forked from OSchip/llvm-project
1236 lines
49 KiB
C++
1236 lines
49 KiB
C++
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass lowers LLVM IR exception handling into something closer to what the
|
|
// backend wants for functions using a personality function from a runtime
|
|
// provided by MSVC. Functions with other personality functions are left alone
|
|
// and may be prepared by other passes. In particular, all supported MSVC
|
|
// personality functions require cleanup code to be outlined, and the C++
|
|
// personality requires catch handler code to be outlined.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "winehprepare"
|
|
|
|
static cl::opt<bool> DisableDemotion(
|
|
"disable-demotion", cl::Hidden,
|
|
cl::desc(
|
|
"Clone multicolor basic blocks but do not demote cross funclet values"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> DisableCleanups(
|
|
"disable-cleanups", cl::Hidden,
|
|
cl::desc("Do not remove implausible terminators or other similar cleanups"),
|
|
cl::init(false));
|
|
|
|
namespace {
|
|
|
|
class WinEHPrepare : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
WinEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &Fn) override;
|
|
|
|
bool doFinalization(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
const char *getPassName() const override {
|
|
return "Windows exception handling preparation";
|
|
}
|
|
|
|
private:
|
|
void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
|
|
void
|
|
insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
|
|
SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
|
|
AllocaInst *insertPHILoads(PHINode *PN, Function &F);
|
|
void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
|
|
DenseMap<BasicBlock *, Value *> &Loads, Function &F);
|
|
bool prepareExplicitEH(Function &F);
|
|
void colorFunclets(Function &F);
|
|
|
|
void demotePHIsOnFunclets(Function &F);
|
|
void cloneCommonBlocks(Function &F);
|
|
void removeImplausibleInstructions(Function &F);
|
|
void cleanupPreparedFunclets(Function &F);
|
|
void verifyPreparedFunclets(Function &F);
|
|
|
|
// All fields are reset by runOnFunction.
|
|
EHPersonality Personality = EHPersonality::Unknown;
|
|
|
|
DenseMap<BasicBlock *, ColorVector> BlockColors;
|
|
MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char WinEHPrepare::ID = 0;
|
|
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
|
|
return new WinEHPrepare(TM);
|
|
}
|
|
|
|
bool WinEHPrepare::runOnFunction(Function &Fn) {
|
|
if (!Fn.hasPersonalityFn())
|
|
return false;
|
|
|
|
// Classify the personality to see what kind of preparation we need.
|
|
Personality = classifyEHPersonality(Fn.getPersonalityFn());
|
|
|
|
// Do nothing if this is not a funclet-based personality.
|
|
if (!isFuncletEHPersonality(Personality))
|
|
return false;
|
|
|
|
return prepareExplicitEH(Fn);
|
|
}
|
|
|
|
bool WinEHPrepare::doFinalization(Module &M) { return false; }
|
|
|
|
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
|
|
|
|
static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
|
|
const BasicBlock *BB) {
|
|
CxxUnwindMapEntry UME;
|
|
UME.ToState = ToState;
|
|
UME.Cleanup = BB;
|
|
FuncInfo.CxxUnwindMap.push_back(UME);
|
|
return FuncInfo.getLastStateNumber();
|
|
}
|
|
|
|
static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
|
|
int TryHigh, int CatchHigh,
|
|
ArrayRef<const CatchPadInst *> Handlers) {
|
|
WinEHTryBlockMapEntry TBME;
|
|
TBME.TryLow = TryLow;
|
|
TBME.TryHigh = TryHigh;
|
|
TBME.CatchHigh = CatchHigh;
|
|
assert(TBME.TryLow <= TBME.TryHigh);
|
|
for (const CatchPadInst *CPI : Handlers) {
|
|
WinEHHandlerType HT;
|
|
Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
|
|
if (TypeInfo->isNullValue())
|
|
HT.TypeDescriptor = nullptr;
|
|
else
|
|
HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
|
|
HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
|
|
HT.Handler = CPI->getParent();
|
|
if (auto *AI =
|
|
dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
|
|
HT.CatchObj.Alloca = AI;
|
|
else
|
|
HT.CatchObj.Alloca = nullptr;
|
|
TBME.HandlerArray.push_back(HT);
|
|
}
|
|
FuncInfo.TryBlockMap.push_back(TBME);
|
|
}
|
|
|
|
static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
|
|
for (const User *U : CleanupPad->users())
|
|
if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
|
|
return CRI->getUnwindDest();
|
|
return nullptr;
|
|
}
|
|
|
|
static void calculateStateNumbersForInvokes(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
auto *F = const_cast<Function *>(Fn);
|
|
DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
|
|
for (BasicBlock &BB : *F) {
|
|
auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
|
|
if (!II)
|
|
continue;
|
|
|
|
auto &BBColors = BlockColors[&BB];
|
|
assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
|
|
BasicBlock *FuncletEntryBB = BBColors.front();
|
|
|
|
BasicBlock *FuncletUnwindDest;
|
|
auto *FuncletPad =
|
|
dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
|
|
assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
|
|
if (!FuncletPad)
|
|
FuncletUnwindDest = nullptr;
|
|
else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
|
|
FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
|
|
else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
|
|
FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
|
|
else
|
|
llvm_unreachable("unexpected funclet pad!");
|
|
|
|
BasicBlock *InvokeUnwindDest = II->getUnwindDest();
|
|
int BaseState = -1;
|
|
if (FuncletUnwindDest == InvokeUnwindDest) {
|
|
auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
|
|
if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
|
|
BaseState = BaseStateI->second;
|
|
}
|
|
|
|
if (BaseState != -1) {
|
|
FuncInfo.InvokeStateMap[II] = BaseState;
|
|
} else {
|
|
Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
|
|
assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
|
|
FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
|
|
// to. If the unwind edge came from an invoke, return null.
