forked from OSchip/llvm-project
688 lines
28 KiB
C++
688 lines
28 KiB
C++
//===- UnwindInfoSection.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "UnwindInfoSection.h"
|
|
#include "ConcatOutputSection.h"
|
|
#include "Config.h"
|
|
#include "InputSection.h"
|
|
#include "OutputSection.h"
|
|
#include "OutputSegment.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
#include "llvm/Support/Parallel.h"
|
|
|
|
#include <numeric>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::MachO;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::macho;
|
|
|
|
#define COMMON_ENCODINGS_MAX 127
|
|
#define COMPACT_ENCODINGS_MAX 256
|
|
|
|
#define SECOND_LEVEL_PAGE_BYTES 4096
|
|
#define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
|
|
#define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
|
|
((SECOND_LEVEL_PAGE_BYTES - \
|
|
sizeof(unwind_info_regular_second_level_page_header)) / \
|
|
sizeof(unwind_info_regular_second_level_entry))
|
|
#define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
|
|
((SECOND_LEVEL_PAGE_BYTES - \
|
|
sizeof(unwind_info_compressed_second_level_page_header)) / \
|
|
sizeof(uint32_t))
|
|
|
|
#define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
|
|
#define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
|
|
UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
|
|
|
|
// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
|
|
// optimizes space and exception-time lookup. Most DWARF unwind
|
|
// entries can be replaced with Compact Unwind entries, but the ones
|
|
// that cannot are retained in DWARF form.
|
|
//
|
|
// This comment will address macro-level organization of the pre-link
|
|
// and post-link compact unwind tables. For micro-level organization
|
|
// pertaining to the bitfield layout of the 32-bit compact unwind
|
|
// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
|
|
//
|
|
// Important clarifying factoids:
|
|
//
|
|
// * __LD,__compact_unwind is the compact unwind format for compiler
|
|
// output and linker input. It is never a final output. It could be
|
|
// an intermediate output with the `-r` option which retains relocs.
|
|
//
|
|
// * __TEXT,__unwind_info is the compact unwind format for final
|
|
// linker output. It is never an input.
|
|
//
|
|
// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
|
|
//
|
|
// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
|
|
// level) by ascending address, and the pages are referenced by an
|
|
// index (1st level) in the section header.
|
|
//
|
|
// * Following the headers in __TEXT,__unwind_info, the bulk of the
|
|
// section contains a vector of compact unwind entries
|
|
// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
|
|
// Adjacent entries with the same encoding can be folded to great
|
|
// advantage, achieving a 3-order-of-magnitude reduction in the
|
|
// number of entries.
|
|
//
|
|
// * The __TEXT,__unwind_info format can accommodate up to 127 unique
|
|
// encodings for the space-efficient compressed format. In practice,
|
|
// fewer than a dozen unique encodings are used by C++ programs of
|
|
// all sizes. Therefore, we don't even bother implementing the regular
|
|
// non-compressed format. Time will tell if anyone in the field ever
|
|
// overflows the 127-encodings limit.
|
|
//
|
|
// Refer to the definition of unwind_info_section_header in
|
|
// compact_unwind_encoding.h for an overview of the format we are encoding
|
|
// here.
|
|
|
|
// TODO(gkm): prune __eh_frame entries superseded by __unwind_info, PR50410
|
|
// TODO(gkm): how do we align the 2nd-level pages?
|
|
|
|
// The offsets of various fields in the on-disk representation of each compact
|
|
// unwind entry.
|
|
struct CompactUnwindOffsets {
|
|
uint32_t functionAddress;
|
|
uint32_t functionLength;
|
|
uint32_t encoding;
|
|
uint32_t personality;
|
|
uint32_t lsda;
|
|
|
|
CompactUnwindOffsets(size_t wordSize) {
|
|
if (wordSize == 8)
|
|
init<uint64_t>();
|
|
else {
|
|
assert(wordSize == 4);
|
|
init<uint32_t>();
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <class Ptr> void init() {
|
|
functionAddress = offsetof(Layout<Ptr>, functionAddress);
|
|
functionLength = offsetof(Layout<Ptr>, functionLength);
|
|
encoding = offsetof(Layout<Ptr>, encoding);
|
|
personality = offsetof(Layout<Ptr>, personality);
|
|
lsda = offsetof(Layout<Ptr>, lsda);
|
|
}
|
|
|
|
template <class Ptr> struct Layout {
|
|
Ptr functionAddress;
|
|
uint32_t functionLength;
|
|
compact_unwind_encoding_t encoding;
|
|
Ptr personality;
|
|
Ptr lsda;
|
|
};
|
|
};
|
|
|
|
// LLD's internal representation of a compact unwind entry.
