forked from OSchip/llvm-project
751 lines
24 KiB
C++
751 lines
24 KiB
C++
//===- HexagonVectorLoopCarriedReuse.cpp ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass removes the computation of provably redundant expressions that have
|
|
// been computed earlier in a previous iteration. It relies on the use of PHIs
|
|
// to identify loop carried dependences. This is scalar replacement for vector
|
|
// types.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
// Motivation: Consider the case where we have the following loop structure.
|
|
//
|
|
// Loop:
|
|
// t0 = a[i];
|
|
// t1 = f(t0);
|
|
// t2 = g(t1);
|
|
// ...
|
|
// t3 = a[i+1];
|
|
// t4 = f(t3);
|
|
// t5 = g(t4);
|
|
// t6 = op(t2, t5)
|
|
// cond_branch <Loop>
|
|
//
|
|
// This can be converted to
|
|
// t00 = a[0];
|
|
// t10 = f(t00);
|
|
// t20 = g(t10);
|
|
// Loop:
|
|
// t2 = t20;
|
|
// t3 = a[i+1];
|
|
// t4 = f(t3);
|
|
// t5 = g(t4);
|
|
// t6 = op(t2, t5)
|
|
// t20 = t5
|
|
// cond_branch <Loop>
|
|
//
|
|
// SROA does a good job of reusing a[i+1] as a[i] in the next iteration.
|
|
// Such a loop comes to this pass in the following form.
|
|
//
|
|
// LoopPreheader:
|
|
// X0 = a[0];
|
|
// Loop:
|
|
// X2 = PHI<(X0, LoopPreheader), (X1, Loop)>
|
|
// t1 = f(X2) <-- I1
|
|
// t2 = g(t1)
|
|
// ...
|
|
// X1 = a[i+1]
|
|
// t4 = f(X1) <-- I2
|
|
// t5 = g(t4)
|
|
// t6 = op(t2, t5)
|
|
// cond_branch <Loop>
|
|
//
|
|
// In this pass, we look for PHIs such as X2 whose incoming values come only
|
|
// from the Loop Preheader and over the backedge and additionaly, both these
|
|
// values are the results of the same operation in terms of opcode. We call such
|
|
// a PHI node a dependence chain or DepChain. In this case, the dependence of X2
|
|
// over X1 is carried over only one iteration and so the DepChain is only one
|
|
// PHI node long.
|
|
//
|
|
// Then, we traverse the uses of the PHI (X2) and the uses of the value of the
|
|
// PHI coming over the backedge (X1). We stop at the first pair of such users
|
|
// I1 (of X2) and I2 (of X1) that meet the following conditions.
|
|
// 1. I1 and I2 are the same operation, but with different operands.
|
|
// 2. X2 and X1 are used at the same operand number in the two instructions.
|
|
// 3. All other operands Op1 of I1 and Op2 of I2 are also such that there is a
|
|
// a DepChain from Op1 to Op2 of the same length as that between X2 and X1.
|
|
//
|
|
// We then make the following transformation
|
|
// LoopPreheader:
|
|
// X0 = a[0];
|
|
// Y0 = f(X0);
|
|
// Loop:
|
|
// X2 = PHI<(X0, LoopPreheader), (X1, Loop)>
|
|
// Y2 = PHI<(Y0, LoopPreheader), (t4, Loop)>
|
|
// t1 = f(X2) <-- Will be removed by DCE.
|
|
// t2 = g(Y2)
|
|
// ...
|
|
// X1 = a[i+1]
|
|
// t4 = f(X1)
|
|
// t5 = g(t4)
|
|
// t6 = op(t2, t5)
|
|
// cond_branch <Loop>
|
|
//
|
|
// We proceed until we cannot find any more such instructions I1 and I2.
|
|
//
|
|
// --- DepChains & Loop carried dependences ---
|
|
// Consider a single basic block loop such as
|
|
//
|
|
// LoopPreheader:
|
|
// X0 = ...
|
|
// Y0 = ...
|
|
// Loop:
|
|
// X2 = PHI<(X0, LoopPreheader), (X1, Loop)>
|
|
// Y2 = PHI<(Y0, LoopPreheader), (X2, Loop)>
|
|
// ...
|
|
// X1 = ...
|
|
// ...
