llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp

2910 lines
110 KiB
C++

//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that RISCV uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "RISCVISelLowering.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVRegisterInfo.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "Utils/RISCVMatInt.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
const RISCVSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
if (Subtarget.isRV32E())
report_fatal_error("Codegen not yet implemented for RV32E");
RISCVABI::ABI ABI = Subtarget.getTargetABI();
assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
switch (ABI) {
default:
report_fatal_error("Don't know how to lower this ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64:
case RISCVABI::ABI_LP64F:
case RISCVABI::ABI_LP64D:
break;
}
MVT XLenVT = Subtarget.getXLenVT();
// Set up the register classes.
addRegisterClass(XLenVT, &RISCV::GPRRegClass);
if (Subtarget.hasStdExtF())
addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
if (Subtarget.hasStdExtD())
addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
// Compute derived properties from the register classes.
computeRegisterProperties(STI.getRegisterInfo());
setStackPointerRegisterToSaveRestore(RISCV::X2);
for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
setLoadExtAction(N, XLenVT, MVT::i1, Promote);
// TODO: add all necessary setOperationAction calls.
setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, XLenVT, Expand);
setOperationAction(ISD::SELECT, XLenVT, Custom);
setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::ADD, MVT::i32, Custom);
setOperationAction(ISD::SUB, MVT::i32, Custom);
setOperationAction(ISD::SHL, MVT::i32, Custom);
setOperationAction(ISD::SRA, MVT::i32, Custom);
setOperationAction(ISD::SRL, MVT::i32, Custom);
}
if (!Subtarget.hasStdExtM()) {
setOperationAction(ISD::MUL, XLenVT, Expand);
setOperationAction(ISD::MULHS, XLenVT, Expand);
setOperationAction(ISD::MULHU, XLenVT, Expand);
setOperationAction(ISD::SDIV, XLenVT, Expand);
setOperationAction(ISD::UDIV, XLenVT, Expand);
setOperationAction(ISD::SREM, XLenVT, Expand);
setOperationAction(ISD::UREM, XLenVT, Expand);
}
if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
setOperationAction(ISD::MUL, MVT::i32, Custom);
setOperationAction(ISD::SDIV, MVT::i32, Custom);
setOperationAction(ISD::UDIV, MVT::i32, Custom);
setOperationAction(ISD::UREM, MVT::i32, Custom);
}
setOperationAction(ISD::SDIVREM, XLenVT, Expand);
setOperationAction(ISD::UDIVREM, XLenVT, Expand);
setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
setOperationAction(ISD::ROTL, XLenVT, Expand);
setOperationAction(ISD::ROTR, XLenVT, Expand);
setOperationAction(ISD::BSWAP, XLenVT, Expand);
setOperationAction(ISD::CTTZ, XLenVT, Expand);
setOperationAction(ISD::CTLZ, XLenVT, Expand);
setOperationAction(ISD::CTPOP, XLenVT, Expand);
ISD::CondCode FPCCToExtend[] = {
ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
ISD::SETGE, ISD::SETNE};
ISD::NodeType FPOpToExtend[] = {
ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
ISD::FP_TO_FP16};
if (Subtarget.hasStdExtF()) {
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
for (auto CC : FPCCToExtend)
setCondCodeAction(CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
for (auto Op : FPOpToExtend)
setOperationAction(Op, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
}
if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
if (Subtarget.hasStdExtD()) {
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
for (auto CC : FPCCToExtend)
setCondCodeAction(CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
for (auto Op : FPOpToExtend)
setOperationAction(Op, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
}
setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
setOperationAction(ISD::BlockAddress, XLenVT, Custom);
setOperationAction(ISD::ConstantPool, XLenVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
// TODO: On M-mode only targets, the cycle[h] CSR may not be present.
// Unfortunately this can't be determined just from the ISA naming string.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
Subtarget.is64Bit() ? Legal : Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
if (Subtarget.hasStdExtA()) {
setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
setMinCmpXchgSizeInBits(32);
} else {
setMaxAtomicSizeInBitsSupported(0);
}
setBooleanContents(ZeroOrOneBooleanContent);
// Function alignments.
const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
setMinFunctionAlignment(FunctionAlignment);
setPrefFunctionAlignment(FunctionAlignment);
// Effectively disable jump table generation.
setMinimumJumpTableEntries(INT_MAX);
}
EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return getPointerTy(DL);
return VT.changeVectorElementTypeToInteger();
}
bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
switch (Intrinsic) {
default:
return false;
case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
case Intrinsic::riscv_masked_atomicrmw_add_i32:
case Intrinsic::riscv_masked_atomicrmw_sub_i32:
case Intrinsic::riscv_masked_atomicrmw_nand_i32:
case Intrinsic::riscv_masked_atomicrmw_max_i32:
case Intrinsic::riscv_masked_atomicrmw_min_i32:
case Intrinsic::riscv_masked_atomicrmw_umax_i32:
case Intrinsic::riscv_masked_atomicrmw_umin_i32:
case Intrinsic::riscv_masked_cmpxchg_i32:
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(4);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
MachineMemOperand::MOVolatile;
return true;
}
}
bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// Require a 12-bit signed offset.
if (!isInt<12>(AM.BaseOffs))
return false;
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (!AM.HasBaseReg) // allow "r+i".
break;
return false; // disallow "r+r" or "r+r+i".
default:
return false;
}
return true;
}
bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<12>(Imm);
}
bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
return isInt<12>(Imm);
}
// On RV32, 64-bit integers are split into their high and low parts and held
// in two different registers, so the trunc is free since the low register can
// just be used.
bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
return false;
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
return (SrcBits == 64 && DestBits == 32);
}
bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
!SrcVT.isInteger() || !DstVT.isInteger())
return false;
unsigned SrcBits = SrcVT.getSizeInBits();
unsigned DestBits = DstVT.getSizeInBits();
return (SrcBits == 64 && DestBits == 32);
}
bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
// Zexts are free if they can be combined with a load.
if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
EVT MemVT = LD->getMemoryVT();
if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
(Subtarget.is64Bit() && MemVT == MVT::i32)) &&
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
LD->getExtensionType() == ISD::ZEXTLOAD))
return true;
}
return TargetLowering::isZExtFree(Val, VT2);
}
bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
}
bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
(VT == MVT::f64 && Subtarget.hasStdExtD());
}
// Changes the condition code and swaps operands if necessary, so the SetCC
// operation matches one of the comparisons supported directly in the RISC-V
// ISA.
static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
switch (CC) {
default:
break;
case ISD::SETGT:
case ISD::SETLE:
case ISD::SETUGT:
case ISD::SETULE:
CC = ISD::getSetCCSwappedOperands(CC);
std::swap(LHS, RHS);
break;
}
}
// Return the RISC-V branch opcode that matches the given DAG integer
// condition code. The CondCode must be one of those supported by the RISC-V
// ISA (see normaliseSetCC).