|
|
struct CompactUnwindEntry {
|
|
uint64_t functionAddress;
|
|
uint32_t functionLength;
|
|
compact_unwind_encoding_t encoding;
|
|
Symbol *personality;
|
|
InputSection *lsda;
|
|
};
|
|
|
|
using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
|
|
|
|
struct SecondLevelPage {
|
|
uint32_t kind;
|
|
size_t entryIndex;
|
|
size_t entryCount;
|
|
size_t byteCount;
|
|
std::vector<compact_unwind_encoding_t> localEncodings;
|
|
EncodingMap localEncodingIndexes;
|
|
};
|
|
|
|
// UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
|
|
// lengthy definition of UnwindInfoSection.
|
|
class UnwindInfoSectionImpl final : public UnwindInfoSection {
|
|
public:
|
|
UnwindInfoSectionImpl() : cuOffsets(target->wordSize) {}
|
|
uint64_t getSize() const override { return unwindInfoSize; }
|
|
void prepareRelocations() override;
|
|
void finalize() override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
private:
|
|
void prepareRelocations(ConcatInputSection *);
|
|
void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
|
|
void encodePersonalities();
|
|
|
|
uint64_t unwindInfoSize = 0;
|
|
std::vector<decltype(symbols)::value_type> symbolsVec;
|
|
CompactUnwindOffsets cuOffsets;
|
|
std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
|
|
EncodingMap commonEncodingIndexes;
|
|
// The entries here will be in the same order as their originating symbols
|
|
// in symbolsVec.
|
|
std::vector<CompactUnwindEntry> cuEntries;
|
|
// Indices into the cuEntries vector.
|
|
std::vector<size_t> cuIndices;
|
|
std::vector<Symbol *> personalities;
|
|
SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
|
|
personalityTable;
|
|
// Indices into cuEntries for CUEs with a non-null LSDA.
|
|
std::vector<size_t> entriesWithLsda;
|
|
// Map of cuEntries index to an index within the LSDA array.
|
|
DenseMap<size_t, uint32_t> lsdaIndex;
|
|
std::vector<SecondLevelPage> secondLevelPages;
|
|
uint64_t level2PagesOffset = 0;
|
|
};
|
|
|
|
UnwindInfoSection::UnwindInfoSection()
|
|
: SyntheticSection(segment_names::text, section_names::unwindInfo) {
|
|
align = 4;
|
|
}
|
|
|
|
// Record function symbols that may need entries emitted in __unwind_info, which
|
|
// stores unwind data for address ranges.
|
|
//
|
|
// Note that if several adjacent functions have the same unwind encoding, LSDA,
|
|
// and personality function, they share one unwind entry. For this to work,
|
|
// functions without unwind info need explicit "no unwind info" unwind entries
|
|
// -- else the unwinder would think they have the unwind info of the closest
|
|
// function with unwind info right before in the image. Thus, we add function
|
|
// symbols for each unique address regardless of whether they have associated
|
|
// unwind info.
|
|
void UnwindInfoSection::addSymbol(const Defined *d) {
|
|
if (d->unwindEntry)
|
|
allEntriesAreOmitted = false;
|
|
// We don't yet know the final output address of this symbol, but we know that
|
|
// they are uniquely determined by a combination of the isec and value, so
|
|
// we use that as the key here.
|
|
auto p = symbols.insert({{d->isec, d->value}, d});
|
|
// If we have multiple symbols at the same address, only one of them can have
|
|
// an associated unwind entry.
|
|
if (!p.second && d->unwindEntry) {
|
|
assert(!p.first->second->unwindEntry);
|
|
p.first->second = d;
|
|
}
|
|
}
|
|
|
|
void UnwindInfoSectionImpl::prepareRelocations() {
|
|
// This iteration needs to be deterministic, since prepareRelocations may add
|
|
// entries to the GOT. Hence the use of a MapVector for
|
|
// UnwindInfoSection::symbols.