|
|
static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
|
|
Value *ParentPad) {
|
|
const TerminatorInst *TI = BB->getTerminator();
|
|
if (isa<InvokeInst>(TI))
|
|
return nullptr;
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
|
|
if (CatchSwitch->getParentPad() != ParentPad)
|
|
return nullptr;
|
|
return BB;
|
|
}
|
|
assert(!TI->isEHPad() && "unexpected EHPad!");
|
|
auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
|
|
if (CleanupPad->getParentPad() != ParentPad)
|
|
return nullptr;
|
|
return CleanupPad->getParent();
|
|
}
|
|
|
|
static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
|
|
const Instruction *FirstNonPHI,
|
|
int ParentState) {
|
|
const BasicBlock *BB = FirstNonPHI->getParent();
|
|
assert(BB->isEHPad() && "not a funclet!");
|
|
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
|
|
assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
|
|
"shouldn't revist catch funclets!");
|
|
|
|
SmallVector<const CatchPadInst *, 2> Handlers;
|
|
for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
|
|
auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
|
|
Handlers.push_back(CatchPad);
|
|
}
|
|
int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
|
|
FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
|
|
for (const BasicBlock *PredBlock : predecessors(BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock,
|
|
CatchSwitch->getParentPad())))
|
|
calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
|
|
TryLow);
|
|
int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
|
|
|
|
// catchpads are separate funclets in C++ EH due to the way rethrow works.
|
|
int TryHigh = CatchLow - 1;
|
|
for (const auto *CatchPad : Handlers) {
|
|
FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
|
|
for (const User *U : CatchPad->users()) {
|
|
const auto *UserI = cast<Instruction>(U);
|
|
if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
|
|
BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
|
|
if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
|
|
calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
|
|
}
|
|
if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
|
|
BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
|
|
// If a nested cleanup pad reports a null unwind destination and the
|
|
// enclosing catch pad doesn't it must be post-dominated by an
|
|
// unreachable instruction.
|
|
if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
|
|
calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
|
|
}
|
|
}
|
|
}
|
|
int CatchHigh = FuncInfo.getLastStateNumber();
|
|
addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
|
|
DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
|
|
DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh << '\n');
|
|
DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
|
|
<< '\n');
|
|
} else {
|
|
auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
|
|
|
|
// It's possible for a cleanup to be visited twice: it might have multiple
|
|
// cleanupret instructions.
|
|
if (FuncInfo.EHPadStateMap.count(CleanupPad))
|
|
return;
|
|
|
|
int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
|
|
FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
|
|
DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
|
|
<< BB->getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(BB)) {
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock,
|
|
CleanupPad->getParentPad()))) {
|
|
calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
|
|
CleanupState);
|
|
}
|
|
}
|
|
for (const User *U : CleanupPad->users()) {
|
|
const auto *UserI = cast<Instruction>(U);
|
|
if (UserI->isEHPad())
|
|
report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
|
|
"contain exceptional actions");
|
|
}
|
|
}
|
|
}
|
|
|
|
static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
|
|
const Function *Filter, const BasicBlock *Handler) {
|
|
SEHUnwindMapEntry Entry;
|
|
Entry.ToState = ParentState;
|
|
Entry.IsFinally = false;
|
|
Entry.Filter = Filter;
|
|
Entry.Handler = Handler;
|
|
FuncInfo.SEHUnwindMap.push_back(Entry);
|
|
return FuncInfo.SEHUnwindMap.size() - 1;
|
|
}
|
|
|
|
static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
|
|
const BasicBlock *Handler) {
|
|
SEHUnwindMapEntry Entry;
|
|
Entry.ToState = ParentState;
|
|
Entry.IsFinally = true;
|
|
Entry.Filter = nullptr;
|
|
Entry.Handler = Handler;
|
|
FuncInfo.SEHUnwindMap.push_back(Entry);
|
|
return FuncInfo.SEHUnwindMap.size() - 1;
|
|
}
|
|
|
|
static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
|
|
const Instruction *FirstNonPHI,
|
|
int ParentState) {
|
|
const BasicBlock *BB = FirstNonPHI->getParent();
|
|
assert(BB->isEHPad() && "no a funclet!");
|
|
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
|
|
assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
|
|
"shouldn't revist catch funclets!");
|
|
|
|
// Extract the filter function and the __except basic block and create a
|
|
// state for them.
|
|
assert(CatchSwitch->getNumHandlers() == 1 &&
|
|
"SEH doesn't have multiple handlers per __try");
|
|
const auto *CatchPad =
|
|
cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
|
|
const BasicBlock *CatchPadBB = CatchPad->getParent();
|
|
const Constant *FilterOrNull =
|
|
cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
|
|
const Function *Filter = dyn_cast<Function>(FilterOrNull);
|
|
assert((Filter || FilterOrNull->isNullValue()) &&
|
|
"unexpected filter value");
|
|
int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
|
|
|
|
// Everything in the __try block uses TryState as its parent state.
|
|
FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
|
|
DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
|
|
<< CatchPadBB->getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock,
|
|
CatchSwitch->getParentPad())))
|
|
calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
|
|
TryState);
|
|
|
|
// Everything in the __except block unwinds to ParentState, just like code
|
|
// outside the __try.
|
|
for (const User *U : CatchPad->users()) {
|
|
const auto *UserI = cast<Instruction>(U);
|
|
if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
|
|
BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
|
|
if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
|
|
calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
|
|
}
|
|
if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
|
|
BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
|
|
// If a nested cleanup pad reports a null unwind destination and the
|
|
// enclosing catch pad doesn't it must be post-dominated by an
|
|
// unreachable instruction.