static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unsupported CondCode");
case ISD::SETEQ:
return RISCV::BEQ;
case ISD::SETNE:
return RISCV::BNE;
case ISD::SETLT:
return RISCV::BLT;
case ISD::SETGE:
return RISCV::BGE;
case ISD::SETULT:
return RISCV::BLTU;
case ISD::SETUGE:
return RISCV::BGEU;
}
}
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default:
report_fatal_error("unimplemented operand");
case ISD::GlobalAddress:
return lowerGlobalAddress(Op, DAG);
case ISD::BlockAddress:
return lowerBlockAddress(Op, DAG);
case ISD::ConstantPool:
return lowerConstantPool(Op, DAG);
case ISD::GlobalTLSAddress:
return lowerGlobalTLSAddress(Op, DAG);
case ISD::SELECT:
return lowerSELECT(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::FRAMEADDR:
return lowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR:
return lowerRETURNADDR(Op, DAG);
case ISD::SHL_PARTS:
return lowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS:
return lowerShiftRightParts(Op, DAG, true);
case ISD::SRL_PARTS:
return lowerShiftRightParts(Op, DAG, false);
case ISD::BITCAST: {
assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
"Unexpected custom legalisation");
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
return SDValue();
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
return FPConv;
}
}
}
static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
}
static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
Flags);
}
static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
N->getOffset(), Flags);
}
template <class NodeTy>
SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
bool IsLocal) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
if (isPositionIndependent()) {
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
if (IsLocal)
// Use PC-relative addressing to access the symbol. This generates the
// pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
// %pcrel_lo(auipc)).
return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
// Use PC-relative addressing to access the GOT for this symbol, then load
// the address from the GOT. This generates the pattern (PseudoLA sym),
// which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
}
switch (getTargetMachine().getCodeModel()) {
default:
report_fatal_error("Unsupported code model for lowering");
case CodeModel::Small: {
// Generate a sequence for accessing addresses within the first 2 GiB of
// address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
}
case CodeModel::Medium: {
// Generate a sequence for accessing addresses within any 2GiB range within
// the address space. This generates the pattern (PseudoLLA sym), which
// expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
}
}
}
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
int64_t Offset = N->getOffset();
MVT XLenVT = Subtarget.getXLenVT();
const GlobalValue *GV = N->getGlobal();
bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
SDValue Addr = getAddr(N, DAG, IsLocal);
// In order to maximise the opportunity for common subexpression elimination,
// emit a separate ADD node for the global address offset instead of folding
// it in the global address node. Later peephole optimisations may choose to
// fold it back in when profitable.
if (Offset != 0)
return DAG.getNode(ISD::ADD, DL, Ty, Addr,
DAG.getConstant(Offset, DL, XLenVT));
return Addr;
}
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
return getAddr(N, DAG);
}
SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
return getAddr(N, DAG);
}
SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
SelectionDAG &DAG,
bool UseGOT) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
const GlobalValue *GV = N->getGlobal();
MVT XLenVT = Subtarget.getXLenVT();
if (UseGOT) {
// Use PC-relative addressing to access the GOT for this TLS symbol, then
// load the address from the GOT and add the thread pointer. This generates
// the pattern (PseudoLA_TLS_IE sym), which expands to
// (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
SDValue Load =
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
// Add the thread pointer.
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
}
// Generate a sequence for accessing the address relative to the thread
// pointer, with the appropriate adjustment for the thread pointer offset.
// This generates the pattern
// (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
SDValue AddrHi =
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
SDValue AddrAdd =
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
SDValue AddrLo =
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
SDValue MNAdd = SDValue(
DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
0);
return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
}
SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
SelectionDAG &DAG) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
const GlobalValue *GV = N->getGlobal();
// Use a PC-relative addressing mode to access the global dynamic GOT address.
// This generates the pattern (PseudoLA_TLS_GD sym), which expands to
// (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
SDValue Load =
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
// Prepare argument list to generate call.
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Load;
Entry.Ty = CallTy;
Args.push_back(Entry);
// Setup call to __tls_get_addr.
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::C, CallTy,
DAG.getExternalSymbol("__tls_get_addr", Ty),
std::move(Args));
return LowerCallTo(CLI).first;
}
SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
int64_t Offset = N->getOffset();
MVT XLenVT = Subtarget.getXLenVT();
TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
SDValue Addr;
switch (Model) {
case TLSModel::LocalExec:
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
break;
case TLSModel::InitialExec:
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
break;
case TLSModel::LocalDynamic:
case TLSModel::GeneralDynamic:
Addr = getDynamicTLSAddr(N, DAG);
break;
}
// In order to maximise the opportunity for common subexpression elimination,
// emit a separate ADD node for the global address offset instead of folding
// it in the global address node. Later peephole optimisations may choose to
// fold it back in when profitable.
if (Offset != 0)
return DAG.getNode(ISD::ADD, DL, Ty, Addr,
DAG.getConstant(Offset, DL, XLenVT));
return Addr;
}
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue CondV = Op.getOperand(0);
SDValue TrueV = Op.getOperand(1);
SDValue FalseV = Op.getOperand(2);
SDLoc DL(Op);
MVT XLenVT = Subtarget.getXLenVT();
// If the result type is XLenVT and CondV is the output of a SETCC node
// which also operated on XLenVT inputs, then merge the SETCC node into the
// lowered RISCVISD::SELECT_CC to take advantage of the integer
// compare+branch instructions. i.e.:
// (select (setcc lhs, rhs, cc), truev, falsev)
// -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
CondV.getOperand(0).getSimpleValueType() == XLenVT) {
SDValue LHS = CondV.getOperand(0);
SDValue RHS = CondV.getOperand(1);
auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
ISD::CondCode CCVal = CC->get();
normaliseSetCC(LHS, RHS, CCVal);
SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
}
// Otherwise:
// (select condv, truev, falsev)
// -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
}
SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
SDLoc DL(Op);
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy(MF.getDataLayout()));
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
Register FrameReg = RI.getFrameRegister(MF);
int XLenInBytes = Subtarget.getXLen() / 8;
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
while (Depth--) {
int Offset = -(XLenInBytes * 2);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
DAG.getIntPtrConstant(Offset, DL));
FrameAddr =
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
}
return FrameAddr;
}
SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
MVT XLenVT = Subtarget.getXLenVT();
int XLenInBytes = Subtarget.getXLen() / 8;
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
int Off = -XLenInBytes;
SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(Off, DL, VT);
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return the value of the return address register, marking it an implicit
// live-in.
Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
}
SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
EVT VT = Lo.getValueType();
// if Shamt-XLEN < 0: // Shamt < XLEN
// Lo = Lo << Shamt
// Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
// else:
// Lo = 0
// Hi = Lo << (Shamt-XLEN)
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
SDValue ShiftRightLo =
DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
SDValue Parts[2] = {Lo, Hi};
return DAG.getMergeValues(Parts, DL);
}
SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
bool IsSRA) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
EVT VT = Lo.getValueType();
// SRA expansion:
// if Shamt-XLEN < 0: // Shamt < XLEN
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
// Hi = Hi >>s Shamt
// else:
// Lo = Hi >>s (Shamt-XLEN);
// Hi = Hi >>s (XLEN-1)
//
// SRL expansion:
// if Shamt-XLEN < 0: // Shamt < XLEN
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
// Hi = Hi >>u Shamt
// else:
// Lo = Hi >>u (Shamt-XLEN);
// Hi = 0;
unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
SDValue ShiftLeftHi =
DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
SDValue HiFalse =
IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
SDValue Parts[2] = {Lo, Hi};
return DAG.getMergeValues(Parts, DL);
}
// Returns the opcode of the target-specific SDNode that implements the 32-bit
// form of the given Opcode.
static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode");
case ISD::SHL:
return RISCVISD::SLLW;
case ISD::SRA:
return RISCVISD::SRAW;
case ISD::SRL:
return RISCVISD::SRLW;
case ISD::SDIV:
return RISCVISD::DIVW;
case ISD::UDIV:
return RISCVISD::DIVUW;
case ISD::UREM:
return RISCVISD::REMUW;
}
}
// Converts the given 32-bit operation to a target-specific SelectionDAG node.
