llvm-project/llvm/lib/Target/X86/X86ISelLowering.h

1652 lines
64 KiB
C++

//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
namespace llvm {
class X86Subtarget;
class X86TargetMachine;
namespace X86ISD {
// X86 Specific DAG Nodes
enum NodeType : unsigned {
// Start the numbering where the builtin ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
/// Bit scan forward.
BSF,
/// Bit scan reverse.
BSR,
/// Double shift instructions. These correspond to
/// X86::SHLDxx and X86::SHRDxx instructions.
SHLD,
SHRD,
/// Bitwise logical AND of floating point values. This corresponds
/// to X86::ANDPS or X86::ANDPD.
FAND,
/// Bitwise logical OR of floating point values. This corresponds
/// to X86::ORPS or X86::ORPD.
FOR,
/// Bitwise logical XOR of floating point values. This corresponds
/// to X86::XORPS or X86::XORPD.
FXOR,
/// Bitwise logical ANDNOT of floating point values. This
/// corresponds to X86::ANDNPS or X86::ANDNPD.
FANDN,
/// These operations represent an abstract X86 call
/// instruction, which includes a bunch of information. In particular the
/// operands of these node are:
///
/// #0 - The incoming token chain
/// #1 - The callee
/// #2 - The number of arg bytes the caller pushes on the stack.
/// #3 - The number of arg bytes the callee pops off the stack.
/// #4 - The value to pass in AL/AX/EAX (optional)
/// #5 - The value to pass in DL/DX/EDX (optional)
///
/// The result values of these nodes are:
///
/// #0 - The outgoing token chain
/// #1 - The first register result value (optional)
/// #2 - The second register result value (optional)
///
CALL,
/// Same as call except it adds the NoTrack prefix.
NT_CALL,
/// X86 compare and logical compare instructions.
CMP, COMI, UCOMI,
/// X86 bit-test instructions.
BT,
/// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
/// operand, usually produced by a CMP instruction.
SETCC,
/// X86 Select
SELECTS,
// Same as SETCC except it's materialized with a sbb and the value is all
// one's or all zero's.
SETCC_CARRY, // R = carry_bit ? ~0 : 0
/// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
/// Operands are two FP values to compare; result is a mask of
/// 0s or 1s. Generally DTRT for C/C++ with NaNs.
FSETCC,
/// X86 FP SETCC, similar to above, but with output as an i1 mask and
/// and a version with SAE.
FSETCCM, FSETCCM_SAE,
/// X86 conditional moves. Operand 0 and operand 1 are the two values
/// to select from. Operand 2 is the condition code, and operand 3 is the
/// flag operand produced by a CMP or TEST instruction.
CMOV,
/// X86 conditional branches. Operand 0 is the chain operand, operand 1
/// is the block to branch if condition is true, operand 2 is the
/// condition code, and operand 3 is the flag operand produced by a CMP
/// or TEST instruction.
BRCOND,
/// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
/// operand 1 is the target address.
NT_BRIND,
/// Return with a flag operand. Operand 0 is the chain operand, operand
/// 1 is the number of bytes of stack to pop.
RET_FLAG,
/// Return from interrupt. Operand 0 is the number of bytes to pop.
IRET,
/// Repeat fill, corresponds to X86::REP_STOSx.
REP_STOS,
/// Repeat move, corresponds to X86::REP_MOVSx.
REP_MOVS,
/// On Darwin, this node represents the result of the popl
/// at function entry, used for PIC code.
GlobalBaseReg,
/// A wrapper node for TargetConstantPool, TargetJumpTable,
/// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
/// MCSymbol and TargetBlockAddress.
Wrapper,
/// Special wrapper used under X86-64 PIC mode for RIP
/// relative displacements.
WrapperRIP,
/// Copies a 64-bit value from the low word of an XMM vector
/// to an MMX vector.
MOVDQ2Q,
/// Copies a 32-bit value from the low word of a MMX
/// vector to a GPR.
MMX_MOVD2W,
/// Copies a GPR into the low 32-bit word of a MMX vector
/// and zero out the high word.
MMX_MOVW2D,
/// Extract an 8-bit value from a vector and zero extend it to
/// i32, corresponds to X86::PEXTRB.
PEXTRB,
/// Extract a 16-bit value from a vector and zero extend it to
/// i32, corresponds to X86::PEXTRW.
PEXTRW,
/// Insert any element of a 4 x float vector into any element
/// of a destination 4 x floatvector.
INSERTPS,
/// Insert the lower 8-bits of a 32-bit value to a vector,
/// corresponds to X86::PINSRB.
PINSRB,
/// Insert the lower 16-bits of a 32-bit value to a vector,
/// corresponds to X86::PINSRW.