|
|
for (const Defined *d : make_second_range(symbols))
|
|
if (d->unwindEntry &&
|
|
d->unwindEntry->getName() == section_names::compactUnwind)
|
|
prepareRelocations(d->unwindEntry);
|
|
}
|
|
|
|
// Compact unwind relocations have different semantics, so we handle them in a
|
|
// separate code path from regular relocations. First, we do not wish to add
|
|
// rebase opcodes for __LD,__compact_unwind, because that section doesn't
|
|
// actually end up in the final binary. Second, personality pointers always
|
|
// reside in the GOT and must be treated specially.
|
|
void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
|
|
assert(!isec->shouldOmitFromOutput() &&
|
|
"__compact_unwind section should not be omitted");
|
|
|
|
// FIXME: Make this skip relocations for CompactUnwindEntries that
|
|
// point to dead-stripped functions. That might save some amount of
|
|
// work. But since there are usually just few personality functions
|
|
// that are referenced from many places, at least some of them likely
|
|
// live, it wouldn't reduce number of got entries.
|
|
for (size_t i = 0; i < isec->relocs.size(); ++i) {
|
|
Reloc &r = isec->relocs[i];
|
|
assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
|
|
|
|
// Functions and LSDA entries always reside in the same object file as the
|
|
// compact unwind entries that references them, and thus appear as section
|
|
// relocs. There is no need to prepare them. We only prepare relocs for
|
|
// personality functions.
|
|
if (r.offset != cuOffsets.personality)
|
|
continue;
|
|
|
|
if (auto *s = r.referent.dyn_cast<Symbol *>()) {
|
|
// Personality functions are nearly always system-defined (e.g.,
|
|
// ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
|
|
// application provides its own personality function, it might be
|
|
// referenced by an extern Defined symbol reloc, or a local section reloc.
|
|
if (auto *defined = dyn_cast<Defined>(s)) {
|
|
// XXX(vyng) This is a a special case for handling duplicate personality
|
|
// symbols. Note that LD64's behavior is a bit different and it is
|
|
// inconsistent with how symbol resolution usually work
|
|
//
|
|
// So we've decided not to follow it. Instead, simply pick the symbol
|
|
// with the same name from the symbol table to replace the local one.
|
|
//
|
|
// (See discussions/alternatives already considered on D107533)
|
|
if (!defined->isExternal())
|
|
if (Symbol *sym = symtab->find(defined->getName()))
|
|
if (!sym->isLazy())
|
|
r.referent = s = sym;
|
|
}
|
|
if (auto *undefined = dyn_cast<Undefined>(s)) {
|
|
treatUndefinedSymbol(*undefined, isec, r.offset);
|
|
// treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
|
|
if (isa<Undefined>(s))
|
|
continue;
|
|
}
|
|
|
|
if (auto *defined = dyn_cast<Defined>(s)) {
|
|
// Check if we have created a synthetic symbol at the same address.
|
|
Symbol *&personality =
|
|
personalityTable[{defined->isec, defined->value}];
|
|
if (personality == nullptr) {
|
|
personality = defined;
|
|
in.got->addEntry(defined);
|
|
} else if (personality != defined) {
|
|
r.referent = personality;
|
|
}
|
|
continue;
|
|
}
|
|
assert(isa<DylibSymbol>(s));
|
|
in.got->addEntry(s);
|
|
continue;
|
|
}
|
|
|
|
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
|
|
assert(!isCoalescedWeak(referentIsec));
|
|
// Personality functions can be referenced via section relocations
|
|
// if they live in the same object file. Create placeholder synthetic
|
|
// symbols for them in the GOT.
|
|
Symbol *&s = personalityTable[{referentIsec, r.addend}];
|
|
if (s == nullptr) {
|
|
// This runs after dead stripping, so the noDeadStrip argument does not
|
|
// matter.