|
|
if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
|
|
calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
|
|
}
|
|
}
|
|
} else {
|
|
auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
|
|
|
|
// It's possible for a cleanup to be visited twice: it might have multiple
|
|
// cleanupret instructions.
|
|
if (FuncInfo.EHPadStateMap.count(CleanupPad))
|
|
return;
|
|
|
|
int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
|
|
FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
|
|
DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
|
|
<< BB->getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(BB))
|
|
if ((PredBlock =
|
|
getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
|
|
calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
|
|
CleanupState);
|
|
for (const User *U : CleanupPad->users()) {
|
|
const auto *UserI = cast<Instruction>(U);
|
|
if (UserI->isEHPad())
|
|
report_fatal_error("Cleanup funclets for the SEH personality cannot "
|
|
"contain exceptional actions");
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
|
|
return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
|
|
CatchSwitch->unwindsToCaller();
|
|
if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
|
|
return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
|
|
getCleanupRetUnwindDest(CleanupPad) == nullptr;
|
|
if (isa<CatchPadInst>(EHPad))
|
|
return false;
|
|
llvm_unreachable("unexpected EHPad!");
|
|
}
|
|
|
|
void llvm::calculateSEHStateNumbers(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
// Don't compute state numbers twice.
|
|
if (!FuncInfo.SEHUnwindMap.empty())
|
|
return;
|
|
|
|
for (const BasicBlock &BB : *Fn) {
|
|
if (!BB.isEHPad())
|
|
continue;
|
|
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
|
|
if (!isTopLevelPadForMSVC(FirstNonPHI))
|
|
continue;
|
|
::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
|
|
}
|
|
|
|
calculateStateNumbersForInvokes(Fn, FuncInfo);
|
|
}
|
|
|
|
void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
// Return if it's already been done.
|
|
if (!FuncInfo.EHPadStateMap.empty())
|
|
return;
|
|
|
|
for (const BasicBlock &BB : *Fn) {
|
|
if (!BB.isEHPad())
|
|
continue;
|
|
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
|
|
if (!isTopLevelPadForMSVC(FirstNonPHI))
|
|
continue;
|
|
calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
|
|
}
|
|
|
|
calculateStateNumbersForInvokes(Fn, FuncInfo);
|
|
}
|
|
|
|
static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
|
|
int TryParentState, ClrHandlerType HandlerType,
|
|
uint32_t TypeToken, const BasicBlock *Handler) {
|
|
ClrEHUnwindMapEntry Entry;
|
|
Entry.HandlerParentState = HandlerParentState;
|
|
Entry.TryParentState = TryParentState;
|
|
Entry.Handler = Handler;
|
|
Entry.HandlerType = HandlerType;
|
|
Entry.TypeToken = TypeToken;
|
|
FuncInfo.ClrEHUnwindMap.push_back(Entry);
|
|
return FuncInfo.ClrEHUnwindMap.size() - 1;
|
|
}
|
|
|
|
void llvm::calculateClrEHStateNumbers(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
// Return if it's already been done.
|
|
if (!FuncInfo.EHPadStateMap.empty())
|
|
return;
|
|
|
|
// This numbering assigns one state number to each catchpad and cleanuppad.
|
|
// It also computes two tree-like relations over states:
|
|
// 1) Each state has a "HandlerParentState", which is the state of the next
|
|
// outer handler enclosing this state's handler (same as nearest ancestor
|
|
// per the ParentPad linkage on EH pads, but skipping over catchswitches).
|
|
// 2) Each state has a "TryParentState", which:
|
|
// a) for a catchpad that's not the last handler on its catchswitch, is
|
|
// the state of the next catchpad on that catchswitch
|
|
// b) for all other pads, is the state of the pad whose try region is the
|
|
// next outer try region enclosing this state's try region. The "try
|
|
// regions are not present as such in the IR, but will be inferred
|
|
// based on the placement of invokes and pads which reach each other
|
|
// by exceptional exits
|
|
// Catchswitches do not get their own states, but each gets mapped to the
|
|
// state of its first catchpad.
|
|
|
|
// Step one: walk down from outermost to innermost funclets, assigning each
|
|
// catchpad and cleanuppad a state number. Add an entry to the
|
|
// ClrEHUnwindMap for each state, recording its HandlerParentState and
|
|
// handler attributes. Record the TryParentState as well for each catchpad
|
|
// that's not the last on its catchswitch, but initialize all other entries'
|
|
// TryParentStates to a sentinel -1 value that the next pass will update.
|
|
|
|
// Seed a worklist with pads that have no parent.
|
|
SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
|
|
for (const BasicBlock &BB : *Fn) {
|
|
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
|
|
const Value *ParentPad;
|
|
if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
|
|
ParentPad = CPI->getParentPad();
|
|
else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
|
|
ParentPad = CSI->getParentPad();
|
|
else
|
|
continue;
|
|
if (isa<ConstantTokenNone>(ParentPad))
|
|
Worklist.emplace_back(FirstNonPHI, -1);
|
|
}
|
|
|
|
// Use the worklist to visit all pads, from outer to inner. Record
|
|
// HandlerParentState for all pads. Record TryParentState only for catchpads
|
|
// that aren't the last on their catchswitch (setting all other entries'
|
|
// TryParentStates to an initial value of -1). This loop is also responsible
|
|
// for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
|
|
// catchswitches.
|
|
while (!Worklist.empty()) {
|
|
const Instruction *Pad;
|
|
int HandlerParentState;
|
|
std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
|
|
|
|
if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
|
|
// Create the entry for this cleanup with the appropriate handler
|
|
// properties. Finaly and fault handlers are distinguished by arity.