|
|
// cond_branch <Loop>
|
|
//
|
|
// Then there is a dependence between X2 and X1 that goes back one iteration,
|
|
// i.e. X1 is used as X2 in the very next iteration. We represent this as a
|
|
// DepChain from X2 to X1 (X2->X1).
|
|
// Similarly, there is a dependence between Y2 and X1 that goes back two
|
|
// iterations. X1 is used as Y2 two iterations after it is computed. This is
|
|
// represented by a DepChain as (Y2->X2->X1).
|
|
//
|
|
// A DepChain has the following properties.
|
|
// 1. Num of edges in DepChain = Number of Instructions in DepChain = Number of
|
|
// iterations of carried dependence + 1.
|
|
// 2. All instructions in the DepChain except the last are PHIs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsHexagon.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagon-vlcr"
|
|
|
|
STATISTIC(HexagonNumVectorLoopCarriedReuse,
|
|
"Number of values that were reused from a previous iteration.");
|
|
|
|
static cl::opt<int> HexagonVLCRIterationLim("hexagon-vlcr-iteration-lim",
|
|
cl::Hidden,
|
|
cl::desc("Maximum distance of loop carried dependences that are handled"),
|
|
cl::init(2), cl::ZeroOrMore);
|
|
|
|
namespace llvm {
|
|
|
|
void initializeHexagonVectorLoopCarriedReusePass(PassRegistry&);
|
|
Pass *createHexagonVectorLoopCarriedReusePass();
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
// See info about DepChain in the comments at the top of this file.
|
|
using ChainOfDependences = SmallVector<Instruction *, 4>;
|
|
|
|
class DepChain {
|
|
ChainOfDependences Chain;
|
|
|
|
public:
|
|
bool isIdentical(DepChain &Other) const {
|
|
if (Other.size() != size())
|
|
return false;
|
|
ChainOfDependences &OtherChain = Other.getChain();
|
|
for (int i = 0; i < size(); ++i) {
|
|
if (Chain[i] != OtherChain[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ChainOfDependences &getChain() {
|
|
return Chain;
|
|
}
|
|
|
|
int size() const {
|
|
return Chain.size();
|
|
}
|
|
|
|
void clear() {
|
|
Chain.clear();
|
|
}
|
|
|
|
void push_back(Instruction *I) {
|
|
Chain.push_back(I);
|
|
}
|
|
|
|
int iterations() const {
|
|
return size() - 1;
|
|
}
|
|
|
|
Instruction *front() const {
|
|
return Chain.front();
|
|
}
|
|
|
|
Instruction *back() const {
|
|
return Chain.back();
|
|
}
|
|
|
|
Instruction *&operator[](const int index) {
|
|
return Chain[index];
|
|
}
|
|
|
|
friend raw_ostream &operator<< (raw_ostream &OS, const DepChain &D);
|
|
};
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
raw_ostream &operator<<(raw_ostream &OS, const DepChain &D) {
|
|
const ChainOfDependences &CD = D.Chain;
|
|
int ChainSize = CD.size();
|
|
OS << "**DepChain Start::**\n";
|
|
for (int i = 0; i < ChainSize -1; ++i) {
|
|
OS << *(CD[i]) << " -->\n";
|
|
}
|
|
OS << *CD[ChainSize-1] << "\n";
|
|
return OS;
|
|
}
|
|
|
|
struct ReuseValue {
|
|
Instruction *Inst2Replace = nullptr;
|
|
|
|
// In the new PHI node that we'll construct this is the value that'll be
|
|
// used over the backedge. This is the value that gets reused from a
|
|
// previous iteration.
