forked from OSchip/llvm-project
2279 lines
83 KiB
C++
2279 lines
83 KiB
C++
//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
//
|
|
// This file implements the MemorySSA class.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
#include "llvm/Transforms/Utils/MemorySSA.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/PHITransAddr.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <algorithm>
|
|
|
|
#define DEBUG_TYPE "memoryssa"
|
|
using namespace llvm;
|
|
STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups");
|
|
STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits");
|
|
STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts");
|
|
|
|
INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
|
|
true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
|
|
true)
|
|
|
|
INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
|
|
"Memory SSA Printer", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
|
|
"Memory SSA Printer", false, false)
|
|
|
|
static cl::opt<unsigned> MaxCheckLimit(
|
|
"memssa-check-limit", cl::Hidden, cl::init(100),
|
|
cl::desc("The maximum number of stores/phis MemorySSA"
|
|
"will consider trying to walk past (default = 100)"));
|
|
|
|
static cl::opt<bool>
|
|
VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
|
|
cl::desc("Verify MemorySSA in legacy printer pass."));
|
|
|
|
namespace llvm {
|
|
/// \brief An assembly annotator class to print Memory SSA information in
|
|
/// comments.
|
|
class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
|
|
friend class MemorySSA;
|
|
const MemorySSA *MSSA;
|
|
|
|
public:
|
|
MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
|
|
|
|
virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
|
|
formatted_raw_ostream &OS) {
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
|
|
OS << "; " << *MA << "\n";
|
|
}
|
|
|
|
virtual void emitInstructionAnnot(const Instruction *I,
|
|
formatted_raw_ostream &OS) {
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
|
|
OS << "; " << *MA << "\n";
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
/// Our current alias analysis API differentiates heavily between calls and
|
|
/// non-calls, and functions called on one usually assert on the other.
|
|
/// This class encapsulates the distinction to simplify other code that wants
|
|
/// "Memory affecting instructions and related data" to use as a key.
|
|
/// For example, this class is used as a densemap key in the use optimizer.
|
|
class MemoryLocOrCall {
|
|
public:
|
|
MemoryLocOrCall() : IsCall(false) {}
|
|
MemoryLocOrCall(MemoryUseOrDef *MUD)
|
|
: MemoryLocOrCall(MUD->getMemoryInst()) {}
|
|
|
|
MemoryLocOrCall(Instruction *Inst) {
|
|
if (ImmutableCallSite(Inst)) {
|
|
IsCall = true;
|
|
CS = ImmutableCallSite(Inst);
|
|
} else {
|
|
IsCall = false;
|
|
// There is no such thing as a memorylocation for a fence inst, and it is
|
|
// unique in that regard.
|
|
if (!isa<FenceInst>(Inst))
|
|
Loc = MemoryLocation::get(Inst);
|
|
}
|
|
}
|
|
|
|
explicit MemoryLocOrCall(const MemoryLocation &Loc)
|
|
: IsCall(false), Loc(Loc) {}
|
|
|
|
bool IsCall;
|
|
ImmutableCallSite getCS() const {
|
|
assert(IsCall);
|
|
return CS;
|
|
}
|
|
MemoryLocation getLoc() const {
|
|
assert(!IsCall);
|
|
return Loc;
|
|
}
|
|
|
|
bool operator==(const MemoryLocOrCall &Other) const {
|
|
if (IsCall != Other.IsCall)
|
|
return false;
|
|
|
|
if (IsCall)
|
|
return CS.getCalledValue() == Other.CS.getCalledValue();
|
|
return Loc == Other.Loc;
|
|
}
|
|
|
|
private:
|
|
// FIXME: MSVC 2013 does not properly implement C++11 union rules, once we
|
|
// require newer versions, this should be made an anonymous union again.
|
|
ImmutableCallSite CS;
|
|
MemoryLocation Loc;
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
template <> struct DenseMapInfo<MemoryLocOrCall> {
|
|
static inline MemoryLocOrCall getEmptyKey() {
|
|
return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
|
|
}
|
|
static inline MemoryLocOrCall getTombstoneKey() {
|
|
return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
|
|
}
|
|
static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
|
|
if (MLOC.IsCall)
|
|
return hash_combine(MLOC.IsCall,
|
|
DenseMapInfo<const Value *>::getHashValue(
|
|
MLOC.getCS().getCalledValue()));
|
|
return hash_combine(
|
|
MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
|
|
}
|
|
static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
struct UpwardsMemoryQuery {
|
|
// True if our original query started off as a call
|
|
bool IsCall;
|
|
// The pointer location we started the query with. This will be empty if
|
|
// IsCall is true.