|
|
ClrHandlerType HandlerType =
|
|
(Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
|
|
: ClrHandlerType::Finally);
|
|
int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
|
|
HandlerType, 0, Pad->getParent());
|
|
// Queue any child EH pads on the worklist.
|
|
for (const User *U : Cleanup->users())
|
|
if (const auto *I = dyn_cast<Instruction>(U))
|
|
if (I->isEHPad())
|
|
Worklist.emplace_back(I, CleanupState);
|
|
// Remember this pad's state.
|
|
FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
|
|
} else {
|
|
// Walk the handlers of this catchswitch in reverse order since all but
|
|
// the last need to set the following one as its TryParentState.
|
|
const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
|
|
int CatchState = -1, FollowerState = -1;
|
|
SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
|
|
for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
|
|
CBI != CBE; ++CBI, FollowerState = CatchState) {
|
|
const BasicBlock *CatchBlock = *CBI;
|
|
// Create the entry for this catch with the appropriate handler
|
|
// properties.
|
|
const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
|
|
uint32_t TypeToken = static_cast<uint32_t>(
|
|
cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
|
|
CatchState =
|
|
addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
|
|
ClrHandlerType::Catch, TypeToken, CatchBlock);
|
|
// Queue any child EH pads on the worklist.
|
|
for (const User *U : Catch->users())
|
|
if (const auto *I = dyn_cast<Instruction>(U))
|
|
if (I->isEHPad())
|
|
Worklist.emplace_back(I, CatchState);
|
|
// Remember this catch's state.
|
|
FuncInfo.EHPadStateMap[Catch] = CatchState;
|
|
}
|
|
// Associate the catchswitch with the state of its first catch.
|
|
assert(CatchSwitch->getNumHandlers());
|
|
FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
|
|
}
|
|
}
|
|
|
|
// Step two: record the TryParentState of each state. For cleanuppads that
|
|
// don't have cleanuprets, we may need to infer this from their child pads,
|
|
// so visit pads in descendant-most to ancestor-most order.
|
|
for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
|
|
End = FuncInfo.ClrEHUnwindMap.rend();
|
|
Entry != End; ++Entry) {
|
|
const Instruction *Pad =
|
|
Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
|
|
// For most pads, the TryParentState is the state associated with the
|
|
// unwind dest of exceptional exits from it.
|
|
const BasicBlock *UnwindDest;
|
|
if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
|
|
// If a catch is not the last in its catchswitch, its TryParentState is
|
|
// the state associated with the next catch in the switch, even though
|
|
// that's not the unwind dest of exceptions escaping the catch. Those
|
|
// cases were already assigned a TryParentState in the first pass, so
|
|
// skip them.
|
|
if (Entry->TryParentState != -1)
|
|
continue;
|
|
// Otherwise, get the unwind dest from the catchswitch.
|
|
UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
|
|
} else {
|
|
const auto *Cleanup = cast<CleanupPadInst>(Pad);
|
|
UnwindDest = nullptr;
|
|
for (const User *U : Cleanup->users()) {
|
|
if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
|
|
// Common and unambiguous case -- cleanupret indicates cleanup's
|
|
// unwind dest.
|
|
UnwindDest = CleanupRet->getUnwindDest();
|
|
break;
|
|
}
|
|
|
|
// Get an unwind dest for the user
|
|
const BasicBlock *UserUnwindDest = nullptr;
|
|
if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
|
|
UserUnwindDest = Invoke->getUnwindDest();
|
|
} else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
|
|
UserUnwindDest = CatchSwitch->getUnwindDest();
|
|
} else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
|
|
int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
|
|
int UserUnwindState =
|
|
FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
|
|
if (UserUnwindState != -1)
|
|
UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
|
|
.Handler.get<const BasicBlock *>();
|
|
}
|
|
|
|
// Not having an unwind dest for this user might indicate that it
|
|
// doesn't unwind, so can't be taken as proof that the cleanup itself
|
|
// may unwind to caller (see e.g. SimplifyUnreachable and
|
|
// RemoveUnwindEdge).
|
|
if (!UserUnwindDest)
|
|
continue;
|
|
|
|
// Now we have an unwind dest for the user, but we need to see if it
|
|
// unwinds all the way out of the cleanup or if it stays within it.
|
|
const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
|
|
const Value *UserUnwindParent;
|
|
if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
|
|
UserUnwindParent = CSI->getParentPad();
|
|
else
|
|
UserUnwindParent =
|
|
cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
|
|
|
|
// The unwind stays within the cleanup iff it targets a child of the
|
|
// cleanup.
|
|
if (UserUnwindParent == Cleanup)
|
|
continue;
|
|
|
|
// This unwind exits the cleanup, so its dest is the cleanup's dest.
|
|
UnwindDest = UserUnwindDest;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Record the state of the unwind dest as the TryParentState.
|
|
int UnwindDestState;
|
|
|
|
// If UnwindDest is null at this point, either the pad in question can
|
|
// be exited by unwind to caller, or it cannot be exited by unwind. In
|
|
// either case, reporting such cases as unwinding to caller is correct.
|
|
// This can lead to EH tables that "look strange" -- if this pad's is in
|
|
// a parent funclet which has other children that do unwind to an enclosing
|
|
// pad, the try region for this pad will be missing the "duplicate" EH
|
|
// clause entries that you'd expect to see covering the whole parent. That
|
|
// should be benign, since the unwind never actually happens. If it were
|
|
// an issue, we could add a subsequent pass that pushes unwind dests down
|
|
// from parents that have them to children that appear to unwind to caller.