|
|
Instruction *BackedgeInst = nullptr;
|
|
std::map<Instruction *, DepChain *> DepChains;
|
|
int Iterations = -1;
|
|
|
|
ReuseValue() = default;
|
|
|
|
void reset() {
|
|
Inst2Replace = nullptr;
|
|
BackedgeInst = nullptr;
|
|
DepChains.clear();
|
|
Iterations = -1;
|
|
}
|
|
bool isDefined() { return Inst2Replace != nullptr; }
|
|
};
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
raw_ostream &operator<<(raw_ostream &OS, const ReuseValue &RU) {
|
|
OS << "** ReuseValue ***\n";
|
|
OS << "Instruction to Replace: " << *(RU.Inst2Replace) << "\n";
|
|
OS << "Backedge Instruction: " << *(RU.BackedgeInst) << "\n";
|
|
return OS;
|
|
}
|
|
|
|
class HexagonVectorLoopCarriedReuse : public LoopPass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit HexagonVectorLoopCarriedReuse() : LoopPass(ID) {
|
|
PassRegistry *PR = PassRegistry::getPassRegistry();
|
|
initializeHexagonVectorLoopCarriedReusePass(*PR);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Hexagon-specific loop carried reuse for HVX vectors";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addPreservedID(LCSSAID);
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
|
|
|
|
private:
|
|
SetVector<DepChain *> Dependences;
|
|
std::set<Instruction *> ReplacedInsts;
|
|
Loop *CurLoop;
|
|
ReuseValue ReuseCandidate;
|
|
|
|
bool doVLCR();
|
|
void findLoopCarriedDeps();
|
|
void findValueToReuse();
|
|
void findDepChainFromPHI(Instruction *I, DepChain &D);
|
|
void reuseValue();
|
|
Value *findValueInBlock(Value *Op, BasicBlock *BB);
|
|
DepChain *getDepChainBtwn(Instruction *I1, Instruction *I2, int Iters);
|
|
bool isEquivalentOperation(Instruction *I1, Instruction *I2);
|
|
bool canReplace(Instruction *I);
|
|
bool isCallInstCommutative(CallInst *C);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char HexagonVectorLoopCarriedReuse::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(HexagonVectorLoopCarriedReuse, "hexagon-vlcr",
|
|
"Hexagon-specific predictive commoning for HVX vectors", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
|
|
INITIALIZE_PASS_END(HexagonVectorLoopCarriedReuse, "hexagon-vlcr",
|
|
"Hexagon-specific predictive commoning for HVX vectors", false, false)
|
|
|
|
bool HexagonVectorLoopCarriedReuse::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
if (!L->getLoopPreheader())
|
|
return false;
|
|
|
|
// Work only on innermost loops.
|
|
if (!L->getSubLoops().empty())
|
|
return false;
|
|
|
|
// Work only on single basic blocks loops.
|
|
if (L->getNumBlocks() != 1)
|
|
return false;
|
|
|
|
CurLoop = L;
|
|
|
|
return doVLCR();
|
|
}
|
|
|
|
bool HexagonVectorLoopCarriedReuse::isCallInstCommutative(CallInst *C) {
|
|
switch (C->getCalledFunction()->getIntrinsicID()) {
|
|
case Intrinsic::hexagon_V6_vaddb:
|
|
case Intrinsic::hexagon_V6_vaddb_128B:
|
|
case Intrinsic::hexagon_V6_vaddh:
|
|
case Intrinsic::hexagon_V6_vaddh_128B:
|
|
case Intrinsic::hexagon_V6_vaddw:
|
|