PINSRW,
/// Shuffle 16 8-bit values within a vector.
PSHUFB,
/// Compute Sum of Absolute Differences.
PSADBW,
/// Compute Double Block Packed Sum-Absolute-Differences
DBPSADBW,
/// Bitwise Logical AND NOT of Packed FP values.
ANDNP,
/// Blend where the selector is an immediate.
BLENDI,
/// Dynamic (non-constant condition) vector blend where only the sign bits
/// of the condition elements are used. This is used to enforce that the
/// condition mask is not valid for generic VSELECT optimizations. This
/// is also used to implement the intrinsics.
/// Operands are in VSELECT order: MASK, TRUE, FALSE
BLENDV,
/// Combined add and sub on an FP vector.
ADDSUB,
// FP vector ops with rounding mode.
FADD_RND, FADDS, FADDS_RND,
FSUB_RND, FSUBS, FSUBS_RND,
FMUL_RND, FMULS, FMULS_RND,
FDIV_RND, FDIVS, FDIVS_RND,
FMAX_SAE, FMAXS_SAE,
FMIN_SAE, FMINS_SAE,
FSQRT_RND, FSQRTS, FSQRTS_RND,
// FP vector get exponent.
FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
// Extract Normalized Mantissas.
VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
// FP Scale.
SCALEF, SCALEF_RND,
SCALEFS, SCALEFS_RND,
// Unsigned Integer average.
AVG,
/// Integer horizontal add/sub.
HADD,
HSUB,
/// Floating point horizontal add/sub.
FHADD,
FHSUB,
// Detect Conflicts Within a Vector
CONFLICT,
/// Floating point max and min.
FMAX, FMIN,
/// Commutative FMIN and FMAX.
FMAXC, FMINC,
/// Scalar intrinsic floating point max and min.
FMAXS, FMINS,
/// Floating point reciprocal-sqrt and reciprocal approximation.
/// Note that these typically require refinement
/// in order to obtain suitable precision.
FRSQRT, FRCP,
// AVX-512 reciprocal approximations with a little more precision.
RSQRT14, RSQRT14S, RCP14, RCP14S,
// Thread Local Storage.
TLSADDR,
// Thread Local Storage. A call to get the start address
// of the TLS block for the current module.
TLSBASEADDR,
// Thread Local Storage. When calling to an OS provided
// thunk at the address from an earlier relocation.
TLSCALL,
// Exception Handling helpers.
EH_RETURN,
// SjLj exception handling setjmp.
EH_SJLJ_SETJMP,
// SjLj exception handling longjmp.
EH_SJLJ_LONGJMP,
// SjLj exception handling dispatch.
EH_SJLJ_SETUP_DISPATCH,
/// Tail call return. See X86TargetLowering::LowerCall for
/// the list of operands.
TC_RETURN,
// Vector move to low scalar and zero higher vector elements.
VZEXT_MOVL,
// Vector integer truncate.
VTRUNC,
// Vector integer truncate with unsigned/signed saturation.
VTRUNCUS, VTRUNCS,
// Masked version of the above. Used when less than a 128-bit result is
// produced since the mask only applies to the lower elements and can't
// be represented by a select.
// SRC, PASSTHRU, MASK
VMTRUNC, VMTRUNCUS, VMTRUNCS,
// Vector FP extend.
VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,
// Vector FP round.
VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,
// Masked version of above. Used for v2f64->v4f32.
// SRC, PASSTHRU, MASK
VMFPROUND,
// 128-bit vector logical left / right shift
VSHLDQ, VSRLDQ,
// Vector shift elements
VSHL, VSRL, VSRA,
// Vector variable shift
VSHLV, VSRLV, VSRAV,
// Vector shift elements by immediate
VSHLI, VSRLI, VSRAI,
// Shifts of mask registers.
KSHIFTL, KSHIFTR,
// Bit rotate by immediate
VROTLI, VROTRI,
// Vector packed double/float comparison.
CMPP,
// Vector integer comparisons.
PCMPEQ, PCMPGT,
// v8i16 Horizontal minimum and position.
PHMINPOS,
MULTISHIFT,
/// Vector comparison generating mask bits for fp and
/// integer signed and unsigned data types.
CMPM,
// Vector comparison with SAE for FP values
CMPM_SAE,
// Arithmetic operations with FLAGS results.
ADD, SUB, ADC, SBB, SMUL, UMUL,
OR, XOR, AND,
// Bit field extract.
BEXTR,
// Zero High Bits Starting with Specified Bit Position.
BZHI,
// X86-specific multiply by immediate.
MUL_IMM,
// Vector sign bit extraction.