|
|
MemoryLocation StartingLoc;
|
|
// This is the instruction we were querying about.
|
|
const Instruction *Inst;
|
|
// The MemoryAccess we actually got called with, used to test local domination
|
|
const MemoryAccess *OriginalAccess;
|
|
|
|
UpwardsMemoryQuery()
|
|
: IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {}
|
|
|
|
UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
|
|
: IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
|
|
if (!IsCall)
|
|
StartingLoc = MemoryLocation::get(Inst);
|
|
}
|
|
};
|
|
|
|
static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
|
|
AliasAnalysis &AA) {
|
|
Instruction *Inst = MD->getMemoryInst();
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
enum class Reorderability { Always, IfNoAlias, Never };
|
|
|
|
/// This does one-way checks to see if Use could theoretically be hoisted above
|
|
/// MayClobber. This will not check the other way around.
|
|
///
|
|
/// This assumes that, for the purposes of MemorySSA, Use comes directly after
|
|
/// MayClobber, with no potentially clobbering operations in between them.
|
|
/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
|
|
static Reorderability getLoadReorderability(const LoadInst *Use,
|
|
const LoadInst *MayClobber) {
|
|
bool VolatileUse = Use->isVolatile();
|
|
bool VolatileClobber = MayClobber->isVolatile();
|
|
// Volatile operations may never be reordered with other volatile operations.
|
|
if (VolatileUse && VolatileClobber)
|
|
return Reorderability::Never;
|
|
|
|
// The lang ref allows reordering of volatile and non-volatile operations.
|
|
// Whether an aliasing nonvolatile load and volatile load can be reordered,
|
|
// though, is ambiguous. Because it may not be best to exploit this ambiguity,
|
|
// we only allow volatile/non-volatile reordering if the volatile and
|
|
// non-volatile operations don't alias.
|
|
Reorderability Result = VolatileUse || VolatileClobber
|
|
? Reorderability::IfNoAlias
|
|
: Reorderability::Always;
|
|
|
|
// If a load is seq_cst, it cannot be moved above other loads. If its ordering
|
|
// is weaker, it can be moved above other loads. We just need to be sure that
|
|
// MayClobber isn't an acquire load, because loads can't be moved above
|
|
// acquire loads.
|
|
//
|
|
// Note that this explicitly *does* allow the free reordering of monotonic (or
|
|
// weaker) loads of the same address.
|
|
bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
|
|
bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
|
|
AtomicOrdering::Acquire);
|
|
if (SeqCstUse || MayClobberIsAcquire)
|
|
return Reorderability::Never;
|
|
return Result;
|
|
}
|
|
|
|
static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
|
|
const Instruction *I) {
|
|
// If the memory can't be changed, then loads of the memory can't be
|
|
// clobbered.
|
|
//
|
|
// FIXME: We should handle invariant groups, as well. It's a bit harder,
|
|
// because we need to pay close attention to invariant group barriers.
|
|
return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
|
|
AA.pointsToConstantMemory(I));
|
|
}
|
|
|
|
static bool instructionClobbersQuery(MemoryDef *MD,
|
|
const MemoryLocation &UseLoc,
|
|
const Instruction *UseInst,
|
|
AliasAnalysis &AA) {
|
|
Instruction *DefInst = MD->getMemoryInst();
|
|
assert(DefInst && "Defining instruction not actually an instruction");
|
|
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
|
|
// These intrinsics will show up as affecting memory, but they are just
|
|
// markers.
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::assume:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ImmutableCallSite UseCS(UseInst);
|
|
if (UseCS) {
|
|
ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
|
|
return I != MRI_NoModRef;
|
|
}
|
|
|
|
if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) {
|
|
if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) {
|
|
switch (getLoadReorderability(UseLoad, DefLoad)) {
|
|
case Reorderability::Always:
|
|
return false;
|
|
case Reorderability::Never:
|
|
return true;
|
|
case Reorderability::IfNoAlias:
|
|
return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad));
|
|
}
|
|
}
|
|
}
|
|
|
|
return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod;
|
|
}
|
|
|
|
static bool instructionClobbersQuery(MemoryDef *MD, MemoryUse *MU,
|
|
const MemoryLocOrCall &UseMLOC,
|
|
AliasAnalysis &AA) {
|
|
// FIXME: This is a temporary hack to allow a single instructionClobbersQuery
|
|
// to exist while MemoryLocOrCall is pushed through places.