case Intrinsic::hexagon_V6_vaddw_128B:
|
|
case Intrinsic::hexagon_V6_vaddubh:
|
|
case Intrinsic::hexagon_V6_vaddubh_128B:
|
|
case Intrinsic::hexagon_V6_vadduhw:
|
|
case Intrinsic::hexagon_V6_vadduhw_128B:
|
|
case Intrinsic::hexagon_V6_vaddhw:
|
|
case Intrinsic::hexagon_V6_vaddhw_128B:
|
|
case Intrinsic::hexagon_V6_vmaxb:
|
|
case Intrinsic::hexagon_V6_vmaxb_128B:
|
|
case Intrinsic::hexagon_V6_vmaxh:
|
|
case Intrinsic::hexagon_V6_vmaxh_128B:
|
|
case Intrinsic::hexagon_V6_vmaxw:
|
|
case Intrinsic::hexagon_V6_vmaxw_128B:
|
|
case Intrinsic::hexagon_V6_vmaxub:
|
|
case Intrinsic::hexagon_V6_vmaxub_128B:
|
|
case Intrinsic::hexagon_V6_vmaxuh:
|
|
case Intrinsic::hexagon_V6_vmaxuh_128B:
|
|
case Intrinsic::hexagon_V6_vminub:
|
|
case Intrinsic::hexagon_V6_vminub_128B:
|
|
case Intrinsic::hexagon_V6_vminuh:
|
|
case Intrinsic::hexagon_V6_vminuh_128B:
|
|
case Intrinsic::hexagon_V6_vminb:
|
|
case Intrinsic::hexagon_V6_vminb_128B:
|
|
case Intrinsic::hexagon_V6_vminh:
|
|
case Intrinsic::hexagon_V6_vminh_128B:
|
|
case Intrinsic::hexagon_V6_vminw:
|
|
case Intrinsic::hexagon_V6_vminw_128B:
|
|
case Intrinsic::hexagon_V6_vmpyub:
|
|
case Intrinsic::hexagon_V6_vmpyub_128B:
|
|
case Intrinsic::hexagon_V6_vmpyuh:
|
|
case Intrinsic::hexagon_V6_vmpyuh_128B:
|
|
case Intrinsic::hexagon_V6_vavgub:
|
|
case Intrinsic::hexagon_V6_vavgub_128B:
|
|
case Intrinsic::hexagon_V6_vavgh:
|
|
case Intrinsic::hexagon_V6_vavgh_128B:
|
|
case Intrinsic::hexagon_V6_vavguh:
|
|
case Intrinsic::hexagon_V6_vavguh_128B:
|
|
case Intrinsic::hexagon_V6_vavgw:
|
|
case Intrinsic::hexagon_V6_vavgw_128B:
|
|
case Intrinsic::hexagon_V6_vavgb:
|
|
case Intrinsic::hexagon_V6_vavgb_128B:
|
|
case Intrinsic::hexagon_V6_vavguw:
|
|
case Intrinsic::hexagon_V6_vavguw_128B:
|
|
case Intrinsic::hexagon_V6_vabsdiffh:
|
|
case Intrinsic::hexagon_V6_vabsdiffh_128B:
|
|
case Intrinsic::hexagon_V6_vabsdiffub:
|
|
case Intrinsic::hexagon_V6_vabsdiffub_128B:
|
|
case Intrinsic::hexagon_V6_vabsdiffuh:
|
|
case Intrinsic::hexagon_V6_vabsdiffuh_128B:
|
|
case Intrinsic::hexagon_V6_vabsdiffw:
|
|
case Intrinsic::hexagon_V6_vabsdiffw_128B:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool HexagonVectorLoopCarriedReuse::isEquivalentOperation(Instruction *I1,
|
|
Instruction *I2) {
|
|
if (!I1->isSameOperationAs(I2))
|
|
return false;
|
|
// This check is in place specifically for intrinsics. isSameOperationAs will
|
|
// return two for any two hexagon intrinsics because they are essentially the
|
|
// same instruciton (CallInst). We need to scratch the surface to see if they
|
|
// are calls to the same function.
|
|
if (CallInst *C1 = dyn_cast<CallInst>(I1)) {
|
|
if (CallInst *C2 = dyn_cast<CallInst>(I2)) {
|
|
if (C1->getCalledFunction() != C2->getCalledFunction())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If both the Instructions are of Vector Type and any of the element
|
|
// is integer constant, check their values too for equivalence.