MOVMSK,
// Vector bitwise comparisons.
PTEST,
// Vector packed fp sign bitwise comparisons.
TESTP,
// OR/AND test for masks.
KORTEST,
KTEST,
// ADD for masks.
KADD,
// Several flavors of instructions with vector shuffle behaviors.
// Saturated signed/unnsigned packing.
PACKSS,
PACKUS,
// Intra-lane alignr.
PALIGNR,
// AVX512 inter-lane alignr.
VALIGN,
PSHUFD,
PSHUFHW,
PSHUFLW,
SHUFP,
// VBMI2 Concat & Shift.
VSHLD,
VSHRD,
VSHLDV,
VSHRDV,
//Shuffle Packed Values at 128-bit granularity.
SHUF128,
MOVDDUP,
MOVSHDUP,
MOVSLDUP,
MOVLHPS,
MOVHLPS,
MOVSD,
MOVSS,
UNPCKL,
UNPCKH,
VPERMILPV,
VPERMILPI,
VPERMI,
VPERM2X128,
// Variable Permute (VPERM).
// Res = VPERMV MaskV, V0
VPERMV,
// 3-op Variable Permute (VPERMT2).
// Res = VPERMV3 V0, MaskV, V1
VPERMV3,
// Bitwise ternary logic.
VPTERNLOG,
// Fix Up Special Packed Float32/64 values.
VFIXUPIMM, VFIXUPIMM_SAE,
VFIXUPIMMS, VFIXUPIMMS_SAE,
// Range Restriction Calculation For Packed Pairs of Float32/64 values.
VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
// Reduce - Perform Reduction Transformation on scalar\packed FP.
VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
// RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
// Also used by the legacy (V)ROUND intrinsics where we mask out the
// scaling part of the immediate.
VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
// Tests Types Of a FP Values for packed types.
VFPCLASS,
// Tests Types Of a FP Values for scalar types.
VFPCLASSS,
// Broadcast scalar to vector.
VBROADCAST,
// Broadcast mask to vector.
VBROADCASTM,
// Broadcast subvector to vector.
SUBV_BROADCAST,
/// SSE4A Extraction and Insertion.
EXTRQI, INSERTQI,
// XOP arithmetic/logical shifts.
VPSHA, VPSHL,
// XOP signed/unsigned integer comparisons.
VPCOM, VPCOMU,
// XOP packed permute bytes.
VPPERM,
// XOP two source permutation.
VPERMIL2,
// Vector multiply packed unsigned doubleword integers.
PMULUDQ,
// Vector multiply packed signed doubleword integers.
PMULDQ,
// Vector Multiply Packed UnsignedIntegers with Round and Scale.
MULHRS,
// Multiply and Add Packed Integers.
VPMADDUBSW, VPMADDWD,
// AVX512IFMA multiply and add.
// NOTE: These are different than the instruction and perform
// op0 x op1 + op2.
VPMADD52L, VPMADD52H,
// VNNI
VPDPBUSD,
VPDPBUSDS,
VPDPWSSD,
VPDPWSSDS,
// FMA nodes.
// We use the target independent ISD::FMA for the non-inverted case.
FNMADD,
FMSUB,
FNMSUB,
FMADDSUB,
FMSUBADD,
// FMA with rounding mode.
FMADD_RND,
FNMADD_RND,
FMSUB_RND,
FNMSUB_RND,
FMADDSUB_RND,
FMSUBADD_RND,
// Compress and expand.
COMPRESS,
EXPAND,
// Bits shuffle
VPSHUFBITQMB,
// Convert Unsigned/Integer to Floating-Point Value with rounding mode.
SINT_TO_FP_RND, UINT_TO_FP_RND,
SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,
// Vector float/double to signed/unsigned integer.
CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
// Scalar float/double to signed/unsigned integer.
CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,
// Vector float/double to signed/unsigned integer with truncation.
CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
// Scalar float/double to signed/unsigned integer with truncation.
CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,
// Vector signed/unsigned integer to float/double.
CVTSI2P, CVTUI2P,
// Masked versions of above. Used for v2f64->v4f32.
// SRC, PASSTHRU, MASK
MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
MCVTSI2P, MCVTUI2P,
// Vector float to bfloat16.
// Convert TWO packed single data to one packed BF16 data
CVTNE2PS2BF16,
// Convert packed single data to packed BF16 data
CVTNEPS2BF16,
// Masked version of above.
// SRC, PASSTHRU, MASK
MCVTNEPS2BF16,
// Dot product of BF16 pairs to accumulated into
// packed single precision.
DPBF16PS,
// Save xmm argument registers to the stack, according to %al. An operator
// is needed so that this can be expanded with control flow.