// Because i32 isn't a legal type for RV64, these operations would otherwise
// be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
// later one because the fact the operation was originally of type i32 is
// lost.
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
// ReplaceNodeResults requires we maintain the same type for the return value.
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
}
// Converts the given 32-bit operation to a i64 operation with signed extension
// semantic to reduce the signed extension instructions.
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
DAG.getValueType(MVT::i32));
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
}
void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDLoc DL(N);
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom type legalize this operation!");
case ISD::READCYCLECOUNTER: {
assert(!Subtarget.is64Bit() &&
"READCYCLECOUNTER only has custom type legalization on riscv32");
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
SDValue RCW =
DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
Results.push_back(RCW);
Results.push_back(RCW.getValue(1));
Results.push_back(RCW.getValue(2));
break;
}
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
if (N->getOperand(1).getOpcode() == ISD::Constant)
return;
Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
if (N->getOperand(1).getOpcode() == ISD::Constant)
return;
Results.push_back(customLegalizeToWOp(N, DAG));
break;
case ISD::SDIV:
case ISD::UDIV:
case ISD::UREM:
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
Subtarget.hasStdExtM() && "Unexpected custom legalisation");
if (N->getOperand(0).getOpcode() == ISD::Constant ||
N->getOperand(1).getOpcode() == ISD::Constant)
return;
Results.push_back(customLegalizeToWOp(N, DAG));
break;
case ISD::BITCAST: {
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
Subtarget.hasStdExtF() && "Unexpected custom legalisation");
SDLoc DL(N);
SDValue Op0 = N->getOperand(0);
if (Op0.getValueType() != MVT::f32)
return;
SDValue FPConv =
DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
break;
}
}
}
SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default:
break;
case RISCVISD::SplitF64: {
SDValue Op0 = N->getOperand(0);
// If the input to SplitF64 is just BuildPairF64 then the operation is
// redundant. Instead, use BuildPairF64's operands directly.
if (Op0->getOpcode() == RISCVISD::BuildPairF64)
return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
SDLoc DL(N);
// It's cheaper to materialise two 32-bit integers than to load a double
// from the constant pool and transfer it to integer registers through the
// stack.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
APInt V = C->getValueAPF().bitcastToAPInt();
SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
return DCI.CombineTo(N, Lo, Hi);
}
// This is a target-specific version of a DAGCombine performed in
// DAGCombiner::visitBITCAST. It performs the equivalent of:
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
!Op0.getNode()->hasOneUse())
break;
SDValue NewSplitF64 =
DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
Op0.getOperand(0));
SDValue Lo = NewSplitF64.getValue(0);
SDValue Hi = NewSplitF64.getValue(1);
APInt SignBit = APInt::getSignMask(32);
if (Op0.getOpcode() == ISD::FNEG) {
SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
DAG.getConstant(SignBit, DL, MVT::i32));
return DCI.CombineTo(N, Lo, NewHi);
}
assert(Op0.getOpcode() == ISD::FABS);
SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
DAG.getConstant(~SignBit, DL, MVT::i32));
return DCI.CombineTo(N, Lo, NewHi);
}
case RISCVISD::SLLW:
case RISCVISD::SRAW:
case RISCVISD::SRLW: {
// Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
(SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
return SDValue();
break;
}
case RISCVISD::FMV_X_ANYEXTW_RV64: {
SDLoc DL(N);
SDValue Op0 = N->getOperand(0);
// If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
// conversion is unnecessary and can be replaced with an ANY_EXTEND
// of the FMV_W_X_RV64 operand.
if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
SDValue AExtOp =
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
return DCI.CombineTo(N, AExtOp);
}
// This is a target-specific version of a DAGCombine performed in
// DAGCombiner::visitBITCAST. It performs the equivalent of:
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
!Op0.getNode()->hasOneUse())
break;
SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
Op0.getOperand(0));
APInt SignBit = APInt::getSignMask(32).sext(64);
if (Op0.getOpcode() == ISD::FNEG) {
return DCI.CombineTo(N,
DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
DAG.getConstant(SignBit, DL, MVT::i64)));
}
assert(Op0.getOpcode() == ISD::FABS);
return DCI.CombineTo(N,
DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
DAG.getConstant(~SignBit, DL, MVT::i64)));
}
}
return SDValue();
}
bool RISCVTargetLowering::isDesirableToCommuteWithShift(
const SDNode *N, CombineLevel Level) const {
// The following folds are only desirable if `(OP _, c1 << c2)` can be
// materialised in fewer instructions than `(OP _, c1)`:
//
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
SDValue N0 = N->getOperand(0);
EVT Ty = N0.getValueType();
if (Ty.isScalarInteger() &&
(N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (C1 && C2) {
APInt C1Int = C1->getAPIntValue();
APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
// We can materialise `c1 << c2` into an add immediate, so it's "free",
// and the combine should happen, to potentially allow further combines
// later.
if (ShiftedC1Int.getMinSignedBits() <= 64 &&
isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
return true;
// We can materialise `c1` in an add immediate, so it's "free", and the
// combine should be prevented.
if (C1Int.getMinSignedBits() <= 64 &&
isLegalAddImmediate(C1Int.getSExtValue()))
return false;
// Neither constant will fit into an immediate, so find materialisation
// costs.
int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
Subtarget.is64Bit());
int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
// Materialising `c1` is cheaper than materialising `c1 << c2`, so the
// combine should be prevented.
if (C1Cost < ShiftedC1Cost)
return false;
}
}
return true;
}
unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
unsigned Depth) const {
switch (Op.getOpcode()) {
default:
break;
case RISCVISD::SLLW:
case RISCVISD::SRAW:
case RISCVISD::SRLW:
case RISCVISD::DIVW:
case RISCVISD::DIVUW:
case RISCVISD::REMUW:
// TODO: As the result is sign-extended, this is conservatively correct. A
// more precise answer could be calculated for SRAW depending on known
// bits in the shift amount.
return 33;
}
return 1;
}
static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
// To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
// Should the count have wrapped while it was being read, we need to try
// again.
// ...
// read:
// rdcycleh x3 # load high word of cycle
// rdcycle x2 # load low word of cycle
// rdcycleh x4 # load high word of cycle
// bne x3, x4, read # check if high word reads match, otherwise try again
// ...
MachineFunction &MF = *BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, LoopMBB);
MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, DoneMBB);
// Transfer the remainder of BB and its successor edges to DoneMBB.