|
|
if (I1->getType()->isVectorTy() && I2->getType()->isVectorTy()) {
|
|
unsigned NumOperands = I1->getNumOperands();
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
ConstantInt *C1 = dyn_cast<ConstantInt>(I1->getOperand(i));
|
|
ConstantInt *C2 = dyn_cast<ConstantInt>(I2->getOperand(i));
|
|
if(!C1) continue;
|
|
assert(C2);
|
|
if (C1->getSExtValue() != C2->getSExtValue())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool HexagonVectorLoopCarriedReuse::canReplace(Instruction *I) {
|
|
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
|
|
if (!II)
|
|
return true;
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::hexagon_V6_hi:
|
|
case Intrinsic::hexagon_V6_lo:
|
|
case Intrinsic::hexagon_V6_hi_128B:
|
|
case Intrinsic::hexagon_V6_lo_128B:
|
|
LLVM_DEBUG(dbgs() << "Not considering for reuse: " << *II << "\n");
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
void HexagonVectorLoopCarriedReuse::findValueToReuse() {
|
|
for (auto *D : Dependences) {
|
|
LLVM_DEBUG(dbgs() << "Processing dependence " << *(D->front()) << "\n");
|
|
if (D->iterations() > HexagonVLCRIterationLim) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< ".. Skipping because number of iterations > than the limit\n");
|
|
continue;
|
|
}
|
|
|
|
PHINode *PN = cast<PHINode>(D->front());
|
|
Instruction *BEInst = D->back();
|
|
int Iters = D->iterations();
|
|
BasicBlock *BB = PN->getParent();
|
|
LLVM_DEBUG(dbgs() << "Checking if any uses of " << *PN
|
|
<< " can be reused\n");
|
|
|
|
SmallVector<Instruction *, 4> PNUsers;
|
|
for (auto UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) {
|
|
Use &U = *UI;
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
|
|
if (User->getParent() != BB)
|
|
continue;
|
|
if (ReplacedInsts.count(User)) {
|
|
LLVM_DEBUG(dbgs() << *User
|
|
<< " has already been replaced. Skipping...\n");
|
|
continue;
|
|
}
|
|
if (isa<PHINode>(User))
|
|
continue;
|
|
if (User->mayHaveSideEffects())
|
|
continue;
|
|
if (!canReplace(User))
|
|
continue;
|
|
|
|
PNUsers.push_back(User);
|
|
}
|
|
LLVM_DEBUG(dbgs() << PNUsers.size() << " use(s) of the PHI in the block\n");
|
|
|
|
// For each interesting use I of PN, find an Instruction BEUser that
|
|
// performs the same operation as I on BEInst and whose other operands,
|
|
// if any, can also be rematerialized in OtherBB. We stop when we find the
|
|
// first such Instruction BEUser. This is because once BEUser is
|
|
// rematerialized in OtherBB, we may find more such "fixup" opportunities
|
|
// in this block. So, we'll start over again.
|
|
for (Instruction *I : PNUsers) {
|
|
for (auto UI = BEInst->use_begin(), E = BEInst->use_end(); UI != E;
|
|
++UI) {
|
|
Use &U = *UI;
|
|
Instruction *BEUser = cast<Instruction>(U.getUser());
|
|
|
|
if (BEUser->getParent() != BB)
|
|
continue;
|
|
if (!isEquivalentOperation(I, BEUser))
|
|
continue;
|
|
|
|
int NumOperands = I->getNumOperands();
|
|
|
|
// Take operands of each PNUser one by one and try to find DepChain
|
|
// with every operand of the BEUser. If any of the operands of BEUser
|
|
// has DepChain with current operand of the PNUser, break the matcher
|
|
// loop. Keep doing this for Every PNUser operand. If PNUser operand
|
|
// does not have DepChain with any of the BEUser operand, break the
|
|
// outer matcher loop, mark the BEUser as null and reset the ReuseCandidate.
|
|
// This ensures that DepChain exist for all the PNUser operand with
|
|
// BEUser operand. This also ensures that DepChains are independent of
|
|
// the positions in PNUser and BEUser.
|
|
std::map<Instruction *, DepChain *> DepChains;
|
|
CallInst *C1 = dyn_cast<CallInst>(I);
|
|
if ((I && I->isCommutative()) || (C1 && isCallInstCommutative(C1))) {
|
|
bool Found = false;
|
|
for (int OpNo = 0; OpNo < NumOperands; ++OpNo) {
|
|
Value *Op = I->getOperand(OpNo);
|
|
Instruction *OpInst = dyn_cast<Instruction>(Op);
|
|
Found = false;
|
|
for (int T = 0; T < NumOperands; ++T) {
|
|
Value *BEOp = BEUser->getOperand(T);
|
|
Instruction *BEOpInst = dyn_cast<Instruction>(BEOp);
|
|
if (!OpInst && !BEOpInst) {
|
|
if (Op == BEOp) {
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((OpInst && !BEOpInst) || (!OpInst && BEOpInst))
|
|
continue;
|
|
|
|
DepChain *D = getDepChainBtwn(OpInst, BEOpInst, Iters);
|
|
|
|
if (D) {
|
|
Found = true;
|
|
DepChains[OpInst] = D;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found) {
|
|
BEUser = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
|
|
for (int OpNo = 0; OpNo < NumOperands; ++OpNo) {
|
|
Value *Op = I->getOperand(OpNo);
|
|
Value *BEOp = BEUser->getOperand(OpNo);
|
|
|
|
Instruction *OpInst = dyn_cast<Instruction>(Op);
|
|
if (!OpInst) {
|
|
if (Op == BEOp)
|
|
continue;
|
|
// Do not allow reuse to occur when the operands may be different
|
|
// values.