|
|
if (!UnwindDest) {
|
|
UnwindDestState = -1;
|
|
} else {
|
|
UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
|
|
}
|
|
|
|
Entry->TryParentState = UnwindDestState;
|
|
}
|
|
|
|
// Step three: transfer information from pads to invokes.
|
|
calculateStateNumbersForInvokes(Fn, FuncInfo);
|
|
}
|
|
|
|
void WinEHPrepare::colorFunclets(Function &F) {
|
|
BlockColors = colorEHFunclets(F);
|
|
|
|
// Invert the map from BB to colors to color to BBs.
|
|
for (BasicBlock &BB : F) {
|
|
ColorVector &Colors = BlockColors[&BB];
|
|
for (BasicBlock *Color : Colors)
|
|
FuncletBlocks[Color].push_back(&BB);
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
|
|
// Strip PHI nodes off of EH pads.
|
|
SmallVector<PHINode *, 16> PHINodes;
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
|
|
BasicBlock *BB = &*FI++;
|
|
if (!BB->isEHPad())
|
|
continue;
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
|
|
Instruction *I = &*BI++;
|
|
auto *PN = dyn_cast<PHINode>(I);
|
|
// Stop at the first non-PHI.
|
|
if (!PN)
|
|
break;
|
|
|
|
AllocaInst *SpillSlot = insertPHILoads(PN, F);
|
|
if (SpillSlot)
|
|
insertPHIStores(PN, SpillSlot);
|
|
|
|
PHINodes.push_back(PN);
|
|
}
|
|
}
|
|
|
|
for (auto *PN : PHINodes) {
|
|
// There may be lingering uses on other EH PHIs being removed
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::cloneCommonBlocks(Function &F) {
|
|
// We need to clone all blocks which belong to multiple funclets. Values are
|
|
// remapped throughout the funclet to propogate both the new instructions
|
|
// *and* the new basic blocks themselves.
|
|
for (auto &Funclets : FuncletBlocks) {
|
|
BasicBlock *FuncletPadBB = Funclets.first;
|
|
std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
|
|
Value *FuncletToken;
|
|
if (FuncletPadBB == &F.getEntryBlock())
|
|
FuncletToken = ConstantTokenNone::get(F.getContext());
|
|
else
|
|
FuncletToken = FuncletPadBB->getFirstNonPHI();
|
|
|
|
std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
|
|
ValueToValueMapTy VMap;
|
|
for (BasicBlock *BB : BlocksInFunclet) {
|
|
ColorVector &ColorsForBB = BlockColors[BB];
|
|
// We don't need to do anything if the block is monochromatic.
|
|
size_t NumColorsForBB = ColorsForBB.size();
|
|
if (NumColorsForBB == 1)
|
|
continue;
|
|
|
|
DEBUG_WITH_TYPE("winehprepare-coloring",
|
|
dbgs() << " Cloning block \'" << BB->getName()
|
|
<< "\' for funclet \'" << FuncletPadBB->getName()
|
|
<< "\'.\n");
|
|
|
|
// Create a new basic block and copy instructions into it!
|
|
BasicBlock *CBB =
|
|
CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
|
|
// Insert the clone immediately after the original to ensure determinism
|
|
// and to keep the same relative ordering of any funclet's blocks.
|
|
CBB->insertInto(&F, BB->getNextNode());
|
|
|
|
// Add basic block mapping.
|
|
VMap[BB] = CBB;
|
|
|
|
// Record delta operations that we need to perform to our color mappings.
|
|
Orig2Clone.emplace_back(BB, CBB);
|
|
}
|
|
|
|
// If nothing was cloned, we're done cloning in this funclet.
|
|
if (Orig2Clone.empty())
|
|
continue;
|
|
|
|
// Update our color mappings to reflect that one block has lost a color and
|
|
// another has gained a color.
|
|
for (auto &BBMapping : Orig2Clone) {
|
|
BasicBlock *OldBlock = BBMapping.first;
|
|
BasicBlock *NewBlock = BBMapping.second;
|
|
|
|
BlocksInFunclet.push_back(NewBlock);
|
|
ColorVector &NewColors = BlockColors[NewBlock];
|
|
assert(NewColors.empty() && "A new block should only have one color!");
|
|
NewColors.push_back(FuncletPadBB);
|
|
|
|
DEBUG_WITH_TYPE("winehprepare-coloring",
|
|
dbgs() << " Assigned color \'" << FuncletPadBB->getName()
|
|
<< "\' to block \'" << NewBlock->getName()
|
|
<< "\'.\n");
|
|
|
|
BlocksInFunclet.erase(
|
|
std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
|
|
BlocksInFunclet.end());
|
|
ColorVector &OldColors = BlockColors[OldBlock];
|
|
OldColors.erase(
|
|
std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
|
|
OldColors.end());
|
|
|
|
DEBUG_WITH_TYPE("winehprepare-coloring",
|
|
dbgs() << " Removed color \'" << FuncletPadBB->getName()
|
|
<< "\' from block \'" << OldBlock->getName()
|
|
<< "\'.\n");
|
|
}
|
|
|
|
// Loop over all of the instructions in this funclet, fixing up operand
|
|
// references as we go. This uses VMap to do all the hard work.
|
|
for (BasicBlock *BB : BlocksInFunclet)
|
|
// Loop over all instructions, fixing each one as we find it...
|
|
for (Instruction &I : *BB)
|
|
RemapInstruction(&I, VMap,
|
|
RF_IgnoreMissingEntries | RF_NoModuleLevelChanges);
|
|
|
|
// Catchrets targeting cloned blocks need to be updated separately from
|
|
// the loop above because they are not in the current funclet.