VASTART_SAVE_XMM_REGS,
// Windows's _chkstk call to do stack probing.
WIN_ALLOCA,
// For allocating variable amounts of stack space when using
// segmented stacks. Check if the current stacklet has enough space, and
// falls back to heap allocation if not.
SEG_ALLOCA,
// Memory barriers.
MEMBARRIER,
MFENCE,
// Store FP status word into i16 register.
FNSTSW16r,
// Store contents of %ah into %eflags.
SAHF,
// Get a random integer and indicate whether it is valid in CF.
RDRAND,
// Get a NIST SP800-90B & C compliant random integer and
// indicate whether it is valid in CF.
RDSEED,
// Protection keys
// RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
// WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
// value for ECX.
RDPKRU, WRPKRU,
// SSE42 string comparisons.
// These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
// will emit one or two instructions based on which results are used. If
// flags and index/mask this allows us to use a single instruction since
// we won't have to pick and opcode for flags. Instead we can rely on the
// DAG to CSE everything and decide at isel.
PCMPISTR,
PCMPESTR,
// Test if in transactional execution.
XTEST,
// ERI instructions.
RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,
// Conversions between float and half-float.
CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,
// Masked version of above.
// SRC, RND, PASSTHRU, MASK
MCVTPS2PH,
// Galois Field Arithmetic Instructions
GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,
// LWP insert record.
LWPINS,
// User level wait
UMWAIT, TPAUSE,
// Enqueue Stores Instructions
ENQCMD, ENQCMDS,
// For avx512-vp2intersect
VP2INTERSECT,
// Compare and swap.
LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
LCMPXCHG8_DAG,
LCMPXCHG16_DAG,
LCMPXCHG8_SAVE_EBX_DAG,
LCMPXCHG16_SAVE_RBX_DAG,
/// LOCK-prefixed arithmetic read-modify-write instructions.
/// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
LADD, LSUB, LOR, LXOR, LAND,
// Load, scalar_to_vector, and zero extend.
VZEXT_LOAD,
// extract_vector_elt, store.
VEXTRACT_STORE,
// Store FP control world into i16 memory.
FNSTCW16m,
/// This instruction implements FP_TO_SINT with the
/// integer destination in memory and a FP reg source. This corresponds
/// to the X86::FIST*m instructions and the rounding mode change stuff. It
/// has two inputs (token chain and address) and two outputs (int value
/// and token chain). Memory VT specifies the type to store to.
FP_TO_INT_IN_MEM,
/// This instruction implements SINT_TO_FP with the
/// integer source in memory and FP reg result. This corresponds to the
/// X86::FILD*m instructions. It has two inputs (token chain and address)
/// and two outputs (FP value and token chain). FILD_FLAG also produces a
/// flag). The integer source type is specified by the memory VT.
FILD,
FILD_FLAG,
/// This instruction implements a fp->int store from FP stack
/// slots. This corresponds to the fist instruction. It takes a
/// chain operand, value to store, address, and glue. The memory VT
/// specifies the type to store as.
FIST,
/// This instruction implements an extending load to FP stack slots.
/// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
/// operand, and ptr to load from. The memory VT specifies the type to
/// load from.
FLD,
/// This instruction implements a truncating store from FP stack
/// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
/// chain operand, value to store, address, and glue. The memory VT
/// specifies the type to store as.
FST,
/// This instruction grabs the address of the next argument
/// from a va_list. (reads and modifies the va_list in memory)
VAARG_64,
// Vector truncating store with unsigned/signed saturation
VTRUNCSTOREUS, VTRUNCSTORES,
// Vector truncating masked store with unsigned/signed saturation
VMTRUNCSTOREUS, VMTRUNCSTORES,
// X86 specific gather and scatter
MGATHER, MSCATTER,
// WARNING: Do not add anything in the end unless you want the node to
// have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
// opcodes will be thought as target memory ops!
};
} // end namespace X86ISD
/// Define some predicates that are used for node matching.
namespace X86 {
/// Returns true if Elt is a constant zero or floating point constant +0.0.
bool isZeroNode(SDValue Elt);
/// Returns true of the given offset can be
/// fit into displacement field of the instruction.
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement = true);
/// Determines whether the callee is required to pop its
/// own arguments. Callee pop is necessary to support tail calls.
bool isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
} // end namespace X86
//===--------------------------------------------------------------------===//
// X86 Implementation of the TargetLowering interface
class X86TargetLowering final : public TargetLowering {
public:
explicit X86TargetLowering(const X86TargetMachine &TM,
const X86Subtarget &STI);
unsigned getJumpTableEncoding() const override;
bool useSoftFloat() const override;
void markLibCallAttributes(MachineFunction *MF, unsigned CC,
ArgListTy &Args) const override;
MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
return MVT::i8;
}
const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB, unsigned uid,
MCContext &Ctx) const override;
/// Returns relocation base for the given PIC jumptable.