|
|
BEUser = nullptr;
|
|
break;
|
|
}
|
|
|
|
Instruction *BEOpInst = dyn_cast<Instruction>(BEOp);
|
|
DepChain *D = getDepChainBtwn(OpInst, BEOpInst, Iters);
|
|
|
|
if (D) {
|
|
DepChains[OpInst] = D;
|
|
} else {
|
|
BEUser = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (BEUser) {
|
|
LLVM_DEBUG(dbgs() << "Found Value for reuse.\n");
|
|
ReuseCandidate.Inst2Replace = I;
|
|
ReuseCandidate.BackedgeInst = BEUser;
|
|
ReuseCandidate.DepChains = DepChains;
|
|
ReuseCandidate.Iterations = Iters;
|
|
return;
|
|
}
|
|
ReuseCandidate.reset();
|
|
}
|
|
}
|
|
}
|
|
ReuseCandidate.reset();
|
|
}
|
|
|
|
Value *HexagonVectorLoopCarriedReuse::findValueInBlock(Value *Op,
|
|
BasicBlock *BB) {
|
|
PHINode *PN = dyn_cast<PHINode>(Op);
|
|
assert(PN);
|
|
Value *ValueInBlock = PN->getIncomingValueForBlock(BB);
|
|
return ValueInBlock;
|
|
}
|
|
|
|
void HexagonVectorLoopCarriedReuse::reuseValue() {
|
|
LLVM_DEBUG(dbgs() << ReuseCandidate);
|
|
Instruction *Inst2Replace = ReuseCandidate.Inst2Replace;
|
|
Instruction *BEInst = ReuseCandidate.BackedgeInst;
|
|
int NumOperands = Inst2Replace->getNumOperands();
|
|
std::map<Instruction *, DepChain *> &DepChains = ReuseCandidate.DepChains;
|
|
int Iterations = ReuseCandidate.Iterations;
|
|
BasicBlock *LoopPH = CurLoop->getLoopPreheader();
|
|
assert(!DepChains.empty() && "No DepChains");
|
|
LLVM_DEBUG(dbgs() << "reuseValue is making the following changes\n");
|
|
|
|
SmallVector<Instruction *, 4> InstsInPreheader;
|
|
for (int i = 0; i < Iterations; ++i) {
|
|
Instruction *InstInPreheader = Inst2Replace->clone();
|
|
SmallVector<Value *, 4> Ops;
|
|
for (int j = 0; j < NumOperands; ++j) {
|
|
Instruction *I = dyn_cast<Instruction>(Inst2Replace->getOperand(j));
|
|
if (!I)
|
|
continue;
|
|
// Get the DepChain corresponding to this operand.
|
|
DepChain &D = *DepChains[I];
|
|
// Get the PHI for the iteration number and find
|
|
// the incoming value from the Loop Preheader for
|
|
// that PHI.
|
|
Value *ValInPreheader = findValueInBlock(D[i], LoopPH);
|
|
InstInPreheader->setOperand(j, ValInPreheader);
|
|
}
|
|
InstsInPreheader.push_back(InstInPreheader);
|
|
InstInPreheader->setName(Inst2Replace->getName() + ".hexagon.vlcr");
|
|
InstInPreheader->insertBefore(LoopPH->getTerminator());
|
|
LLVM_DEBUG(dbgs() << "Added " << *InstInPreheader << " to "
|
|
<< LoopPH->getName() << "\n");
|
|
}
|
|
BasicBlock *BB = BEInst->getParent();
|
|
IRBuilder<> IRB(BB);
|
|
IRB.SetInsertPoint(BB->getFirstNonPHI());
|
|
Value *BEVal = BEInst;
|
|
PHINode *NewPhi;
|
|
for (int i = Iterations-1; i >=0 ; --i) {
|
|
Instruction *InstInPreheader = InstsInPreheader[i];
|
|
NewPhi = IRB.CreatePHI(InstInPreheader->getType(), 2);
|
|
NewPhi->addIncoming(InstInPreheader, LoopPH);
|
|
NewPhi->addIncoming(BEVal, BB);
|
|
LLVM_DEBUG(dbgs() << "Adding " << *NewPhi << " to " << BB->getName()
|
|
<< "\n");
|
|
BEVal = NewPhi;
|
|
}
|
|
// We are in LCSSA form. So, a value defined inside the Loop is used only
|
|
// inside the loop. So, the following is safe.
