llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp

535 lines
18 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86.h"
#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86MacroFusion.h"
#include "X86Subtarget.h"
#include "X86TargetObjectFile.h"
#include "X86TargetTransformInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include <memory>
#include <string>
using namespace llvm;
static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
cl::desc("Enable the machine combiner pass"),
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
cl::desc("Enable the conditional branch "
"folding pass"),
cl::init(false), cl::Hidden);
extern "C" void LLVMInitializeX86Target() {
// Register the target.
RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
PassRegistry &PR = *PassRegistry::getPassRegistry();
initializeGlobalISel(PR);
initializeWinEHStatePassPass(PR);
initializeFixupBWInstPassPass(PR);
initializeEvexToVexInstPassPass(PR);
initializeFixupLEAPassPass(PR);
initializeFPSPass(PR);
initializeX86CallFrameOptimizationPass(PR);
initializeX86CmovConverterPassPass(PR);
initializeX86ExpandPseudoPass(PR);
initializeX86ExecutionDomainFixPass(PR);
initializeX86DomainReassignmentPass(PR);
initializeX86AvoidSFBPassPass(PR);
initializeX86SpeculativeLoadHardeningPassPass(PR);
initializeX86FlagsCopyLoweringPassPass(PR);
initializeX86CondBrFoldingPassPass(PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
if (TT.isOSBinFormatMachO()) {
if (TT.getArch() == Triple::x86_64)
return llvm::make_unique<X86_64MachoTargetObjectFile>();
return llvm::make_unique<TargetLoweringObjectFileMachO>();
}
if (TT.isOSFreeBSD())
return llvm::make_unique<X86FreeBSDTargetObjectFile>();
if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
if (TT.isOSSolaris())
return llvm::make_unique<X86SolarisTargetObjectFile>();
if (TT.isOSFuchsia())
return llvm::make_unique<X86FuchsiaTargetObjectFile>();
if (TT.isOSBinFormatELF())
return llvm::make_unique<X86ELFTargetObjectFile>();
if (TT.isOSBinFormatCOFF())
return llvm::make_unique<TargetLoweringObjectFileCOFF>();
llvm_unreachable("unknown subtarget type");
}
static std::string computeDataLayout(const Triple &TT) {
// X86 is little endian
std::string Ret = "e";
Ret += DataLayout::getManglingComponent(TT);
// X86 and x32 have 32 bit pointers.
if ((TT.isArch64Bit() &&
(TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
!TT.isArch64Bit())
Ret += "-p:32:32";
// Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
Ret += "-i64:64";
else if (TT.isOSIAMCU())
Ret += "-i64:32-f64:32";
else
Ret += "-f64:32:64";
// Some ABIs align long double to 128 bits, others to 32.
if (TT.isOSNaCl() || TT.isOSIAMCU())
; // No f80
else if (TT.isArch64Bit() || TT.isOSDarwin())
Ret += "-f80:128";
else
Ret += "-f80:32";
if (TT.isOSIAMCU())
Ret += "-f128:32";
// The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
if (TT.isArch64Bit())
Ret += "-n8:16:32:64";
else
Ret += "-n8:16:32";
// The stack is aligned to 32 bits on some ABIs and 128 bits on others.
if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
Ret += "-a:0:32-S32";
else
Ret += "-S128";
return Ret;
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
bool JIT,
Optional<Reloc::Model> RM) {
bool is64Bit = TT.getArch() == Triple::x86_64;
if (!RM.hasValue()) {
// JIT codegen should use static relocations by default, since it's
// typically executed in process and not relocatable.
if (JIT)
return Reloc::Static;
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
// use static relocation model by default.