SDValue getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const override;
const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI, MCContext &Ctx) const override;
/// Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contains are placed at 16-byte boundaries while the rest are at
/// 4-byte boundaries.
unsigned getByValTypeAlignment(Type *Ty,
const DataLayout &DL) const override;
/// Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
const AttributeList &FuncAttributes) const override;
/// Returns true if it's safe to use load / store of the
/// specified type to expand memcpy / memset inline. This is mostly true
/// for all types except for some special cases. For example, on X86
/// targets without SSE2 f64 load / store are done with fldl / fstpl which
/// also does type conversion. Note the specified type doesn't have to be
/// legal as the hook is used before type legalization.
bool isSafeMemOpType(MVT VT) const override;
/// Returns true if the target allows unaligned memory accesses of the
/// specified type. Returns whether it is "fast" in the last argument.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
MachineMemOperand::Flags Flags,
bool *Fast) const override;
/// Provide custom lowering hooks for some operations.
///
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
/// Places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
void LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
/// Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
// Return true if it is profitable to combine a BUILD_VECTOR with a
// stride-pattern to a shuffle and a truncate.
// Example of such a combine:
// v4i32 build_vector((extract_elt V, 1),
// (extract_elt V, 3),
// (extract_elt V, 5),
// (extract_elt V, 7))
// -->
// v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
// v4i64)
bool isDesirableToCombineBuildVectorToShuffleTruncate(
ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;
/// Return true if the target has native support for
/// the specified value type and it is 'desirable' to use the type for the
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
/// instruction encodings are longer and some i16 instructions are slow.
bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
/// Return true if the target has native support for the
/// specified value type and it is 'desirable' to use the type. e.g. On x86
/// i16 is legal, but undesirable since i16 instruction encodings are longer
/// and some i16 instructions are slow.
bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const override;
/// This method returns the name of a target specific DAG node.
const char *getTargetNodeName(unsigned Opcode) const override;
/// Do not merge vector stores after legalization because that may conflict
/// with x86-specific store splitting optimizations.
bool mergeStoresAfterLegalization(EVT MemVT) const override {
return !MemVT.isVector();
}
bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
const SelectionDAG &DAG) const override;
bool isCheapToSpeculateCttz() const override;
bool isCheapToSpeculateCtlz() const override;
bool isCtlzFast() const override;
bool hasBitPreservingFPLogic(EVT VT) const override {
return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
}
bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
// If the pair to store is a mixture of float and int values, we will
// save two bitwise instructions and one float-to-int instruction and
// increase one store instruction. There is potentially a more
// significant benefit because it avoids the float->int domain switch
// for input value. So It is more likely a win.
if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
(LTy.isInteger() && HTy.isFloatingPoint()))
return true;
// If the pair only contains int values, we will save two bitwise
// instructions and increase one store instruction (costing one more
// store buffer). Since the benefit is more blurred so we leave
// such pair out until we get testcase to prove it is a win.
return false;
}
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
bool hasAndNotCompare(SDValue Y) const override;
bool hasAndNot(SDValue Y) const override;
bool shouldFoldConstantShiftPairToMask(const SDNode *N,
CombineLevel Level) const override;
bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
bool
shouldTransformSignedTruncationCheck(EVT XVT,
unsigned KeptBits) const override {
// For vectors, we don't have a preference..
if (XVT.isVector())
return false;
auto VTIsOk = [](EVT VT) -> bool {
return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
VT == MVT::i64;
};
// We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
// XVT will be larger than KeptBitsVT.
MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
}
bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override {
if (DAG.getMachineFunction().getFunction().hasMinSize())
return false;
return true;
}
bool shouldSplatInsEltVarIndex(EVT VT) const override;
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
return VT.isScalarInteger();
}
/// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
MVT hasFastEqualityCompare(unsigned NumBits) const override;
/// Return the value type to use for ISD::SETCC.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const override;
bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
TargetLoweringOpt &TLO) const override;
/// Determine which of the bits specified in Mask are known to be either
/// zero or one and return them in the KnownZero/KnownOne bitsets.
void computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
/// Determine the number of bits in the operation that are sign bits.
