nounwind" : "may-unwind";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AANoUnwind::isAssumedNoUnwind().
bool isAssumedNoUnwind() const override { return getAssumed(); }
/// See AANoUnwind::isKnownNoUnwind().
bool isKnownNoUnwind() const override { return getKnown(); }
};
ChangeStatus AANoUnwindFunction::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
auto Opcodes = {
(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
(unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
for (unsigned Opcode : Opcodes) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
if (!I->mayThrow())
continue;
auto *NoUnwindAA = A.getAAFor<AANoUnwind>(*this, *I);
if (!NoUnwindAA || !NoUnwindAA->isAssumedNoUnwind()) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
}
}
return ChangeStatus::UNCHANGED;
}
/// --------------------- Function Return Values -------------------------------
/// "Attribute" that collects all potential returned values and the return
/// instructions that they arise from.
///
/// If there is a unique returned value R, the manifest method will:
/// - mark R with the "returned" attribute, if R is an argument.
class AAReturnedValuesImpl final : public AAReturnedValues, AbstractState {
/// Mapping of values potentially returned by the associated function to the
/// return instructions that might return them.
DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> ReturnedValues;
/// State flags
///
///{
bool IsFixed;
bool IsValidState;
bool HasOverdefinedReturnedCalls;
///}
/// Collect values that could become \p V in the set \p Values, each mapped to
/// \p ReturnInsts.
void collectValuesRecursively(
Attributor &A, Value *V, SmallPtrSetImpl<ReturnInst *> &ReturnInsts,
DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> &Values) {
visitValueCB_t<bool> VisitValueCB = [&](Value *Val, bool &) {
assert(!isa<Instruction>(Val) ||
&getAnchorScope() == cast<Instruction>(Val)->getFunction());
Values[Val].insert(ReturnInsts.begin(), ReturnInsts.end());
};
bool UnusedBool;
bool Success = genericValueTraversal(V, UnusedBool, VisitValueCB);
// If we did abort the above traversal we haven't see all the values.
// Consequently, we cannot know if the information we would derive is
// accurate so we give up early.
if (!Success)
indicatePessimisticFixpoint();
}
public:
/// See AbstractAttribute::AbstractAttribute(...).
AAReturnedValuesImpl(Function &F, InformationCache &InfoCache)
: AAReturnedValues(F, InfoCache) {
// We do not have an associated argument yet.
AssociatedVal = nullptr;
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// Reset the state.
AssociatedVal = nullptr;
IsFixed = false;
IsValidState = true;
HasOverdefinedReturnedCalls = false;
ReturnedValues.clear();
Function &F = cast<Function>(getAnchoredValue());
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
// Look through all arguments, if one is marked as returned we are done.
for (Argument &Arg : F.args()) {
if (Arg.hasReturnedAttr()) {
auto &ReturnInstSet = ReturnedValues[&Arg];
for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
ReturnInstSet.insert(cast<ReturnInst>(RI));
indicateOptimisticFixpoint();
return;
}
}
// If no argument was marked as returned we look at all return instructions
// and collect potentially returned values.
for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) {
SmallPtrSet<ReturnInst *, 1> RISet({cast<ReturnInst>(RI)});
collectValuesRecursively(A, cast<ReturnInst>(RI)->getReturnValue(), RISet,
ReturnedValues);
}
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override;
/// See AbstractAttribute::getState(...).
AbstractState &getState() override { return *this; }
/// See AbstractAttribute::getState(...).
const AbstractState &getState() const override { return *this; }
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; }
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override;
/// Return the number of potential return values, -1 if unknown.
size_t getNumReturnValues() const {
return isValidState() ? ReturnedValues.size() : -1;
}
/// Return an assumed unique return value if a single candidate is found. If
/// there cannot be one, return a nullptr. If it is not clear yet, return the
/// Optional::NoneType.