|
|
SmallVector<CatchReturnInst *, 2> FixupCatchrets;
|
|
for (auto &BBMapping : Orig2Clone) {
|
|
BasicBlock *OldBlock = BBMapping.first;
|
|
BasicBlock *NewBlock = BBMapping.second;
|
|
|
|
FixupCatchrets.clear();
|
|
for (BasicBlock *Pred : predecessors(OldBlock))
|
|
if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
|
|
if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
|
|
FixupCatchrets.push_back(CatchRet);
|
|
|
|
for (CatchReturnInst *CatchRet : FixupCatchrets)
|
|
CatchRet->setSuccessor(NewBlock);
|
|
}
|
|
|
|
auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
|
|
unsigned NumPreds = PN->getNumIncomingValues();
|
|
for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
|
|
++PredIdx) {
|
|
BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
|
|
bool EdgeTargetsFunclet;
|
|
if (auto *CRI =
|
|
dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
|
|
EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
|
|
} else {
|
|
ColorVector &IncomingColors = BlockColors[IncomingBlock];
|
|
assert(!IncomingColors.empty() && "Block not colored!");
|
|
assert((IncomingColors.size() == 1 ||
|
|
llvm::all_of(IncomingColors,
|
|
[&](BasicBlock *Color) {
|
|
return Color != FuncletPadBB;
|
|
})) &&
|
|
"Cloning should leave this funclet's blocks monochromatic");
|
|
EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
|
|
}
|
|
if (IsForOldBlock != EdgeTargetsFunclet)
|
|
continue;
|
|
PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
|
|
// Revisit the next entry.
|
|
--PredIdx;
|
|
--PredEnd;
|
|
}
|
|
};
|
|
|
|
for (auto &BBMapping : Orig2Clone) {
|
|
BasicBlock *OldBlock = BBMapping.first;
|
|
BasicBlock *NewBlock = BBMapping.second;
|
|
for (Instruction &OldI : *OldBlock) {
|
|
auto *OldPN = dyn_cast<PHINode>(&OldI);
|
|
if (!OldPN)
|
|
break;
|
|
UpdatePHIOnClonedBlock(OldPN, /*IsForOldBlock=*/true);
|
|
}
|
|
for (Instruction &NewI : *NewBlock) {
|
|
auto *NewPN = dyn_cast<PHINode>(&NewI);
|
|
if (!NewPN)
|
|
break;
|
|
UpdatePHIOnClonedBlock(NewPN, /*IsForOldBlock=*/false);
|
|
}
|
|
}
|
|
|
|
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to
|
|
// the PHI nodes for NewBB now.
|
|
for (auto &BBMapping : Orig2Clone) {
|
|
BasicBlock *OldBlock = BBMapping.first;
|
|
BasicBlock *NewBlock = BBMapping.second;
|
|
for (BasicBlock *SuccBB : successors(NewBlock)) {
|
|
for (Instruction &SuccI : *SuccBB) {
|
|
auto *SuccPN = dyn_cast<PHINode>(&SuccI);
|
|
if (!SuccPN)
|
|
break;
|
|
|
|
// Ok, we have a PHI node. Figure out what the incoming value was for
|
|
// the OldBlock.
|
|
int OldBlockIdx = SuccPN->getBasicBlockIndex(OldBlock);
|
|
if (OldBlockIdx == -1)
|
|
break;
|
|
Value *IV = SuccPN->getIncomingValue(OldBlockIdx);
|
|
|
|
// Remap the value if necessary.
|
|
if (auto *Inst = dyn_cast<Instruction>(IV)) {
|
|
ValueToValueMapTy::iterator I = VMap.find(Inst);
|
|
if (I != VMap.end())
|
|
IV = I->second;
|
|
}
|
|
|
|
SuccPN->addIncoming(IV, NewBlock);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (ValueToValueMapTy::value_type VT : VMap) {
|
|
// If there were values defined in BB that are used outside the funclet,
|
|
// then we now have to update all uses of the value to use either the
|
|
// original value, the cloned value, or some PHI derived value. This can
|
|
// require arbitrary PHI insertion, of which we are prepared to do, clean
|
|
// these up now.
|
|
SmallVector<Use *, 16> UsesToRename;
|
|
|
|
auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
|
|
if (!OldI)
|
|
continue;
|
|
auto *NewI = cast<Instruction>(VT.second);
|
|
// Scan all uses of this instruction to see if it is used outside of its
|
|
// funclet, and if so, record them in UsesToRename.
|
|
for (Use &U : OldI->uses()) {
|
|
Instruction *UserI = cast<Instruction>(U.getUser());
|
|
BasicBlock *UserBB = UserI->getParent();
|
|
ColorVector &ColorsForUserBB = BlockColors[UserBB];
|
|
assert(!ColorsForUserBB.empty());
|
|
if (ColorsForUserBB.size() > 1 ||
|
|
*ColorsForUserBB.begin() != FuncletPadBB)
|
|
UsesToRename.push_back(&U);
|
|
}
|
|
|
|
// If there are no uses outside the block, we're done with this
|
|
// instruction.
|
|
if (UsesToRename.empty())
|
|
continue;
|
|
|
|
// We found a use of OldI outside of the funclet. Rename all uses of OldI
|
|
// that are outside its funclet to be uses of the appropriate PHI node
|
|
// etc.
|
|
SSAUpdater SSAUpdate;
|
|
SSAUpdate.Initialize(OldI->getType(), OldI->getName());
|
|
SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
|
|
SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
|
|
|
|
while (!UsesToRename.empty())
|
|
SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::removeImplausibleInstructions(Function &F) {
|
|
// Remove implausible terminators and replace them with UnreachableInst.