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const override;
bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
const APInt &DemandedElts,
APInt &KnownUndef,
APInt &KnownZero,
TargetLoweringOpt &TLO,
unsigned Depth) const override;
bool SimplifyDemandedBitsForTargetNode(SDValue Op,
const APInt &DemandedBits,
const APInt &DemandedElts,
KnownBits &Known,
TargetLoweringOpt &TLO,
unsigned Depth) const override;
const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
SDValue unwrapAddress(SDValue N) const override;
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
bool ExpandInlineAsm(CallInst *CI) const override;
ConstraintType getConstraintType(StringRef Constraint) const override;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const override;
const char *LowerXConstraint(EVT ConstraintVT) const override;
/// Lower the specified operand into the Ops vector. If it is invalid, don't
/// add anything to Ops. If hasMemory is true it means one of the asm
/// constraint of the inline asm instruction being processed is 'm'.
void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
if (ConstraintCode == "i")
return InlineAsm::Constraint_i;
else if (ConstraintCode == "o")
return InlineAsm::Constraint_o;
else if (ConstraintCode == "v")
return InlineAsm::Constraint_v;
else if (ConstraintCode == "X")
return InlineAsm::Constraint_X;
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
/// Handle Lowering flag assembly outputs.
SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
const AsmOperandInfo &Constraint,
SelectionDAG &DAG) const override;
/// Given a physical register constraint
/// (e.g. {edx}), return the register number and the register class for the
/// register. This should only be used for C_Register constraints. On
/// error, this returns a register number of 0.
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
/// Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
Type *Ty, unsigned AS,
Instruction *I = nullptr) const override;
/// Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can
/// compare a register against the immediate without having to materialize
/// the immediate into a register.
bool isLegalICmpImmediate(int64_t Imm) const override;
/// Return true if the specified immediate is legal
/// add immediate, that is the target has add instructions which can
/// add a register and the immediate without having to materialize
/// the immediate into a register.
bool isLegalAddImmediate(int64_t Imm) const override;
bool isLegalStoreImmediate(int64_t Imm) const override;
/// Return the cost of the scaling factor used in the addressing
/// mode represented by AM for this target, for a load/store
/// of the specified type.
/// If the AM is supported, the return value must be >= 0.
/// If the AM is not supported, it returns a negative value.
int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
unsigned AS) const override;
bool isVectorShiftByScalarCheap(Type *Ty) const override;
/// Add x86-specific opcodes to the default list.
bool isBinOp(unsigned Opcode) const override;
/// Returns true if the opcode is a commutative binary operation.
bool isCommutativeBinOp(unsigned Opcode) const override;
/// Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
bool isTruncateFree(EVT VT1, EVT VT2) const override;
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
/// Return true if any actual instruction that defines a
/// value of type Ty1 implicit zero-extends the value to Ty2 in the result
/// register. This does not necessarily include registers defined in
/// unknown ways, such as incoming arguments, or copies from unknown
/// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
/// does not necessarily apply to truncate instructions. e.g. on x86-64,
/// all instructions that define 32-bit values implicit zero-extend the
/// result out to 64 bits.
bool isZExtFree(Type *Ty1, Type *Ty2) const override;
bool isZExtFree(EVT VT1, EVT VT2) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
/// Return true if folding a vector load into ExtVal (a sign, zero, or any
/// extend node) is profitable.
bool isVectorLoadExtDesirable(SDValue) const override;
/// Return true if an FMA operation is faster than a pair of fmul and fadd
/// instructions. fmuladd intrinsics will be expanded to FMAs when this
/// method returns true, otherwise fmuladd is expanded to fmul + fadd.
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
/// Return true if it's profitable to narrow
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
/// from i32 to i8 but not from i32 to i16.
bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
/// Given an intrinsic, checks if on the target the intrinsic will need to map
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
/// true and stores the intrinsic information into the IntrinsicInfo that was
/// passed to the function.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
/// Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const override;
/// Targets can use this to indicate that they only support *some*
/// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
/// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
/// be legal.
bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
/// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
/// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
/// constant pool entry.
bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
/// Returns true if lowering to a jump table is allowed.
bool areJTsAllowed(const Function *Fn) const override;
/// If true, then instruction selection should
/// seek to shrink the FP constant of the specified type to a smaller type
/// in order to save space and / or reduce runtime.
bool ShouldShrinkFPConstant(EVT VT) const override {
// Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
// expensive than a straight movsd. On the other hand, it's important to
// shrink long double fp constant since fldt is very slow.
return !X86ScalarSSEf64 || VT == MVT::f80;
}
/// Return true if we believe it is correct and profitable to reduce the
/// load node to a smaller type.
bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
EVT NewVT) const override;
/// Return true if the specified scalar FP type is computed in an SSE
/// register, not on the X87 floating point stack.
bool isScalarFPTypeInSSEReg(EVT VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
bool reduceSelectOfFPConstantLoads(bool IsFPSetCC) const override;
bool convertSelectOfConstantsToMath(EVT VT) const override;
bool decomposeMulByConstant(EVT VT, SDValue C) const override;
bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
bool IsSigned) const override;
/// Return true if EXTRACT_SUBVECTOR is cheap for this result type
/// with this index.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const override;
/// Scalar ops always have equal or better analysis/performance/power than
/// the vector equivalent, so this always makes sense if the scalar op is
/// supported.
bool shouldScalarizeBinop(SDValue) const override;
/// Extract of a scalar FP value from index 0 of a vector is free.