|
|
s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
|
|
r.addend, /*size=*/0, /*isWeakDef=*/false,
|
|
/*isExternal=*/false, /*isPrivateExtern=*/false,
|
|
/*includeInSymtab=*/true,
|
|
/*isThumb=*/false, /*isReferencedDynamically=*/false,
|
|
/*noDeadStrip=*/false);
|
|
s->used = true;
|
|
in.got->addEntry(s);
|
|
}
|
|
r.referent = s;
|
|
r.addend = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We need to apply the relocations to the pre-link compact unwind section
|
|
// before converting it to post-link form. There should only be absolute
|
|
// relocations here: since we are not emitting the pre-link CU section, there
|
|
// is no source address to make a relative location meaningful.
|
|
void UnwindInfoSectionImpl::relocateCompactUnwind(
|
|
std::vector<CompactUnwindEntry> &cuEntries) {
|
|
parallelFor(0, symbolsVec.size(), [&](size_t i) {
|
|
CompactUnwindEntry &cu = cuEntries[i];
|
|
const Defined *d = symbolsVec[i].second;
|
|
cu.functionAddress = d->getVA();
|
|
if (!d->unwindEntry)
|
|
return;
|
|
|
|
// If we have DWARF unwind info, create a CU entry that points to it.
|
|
if (d->unwindEntry->getName() == section_names::ehFrame) {
|
|
cu.encoding = target->modeDwarfEncoding | d->unwindEntry->outSecOff;
|
|
const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
|
|
cu.functionLength = fde.funcLength;
|
|
cu.personality = fde.personality;
|
|
cu.lsda = fde.lsda;
|
|
return;
|
|
}
|
|
|
|
assert(d->unwindEntry->getName() == section_names::compactUnwind);
|
|
|
|
auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
|
|
target->wordSize;
|
|
cu.functionLength =
|
|
support::endian::read32le(buf + cuOffsets.functionLength);
|
|
cu.encoding = support::endian::read32le(buf + cuOffsets.encoding);
|
|
for (const Reloc &r : d->unwindEntry->relocs) {
|
|
if (r.offset == cuOffsets.personality) {
|
|
cu.personality = r.referent.get<Symbol *>();
|
|
} else if (r.offset == cuOffsets.lsda) {
|
|
if (auto *referentSym = r.referent.dyn_cast<Symbol *>())
|
|
cu.lsda = cast<Defined>(referentSym)->isec;
|
|
else
|
|
cu.lsda = r.referent.get<InputSection *>();
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
// There should only be a handful of unique personality pointers, so we can
|
|
// encode them as 2-bit indices into a small array.
|
|
void UnwindInfoSectionImpl::encodePersonalities() {
|
|
for (size_t idx : cuIndices) {
|
|
CompactUnwindEntry &cu = cuEntries[idx];
|
|
if (cu.personality == nullptr)
|
|
continue;
|
|
// Linear search is fast enough for a small array.
|
|
auto it = find(personalities, cu.personality);
|
|
uint32_t personalityIndex; // 1-based index
|
|
if (it != personalities.end()) {
|
|
personalityIndex = std::distance(personalities.begin(), it) + 1;
|
|
} else {
|
|
personalities.push_back(cu.personality);
|
|
personalityIndex = personalities.size();
|
|
}
|
|
cu.encoding |=
|
|
personalityIndex << countTrailingZeros(
|
|
static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
|
|
}
|
|
if (personalities.size() > 3)
|
|
error("too many personalities (" + Twine(personalities.size()) +
|
|
") for compact unwind to encode");
|
|
}
|
|
|
|
static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
|
|
// From compact_unwind_encoding.h:
|
|
// UNWIND_X86_64_MODE_STACK_IND:
|
|
// A "frameless" (RBP not used as frame pointer) function large constant
|
|
// stack size. This case is like the previous, except the stack size is too
|
|
// large to encode in the compact unwind encoding. Instead it requires that
|
|
// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
|
|
// encoding contains the offset to the nnnnnnnn value in the function in
|
|
// UNWIND_X86_64_FRAMELESS_STACK_SIZE.
|
|
// Since this means the unwinder has to look at the `subq` in the function
|
|
// of the unwind info's unwind address, two functions that have identical
|
|
// unwind info can't be folded if it's using this encoding since both
|
|
// entries need unique addresses.