DoneMBB->splice(DoneMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(LoopMBB);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
Register LoReg = MI.getOperand(0).getReg();
Register HiReg = MI.getOperand(1).getReg();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
.addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
.addReg(RISCV::X0);
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
.addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
.addReg(RISCV::X0);
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
.addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
.addReg(RISCV::X0);
BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
.addReg(HiReg)
.addReg(ReadAgainReg)
.addMBB(LoopMBB);
LoopMBB->addSuccessor(LoopMBB);
LoopMBB->addSuccessor(DoneMBB);
MI.eraseFromParent();
return DoneMBB;
}
static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
MachineFunction &MF = *BB->getParent();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
Register LoReg = MI.getOperand(0).getReg();
Register HiReg = MI.getOperand(1).getReg();
Register SrcReg = MI.getOperand(2).getReg();
const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
RI);
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
MachineMemOperand::MOLoad, 8, 8);
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMO);
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(MMO);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
"Unexpected instruction");
MachineFunction &MF = *BB->getParent();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
Register DstReg = MI.getOperand(0).getReg();
Register LoReg = MI.getOperand(1).getReg();
Register HiReg = MI.getOperand(2).getReg();
const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
MachineMemOperand::MOStore, 8, 8);
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
.addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMO);
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
.addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(MMO);
TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static bool isSelectPseudo(MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case RISCV::Select_GPR_Using_CC_GPR:
case RISCV::Select_FPR32_Using_CC_GPR:
case RISCV::Select_FPR64_Using_CC_GPR:
return true;
}
}
static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
// To "insert" Select_* instructions, we actually have to insert the triangle
// control-flow pattern. The incoming instructions know the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and the condcode to use to select the appropriate branch.
//
// We produce the following control flow:
// HeadMBB
// | \
// | IfFalseMBB
// | /
// TailMBB
//
// When we find a sequence of selects we attempt to optimize their emission
// by sharing the control flow. Currently we only handle cases where we have
// multiple selects with the exact same condition (same LHS, RHS and CC).
// The selects may be interleaved with other instructions if the other
// instructions meet some requirements we deem safe:
// - They are debug instructions. Otherwise,
// - They do not have side-effects, do not access memory and their inputs do
// not depend on the results of the select pseudo-instructions.
// The TrueV/FalseV operands of the selects cannot depend on the result of
// previous selects in the sequence.
// These conditions could be further relaxed. See the X86 target for a
// related approach and more information.
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
SmallVector<MachineInstr *, 4> SelectDebugValues;
SmallSet<Register, 4> SelectDests;
SelectDests.insert(MI.getOperand(0).getReg());
MachineInstr *LastSelectPseudo = &MI;
for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
SequenceMBBI != E; ++SequenceMBBI) {
if (SequenceMBBI->isDebugInstr())
continue;
else if (isSelectPseudo(*SequenceMBBI)) {
if (SequenceMBBI->getOperand(1).getReg() != LHS ||
SequenceMBBI->getOperand(2).getReg() != RHS ||
SequenceMBBI->getOperand(3).getImm() != CC ||
SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
break;
LastSelectPseudo = &*SequenceMBBI;
SequenceMBBI->collectDebugValues(SelectDebugValues);
SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
} else {
if (SequenceMBBI->hasUnmodeledSideEffects() ||
SequenceMBBI->mayLoadOrStore())
break;
if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
}))
break;
}
}
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
DebugLoc DL = MI.getDebugLoc();
MachineFunction::iterator I = ++BB->getIterator();
MachineBasicBlock *HeadMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, IfFalseMBB);
F->insert(I, TailMBB);
// Transfer debug instructions associated with the selects to TailMBB.
for (MachineInstr *DebugInstr : SelectDebugValues) {
TailMBB->push_back(DebugInstr->removeFromParent());
}
// Move all instructions after the sequence to TailMBB.
TailMBB->splice(TailMBB->end(), HeadMBB,
std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi nodes for the selects.
TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
// Set the successors for HeadMBB.
HeadMBB->addSuccessor(IfFalseMBB);
HeadMBB->addSuccessor(TailMBB);
// Insert appropriate branch.
unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
BuildMI(HeadMBB, DL, TII.get(Opcode))
.addReg(LHS)
.addReg(RHS)
.addMBB(TailMBB);
// IfFalseMBB just falls through to TailMBB.
IfFalseMBB->addSuccessor(TailMBB);
// Create PHIs for all of the select pseudo-instructions.
auto SelectMBBI = MI.getIterator();
auto SelectEnd = std::next(LastSelectPseudo->getIterator());
auto InsertionPoint = TailMBB->begin();
while (SelectMBBI != SelectEnd) {
auto Next = std::next(SelectMBBI);
if (isSelectPseudo(*SelectMBBI)) {
// %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
.addReg(SelectMBBI->getOperand(4).getReg())
.addMBB(HeadMBB)
.addReg(SelectMBBI->getOperand(5).getReg())
.addMBB(IfFalseMBB);
SelectMBBI->eraseFromParent();
}
SelectMBBI = Next;
}
F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
return TailMBB;
}
MachineBasicBlock *
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected instr type to insert");
case RISCV::ReadCycleWide:
assert(!Subtarget.is64Bit() &&
"ReadCycleWrite is only to be used on riscv32");
return emitReadCycleWidePseudo(MI, BB);
case RISCV::Select_GPR_Using_CC_GPR:
case RISCV::Select_FPR32_Using_CC_GPR:
case RISCV::Select_FPR64_Using_CC_GPR:
return emitSelectPseudo(MI, BB);
case RISCV::BuildPairF64Pseudo:
return emitBuildPairF64Pseudo(MI, BB);
case RISCV::SplitF64Pseudo:
return emitSplitF64Pseudo(MI, BB);
}
}
// Calling Convention Implementation.
// The expectations for frontend ABI lowering vary from target to target.
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
// details, but this is a longer term goal. For now, we simply try to keep the
// role of the frontend as simple and well-defined as possible. The rules can
// be summarised as:
// * Never split up large scalar arguments. We handle them here.
// * If a hardfloat calling convention is being used, and the struct may be
// passed in a pair of registers (fp+fp, int+fp), and both registers are
// available, then pass as two separate arguments. If either the GPRs or FPRs
// are exhausted, then pass according to the rule below.
// * If a struct could never be passed in registers or directly in a stack
// slot (as it is larger than 2*XLEN and the floating point rules don't
// apply), then pass it using a pointer with the byval attribute.
// * If a struct is less than 2*XLEN, then coerce to either a two-element
// word-sized array or a 2*XLEN scalar (depending on alignment).
// * The frontend can determine whether a struct is returned by reference or
// not based on its size and fields. If it will be returned by reference, the
// frontend must modify the prototype so a pointer with the sret annotation is
// passed as the first argument. This is not necessary for large scalar
// returns.
// * Struct return values and varargs should be coerced to structs containing
// register-size fields in the same situations they would be for fixed
// arguments.
static const MCPhysReg ArgGPRs[] = {
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
};
static const MCPhysReg ArgFPR32s[] = {
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
};
static const MCPhysReg ArgFPR64s[] = {
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
};
// Pass a 2*XLEN argument that has been split into two XLEN values through
// registers or the stack as necessary.
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
MVT ValVT2, MVT LocVT2,
ISD::ArgFlagsTy ArgFlags2) {
unsigned XLenInBytes = XLen / 8;
if (Register Reg = State.AllocateReg(ArgGPRs)) {
// At least one half can be passed via register.