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
EVT EltVT = VT.getScalarType();
return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
}
/// Overflow nodes should get combined/lowered to optimal instructions
/// (they should allow eliminating explicit compares by getting flags from
/// math ops).
bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;
bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
unsigned AddrSpace) const override {
// If we can replace more than 2 scalar stores, there will be a reduction
// in instructions even after we add a vector constant load.
return NumElem > 2;
}
bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
const SelectionDAG &DAG,
const MachineMemOperand &MMO) const override;
/// Intel processors have a unified instruction and data cache
const char * getClearCacheBuiltinName() const override {
return nullptr; // nothing to do, move along.
}
unsigned getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const override;
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
unsigned
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
unsigned
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
virtual bool needsFixedCatchObjects() const override;
/// This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const override;
/// If the target has a standard location for the stack protector cookie,
/// returns the address of that location. Otherwise, returns nullptr.
Value *getIRStackGuard(IRBuilder<> &IRB) const override;
bool useLoadStackGuardNode() const override;
bool useStackGuardXorFP() const override;
void insertSSPDeclarations(Module &M) const override;
Value *getSDagStackGuard(const Module &M) const override;
Function *getSSPStackGuardCheck(const Module &M) const override;
SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
const SDLoc &DL) const override;
/// Return true if the target stores SafeStack pointer at a fixed offset in
/// some non-standard address space, and populates the address space and
/// offset as appropriate.
Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;
SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
SelectionDAG &DAG) const;
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
/// Customize the preferred legalization strategy for certain types.
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
EVT VT) const override;
unsigned getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const override;
bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
bool supportSwiftError() const override;
StringRef getStackProbeSymbolName(MachineFunction &MF) const override;
bool hasVectorBlend() const override { return true; }
unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
/// Lower interleaved load(s) into target specific
/// instructions/intrinsics.
bool lowerInterleavedLoad(LoadInst *LI,
ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices,
unsigned Factor) const override;
/// Lower interleaved store(s) into target specific
/// instructions/intrinsics.
bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
unsigned Factor) const override;
SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
SDValue Addr, SelectionDAG &DAG)
const override;
protected:
std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const override;
private:
/// Keep a reference to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget &Subtarget;
/// Select between SSE or x87 floating point ops.
/// When SSE is available, use it for f32 operations.
/// When SSE2 is available, use it for f64 operations.
bool X86ScalarSSEf32;
bool X86ScalarSSEf64;
/// A list of legal FP immediates.
std::vector<APFloat> LegalFPImmediates;
/// Indicate that this x86 target can instruction
/// select the specified FP immediate natively.
void addLegalFPImmediate(const APFloat& Imm) {
LegalFPImmediates.push_back(Imm);
}
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
uint32_t *RegMask) const;
SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
const SmallVectorImpl<ISD::InputArg> &ArgInfo,
const SDLoc &dl, SelectionDAG &DAG,
const CCValAssign &VA, MachineFrameInfo &MFI,
unsigned i) const;
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
const SDLoc &dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const;
// Call lowering helpers.
/// Check whether the call is eligible for tail call optimization. Targets
/// that want to do tail call optimization should implement this function.
bool IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
bool isCalleeStructRet,
bool isCallerStructRet,
Type *RetTy,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
SDValue Chain, bool IsTailCall,
bool Is64Bit, int FPDiff,
const SDLoc &dl) const;
unsigned GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG &DAG) const;
unsigned getAddressSpace(void) const;
SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
const unsigned char OpFlags = 0) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
/// Creates target global address or external symbol nodes for calls or
/// other uses.
SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
bool ForCall) const;
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const override;
bool supportSplitCSR(MachineFunction *MF) const override {
return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
}
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
void insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const override;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
bool needsCmpXchgNb(Type *MemType) const;
void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB, int FI) const;
// Utility function to emit the low-level va_arg code for X86-64.
MachineBasicBlock *
EmitVAARG64WithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const;
/// Utility function to emit the xmm reg save portion of va_start.
MachineBasicBlock *
EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
MachineInstr &MI2,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const;
void emitSetJmpShadowStackFix(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
MachineBasicBlock *MBB) const;
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
/// equivalent, for use with the given x86 condition code.
SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
SelectionDAG &DAG) const;
/// Convert a comparison if required by the subtarget.
SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
/// Emit flags for the given setcc condition and operands. Also returns the
/// corresponding X86 condition code constant in X86CC.
SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1,
ISD::CondCode CC, const SDLoc &dl,
SelectionDAG &DAG,
SDValue &X86CC) const;
/// Check if replacement of SQRT with RSQRT should be disabled.
bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;
/// Use rsqrt* to speed up sqrt calculations.
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &RefinementSteps, bool &UseOneConstNR,
bool Reciprocal) const override;
/// Use rcp* to speed up fdiv calculations.
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &RefinementSteps) const override;
/// Reassociate floating point divisions into multiply by reciprocal.
unsigned combineRepeatedFPDivisors() const override;
};
namespace X86 {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
} // end namespace X86
// Base class for all X86 non-masked store operations.
class X86StoreSDNode : public MemSDNode {
public:
X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO)
:MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::VTRUNCSTORES ||
N->getOpcode() == X86ISD::VTRUNCSTOREUS;
}
};
// Base class for all X86 masked store operations.
// The class has the same order of operands as MaskedStoreSDNode for
// convenience.
class X86MaskedStoreSDNode : public MemSDNode {
public:
X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO)
: MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getMask() const { return getOperand(3); }
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
}
};
// X86 Truncating Store with Signed saturation.
class TruncSStoreSDNode : public X86StoreSDNode {
public:
TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
: X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::VTRUNCSTORES;
}
};
// X86 Truncating Store with Unsigned saturation.
class TruncUSStoreSDNode : public X86StoreSDNode {
public:
TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
: X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
}
};
// X86 Truncating Masked Store with Signed saturation.
class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
public:
MaskedTruncSStoreSDNode(unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO)
: X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::VMTRUNCSTORES;
}
};
// X86 Truncating Masked Store with Unsigned saturation.
class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
public:
MaskedTruncUSStoreSDNode(unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO)
: X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
}
};
// X86 specific Gather/Scatter nodes.
// The class has the same order of operands as MaskedGatherScatterSDNode for
// convenience.
class X86MaskedGatherScatterSDNode : public MemSDNode {
public:
X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO)
: MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}
const SDValue &getBasePtr() const { return getOperand(3); }
const SDValue &getIndex() const { return getOperand(4); }
const SDValue &getMask() const { return getOperand(2); }
const SDValue &getScale() const { return getOperand(5); }
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::MGATHER ||
N->getOpcode() == X86ISD::MSCATTER;
}
};
class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
public:
X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT MemVT, MachineMemOperand *MMO)
: X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
MMO) {}
const SDValue &getPassThru() const { return getOperand(1); }
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::MGATHER;
}
};
class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
public:
X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT MemVT, MachineMemOperand *MMO)
: X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
MMO) {}
const SDValue &getValue() const { return getOperand(1); }
static bool classof(const SDNode *N) {
return N->getOpcode() == X86ISD::MSCATTER;
}
};
/// Generate unpacklo/unpackhi shuffle mask.
template <typename T = int>
void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
bool Unary) {
assert(Mask.empty() && "Expected an empty shuffle mask vector");
int NumElts = VT.getVectorNumElements();
int NumEltsInLane = 128 / VT.getScalarSizeInBits();
for (int i = 0; i < NumElts; ++i) {
unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
int Pos = (i % NumEltsInLane) / 2 + LaneStart;
Pos += (Unary ? 0 : NumElts * (i % 2));
Pos += (Lo ? 0 : NumEltsInLane / 2);
Mask.push_back(Pos);
}
}
/// Helper function to scale a shuffle or target shuffle mask, replacing each
/// mask index with the scaled sequential indices for an equivalent narrowed
/// mask. This is the reverse process to canWidenShuffleElements, but can
/// always succeed.
template <typename T>
void scaleShuffleMask(int Scale, ArrayRef<T> Mask,
SmallVectorImpl<T> &ScaledMask) {
assert(0 < Scale && "Unexpected scaling factor");
size_t NumElts = Mask.size();
ScaledMask.assign(NumElts * Scale, -1);
for (int i = 0; i != (int)NumElts; ++i) {
int M = Mask[i];
// Repeat sentinel values in every mask element.
if (M < 0) {
for (int s = 0; s != Scale; ++s)
ScaledMask[(Scale * i) + s] = M;
continue;
}
// Scale mask element and increment across each mask element.
for (int s = 0; s != Scale; ++s)
ScaledMask[(Scale * i) + s] = (Scale * M) + s;
}
}
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H