|
|
static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_MASK) ==
|
|
static_cast<uint32_t>(UNWIND_X86_MODE_MASK),
|
|
"");
|
|
static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
|
|
static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND),
|
|
"");
|
|
if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
|
|
(encoding & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
|
|
// FIXME: Consider passing in the two function addresses and getting
|
|
// their two stack sizes off the `subq` and only returning false if they're
|
|
// actually different.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Scan the __LD,__compact_unwind entries and compute the space needs of
|
|
// __TEXT,__unwind_info and __TEXT,__eh_frame.
|
|
void UnwindInfoSectionImpl::finalize() {
|
|
if (symbols.empty())
|
|
return;
|
|
|
|
// At this point, the address space for __TEXT,__text has been
|
|
// assigned, so we can relocate the __LD,__compact_unwind entries
|
|
// into a temporary buffer. Relocation is necessary in order to sort
|
|
// the CU entries by function address. Sorting is necessary so that
|
|
// we can fold adjacent CU entries with identical
|
|
// encoding+personality+lsda. Folding is necessary because it reduces
|
|
// the number of CU entries by as much as 3 orders of magnitude!
|
|
cuEntries.resize(symbols.size());
|
|
// The "map" part of the symbols MapVector was only needed for deduplication
|
|
// in addSymbol(). Now that we are done adding, move the contents to a plain
|
|
// std::vector for indexed access.
|
|
symbolsVec = symbols.takeVector();
|
|
relocateCompactUnwind(cuEntries);
|
|
|
|
// Rather than sort & fold the 32-byte entries directly, we create a
|
|
// vector of indices to entries and sort & fold that instead.
|
|
cuIndices.resize(cuEntries.size());
|
|
std::iota(cuIndices.begin(), cuIndices.end(), 0);
|
|
llvm::sort(cuIndices, [&](size_t a, size_t b) {
|
|
return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
|
|
});
|
|
|
|
// Fold adjacent entries with matching encoding+personality+lsda
|
|
// We use three iterators on the same cuIndices to fold in-situ:
|
|
// (1) `foldBegin` is the first of a potential sequence of matching entries
|
|
// (2) `foldEnd` is the first non-matching entry after `foldBegin`.
|
|
// The semi-open interval [ foldBegin .. foldEnd ) contains a range
|
|
// entries that can be folded into a single entry and written to ...
|
|
// (3) `foldWrite`
|
|
auto foldWrite = cuIndices.begin();
|
|
for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
|
|
auto foldEnd = foldBegin;
|
|
while (++foldEnd < cuIndices.end() &&
|
|
cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
|
|
cuEntries[*foldBegin].personality ==
|
|
cuEntries[*foldEnd].personality &&
|
|
cuEntries[*foldBegin].lsda == cuEntries[*foldEnd].lsda &&
|
|
canFoldEncoding(cuEntries[*foldEnd].encoding))
|
|
;
|
|
*foldWrite++ = *foldBegin;
|
|
foldBegin = foldEnd;
|
|
}
|
|
cuIndices.erase(foldWrite, cuIndices.end());
|
|
|
|
encodePersonalities();
|
|
|
|
// Count frequencies of the folded encodings
|
|
EncodingMap encodingFrequencies;
|
|
for (size_t idx : cuIndices)
|
|
encodingFrequencies[cuEntries[idx].encoding]++;
|
|
|
|
// Make a vector of encodings, sorted by descending frequency
|
|
for (const auto &frequency : encodingFrequencies)
|
|
commonEncodings.emplace_back(frequency);
|
|
llvm::sort(commonEncodings,
|
|
[](const std::pair<compact_unwind_encoding_t, size_t> &a,
|
|
const std::pair<compact_unwind_encoding_t, size_t> &b) {
|
|
if (a.second == b.second)
|
|
// When frequencies match, secondarily sort on encoding
|
|
// to maintain parity with validate-unwind-info.py
|
|
return a.first > b.first;
|
|
return a.second > b.second;
|
|
});
|
|
|
|
// Truncate the vector to 127 elements.
|
|
// Common encoding indexes are limited to 0..126, while encoding
|
|
// indexes 127..255 are local to each second-level page
|
|
if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
|
|
commonEncodings.resize(COMMON_ENCODINGS_MAX);
|
|
|
|
// Create a map from encoding to common-encoding-table index
|
|
for (size_t i = 0; i < commonEncodings.size(); i++)
|
|
commonEncodingIndexes[commonEncodings[i].first] = i;
|
|
|
|
// Split folded encodings into pages, where each page is limited by ...