if (TT.isOSDarwin()) {
if (is64Bit)
return Reloc::PIC_;
return Reloc::DynamicNoPIC;
}
if (TT.isOSWindows() && is64Bit)
return Reloc::PIC_;
return Reloc::Static;
}
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (*RM == Reloc::DynamicNoPIC) {
if (is64Bit)
return Reloc::PIC_;
if (!TT.isOSDarwin())
return Reloc::Static;
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
return Reloc::PIC_;
return *RM;
}
static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
bool JIT, bool Is64Bit) {
if (CM) {
if (*CM == CodeModel::Tiny)
report_fatal_error("Target does not support the tiny CodeModel", false);
return *CM;
}
if (JIT)
return Is64Bit ? CodeModel::Large : CodeModel::Small;
return CodeModel::Small;
}
/// Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(
T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, JIT, RM),
getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
OL),
TLOF(createTLOF(getTargetTriple())) {
// Windows stack unwinder gets confused when execution flow "falls through"
// after a call to 'noreturn' function.
// To prevent that, we emit a trap for 'unreachable' IR instructions.
// (which on X86, happens to be the 'ud2' instruction)
// On PS4, the "return address" of a 'noreturn' call must still be within
// the calling function, and TrapUnreachable is an easy way to get that.
// The check here for 64-bit windows is a bit icky, but as we're unlikely
// to ever want to mix 32 and 64-bit windows code in a single module
// this should be fine.
if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
TT.isOSBinFormatMachO()) {
this->Options.TrapUnreachable = true;
this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
}
// Outlining is available for x86-64.
if (TT.getArch() == Triple::x86_64)
setMachineOutliner(true);
initAsmInfo();
}
X86TargetMachine::~X86TargetMachine() = default;
const X86Subtarget *
X86TargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString()
: (StringRef)TargetCPU;
StringRef FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString()
: (StringRef)TargetFS;
SmallString<512> Key;
Key.reserve(CPU.size() + FS.size());
Key += CPU;
Key += FS;
// FIXME: This is related to the code below to reset the target options,
// we need to know whether or not the soft float flag is set on the
// function before we can generate a subtarget. We also need to use
// it as a key for the subtarget since that can be the only difference
// between two functions.
bool SoftFloat =
F.getFnAttribute("use-soft-float").getValueAsString() == "true";
// If the soft float attribute is set on the function turn on the soft float
// subtarget feature.
if (SoftFloat)
Key += FS.empty() ? "+soft-float" : ",+soft-float";
// Keep track of the key width after all features are added so we can extract
// the feature string out later.
unsigned CPUFSWidth = Key.size();
// Extract prefer-vector-width attribute.
unsigned PreferVectorWidthOverride = 0;
if (F.hasFnAttribute("prefer-vector-width")) {
StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
unsigned Width;
if (!Val.getAsInteger(0, Width)) {
Key += ",prefer-vector-width=";
Key += Val;
PreferVectorWidthOverride = Width;
}
}
// Extract min-legal-vector-width attribute.
unsigned RequiredVectorWidth = UINT32_MAX;
if (F.hasFnAttribute("min-legal-vector-width")) {
StringRef Val =
F.getFnAttribute("min-legal-vector-width").getValueAsString();
unsigned Width;
if (!Val.getAsInteger(0, Width)) {
Key += ",min-legal-vector-width=";
Key += Val;
RequiredVectorWidth = Width;
}
}
// Extracted here so that we make sure there is backing for the StringRef. If
// we assigned earlier, its possible the SmallString reallocated leaving a
// dangling StringRef.
FS = Key.slice(CPU.size(), CPUFSWidth);
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
Options.StackAlignmentOverride,
PreferVectorWidthOverride,
RequiredVectorWidth);
}
return I.get();
}
//===----------------------------------------------------------------------===//
// Command line options for x86
//===----------------------------------------------------------------------===//
static cl::opt<bool>
UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
cl::desc("Minimize AVX to SSE transition penalty"),
cl::init(true));
//===----------------------------------------------------------------------===//
// X86 TTI query.