Optional<Value *> getAssumedUniqueReturnValue() const;
/// See AbstractState::checkForallReturnedValues(...).
bool
checkForallReturnedValues(std::function<bool(Value &)> &Pred) const override;
/// Pretty print the attribute similar to the IR representation.
const std::string getAsStr() const override;
/// See AbstractState::isAtFixpoint().
bool isAtFixpoint() const override { return IsFixed; }
/// See AbstractState::isValidState().
bool isValidState() const override { return IsValidState; }
/// See AbstractState::indicateOptimisticFixpoint(...).
void indicateOptimisticFixpoint() override {
IsFixed = true;
IsValidState &= true;
}
void indicatePessimisticFixpoint() override {
IsFixed = true;
IsValidState = false;
}
};
ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
// Bookkeeping.
assert(isValidState());
NumFnKnownReturns++;
// Check if we have an assumed unique return value that we could manifest.
Optional<Value *> UniqueRV = getAssumedUniqueReturnValue();
if (!UniqueRV.hasValue() || !UniqueRV.getValue())
return Changed;
// Bookkeeping.
NumFnUniqueReturned++;
// If the assumed unique return value is an argument, annotate it.
if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
AssociatedVal = UniqueRVArg;
Changed = AbstractAttribute::manifest(A) | Changed;
}
return Changed;
}
const std::string AAReturnedValuesImpl::getAsStr() const {
return (isAtFixpoint() ? "returns(#" : "may-return(#") +
(isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
}
Optional<Value *> AAReturnedValuesImpl::getAssumedUniqueReturnValue() const {
// If checkForallReturnedValues provides a unique value, ignoring potential
// undef values that can also be present, it is assumed to be the actual
// return value and forwarded to the caller of this method. If there are
// multiple, a nullptr is returned indicating there cannot be a unique
// returned value.
Optional<Value *> UniqueRV;
std::function<bool(Value &)> Pred = [&](Value &RV) -> bool {
// If we found a second returned value and neither the current nor the saved
// one is an undef, there is no unique returned value. Undefs are special
// since we can pretend they have any value.
if (UniqueRV.hasValue() && UniqueRV != &RV &&
!(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
UniqueRV = nullptr;
return false;
}
// Do not overwrite a value with an undef.
if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
UniqueRV = &RV;
return true;
};
if (!checkForallReturnedValues(Pred))
UniqueRV = nullptr;
return UniqueRV;
}
bool AAReturnedValuesImpl::checkForallReturnedValues(
std::function<bool(Value &)> &Pred) const {
if (!isValidState())
return false;
// Check all returned values but ignore call sites as long as we have not
// encountered an overdefined one during an update.
for (auto &It : ReturnedValues) {
Value *RV = It.first;
ImmutableCallSite ICS(RV);
if (ICS && !HasOverdefinedReturnedCalls)
continue;
if (!Pred(*RV))
return false;
}
return true;
}
ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
// Check if we know of any values returned by the associated function,
// if not, we are done.
if (getNumReturnValues() == 0) {
indicateOptimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
// Check if any of the returned values is a call site we can refine.
decltype(ReturnedValues) AddRVs;
bool HasCallSite = false;
// Look at all returned call sites.
for (auto &It : ReturnedValues) {
SmallPtrSet<ReturnInst *, 2> &ReturnInsts = It.second;
Value *RV = It.first;
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Potentially returned value " << *RV
<< "\n");
// Only call sites can change during an update, ignore the rest.
CallSite RetCS(RV);
if (!RetCS)
continue;
// For now, any call site we see will prevent us from directly fixing the
// state. However, if the information on the callees is fixed, the call
// sites will be removed and we will fix the information for this state.
HasCallSite = true;
// Try to find a assumed unique return value for the called function.
auto *RetCSAA = A.getAAFor<AAReturnedValuesImpl>(*this, *RV);
if (!RetCSAA) {
HasOverdefinedReturnedCalls = true;
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site (" << *RV
<< ") with " << (RetCSAA ? "invalid" : "no")
<< " associated state\n");
continue;
}
// Try to find a assumed unique return value for the called function.