|
|
// (a) 4 KiB capacity
|
|
// (b) 24-bit difference between first & final function address
|
|
// (c) 8-bit compact-encoding-table index,
|
|
// for which 0..126 references the global common-encodings table,
|
|
// and 127..255 references a local per-second-level-page table.
|
|
// First we try the compact format and determine how many entries fit.
|
|
// If more entries fit in the regular format, we use that.
|
|
for (size_t i = 0; i < cuIndices.size();) {
|
|
size_t idx = cuIndices[i];
|
|
secondLevelPages.emplace_back();
|
|
SecondLevelPage &page = secondLevelPages.back();
|
|
page.entryIndex = i;
|
|
uint64_t functionAddressMax =
|
|
cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
|
|
size_t n = commonEncodings.size();
|
|
size_t wordsRemaining =
|
|
SECOND_LEVEL_PAGE_WORDS -
|
|
sizeof(unwind_info_compressed_second_level_page_header) /
|
|
sizeof(uint32_t);
|
|
while (wordsRemaining >= 1 && i < cuIndices.size()) {
|
|
idx = cuIndices[i];
|
|
const CompactUnwindEntry *cuPtr = &cuEntries[idx];
|
|
if (cuPtr->functionAddress >= functionAddressMax) {
|
|
break;
|
|
} else if (commonEncodingIndexes.count(cuPtr->encoding) ||
|
|
page.localEncodingIndexes.count(cuPtr->encoding)) {
|
|
i++;
|
|
wordsRemaining--;
|
|
} else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
|
|
page.localEncodings.emplace_back(cuPtr->encoding);
|
|
page.localEncodingIndexes[cuPtr->encoding] = n++;
|
|
i++;
|
|
wordsRemaining -= 2;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
page.entryCount = i - page.entryIndex;
|
|
|
|
// If this is not the final page, see if it's possible to fit more
|
|
// entries by using the regular format. This can happen when there
|
|
// are many unique encodings, and we we saturated the local
|
|
// encoding table early.
|
|
if (i < cuIndices.size() &&
|
|
page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
|
|
page.kind = UNWIND_SECOND_LEVEL_REGULAR;
|
|
page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
|
|
cuIndices.size() - page.entryIndex);
|
|
i = page.entryIndex + page.entryCount;
|
|
} else {
|
|
page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
|
|
}
|
|
}
|
|
|
|
for (size_t idx : cuIndices) {
|
|
lsdaIndex[idx] = entriesWithLsda.size();
|
|
if (cuEntries[idx].lsda)
|
|
entriesWithLsda.push_back(idx);
|
|
}
|
|
|
|
// compute size of __TEXT,__unwind_info section
|
|
level2PagesOffset = sizeof(unwind_info_section_header) +
|
|
commonEncodings.size() * sizeof(uint32_t) +
|
|
personalities.size() * sizeof(uint32_t) +
|
|
// The extra second-level-page entry is for the sentinel
|
|
(secondLevelPages.size() + 1) *
|
|
sizeof(unwind_info_section_header_index_entry) +
|
|
entriesWithLsda.size() *
|
|
sizeof(unwind_info_section_header_lsda_index_entry);
|
|
unwindInfoSize =
|
|
level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
|
|
}
|
|
|
|
// All inputs are relocated and output addresses are known, so write!