|
|
for (auto &Funclet : FuncletBlocks) {
|
|
BasicBlock *FuncletPadBB = Funclet.first;
|
|
std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
|
|
Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
|
|
auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
|
|
auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
|
|
auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
|
|
|
|
for (BasicBlock *BB : BlocksInFunclet) {
|
|
for (Instruction &I : *BB) {
|
|
CallSite CS(&I);
|
|
if (!CS)
|
|
continue;
|
|
|
|
Value *FuncletBundleOperand = nullptr;
|
|
if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
|
|
FuncletBundleOperand = BU->Inputs.front();
|
|
|
|
if (FuncletBundleOperand == FuncletPad)
|
|
continue;
|
|
|
|
// Skip call sites which are nounwind intrinsics or inline asm.
|
|
auto *CalledFn =
|
|
dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
|
|
if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
|
|
CS.isInlineAsm()))
|
|
continue;
|
|
|
|
// This call site was not part of this funclet, remove it.
|
|
if (CS.isInvoke()) {
|
|
// Remove the unwind edge if it was an invoke.
|
|
removeUnwindEdge(BB);
|
|
// Get a pointer to the new call.
|
|
BasicBlock::iterator CallI =
|
|
std::prev(BB->getTerminator()->getIterator());
|
|
auto *CI = cast<CallInst>(&*CallI);
|
|
changeToUnreachable(CI, /*UseLLVMTrap=*/false);
|
|
} else {
|
|
changeToUnreachable(&I, /*UseLLVMTrap=*/false);
|
|
}
|
|
|
|
// There are no more instructions in the block (except for unreachable),
|
|
// we are done.
|
|
break;
|
|
}
|
|
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
// CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
|
|
bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
|
|
// The token consumed by a CatchReturnInst must match the funclet token.
|
|
bool IsUnreachableCatchret = false;
|
|
if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
|
|
IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
|
|
// The token consumed by a CleanupReturnInst must match the funclet token.
|
|
bool IsUnreachableCleanupret = false;
|
|
if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
|
|
IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
|
|
if (IsUnreachableRet || IsUnreachableCatchret ||
|
|
IsUnreachableCleanupret) {
|
|
changeToUnreachable(TI, /*UseLLVMTrap=*/false);
|
|
} else if (isa<InvokeInst>(TI)) {
|
|
if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
|
|
// Invokes within a cleanuppad for the MSVC++ personality never
|
|
// transfer control to their unwind edge: the personality will
|
|
// terminate the program.
|
|
removeUnwindEdge(BB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
|
|
// Clean-up some of the mess we made by removing useles PHI nodes, trivial
|
|
// branches, etc.
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
|
|
BasicBlock *BB = &*FI++;
|
|
SimplifyInstructionsInBlock(BB);
|
|
ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
|
|
MergeBlockIntoPredecessor(BB);
|
|
}
|
|
|
|
// We might have some unreachable blocks after cleaning up some impossible
|
|
// control flow.
|
|
removeUnreachableBlocks(F);
|
|
}
|
|
|
|
void WinEHPrepare::verifyPreparedFunclets(Function &F) {
|
|
for (BasicBlock &BB : F) {
|
|
size_t NumColors = BlockColors[&BB].size();
|
|
assert(NumColors == 1 && "Expected monochromatic BB!");
|
|
if (NumColors == 0)
|
|
report_fatal_error("Uncolored BB!");
|
|
if (NumColors > 1)
|
|
report_fatal_error("Multicolor BB!");
|
|
assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
|
|
"EH Pad still has a PHI!");
|
|
}
|
|
}
|
|
|
|
bool WinEHPrepare::prepareExplicitEH(Function &F) {
|
|
// Remove unreachable blocks. It is not valuable to assign them a color and
|
|
// their existence can trick us into thinking values are alive when they are
|
|
// not.
|
|
removeUnreachableBlocks(F);
|
|
|
|
// Determine which blocks are reachable from which funclet entries.
|
|
colorFunclets(F);
|
|
|
|
cloneCommonBlocks(F);
|
|
|
|
if (!DisableDemotion)
|
|
demotePHIsOnFunclets(F);
|
|
|
|
if (!DisableCleanups) {
|
|
DEBUG(verifyFunction(F));
|
|
removeImplausibleInstructions(F);
|
|
|
|
DEBUG(verifyFunction(F));
|
|
cleanupPreparedFunclets(F);
|
|
}
|
|
|
|
DEBUG(verifyPreparedFunclets(F));
|
|
// Recolor the CFG to verify that all is well.
|
|
DEBUG(colorFunclets(F));
|
|
DEBUG(verifyPreparedFunclets(F));
|
|
|
|
BlockColors.clear();
|
|
FuncletBlocks.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
// TODO: Share loads when one use dominates another, or when a catchpad exit
|
|
// dominates uses (needs dominators).
|
|
AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
|
|
BasicBlock *PHIBlock = PN->getParent();
|
|
AllocaInst *SpillSlot = nullptr;
|
|
Instruction *EHPad = PHIBlock->getFirstNonPHI();
|
|
|
|
if (!isa<TerminatorInst>(EHPad)) {
|
|
// If the EHPad isn't a terminator, then we can insert a load in this block
|
|
// that will dominate all uses.
|
|
SpillSlot = new AllocaInst(PN->getType(), nullptr,
|
|
Twine(PN->getName(), ".wineh.spillslot"),
|
|
&F.getEntryBlock().front());
|
|
Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
|
|
&*PHIBlock->getFirstInsertionPt());
|
|
PN->replaceAllUsesWith(V);
|
|
return SpillSlot;
|
|
}
|
|
|
|
// Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
|
|
// loads of the slot before every use.