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
VA1.getLocVT(), CCValAssign::Full));
} else {
// Both halves must be passed on the stack, with proper alignment.
unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
State.addLoc(
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
State.AllocateStack(XLenInBytes, StackAlign),
VA1.getLocVT(), CCValAssign::Full));
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
CCValAssign::Full));
return false;
}
if (Register Reg = State.AllocateReg(ArgGPRs)) {
// The second half can also be passed via register.
State.addLoc(
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
} else {
// The second half is passed via the stack, without additional alignment.
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
CCValAssign::Full));
}
return false;
}
// Implements the RISC-V calling convention. Returns true upon failure.
static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
bool IsRet, Type *OrigTy) {
unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
assert(XLen == 32 || XLen == 64);
MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
// Any return value split in to more than two values can't be returned
// directly.
if (IsRet && ValNo > 1)
return true;
// UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
// variadic argument, or if no F32 argument registers are available.
bool UseGPRForF32 = true;
// UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
// variadic argument, or if no F64 argument registers are available.
bool UseGPRForF64 = true;
switch (ABI) {
default:
llvm_unreachable("Unexpected ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
break;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
UseGPRForF32 = !IsFixed;
break;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
UseGPRForF32 = !IsFixed;
UseGPRForF64 = !IsFixed;
break;
}
if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
UseGPRForF32 = true;
if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
UseGPRForF64 = true;
// From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
// variables rather than directly checking against the target ABI.
if (UseGPRForF32 && ValVT == MVT::f32) {
LocVT = XLenVT;
LocInfo = CCValAssign::BCvt;
} else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
LocVT = MVT::i64;
LocInfo = CCValAssign::BCvt;
}
// If this is a variadic argument, the RISC-V calling convention requires
// that it is assigned an 'even' or 'aligned' register if it has 8-byte
// alignment (RV32) or 16-byte alignment (RV64). An aligned register should
// be used regardless of whether the original argument was split during
// legalisation or not. The argument will not be passed by registers if the
// original type is larger than 2*XLEN, so the register alignment rule does
// not apply.
unsigned TwoXLenInBytes = (2 * XLen) / 8;
if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
// Skip 'odd' register if necessary.
if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
State.AllocateReg(ArgGPRs);
}
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
State.getPendingArgFlags();
assert(PendingLocs.size() == PendingArgFlags.size() &&
"PendingLocs and PendingArgFlags out of sync");
// Handle passing f64 on RV32D with a soft float ABI or when floating point
// registers are exhausted.
if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
"Can't lower f64 if it is split");
// Depending on available argument GPRS, f64 may be passed in a pair of
// GPRs, split between a GPR and the stack, or passed completely on the
// stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
// cases.
Register Reg = State.AllocateReg(ArgGPRs);
LocVT = MVT::i32;
if (!Reg) {
unsigned StackOffset = State.AllocateStack(8, 8);
State.addLoc(
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
if (!State.AllocateReg(ArgGPRs))
State.AllocateStack(4, 4);
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
// Split arguments might be passed indirectly, so keep track of the pending
// values.
if (ArgFlags.isSplit() || !PendingLocs.empty()) {
LocVT = XLenVT;
LocInfo = CCValAssign::Indirect;
PendingLocs.push_back(
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
PendingArgFlags.push_back(ArgFlags);
if (!ArgFlags.isSplitEnd()) {
return false;
}
}
// If the split argument only had two elements, it should be passed directly
// in registers or on the stack.
if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
// Apply the normal calling convention rules to the first half of the
// split argument.
CCValAssign VA = PendingLocs[0];
ISD::ArgFlagsTy AF = PendingArgFlags[0];
PendingLocs.clear();
PendingArgFlags.clear();
return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
ArgFlags);
}
// Allocate to a register if possible, or else a stack slot.
Register Reg;
if (ValVT == MVT::f32 && !UseGPRForF32)
Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
else if (ValVT == MVT::f64 && !UseGPRForF64)
Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
else
Reg = State.AllocateReg(ArgGPRs);
unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
// If we reach this point and PendingLocs is non-empty, we must be at the
// end of a split argument that must be passed indirectly.
if (!PendingLocs.empty()) {
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
for (auto &It : PendingLocs) {
if (Reg)
It.convertToReg(Reg);
else
It.convertToMem(StackOffset);
State.addLoc(It);
}
PendingLocs.clear();
PendingArgFlags.clear();
return false;
}
assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
"Expected an XLenVT at this stage");
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
// When an f32 or f64 is passed on the stack, no bit-conversion is needed.
if (ValVT == MVT::f32 || ValVT == MVT::f64) {
LocVT = ValVT;
LocInfo = CCValAssign::Full;
}
State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
void RISCVTargetLowering::analyzeInputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
unsigned NumArgs = Ins.size();
FunctionType *FType = MF.getFunction().getFunctionType();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Ins[i].VT;
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
Type *ArgTy = nullptr;
if (IsRet)
ArgTy = FType->getReturnType();
else if (Ins[i].isOrigArg())
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << '\n');
llvm_unreachable(nullptr);
}
}
}
void RISCVTargetLowering::analyzeOutputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
CallLoweringInfo *CLI) const {
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; i++) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << "\n");
llvm_unreachable(nullptr);
}
}
}
// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
// values.
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
const CCValAssign &VA, const SDLoc &DL) {
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
break;
}
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
}
return Val;
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
EVT LocVT = VA.getLocVT();
SDValue Val;
const TargetRegisterClass *RC;
switch (LocVT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("Unexpected register type");
case MVT::i32:
case MVT::i64:
RC = &RISCV::GPRRegClass;
break;
case MVT::f32:
RC = &RISCV::FPR32RegClass;
break;
case MVT::f64:
RC = &RISCV::FPR64RegClass;
break;
}
Register VReg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
if (VA.getLocInfo() == CCValAssign::Indirect)
return Val;
return convertLocVTToValVT(DAG, Val, VA, DL);
}
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
const CCValAssign &VA, const SDLoc &DL) {
EVT LocVT = VA.getLocVT();
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
break;
}
Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
break;
}
return Val;
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT LocVT = VA.getLocVT();
EVT ValVT = VA.getValVT();
EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
VA.getLocMemOffset(), /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val;
ISD::LoadExtType ExtType;
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
case CCValAssign::Indirect:
case CCValAssign::BCvt:
ExtType = ISD::NON_EXTLOAD;
break;
}
Val = DAG.getExtLoad(
ExtType, DL, LocVT, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
return Val;
}
static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
"Unexpected VA");
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
if (VA.isMemLoc()) {
// f64 is passed on the stack.
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
return DAG.getLoad(MVT::f64, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
assert(VA.isRegLoc() && "Expected register VA assignment");
Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
SDValue Hi;
if (VA.getLocReg() == RISCV::X17) {
// Second half of f64 is passed on the stack.
int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
} else {
// Second half of f64 is passed in another GPR.
Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
}
return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
}
// FastCC has less than 1% performance improvement for some particular
// benchmark. But theoretically, it may has benenfit for some cases.
static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
// X5 and X6 might be used for save-restore libcall.
static const MCPhysReg GPRList[] = {
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28,
RISCV::X29, RISCV::X30, RISCV::X31};
if (unsigned Reg = State.AllocateReg(GPRList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f32) {
static const MCPhysReg FPR32List[] = {
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
if (unsigned Reg = State.AllocateReg(FPR32List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64) {
static const MCPhysReg FPR64List[] = {
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
if (unsigned Reg = State.AllocateReg(FPR64List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
unsigned Offset4 = State.AllocateStack(4, 4);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
unsigned Offset5 = State.AllocateStack(8, 8);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
return false;
}
return true; // CC didn't match.