|
|
if (UseMLOC.IsCall)
|
|
return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
|
|
AA);
|
|
return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
|
|
AA);
|
|
}
|
|
|
|
/// Cache for our caching MemorySSA walker.
|
|
class WalkerCache {
|
|
DenseMap<ConstMemoryAccessPair, MemoryAccess *> Accesses;
|
|
DenseMap<const MemoryAccess *, MemoryAccess *> Calls;
|
|
|
|
public:
|
|
MemoryAccess *lookup(const MemoryAccess *MA, const MemoryLocation &Loc,
|
|
bool IsCall) const {
|
|
++NumClobberCacheLookups;
|
|
MemoryAccess *R = IsCall ? Calls.lookup(MA) : Accesses.lookup({MA, Loc});
|
|
if (R)
|
|
++NumClobberCacheHits;
|
|
return R;
|
|
}
|
|
|
|
bool insert(const MemoryAccess *MA, MemoryAccess *To,
|
|
const MemoryLocation &Loc, bool IsCall) {
|
|
// This is fine for Phis, since there are times where we can't optimize
|
|
// them. Making a def its own clobber is never correct, though.
|
|
assert((MA != To || isa<MemoryPhi>(MA)) &&
|
|
"Something can't clobber itself!");
|
|
|
|
++NumClobberCacheInserts;
|
|
bool Inserted;
|
|
if (IsCall)
|
|
Inserted = Calls.insert({MA, To}).second;
|
|
else
|
|
Inserted = Accesses.insert({{MA, Loc}, To}).second;
|
|
|
|
return Inserted;
|
|
}
|
|
|
|
bool remove(const MemoryAccess *MA, const MemoryLocation &Loc, bool IsCall) {
|
|
return IsCall ? Calls.erase(MA) : Accesses.erase({MA, Loc});
|
|
}
|
|
|
|
void clear() {
|
|
Accesses.clear();
|
|
Calls.clear();
|
|
}
|
|
|
|
bool contains(const MemoryAccess *MA) const {
|
|
for (auto &P : Accesses)
|
|
if (P.first.first == MA || P.second == MA)
|
|
return true;
|
|
for (auto &P : Calls)
|
|
if (P.first == MA || P.second == MA)
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// Walks the defining uses of MemoryDefs. Stops after we hit something that has
|
|
/// no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when comparing
|
|
/// against a null def_chain_iterator, this will compare equal only after
|
|
/// walking said Phi/liveOnEntry.
|
|
struct def_chain_iterator
|
|
: public iterator_facade_base<def_chain_iterator, std::forward_iterator_tag,
|
|
MemoryAccess *> {
|
|
def_chain_iterator() : MA(nullptr) {}
|
|
def_chain_iterator(MemoryAccess *MA) : MA(MA) {}
|
|
|
|
MemoryAccess *operator*() const { return MA; }
|
|
|
|
def_chain_iterator &operator++() {
|
|
// N.B. liveOnEntry has a null defining access.
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
|
|
MA = MUD->getDefiningAccess();
|
|
else
|
|
MA = nullptr;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
|
|
|
|
private:
|
|
MemoryAccess *MA;
|
|
};
|
|
|
|
static iterator_range<def_chain_iterator>
|
|
def_chain(MemoryAccess *MA, MemoryAccess *UpTo = nullptr) {
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator()) &&
|
|
"UpTo isn't in the def chain!");
|
|
#endif
|
|
return make_range(def_chain_iterator(MA), def_chain_iterator(UpTo));
|
|
}
|
|
|
|
/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
|
|
/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
|
|
///
|
|
/// This is meant to be as simple and self-contained as possible. Because it
|
|
/// uses no cache, etc., it can be relatively expensive.
|
|
///
|
|
/// \param Start The MemoryAccess that we want to walk from.
|
|
/// \param ClobberAt A clobber for Start.
|
|
/// \param StartLoc The MemoryLocation for Start.
|
|
/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
|
|
/// \param Query The UpwardsMemoryQuery we used for our search.
|
|
/// \param AA The AliasAnalysis we used for our search.
|
|
static void LLVM_ATTRIBUTE_UNUSED
|
|
checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
|
|
const MemoryLocation &StartLoc, const MemorySSA &MSSA,
|
|
const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
|
|
assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
|
|
|
|
if (MSSA.isLiveOnEntryDef(Start)) {
|
|
assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
|
|
"liveOnEntry must clobber itself");
|
|
return;
|
|
}
|
|
|
|
bool FoundClobber = false;
|
|
DenseSet<MemoryAccessPair> VisitedPhis;
|
|
SmallVector<MemoryAccessPair, 8> Worklist;
|
|
Worklist.emplace_back(Start, StartLoc);
|
|
// Walk all paths from Start to ClobberAt, while looking for clobbers. If one
|
|
// is found, complain.