Optional<Value *> AssumedUniqueRV = RetCSAA->getAssumedUniqueReturnValue();
// If no assumed unique return value was found due to the lack of
// candidates, we may need to resolve more calls (through more update
// iterations) or the called function will not return. Either way, we simply
// stick with the call sites as return values. Because there were not
// multiple possibilities, we do not treat it as overdefined.
if (!AssumedUniqueRV.hasValue())
continue;
// If multiple, non-refinable values were found, there cannot be a unique
// return value for the called function. The returned call is overdefined!
if (!AssumedUniqueRV.getValue()) {
HasOverdefinedReturnedCalls = true;
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site has multiple "
"potentially returned values\n");
continue;
}
LLVM_DEBUG({
bool UniqueRVIsKnown = RetCSAA->isAtFixpoint();
dbgs() << "[AAReturnedValues] Returned call site "
<< (UniqueRVIsKnown ? "known" : "assumed")
<< " unique return value: " << *AssumedUniqueRV << "\n";
});
// The assumed unique return value.
Value *AssumedRetVal = AssumedUniqueRV.getValue();
// If the assumed unique return value is an argument, lookup the matching
// call site operand and recursively collect new returned values.
// If it is not an argument, it is just put into the set of returned values
// as we would have already looked through casts, phis, and similar values.
if (Argument *AssumedRetArg = dyn_cast<Argument>(AssumedRetVal))
collectValuesRecursively(A,
RetCS.getArgOperand(AssumedRetArg->getArgNo()),
ReturnInsts, AddRVs);
else
AddRVs[AssumedRetVal].insert(ReturnInsts.begin(), ReturnInsts.end());
}
// Keep track of any change to trigger updates on dependent attributes.
ChangeStatus Changed = ChangeStatus::UNCHANGED;
for (auto &It : AddRVs) {
assert(!It.second.empty() && "Entry does not add anything.");
auto &ReturnInsts = ReturnedValues[It.first];
for (ReturnInst *RI : It.second)
if (ReturnInsts.insert(RI).second) {
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
<< *It.first << " => " << *RI << "\n");
Changed = ChangeStatus::CHANGED;
}
}
// If there is no call site in the returned values we are done.
if (!HasCallSite) {
indicateOptimisticFixpoint();
return ChangeStatus::CHANGED;
}
return Changed;
}
/// ------------------------ NoSync Function Attribute -------------------------
struct AANoSyncFunction : AANoSync, BooleanState {
AANoSyncFunction(Function &F, InformationCache &InfoCache)
: AANoSync(F, InfoCache) {}
/// See AbstractAttribute::getState()
/// {
AbstractState &getState() override { return *this; }
const AbstractState &getState() const override { return *this; }
/// }
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }
const std::string getAsStr() const override {
return getAssumed() ? "nosync" : "may-sync";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AANoSync::isAssumedNoSync()
bool isAssumedNoSync() const override { return getAssumed(); }
/// See AANoSync::isKnownNoSync()
bool isKnownNoSync() const override { return getKnown(); }
/// Helper function used to determine whether an instruction is non-relaxed
/// atomic. In other words, if an atomic instruction does not have unordered
/// or monotonic ordering
static bool isNonRelaxedAtomic(Instruction *I);
/// Helper function used to determine whether an instruction is volatile.
static bool isVolatile(Instruction *I);
/// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
/// memset).
static bool isNoSyncIntrinsic(Instruction *I);
};
bool AANoSyncFunction::isNonRelaxedAtomic(Instruction *I) {
if (!I->isAtomic())
return false;
AtomicOrdering Ordering;
switch (I->getOpcode()) {
case Instruction::AtomicRMW:
Ordering = cast<AtomicRMWInst>(I)->getOrdering();
break;
case Instruction::Store:
Ordering = cast<StoreInst>(I)->getOrdering();
break;
case Instruction::Load:
Ordering = cast<LoadInst>(I)->getOrdering();
break;
case Instruction::Fence: {
auto *FI = cast<FenceInst>(I);
if (FI->getSyncScopeID() == SyncScope::SingleThread)
return false;
Ordering = FI->getOrdering();
break;
}
case Instruction::AtomicCmpXchg: {
AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
// Only if both are relaxed, than it can be treated as relaxed.