}
// Transform physical registers into virtual registers.
SDValue RISCVTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
break;
}
MachineFunction &MF = DAG.getMachineFunction();
const Function &Func = MF.getFunction();
if (Func.hasFnAttribute("interrupt")) {
if (!Func.arg_empty())
report_fatal_error(
"Functions with the interrupt attribute cannot have arguments!");
StringRef Kind =
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
report_fatal_error(
"Function interrupt attribute argument not supported!");
}
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT XLenVT = Subtarget.getXLenVT();
unsigned XLenInBytes = Subtarget.getXLen() / 8;
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (CallConv == CallingConv::Fast)
CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
else
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgValue;
// Passing f64 on RV32D with a soft float ABI must be handled as a special
// case.
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
else if (VA.isRegLoc())
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
else
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
if (VA.getLocInfo() == CCValAssign::Indirect) {
// If the original argument was split and passed by reference (e.g. i128
// on RV32), we need to load all parts of it here (using the same
// address).
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
MachinePointerInfo()));
unsigned ArgIndex = Ins[i].OrigArgIndex;
assert(Ins[i].PartOffset == 0);
while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
CCValAssign &PartVA = ArgLocs[i + 1];
unsigned PartOffset = Ins[i + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
DAG.getIntPtrConstant(PartOffset, DL));
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
MachinePointerInfo()));
++i;
}
continue;
}
InVals.push_back(ArgValue);
}
if (IsVarArg) {
ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Offset of the first variable argument from stack pointer, and size of
// the vararg save area. For now, the varargs save area is either zero or
// large enough to hold a0-a7.
int VaArgOffset, VarArgsSaveSize;
// If all registers are allocated, then all varargs must be passed on the
// stack and we don't need to save any argregs.
if (ArgRegs.size() == Idx) {
VaArgOffset = CCInfo.getNextStackOffset();
VarArgsSaveSize = 0;
} else {
VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
VaArgOffset = -VarArgsSaveSize;
}
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
RVFI->setVarArgsFrameIndex(FI);
// If saving an odd number of registers then create an extra stack slot to
// ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
// offsets to even-numbered registered remain 2*XLEN-aligned.
if (Idx % 2) {
MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
VarArgsSaveSize += XLenInBytes;
}
// Copy the integer registers that may have been used for passing varargs
// to the vararg save area.
for (unsigned I = Idx; I < ArgRegs.size();
++I, VaArgOffset += XLenInBytes) {
const Register Reg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(ArgRegs[I], Reg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo::getFixedStack(MF, FI));
cast<StoreSDNode>(Store.getNode())
->getMemOperand()
->setValue((Value *)nullptr);
OutChains.push_back(Store);
}
RVFI->setVarArgsSaveSize(VarArgsSaveSize);
}
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens for vararg functions.
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
return Chain;
}
/// isEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization.
/// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
bool RISCVTargetLowering::isEligibleForTailCallOptimization(
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
const SmallVector<CCValAssign, 16> &ArgLocs) const {
auto &Callee = CLI.Callee;
auto CalleeCC = CLI.CallConv;
auto &Outs = CLI.Outs;
auto &Caller = MF.getFunction();
auto CallerCC = Caller.getCallingConv();
// Exception-handling functions need a special set of instructions to
// indicate a return to the hardware. Tail-calling another function would
// probably break this.
// TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
// should be expanded as new function attributes are introduced.
if (Caller.hasFnAttribute("interrupt"))
return false;
// Do not tail call opt if the stack is used to pass parameters.
if (CCInfo.getNextStackOffset() != 0)
return false;
// Do not tail call opt if any parameters need to be passed indirectly.
// Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
// passed indirectly. So the address of the value will be passed in a
// register, or if not available, then the address is put on the stack. In
// order to pass indirectly, space on the stack often needs to be allocated
// in order to store the value. In this case the CCInfo.getNextStackOffset()
// != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
// are passed CCValAssign::Indirect.
for (auto &VA : ArgLocs)
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
// Do not tail call opt if either caller or callee uses struct return
// semantics.
auto IsCallerStructRet = Caller.hasStructRetAttr();
auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
if (IsCallerStructRet || IsCalleeStructRet)
return false;
// Externally-defined functions with weak linkage should not be
// tail-called. The behaviour of branch instructions in this situation (as
// used for tail calls) is implementation-defined, so we cannot rely on the
// linker replacing the tail call with a return.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
if (GV->hasExternalWeakLinkage())
return false;
}
// The callee has to preserve all registers the caller needs to preserve.
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (CalleeCC != CallerCC) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible
// but less efficient and uglier in LowerCall.
for (auto &Arg : Outs)
if (Arg.Flags.isByVal())
return false;
return true;
}
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
// and output parameter nodes.
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT XLenVT = Subtarget.getXLenVT();
MachineFunction &MF = DAG.getMachineFunction();
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (CallConv == CallingConv::Fast)
ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
else
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
// Check if it's really possible to do a tail call.
if (IsTailCall)
IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
if (IsTailCall)
++NumTailCalls;
else if (CLI.CS && CLI.CS.isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
// Create local copies for byval args
SmallVector<SDValue, 8> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
unsigned Align = Flags.getByValAlign();
int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
/*IsVolatile=*/false,
/*AlwaysInline=*/false,
IsTailCall, MachinePointerInfo(),
MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
if (!IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
// Copy argument values to their designated locations.
SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgValue = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Handle passing f64 on RV32D with a soft float ABI as a special case.
bool IsF64OnRV32DSoftABI =
VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
SDValue SplitF64 = DAG.getNode(
RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
SDValue Lo = SplitF64.getValue(0);
SDValue Hi = SplitF64.getValue(1);
Register RegLo = VA.getLocReg();
RegsToPass.push_back(std::make_pair(RegLo, Lo));
if (RegLo == RISCV::X17) {
// Second half of f64 is passed on the stack.
// Work out the address of the stack slot.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
} else {
// Second half of f64 is passed in another GPR.
assert(RegLo < RISCV::X31 && "Invalid register pair");
Register RegHigh = RegLo + 1;
RegsToPass.push_back(std::make_pair(RegHigh, Hi));
}
continue;
}
// IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
// as any other MemLoc.
// Promote the value if needed.
// For now, only handle fully promoted and indirect arguments.
if (VA.getLocInfo() == CCValAssign::Indirect) {
// Store the argument in a stack slot and pass its address.
SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
MachinePointerInfo::getFixedStack(MF, FI)));
// If the original argument was split (e.g. i128), we need
// to store all parts of it here (and pass just one address).
unsigned ArgIndex = Outs[i].OrigArgIndex;
assert(Outs[i].PartOffset == 0);
while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
SDValue PartValue = OutVals[i + 1];
unsigned PartOffset = Outs[i + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
DAG.getIntPtrConstant(PartOffset, DL));
MemOpChains.push_back(
DAG.getStore(Chain, DL, PartValue, Address,
MachinePointerInfo::getFixedStack(MF, FI)));
++i;
}
ArgValue = SpillSlot;
} else {
ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
}
// Use local copy if it is a byval arg.
if (Flags.isByVal())
ArgValue = ByValArgs[j++];
if (VA.isRegLoc()) {
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
assert(!IsTailCall && "Tail call not allowed if stack is used "
"for passing parameters");
// Work out the address of the stack slot.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
SDValue Address =
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
SDValue Glue;
// Build a sequence of copy-to-reg nodes, chained and glued together.
for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
Glue = Chain.getValue(1);
}
// Validate that none of the argument registers have been marked as
// reserved, if so report an error. Do the same for the return address if this
// is not a tailcall.
validateCCReservedRegs(RegsToPass, MF);
if (!IsTailCall &&
MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Return address register required, but has been reserved."});
// If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
// TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
// split it and then direct call can be matched by PseudoCALL.
if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = S->getGlobal();
unsigned OpFlags = RISCVII::MO_CALL;
if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
OpFlags = RISCVII::MO_PLT;
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
unsigned OpFlags = RISCVII::MO_CALL;
if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
nullptr))
OpFlags = RISCVII::MO_PLT;
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (auto &Reg : RegsToPass)
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
if (!IsTailCall) {
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
}
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall) {
MF.getFrameInfo().setHasTailCall();
return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
}
Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, DL, PtrVT, true),
DAG.getConstant(0, DL, PtrVT, true),
Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
// Copy all of the result registers out of their specified physreg.
for (auto &VA : RVLocs) {
// Copy the value out
SDValue RetValue =
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
// Glue the RetValue to the end of the call sequence
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
SDValue RetValue2 =
DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
Chain = RetValue2.getValue(1);
Glue = RetValue2.getValue(2);
RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
RetValue2);
}
RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
InVals.push_back(RetValue);
}
return Chain;
}
bool RISCVTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
MVT VT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
return false;
}
return true;
}
SDValue
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
const MachineFunction &MF = DAG.getMachineFunction();
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
// Stores the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
nullptr);
SDValue Glue;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
SDValue Val = OutVals[i];
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
// Handle returning f64 on RV32D with a soft float ABI.
assert(VA.isRegLoc() && "Expected return via registers");
SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
DAG.getVTList(MVT::i32, MVT::i32), Val);
SDValue Lo = SplitF64.getValue(0);
SDValue Hi = SplitF64.getValue(1);
Register RegLo = VA.getLocReg();
assert(RegLo < RISCV::X31 && "Invalid register pair");
Register RegHi = RegLo + 1;
if (STI.isRegisterReservedByUser(RegLo) ||
STI.isRegisterReservedByUser(RegHi))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Return value register required, but has been reserved."});
Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
} else {
// Handle a 'normal' return.
Val = convertValVTToLocVT(DAG, Val, VA, DL);
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
if (STI.isRegisterReservedByUser(VA.getLocReg()))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Return value register required, but has been reserved."});
// Guarantee that all emitted copies are stuck together.
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
}
RetOps[0] = Chain; // Update chain.
// Add the glue node if we have it.
if (Glue.getNode()) {
RetOps.push_back(Glue);
}
// Interrupt service routines use different return instructions.
const Function &Func = DAG.getMachineFunction().getFunction();
if (Func.hasFnAttribute("interrupt")) {
if (!Func.getReturnType()->isVoidTy())
report_fatal_error(
"Functions with the interrupt attribute must have void return type!");
MachineFunction &MF = DAG.getMachineFunction();
StringRef Kind =
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
unsigned RetOpc;
if (Kind == "user")
RetOpc = RISCVISD::URET_FLAG;
else if (Kind == "supervisor")
RetOpc = RISCVISD::SRET_FLAG;
else
RetOpc = RISCVISD::MRET_FLAG;
return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
}
return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
}
void RISCVTargetLowering::validateCCReservedRegs(
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
MachineFunction &MF) const {
const Function &F = MF.getFunction();
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
return STI.isRegisterReservedByUser(Reg.first);
}))
F.getContext().diagnose(DiagnosticInfoUnsupported{
F, "Argument register required, but has been reserved."});
}
const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((RISCVISD::NodeType)Opcode) {
case RISCVISD::FIRST_NUMBER:
break;
case RISCVISD::RET_FLAG:
return "RISCVISD::RET_FLAG";
case RISCVISD::URET_FLAG:
return "RISCVISD::URET_FLAG";
case RISCVISD::SRET_FLAG:
return "RISCVISD::SRET_FLAG";
case RISCVISD::MRET_FLAG:
return "RISCVISD::MRET_FLAG";
case RISCVISD::CALL:
return "RISCVISD::CALL";
case RISCVISD::SELECT_CC:
return "RISCVISD::SELECT_CC";
case RISCVISD::BuildPairF64:
return "RISCVISD::BuildPairF64";
case RISCVISD::SplitF64:
return "RISCVISD::SplitF64";
case RISCVISD::TAIL:
return "RISCVISD::TAIL";
case RISCVISD::SLLW:
return "RISCVISD::SLLW";
case RISCVISD::SRAW:
return "RISCVISD::SRAW";
case RISCVISD::SRLW:
return "RISCVISD::SRLW";
case RISCVISD::DIVW:
return "RISCVISD::DIVW";
case RISCVISD::DIVUW:
return "RISCVISD::DIVUW";
case RISCVISD::REMUW:
return "RISCVISD::REMUW";
case RISCVISD::FMV_W_X_RV64:
return "RISCVISD::FMV_W_X_RV64";
case RISCVISD::FMV_X_ANYEXTW_RV64:
return "RISCVISD::FMV_X_ANYEXTW_RV64";
case RISCVISD::READ_CYCLE_WIDE:
return "RISCVISD::READ_CYCLE_WIDE";
}
return nullptr;
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
RISCVTargetLowering::ConstraintType
RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'f':
return C_RegisterClass;
case 'I':
case 'J':
case 'K':
return C_Immediate;
case 'A':
return C_Memory;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
// First, see if this is a constraint that directly corresponds to a
// RISCV register class.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return std::make_pair(0U, &RISCV::GPRRegClass);
case 'f':
if (Subtarget.hasStdExtF() && VT == MVT::f32)
return std::make_pair(0U, &RISCV::FPR32RegClass);
if (Subtarget.hasStdExtD() && VT == MVT::f64)
return std::make_pair(0U, &RISCV::FPR64RegClass);
break;
default:
break;
}
}
// Clang will correctly decode the usage of register name aliases into their
// official names. However, other frontends like `rustc` do not. This allows
// users of these frontends to use the ABI names for registers in LLVM-style
// register constraints.
Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
.Case("{zero}", RISCV::X0)
.Case("{ra}", RISCV::X1)
.Case("{sp}", RISCV::X2)
.Case("{gp}", RISCV::X3)
.Case("{tp}", RISCV::X4)
.Case("{t0}", RISCV::X5)
.Case("{t1}", RISCV::X6)
.Case("{t2}", RISCV::X7)
.Cases("{s0}", "{fp}", RISCV::X8)
.Case("{s1}", RISCV::X9)
.Case("{a0}", RISCV::X10)
.Case("{a1}", RISCV::X11)
.Case("{a2}", RISCV::X12)
.Case("{a3}", RISCV::X13)
.Case("{a4}", RISCV::X14)
.Case("{a5}", RISCV::X15)
.Case("{a6}", RISCV::X16)
.Case("{a7}", RISCV::X17)
.Case("{s2}", RISCV::X18)
.Case("{s3}", RISCV::X19)
.Case("{s4}", RISCV::X20)
.Case("{s5}", RISCV::X21)
.Case("{s6}", RISCV::X22)
.Case("{s7}", RISCV::X23)
.Case("{s8}", RISCV::X24)
.Case("{s9}", RISCV::X25)
.Case("{s10}", RISCV::X26)
.Case("{s11}", RISCV::X27)
.Case("{t3}", RISCV::X28)
.Case("{t4}", RISCV::X29)
.Case("{t5}", RISCV::X30)
.Case("{t6}", RISCV::X31)
.Default(RISCV::NoRegister);
if (XRegFromAlias != RISCV::NoRegister)
return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
// Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
// TableGen record rather than the AsmName to choose registers for InlineAsm
// constraints, plus we want to match those names to the widest floating point
// register type available, manually select floating point registers here.
//
// The second case is the ABI name of the register, so that frontends can also
// use the ABI names in register constraint lists.
if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
std::pair<Register, Register> FReg =
StringSwitch<std::pair<Register, Register>>(Constraint.lower())
.Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
.Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
.Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
.Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
.Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
.Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
.Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
.Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
.Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
.Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
.Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
.Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
.Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
.Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
.Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
.Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
.Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
.Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
.Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
.Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
.Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
.Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
.Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
.Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
.Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
.Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
.Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
.Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
.Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
.Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
.Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
.Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
.Default({RISCV::NoRegister, RISCV::NoRegister});
if (FReg.first != RISCV::NoRegister)
return Subtarget.hasStdExtD()
? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
: std::make_pair(FReg.first, &RISCV::FPR32RegClass);
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
unsigned
RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
// Currently only support length 1 constraints.
if (ConstraintCode.size() == 1) {
switch (ConstraintCode[0]) {
case 'A':
return InlineAsm::Constraint_A;
default:
break;
}
}
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
void RISCVTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
// Currently only support length 1 constraints.
if (Constraint.length() == 1) {
switch (Constraint[0]) {
case 'I':
// Validate & create a 12-bit signed immediate operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
uint64_t CVal = C->getSExtValue();
if (isInt<12>(CVal))
Ops.push_back(
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
}
return;
case 'J':
// Validate & create an integer zero operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (C->getZExtValue() == 0)
Ops.push_back(
DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
return;
case 'K':
// Validate & create a 5-bit unsigned immediate operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
uint64_t CVal = C->getZExtValue();
if (isUInt<5>(CVal))
Ops.push_back(
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
}
return;
default:
break;
}
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
return Builder.CreateFence(Ord);
if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
return Builder.CreateFence(AtomicOrdering::Release);
return nullptr;
}
Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
return Builder.CreateFence(AtomicOrdering::Acquire);
return nullptr;
}
TargetLowering::AtomicExpansionKind
RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
// atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
// point operations can't be used in an lr/sc sequence without breaking the
// forward-progress guarantee.
if (AI->isFloatingPointOperation())
return AtomicExpansionKind::CmpXChg;
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
if (Size == 8 || Size == 16)
return AtomicExpansionKind::MaskedIntrinsic;
return AtomicExpansionKind::None;
}
static Intrinsic::ID
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
if (XLen == 32) {
switch (BinOp) {
default:
llvm_unreachable("Unexpected AtomicRMW BinOp");
case AtomicRMWInst::Xchg:
return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
case AtomicRMWInst::Add:
return Intrinsic::riscv_masked_atomicrmw_add_i32;
case AtomicRMWInst::Sub:
return Intrinsic::riscv_masked_atomicrmw_sub_i32;
case AtomicRMWInst::Nand:
return Intrinsic::riscv_masked_atomicrmw_nand_i32;
case AtomicRMWInst::Max:
return Intrinsic::riscv_masked_atomicrmw_max_i32;
case AtomicRMWInst::Min:
return Intrinsic::riscv_masked_atomicrmw_min_i32;
case AtomicRMWInst::UMax:
return Intrinsic::riscv_masked_atomicrmw_umax_i32;
case AtomicRMWInst::UMin:
return Intrinsic::riscv_masked_atomicrmw_umin_i32;
}
}
if (XLen == 64) {
switch (BinOp) {
default:
llvm_unreachable("Unexpected AtomicRMW BinOp");
case AtomicRMWInst::Xchg:
return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
case AtomicRMWInst::Add:
return Intrinsic::riscv_masked_atomicrmw_add_i64;
case AtomicRMWInst::Sub:
return Intrinsic::riscv_masked_atomicrmw_sub_i64;
case AtomicRMWInst::Nand:
return Intrinsic::riscv_masked_atomicrmw_nand_i64;
case AtomicRMWInst::Max:
return Intrinsic::riscv_masked_atomicrmw_max_i64;
case AtomicRMWInst::Min:
return Intrinsic::riscv_masked_atomicrmw_min_i64;
case AtomicRMWInst::UMax:
return Intrinsic::riscv_masked_atomicrmw_umax_i64;
case AtomicRMWInst::UMin:
return Intrinsic::riscv_masked_atomicrmw_umin_i64;
}
}
llvm_unreachable("Unexpected XLen\n");
}
Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
unsigned XLen = Subtarget.getXLen();
Value *Ordering =
Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
Type *Tys[] = {AlignedAddr->getType()};
Function *LrwOpScwLoop = Intrinsic::getDeclaration(
AI->getModule(),
getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
if (XLen == 64) {
Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
}
Value *Result;
// Must pass the shift amount needed to sign extend the loaded value prior
// to performing a signed comparison for min/max. ShiftAmt is the number of
// bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
// is the number of bits to left+right shift the value in order to
// sign-extend.
if (AI->getOperation() == AtomicRMWInst::Min ||
AI->getOperation() == AtomicRMWInst::Max) {
const DataLayout &DL = AI->getModule()->getDataLayout();
unsigned ValWidth =
DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
Value *SextShamt =
Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
Result = Builder.CreateCall(LrwOpScwLoop,
{AlignedAddr, Incr, Mask, SextShamt, Ordering});
} else {
Result =
Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
}
if (XLen == 64)
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
return Result;
}
TargetLowering::AtomicExpansionKind
RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *CI) const {
unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
if (Size == 8 || Size == 16)
return AtomicExpansionKind::MaskedIntrinsic;
return AtomicExpansionKind::None;
}
Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
unsigned XLen = Subtarget.getXLen();
Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
if (XLen == 64) {
CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
}
Type *Tys[] = {AlignedAddr->getType()};
Function *MaskedCmpXchg =
Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
Value *Result = Builder.CreateCall(
MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
if (XLen == 64)
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
return Result;
}
unsigned RISCVTargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
return RISCV::X10;
}
unsigned RISCVTargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
return RISCV::X11;
}
bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
// Return false to suppress the unnecessary extensions if the LibCall
// arguments or return value is f32 type for LP64 ABI.
RISCVABI::ABI ABI = Subtarget.getTargetABI();
if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
return false;
return true;
}
#define GET_REGISTER_MATCHER
#include "RISCVGenAsmMatcher.inc"
Register
RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = MatchRegisterAltName(RegName);
if (Reg == RISCV::NoRegister)
Reg = MatchRegisterName(RegName);
if (Reg == RISCV::NoRegister)
report_fatal_error(
Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
StringRef(RegName) + "\"."));
return Reg;
}