|
|
while (!Worklist.empty()) {
|
|
MemoryAccessPair MAP = Worklist.pop_back_val();
|
|
// All we care about is that nothing from Start to ClobberAt clobbers Start.
|
|
// We learn nothing from revisiting nodes.
|
|
if (!VisitedPhis.insert(MAP).second)
|
|
continue;
|
|
|
|
for (MemoryAccess *MA : def_chain(MAP.first)) {
|
|
if (MA == ClobberAt) {
|
|
if (auto *MD = dyn_cast<MemoryDef>(MA)) {
|
|
// instructionClobbersQuery isn't essentially free, so don't use `|=`,
|
|
// since it won't let us short-circuit.
|
|
//
|
|
// Also, note that this can't be hoisted out of the `Worklist` loop,
|
|
// since MD may only act as a clobber for 1 of N MemoryLocations.
|
|
FoundClobber =
|
|
FoundClobber || MSSA.isLiveOnEntryDef(MD) ||
|
|
instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// We should never hit liveOnEntry, unless it's the clobber.
|
|
assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
|
|
|
|
if (auto *MD = dyn_cast<MemoryDef>(MA)) {
|
|
(void)MD;
|
|
assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
|
|
"Found clobber before reaching ClobberAt!");
|
|
continue;
|
|
}
|
|
|
|
assert(isa<MemoryPhi>(MA));
|
|
Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
|
|
}
|
|
}
|
|
|
|
// If ClobberAt is a MemoryPhi, we can assume something above it acted as a
|
|
// clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
|
|
assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
|
|
"ClobberAt never acted as a clobber");
|
|
}
|
|
|
|
/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
|
|
/// in one class.
|
|
class ClobberWalker {
|
|
/// Save a few bytes by using unsigned instead of size_t.
|
|
using ListIndex = unsigned;
|
|
|
|
/// Represents a span of contiguous MemoryDefs, potentially ending in a
|
|
/// MemoryPhi.
|
|
struct DefPath {
|
|
MemoryLocation Loc;
|
|
// Note that, because we always walk in reverse, Last will always dominate
|
|
// First. Also note that First and Last are inclusive.
|
|
MemoryAccess *First;
|
|
MemoryAccess *Last;
|
|
// N.B. Blocker is currently basically unused. The goal is to use it to make
|
|
// cache invalidation better, but we're not there yet.
|
|
MemoryAccess *Blocker;
|
|
Optional<ListIndex> Previous;
|
|
|
|
DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
|
|
Optional<ListIndex> Previous)
|
|
: Loc(Loc), First(First), Last(Last), Previous(Previous) {}
|
|
|
|
DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
|
|
Optional<ListIndex> Previous)
|
|
: DefPath(Loc, Init, Init, Previous) {}
|
|
};
|
|
|
|
const MemorySSA &MSSA;
|
|
AliasAnalysis &AA;
|
|
DominatorTree &DT;
|
|
WalkerCache &WC;
|
|
UpwardsMemoryQuery *Query;
|
|
bool UseCache;
|
|
|
|
// Phi optimization bookkeeping
|
|
SmallVector<DefPath, 32> Paths;
|
|
DenseSet<ConstMemoryAccessPair> VisitedPhis;
|
|
DenseMap<const BasicBlock *, MemoryAccess *> WalkTargetCache;
|
|
|
|
void setUseCache(bool Use) { UseCache = Use; }
|
|
bool shouldIgnoreCache() const {
|
|
// UseCache will only be false when we're debugging, or when expensive
|
|
// checks are enabled. In either case, we don't care deeply about speed.
|
|
return LLVM_UNLIKELY(!UseCache);
|
|
}
|
|
|
|
void addCacheEntry(const MemoryAccess *What, MemoryAccess *To,
|
|
const MemoryLocation &Loc) const {
|
|
// EXPENSIVE_CHECKS because most of these queries are redundant.