// Otherwise it is non-relaxed.
if (Success != AtomicOrdering::Unordered &&
Success != AtomicOrdering::Monotonic)
return true;
if (Failure != AtomicOrdering::Unordered &&
Failure != AtomicOrdering::Monotonic)
return true;
return false;
}
default:
llvm_unreachable(
"New atomic operations need to be known in the attributor.");
}
// Relaxed.
if (Ordering == AtomicOrdering::Unordered ||
Ordering == AtomicOrdering::Monotonic)
return false;
return true;
}
/// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
/// FIXME: We should ipmrove the handling of intrinsics.
bool AANoSyncFunction::isNoSyncIntrinsic(Instruction *I) {
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
/// Element wise atomic memory intrinsics are can only be unordered,
/// therefore nosync.
case Intrinsic::memset_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memcpy_element_unordered_atomic:
return true;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
if (!cast<MemIntrinsic>(II)->isVolatile())
return true;
return false;
default:
return false;
}
}
return false;
}
bool AANoSyncFunction::isVolatile(Instruction *I) {
assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
"Calls should not be checked here");
switch (I->getOpcode()) {
case Instruction::AtomicRMW:
return cast<AtomicRMWInst>(I)->isVolatile();
case Instruction::Store:
return cast<StoreInst>(I)->isVolatile();
case Instruction::Load:
return cast<LoadInst>(I)->isVolatile();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(I)->isVolatile();
default:
return false;
}
}
ChangeStatus AANoSyncFunction::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
/// We are looking for volatile instructions or Non-Relaxed atomics.
/// FIXME: We should ipmrove the handling of intrinsics.
for (Instruction *I : InfoCache.getReadOrWriteInstsForFunction(F)) {
ImmutableCallSite ICS(I);
auto *NoSyncAA = A.getAAFor<AANoSyncFunction>(*this, *I);
if (isa<IntrinsicInst>(I) && isNoSyncIntrinsic(I))
continue;
if (ICS && (!NoSyncAA || !NoSyncAA->isAssumedNoSync()) &&
!ICS.hasFnAttr(Attribute::NoSync)) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
if (ICS)
continue;
if (!isVolatile(I) && !isNonRelaxedAtomic(I))
continue;
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
auto Opcodes = {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call};
for (unsigned Opcode : Opcodes) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
// At this point we handled all read/write effects and they are all
// nosync, so they can be skipped.
if (I->mayReadOrWriteMemory())
continue;
ImmutableCallSite ICS(I);
// non-convergent and readnone imply nosync.
if (!ICS.isConvergent())
continue;
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
}
return ChangeStatus::UNCHANGED;
}
/// ------------------------ No-Free Attributes ----------------------------
struct AANoFreeFunction : AbstractAttribute, BooleanState {
/// See AbstractAttribute::AbstractAttribute(...).
AANoFreeFunction(Function &F, InformationCache &InfoCache)
: AbstractAttribute(F, InfoCache) {}
/// See AbstractAttribute::getState()
///{
AbstractState &getState() override { return *this; }
const AbstractState &getState() const override { return *this; }
///}
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nofree" : "may-free";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AbstractAttribute::getAttrKind().
Attribute::AttrKind getAttrKind() const override { return ID; }
/// Return true if "nofree" is assumed.
bool isAssumedNoFree() const { return getAssumed(); }
/// Return true if "nofree" is known.
bool isKnownNoFree() const { return getKnown(); }
/// The identifier used by the Attributor for this class of attributes.
static constexpr Attribute::AttrKind ID = Attribute::NoFree;
};
ChangeStatus AANoFreeFunction::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
for (unsigned Opcode :
{(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call}) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
auto ICS = ImmutableCallSite(I);
auto *NoFreeAA = A.getAAFor<AANoFreeFunction>(*this, *I);
if ((!NoFreeAA || !NoFreeAA->isAssumedNoFree()) &&
!ICS.hasFnAttr(Attribute::NoFree)) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
}
}
return ChangeStatus::UNCHANGED;
}
/// ----------------------------------------------------------------------------
/// Attributor
/// ----------------------------------------------------------------------------
ChangeStatus Attributor::run() {
// Initialize all abstract attributes.
for (AbstractAttribute *AA : AllAbstractAttributes)
AA->initialize(*this);
LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
<< AllAbstractAttributes.size()
<< " abstract attributes.\n");
// Now that all abstract attributes are collected and initialized we start
// the abstract analysis.
unsigned IterationCounter = 1;
SmallVector<AbstractAttribute *, 64> ChangedAAs;
SetVector<AbstractAttribute *> Worklist;
Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
do {
LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
<< ", Worklist size: " << Worklist.size() << "\n");
// Add all abstract attributes that are potentially dependent on one that
// changed to the work list.
for (AbstractAttribute *ChangedAA : ChangedAAs) {
auto &QuerriedAAs = QueryMap[ChangedAA];
Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
}
// Reset the changed set.