|
|
|
|
void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
|
|
assert(!cuIndices.empty() && "call only if there is unwind info");
|
|
|
|
// section header
|
|
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
|
|
uip->version = 1;
|
|
uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
|
|
uip->commonEncodingsArrayCount = commonEncodings.size();
|
|
uip->personalityArraySectionOffset =
|
|
uip->commonEncodingsArraySectionOffset +
|
|
(uip->commonEncodingsArrayCount * sizeof(uint32_t));
|
|
uip->personalityArrayCount = personalities.size();
|
|
uip->indexSectionOffset = uip->personalityArraySectionOffset +
|
|
(uip->personalityArrayCount * sizeof(uint32_t));
|
|
uip->indexCount = secondLevelPages.size() + 1;
|
|
|
|
// Common encodings
|
|
auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
|
|
for (const auto &encoding : commonEncodings)
|
|
*i32p++ = encoding.first;
|
|
|
|
// Personalities
|
|
for (const Symbol *personality : personalities)
|
|
*i32p++ = personality->getGotVA() - in.header->addr;
|
|
|
|
// Level-1 index
|
|
uint32_t lsdaOffset =
|
|
uip->indexSectionOffset +
|
|
uip->indexCount * sizeof(unwind_info_section_header_index_entry);
|
|
uint64_t l2PagesOffset = level2PagesOffset;
|
|
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
|
|
for (const SecondLevelPage &page : secondLevelPages) {
|
|
size_t idx = cuIndices[page.entryIndex];
|
|
iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
|
|
iep->secondLevelPagesSectionOffset = l2PagesOffset;
|
|
iep->lsdaIndexArraySectionOffset =
|
|
lsdaOffset + lsdaIndex.lookup(idx) *
|
|
sizeof(unwind_info_section_header_lsda_index_entry);
|
|
iep++;
|
|
l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
|
|
}
|
|
// Level-1 sentinel
|
|
const CompactUnwindEntry &cuEnd = cuEntries[cuIndices.back()];
|
|
iep->functionOffset =
|
|
cuEnd.functionAddress - in.header->addr + cuEnd.functionLength;
|
|
iep->secondLevelPagesSectionOffset = 0;
|
|
iep->lsdaIndexArraySectionOffset =
|
|
lsdaOffset + entriesWithLsda.size() *
|
|
sizeof(unwind_info_section_header_lsda_index_entry);
|
|
iep++;
|
|
|
|
// LSDAs
|
|
auto *lep =
|
|
reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
|
|
for (size_t idx : entriesWithLsda) {
|
|
const CompactUnwindEntry &cu = cuEntries[idx];
|
|
lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
|
|
lep->functionOffset = cu.functionAddress - in.header->addr;
|
|
lep++;
|
|
}
|
|
|
|
// Level-2 pages
|
|
auto *pp = reinterpret_cast<uint32_t *>(lep);
|
|
for (const SecondLevelPage &page : secondLevelPages) {
|
|
if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
|
|
uintptr_t functionAddressBase =
|
|
cuEntries[cuIndices[page.entryIndex]].functionAddress;
|
|
auto *p2p =
|
|
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
|
|
pp);
|
|
p2p->kind = page.kind;
|
|
p2p->entryPageOffset =
|
|
sizeof(unwind_info_compressed_second_level_page_header);
|
|
p2p->entryCount = page.entryCount;
|
|
p2p->encodingsPageOffset =
|
|
p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
|
|
p2p->encodingsCount = page.localEncodings.size();
|
|
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
|
|
for (size_t i = 0; i < page.entryCount; i++) {
|
|
const CompactUnwindEntry &cue =
|
|
cuEntries[cuIndices[page.entryIndex + i]];
|
|
auto it = commonEncodingIndexes.find(cue.encoding);
|
|
if (it == commonEncodingIndexes.end())
|
|
it = page.localEncodingIndexes.find(cue.encoding);
|
|
*ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
|
|
(cue.functionAddress - functionAddressBase);
|
|
}
|
|
if (!page.localEncodings.empty())
|
|
memcpy(ep, page.localEncodings.data(),
|
|
page.localEncodings.size() * sizeof(uint32_t));
|
|
} else {
|
|
auto *p2p =
|
|
reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
|
|
p2p->kind = page.kind;
|
|
p2p->entryPageOffset =
|
|
sizeof(unwind_info_regular_second_level_page_header);
|
|
p2p->entryCount = page.entryCount;
|
|
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
|
|
for (size_t i = 0; i < page.entryCount; i++) {
|
|
const CompactUnwindEntry &cue =
|
|
cuEntries[cuIndices[page.entryIndex + i]];
|
|
*ep++ = cue.functionAddress;
|
|
*ep++ = cue.encoding;
|
|
}
|
|
}
|
|
pp += SECOND_LEVEL_PAGE_WORDS;
|
|
}
|
|
}
|
|
|
|
UnwindInfoSection *macho::makeUnwindInfoSection() {
|
|
return make<UnwindInfoSectionImpl>();
|
|
}
|