|
|
DenseMap<BasicBlock *, Value *> Loads;
|
|
for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI++;
|
|
auto *UsingInst = cast<Instruction>(U.getUser());
|
|
if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
|
|
// Use is on an EH pad phi. Leave it alone; we'll insert loads and
|
|
// stores for it separately.
|
|
continue;
|
|
}
|
|
replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
|
|
}
|
|
return SpillSlot;
|
|
}
|
|
|
|
// TODO: improve store placement. Inserting at def is probably good, but need
|
|
// to be careful not to introduce interfering stores (needs liveness analysis).
|
|
// TODO: identify related phi nodes that can share spill slots, and share them
|
|
// (also needs liveness).
|
|
void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
|
|
AllocaInst *SpillSlot) {
|
|
// Use a worklist of (Block, Value) pairs -- the given Value needs to be
|
|
// stored to the spill slot by the end of the given Block.
|
|
SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
|
|
|
|
Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
|
|
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *EHBlock;
|
|
Value *InVal;
|
|
std::tie(EHBlock, InVal) = Worklist.pop_back_val();
|
|
|
|
PHINode *PN = dyn_cast<PHINode>(InVal);
|
|
if (PN && PN->getParent() == EHBlock) {
|
|
// The value is defined by another PHI we need to remove, with no room to
|
|
// insert a store after the PHI, so each predecessor needs to store its
|
|
// incoming value.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
|
|
Value *PredVal = PN->getIncomingValue(i);
|
|
|
|
// Undef can safely be skipped.
|
|
if (isa<UndefValue>(PredVal))
|
|
continue;
|
|
|
|
insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
|
|
}
|
|
} else {
|
|
// We need to store InVal, which dominates EHBlock, but can't put a store
|
|
// in EHBlock, so need to put stores in each predecessor.
|
|
for (BasicBlock *PredBlock : predecessors(EHBlock)) {
|
|
insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::insertPHIStore(
|
|
BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
|
|
SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
|
|
|
|
if (PredBlock->isEHPad() &&
|
|
isa<TerminatorInst>(PredBlock->getFirstNonPHI())) {
|
|
// Pred is unsplittable, so we need to queue it on the worklist.
|
|
Worklist.push_back({PredBlock, PredVal});
|
|
return;
|
|
}
|
|
|
|
// Otherwise, insert the store at the end of the basic block.
|
|
new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
|
|
}
|
|
|
|
void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
|
|
DenseMap<BasicBlock *, Value *> &Loads,
|
|
Function &F) {
|
|
// Lazilly create the spill slot.
|
|
if (!SpillSlot)
|
|
SpillSlot = new AllocaInst(V->getType(), nullptr,
|
|
Twine(V->getName(), ".wineh.spillslot"),
|
|
&F.getEntryBlock().front());
|
|
|
|
auto *UsingInst = cast<Instruction>(U.getUser());
|
|
if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
|
|
// If this is a PHI node, we can't insert a load of the value before
|
|
// the use. Instead insert the load in the predecessor block
|
|
// corresponding to the incoming value.
|
|
//
|
|
// Note that if there are multiple edges from a basic block to this
|
|
// PHI node that we cannot have multiple loads. The problem is that
|
|
// the resulting PHI node will have multiple values (from each load)
|
|
// coming in from the same block, which is illegal SSA form.
|
|
// For this reason, we keep track of and reuse loads we insert.
|
|
BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
|
|
if (auto *CatchRet =
|
|
dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
|
|
// Putting a load above a catchret and use on the phi would still leave
|
|
// a cross-funclet def/use. We need to split the edge, change the
|
|
// catchret to target the new block, and put the load there.
|
|
BasicBlock *PHIBlock = UsingInst->getParent();
|
|
BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
|
|
// SplitEdge gives us:
|
|
// IncomingBlock:
|
|
// ...
|
|
// br label %NewBlock
|
|
// NewBlock:
|
|
// catchret label %PHIBlock
|
|
// But we need:
|
|
// IncomingBlock:
|
|
// ...
|
|
// catchret label %NewBlock
|
|
// NewBlock:
|
|
// br label %PHIBlock
|
|
// So move the terminators to each others' blocks and swap their
|
|
// successors.
|
|
BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
|
|
Goto->removeFromParent();
|
|
CatchRet->removeFromParent();
|
|
IncomingBlock->getInstList().push_back(CatchRet);
|
|
NewBlock->getInstList().push_back(Goto);
|
|
Goto->setSuccessor(0, PHIBlock);
|
|
CatchRet->setSuccessor(NewBlock);
|
|
// Update the color mapping for the newly split edge.
|
|
ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
|
|
BlockColors[NewBlock] = ColorsForPHIBlock;
|
|
for (BasicBlock *FuncletPad : ColorsForPHIBlock)
|
|
FuncletBlocks[FuncletPad].push_back(NewBlock);
|
|
// Treat the new block as incoming for load insertion.
|
|
IncomingBlock = NewBlock;
|
|
}
|
|
Value *&Load = Loads[IncomingBlock];
|
|
// Insert the load into the predecessor block
|
|
if (!Load)
|
|
Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
|
|
/*Volatile=*/false, IncomingBlock->getTerminator());
|
|
|
|
U.set(Load);
|
|
} else {
|
|
// Reload right before the old use.
|
|
auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
|
|
/*Volatile=*/false, UsingInst);
|
|
U.set(Load);
|
|
}
|
|
}
|
|
|
|
void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
|
|
MCSymbol *InvokeBegin,
|
|
MCSymbol *InvokeEnd) {
|
|
assert(InvokeStateMap.count(II) &&
|
|
"should get invoke with precomputed state");
|
|
LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
|
|
}
|
|
|
|
WinEHFuncInfo::WinEHFuncInfo() {}
|