ChangedAAs.clear();
// Update all abstract attribute in the work list and record the ones that
// changed.
for (AbstractAttribute *AA : Worklist)
if (AA->update(*this) == ChangeStatus::CHANGED)
ChangedAAs.push_back(AA);
// Reset the work list and repopulate with the changed abstract attributes.
// Note that dependent ones are added above.
Worklist.clear();
Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
} while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations);
LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxFixpointIterations
<< " iterations\n");
bool FinishedAtFixpoint = Worklist.empty();
// Reset abstract arguments not settled in a sound fixpoint by now. This
// happens when we stopped the fixpoint iteration early. Note that only the
// ones marked as "changed" *and* the ones transitively depending on them
// need to be reverted to a pessimistic state. Others might not be in a
// fixpoint state but we can use the optimistic results for them anyway.
SmallPtrSet<AbstractAttribute *, 32> Visited;
for (unsigned u = 0; u < ChangedAAs.size(); u++) {
AbstractAttribute *ChangedAA = ChangedAAs[u];
if (!Visited.insert(ChangedAA).second)
continue;
AbstractState &State = ChangedAA->getState();
if (!State.isAtFixpoint()) {
State.indicatePessimisticFixpoint();
NumAttributesTimedOut++;
}
auto &QuerriedAAs = QueryMap[ChangedAA];
ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
}
LLVM_DEBUG({
if (!Visited.empty())
dbgs() << "\n[Attributor] Finalized " << Visited.size()
<< " abstract attributes.\n";
});
unsigned NumManifested = 0;
unsigned NumAtFixpoint = 0;
ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
for (AbstractAttribute *AA : AllAbstractAttributes) {
AbstractState &State = AA->getState();
// If there is not already a fixpoint reached, we can now take the
// optimistic state. This is correct because we enforced a pessimistic one
// on abstract attributes that were transitively dependent on a changed one
// already above.
if (!State.isAtFixpoint())
State.indicateOptimisticFixpoint();
// If the state is invalid, we do not try to manifest it.
if (!State.isValidState())
continue;
// Manifest the state and record if we changed the IR.
ChangeStatus LocalChange = AA->manifest(*this);
ManifestChange = ManifestChange | LocalChange;
NumAtFixpoint++;
NumManifested += (LocalChange == ChangeStatus::CHANGED);
}
(void)NumManifested;
(void)NumAtFixpoint;
LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
<< " arguments while " << NumAtFixpoint
<< " were in a valid fixpoint state\n");
// If verification is requested, we finished this run at a fixpoint, and the
// IR was changed, we re-run the whole fixpoint analysis, starting at
// re-initialization of the arguments. This re-run should not result in an IR
// change. Though, the (virtual) state of attributes at the end of the re-run
// might be more optimistic than the known state or the IR state if the better
// state cannot be manifested.
if (VerifyAttributor && FinishedAtFixpoint &&
ManifestChange == ChangeStatus::CHANGED) {
VerifyAttributor = false;
ChangeStatus VerifyStatus = run();
if (VerifyStatus != ChangeStatus::UNCHANGED)
llvm_unreachable(
"Attributor verification failed, re-run did result in an IR change "
"even after a fixpoint was reached in the original run. (False "
"positives possible!)");
VerifyAttributor = true;
}
NumAttributesManifested += NumManifested;
NumAttributesValidFixpoint += NumAtFixpoint;
return ManifestChange;
}
void Attributor::identifyDefaultAbstractAttributes(
Function &F, InformationCache &InfoCache,
DenseSet</* Attribute::AttrKind */ unsigned> *Whitelist) {
// Every function can be nounwind.
registerAA(*new AANoUnwindFunction(F, InfoCache));
// Every function might be marked "nosync"
registerAA(*new AANoSyncFunction(F, InfoCache));
// Every function might be "no-free".
registerAA(*new AANoFreeFunction(F, InfoCache));
// Return attributes are only appropriate if the return type is non void.