//===----------------------------------------------------------------------===//
TargetTransformInfo
X86TargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(X86TTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
namespace {
/// X86 Code Generator Pass Configuration Options.
class X86PassConfig : public TargetPassConfig {
public:
X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
X86TargetMachine &getX86TargetMachine() const {
return getTM<X86TargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createX86MacroFusionDAGMutation());
return DAG;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
DAG->addMutation(createX86MacroFusionDAGMutation());
return DAG;
}
void addIRPasses() override;
bool addInstSelector() override;
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
bool addILPOpts() override;
bool addPreISel() override;
void addMachineSSAOptimization() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreSched2() override;
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};
class X86ExecutionDomainFix : public ExecutionDomainFix {
public:
static char ID;
X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
StringRef getPassName() const override {
return "X86 Execution Dependency Fix";
}
};
char X86ExecutionDomainFix::ID;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
"X86 Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
"X86 Execution Domain Fix", false, false)
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
return new X86PassConfig(*this, PM);
}
void X86PassConfig::addIRPasses() {
addPass(createAtomicExpandPass());
TargetPassConfig::addIRPasses();
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createInterleavedAccessPass());
// Add passes that handle indirect branch removal and insertion of a retpoline
// thunk. These will be a no-op unless a function subtarget has the retpoline
// feature enabled.
addPass(createIndirectBrExpandPass());
}
bool X86PassConfig::addInstSelector() {
// Install an instruction selector.
addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
// For ELF, cleanup any local-dynamic TLS accesses.
if (TM->getTargetTriple().isOSBinFormatELF() &&
getOptLevel() != CodeGenOpt::None)
addPass(createCleanupLocalDynamicTLSPass());
addPass(createX86GlobalBaseRegPass());
return false;
}
bool X86PassConfig::addIRTranslator() {
addPass(new IRTranslator());
return false;
}
bool X86PassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool X86PassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool X86PassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect());
return false;
}
bool X86PassConfig::addILPOpts() {
if (EnableCondBrFoldingPass)
addPass(createX86CondBrFolding());
addPass(&EarlyIfConverterID);
if (EnableMachineCombinerPass)
addPass(&MachineCombinerID);
addPass(createX86CmovConverterPass());
return true;
}
bool X86PassConfig::addPreISel() {
// Only add this pass for 32-bit x86 Windows.
const Triple &TT = TM->getTargetTriple();
if (TT.isOSWindows() && TT.getArch() == Triple::x86)
addPass(createX86WinEHStatePass());
return true;
}
void X86PassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(&LiveRangeShrinkID);
addPass(createX86FixupSetCC());
addPass(createX86OptimizeLEAs());
addPass(createX86CallFrameOptimization());
addPass(createX86AvoidStoreForwardingBlocks());
}
addPass(createX86SpeculativeLoadHardeningPass());
addPass(createX86FlagsCopyLoweringPass());
addPass(createX86WinAllocaExpander());
}
void X86PassConfig::addMachineSSAOptimization() {
addPass(createX86DomainReassignmentPass());
TargetPassConfig::addMachineSSAOptimization();
}
void X86PassConfig::addPostRegAlloc() {
addPass(createX86FloatingPointStackifierPass());
}
void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
void X86PassConfig::addPreEmitPass() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(new X86ExecutionDomainFix());
addPass(createBreakFalseDeps());
}
addPass(createX86IndirectBranchTrackingPass());
if (UseVZeroUpper)
addPass(createX86IssueVZeroUpperPass());
if (getOptLevel() != CodeGenOpt::None) {
addPass(createX86FixupBWInsts());
addPass(createX86PadShortFunctions());
addPass(createX86FixupLEAs());
addPass(createX86EvexToVexInsts());
}
addPass(createX86DiscriminateMemOpsPass());
addPass(createX86InsertPrefetchPass());
}
void X86PassConfig::addPreEmitPass2() {
addPass(createX86RetpolineThunksPass());
// Verify basic block incoming and outgoing cfa offset and register values and
// correct CFA calculation rule where needed by inserting appropriate CFI
// instructions.
const Triple &TT = TM->getTargetTriple();
const MCAsmInfo *MAI = TM->getMCAsmInfo();
if (!TT.isOSDarwin() &&
(!TT.isOSWindows() ||
MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
addPass(createCFIInstrInserter());
}
std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
return getStandardCSEConfigForOpt(TM->getOptLevel());
}