|
|
Inst2Replace->replaceAllUsesWith(NewPhi);
|
|
ReplacedInsts.insert(Inst2Replace);
|
|
++HexagonNumVectorLoopCarriedReuse;
|
|
}
|
|
|
|
bool HexagonVectorLoopCarriedReuse::doVLCR() {
|
|
assert(CurLoop->getSubLoops().empty() &&
|
|
"Can do VLCR on the innermost loop only");
|
|
assert((CurLoop->getNumBlocks() == 1) &&
|
|
"Can do VLCR only on single block loops");
|
|
|
|
bool Changed = false;
|
|
bool Continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Working on Loop: " << *CurLoop->getHeader() << "\n");
|
|
do {
|
|
// Reset datastructures.
|
|
Dependences.clear();
|
|
Continue = false;
|
|
|
|
findLoopCarriedDeps();
|
|
findValueToReuse();
|
|
if (ReuseCandidate.isDefined()) {
|
|
reuseValue();
|
|
Changed = true;
|
|
Continue = true;
|
|
}
|
|
llvm::for_each(Dependences, std::default_delete<DepChain>());
|
|
} while (Continue);
|
|
return Changed;
|
|
}
|
|
|
|
void HexagonVectorLoopCarriedReuse::findDepChainFromPHI(Instruction *I,
|
|
DepChain &D) {
|
|
PHINode *PN = dyn_cast<PHINode>(I);
|
|
if (!PN) {
|
|
D.push_back(I);
|
|
return;
|
|
} else {
|
|
auto NumIncomingValues = PN->getNumIncomingValues();
|
|
if (NumIncomingValues != 2) {
|
|
D.clear();
|
|
return;
|
|
}
|
|
|
|
BasicBlock *BB = PN->getParent();
|
|
if (BB != CurLoop->getHeader()) {
|
|
D.clear();
|
|
return;
|
|
}
|
|
|
|
Value *BEVal = PN->getIncomingValueForBlock(BB);
|
|
Instruction *BEInst = dyn_cast<Instruction>(BEVal);
|
|
// This is a single block loop with a preheader, so at least
|
|
// one value should come over the backedge.
|
|
assert(BEInst && "There should be a value over the backedge");
|
|
|
|
Value *PreHdrVal =
|
|
PN->getIncomingValueForBlock(CurLoop->getLoopPreheader());
|
|
if(!PreHdrVal || !isa<Instruction>(PreHdrVal)) {
|
|
D.clear();
|
|
return;
|
|
}
|
|
D.push_back(PN);
|
|
findDepChainFromPHI(BEInst, D);
|
|
}
|
|
}
|
|
|
|
DepChain *HexagonVectorLoopCarriedReuse::getDepChainBtwn(Instruction *I1,
|
|
Instruction *I2,
|
|
int Iters) {
|
|
for (auto *D : Dependences) {
|
|
if (D->front() == I1 && D->back() == I2 && D->iterations() == Iters)
|
|
return D;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void HexagonVectorLoopCarriedReuse::findLoopCarriedDeps() {
|
|
BasicBlock *BB = CurLoop->getHeader();
|
|
for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
|
|
auto *PN = cast<PHINode>(I);
|
|
if (!isa<VectorType>(PN->getType()))
|
|
continue;
|
|
|
|
DepChain *D = new DepChain();
|
|
findDepChainFromPHI(PN, *D);
|
|
if (D->size() != 0)
|
|
Dependences.insert(D);
|
|
else
|
|
delete D;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Found " << Dependences.size() << " dependences\n");
|
|
LLVM_DEBUG(for (size_t i = 0; i < Dependences.size();
|
|
++i) { dbgs() << *Dependences[i] << "\n"; });
|
|
}
|
|
|
|
Pass *llvm::createHexagonVectorLoopCarriedReusePass() {
|
|
return new HexagonVectorLoopCarriedReuse();
|
|
}
|