Type *ReturnType = F.getReturnType();
if (!ReturnType->isVoidTy()) {
// Argument attribute "returned" --- Create only one per function even
// though it is an argument attribute.
if (!Whitelist || Whitelist->count(AAReturnedValues::ID))
registerAA(*new AAReturnedValuesImpl(F, InfoCache));
}
// Walk all instructions to find more attribute opportunities and also
// interesting instructions that might be queried by abstract attributes
// during their initialization or update.
auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
for (Instruction &I : instructions(&F)) {
bool IsInterestingOpcode = false;
// To allow easy access to all instructions in a function with a given
// opcode we store them in the InfoCache. As not all opcodes are interesting
// to concrete attributes we only cache the ones that are as identified in
// the following switch.
// Note: There are no concrete attributes now so this is initially empty.
switch (I.getOpcode()) {
default:
assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
"New call site/base instruction type needs to be known int the "
"attributor.");
break;
case Instruction::Call:
case Instruction::CallBr:
case Instruction::Invoke:
case Instruction::CleanupRet:
case Instruction::CatchSwitch:
case Instruction::Resume:
case Instruction::Ret:
IsInterestingOpcode = true;
}
if (IsInterestingOpcode)
InstOpcodeMap[I.getOpcode()].push_back(&I);
if (I.mayReadOrWriteMemory())
ReadOrWriteInsts.push_back(&I);
}
}
/// Helpers to ease debugging through output streams and print calls.
///
///{
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}
raw_ostream &llvm::operator<<(raw_ostream &OS,
AbstractAttribute::ManifestPosition AP) {
switch (AP) {
case AbstractAttribute::MP_ARGUMENT:
return OS << "arg";
case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
return OS << "cs_arg";
case AbstractAttribute::MP_FUNCTION:
return OS << "fn";
case AbstractAttribute::MP_RETURNED:
return OS << "fn_ret";
}
llvm_unreachable("Unknown attribute position!");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
AA.print(OS);
return OS;
}
void AbstractAttribute::print(raw_ostream &OS) const {
OS << "[" << getManifestPosition() << "][" << getAsStr() << "]["
<< AnchoredVal.getName() << "]";
}
///}
/// ----------------------------------------------------------------------------
/// Pass (Manager) Boilerplate
/// ----------------------------------------------------------------------------
static bool runAttributorOnModule(Module &M) {
if (DisableAttributor)
return false;
LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
<< " functions.\n");
// Create an Attributor and initially empty information cache that is filled
// while we identify default attribute opportunities.
Attributor A;
InformationCache InfoCache;
for (Function &F : M) {
// TODO: Not all attributes require an exact definition. Find a way to
// enable deduction for some but not all attributes in case the
// definition might be changed at runtime, see also
// http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
// TODO: We could always determine abstract attributes and if sufficient
// information was found we could duplicate the functions that do not
// have an exact definition.
if (!F.hasExactDefinition()) {
NumFnWithoutExactDefinition++;
continue;
}
// For now we ignore naked and optnone functions.
if (F.hasFnAttribute(Attribute::Naked) ||
F.hasFnAttribute(Attribute::OptimizeNone))
continue;
NumFnWithExactDefinition++;
// Populate the Attributor with abstract attribute opportunities in the
// function and the information cache with IR information.
A.identifyDefaultAbstractAttributes(F, InfoCache);
}
return A.run() == ChangeStatus::CHANGED;
}
PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
if (runAttributorOnModule(M)) {
// FIXME: Think about passes we will preserve and add them here.
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}
namespace {
struct AttributorLegacyPass : public ModulePass {
static char ID;
AttributorLegacyPass() : ModulePass(ID) {
initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
return runAttributorOnModule(M);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: Think about passes we will preserve and add them here.
AU.setPreservesCFG();
}
};
} // end anonymous namespace
Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
char AttributorLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)