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert(MSSA.dominates(To, What));
|
|
#endif
|
|
if (shouldIgnoreCache())
|
|
return;
|
|
WC.insert(What, To, Loc, Query->IsCall);
|
|
}
|
|
|
|
MemoryAccess *lookupCache(const MemoryAccess *MA, const MemoryLocation &Loc) {
|
|
return shouldIgnoreCache() ? nullptr : WC.lookup(MA, Loc, Query->IsCall);
|
|
}
|
|
|
|
void cacheDefPath(const DefPath &DN, MemoryAccess *Target) const {
|
|
if (shouldIgnoreCache())
|
|
return;
|
|
|
|
for (MemoryAccess *MA : def_chain(DN.First, DN.Last))
|
|
addCacheEntry(MA, Target, DN.Loc);
|
|
|
|
// DefPaths only express the path we walked. So, DN.Last could either be a
|
|
// thing we want to cache, or not.
|
|
if (DN.Last != Target)
|
|
addCacheEntry(DN.Last, Target, DN.Loc);
|
|
}
|
|
|
|
/// Find the nearest def or phi that `From` can legally be optimized to.
|
|
///
|
|
/// FIXME: Deduplicate this with MSSA::findDominatingDef. Ideally, MSSA should
|
|
/// keep track of this information for us, and allow us O(1) lookups of this
|
|
/// info.
|
|
MemoryAccess *getWalkTarget(const MemoryPhi *From) {
|
|
assert(From->getNumOperands() && "Phi with no operands?");
|
|
|
|
BasicBlock *BB = From->getBlock();
|
|
auto At = WalkTargetCache.find(BB);
|
|
if (At != WalkTargetCache.end())
|
|
return At->second;
|
|
|
|
SmallVector<const BasicBlock *, 8> ToCache;
|
|
ToCache.push_back(BB);
|
|
|
|
MemoryAccess *Result = MSSA.getLiveOnEntryDef();
|
|
DomTreeNode *Node = DT.getNode(BB);
|
|
while ((Node = Node->getIDom())) {
|
|
auto At = WalkTargetCache.find(BB);
|
|
if (At != WalkTargetCache.end()) {
|
|
Result = At->second;
|
|
break;
|
|
}
|
|
|
|
auto *Accesses = MSSA.getBlockAccesses(Node->getBlock());
|
|
if (Accesses) {
|
|
auto Iter = find_if(reverse(*Accesses), [](const MemoryAccess &MA) {
|
|
return !isa<MemoryUse>(MA);
|
|
});
|
|
if (Iter != Accesses->rend()) {
|
|
Result = const_cast<MemoryAccess *>(&*Iter);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ToCache.push_back(Node->getBlock());
|
|
}
|
|
|
|
for (const BasicBlock *BB : ToCache)
|
|
WalkTargetCache.insert({BB, Result});
|
|
return Result;
|
|
}
|
|
|
|
/// Result of calling walkToPhiOrClobber.
|
|
struct UpwardsWalkResult {
|
|
/// The "Result" of the walk. Either a clobber, the last thing we walked, or
|
|
/// both.
|
|
MemoryAccess *Result;
|
|
bool IsKnownClobber;
|
|
bool FromCache;
|
|
};
|
|
|
|
/// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
|
|
/// This will update Desc.Last as it walks. It will (optionally) also stop at
|
|
/// StopAt.
|
|
///
|
|
/// This does not test for whether StopAt is a clobber
|
|
UpwardsWalkResult walkToPhiOrClobber(DefPath &Desc,
|
|
MemoryAccess *StopAt = nullptr) {
|
|
assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
|
|
|
|
for (MemoryAccess *Current : def_chain(Desc.Last)) {
|
|
Desc.Last = Current;
|
|
if (Current == StopAt)
|
|
return {Current, false, false};
|
|
|
|
if (auto *MD = dyn_cast<MemoryDef>(Current))
|
|
if (MSSA.isLiveOnEntryDef(MD) ||
|
|
instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA))
|
|
return {MD, true, false};
|
|
|
|
// Cache checks must be done last, because if Current is a clobber, the
|
|
// cache will contain the clobber for Current.
|
|
if (MemoryAccess *MA = lookupCache(Current, Desc.Loc))
|
|
return {MA, true, true};
|
|
}
|
|
|
|
assert(isa<MemoryPhi>(Desc.Last) &&
|
|
"Ended at a non-clobber that's not a phi?");
|
|
return {Desc.Last, false, false};
|
|
}
|
|
|
|
void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
|
|
ListIndex PriorNode) {
|
|
auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
|
|
upward_defs_end());
|
|
for (const MemoryAccessPair &P : UpwardDefs) {
|
|
PausedSearches.push_back(Paths.size());
|
|
Paths.emplace_back(P.second, P.first, PriorNode);
|
|
}
|
|
}
|
|
|
|
/// Represents a search that terminated after finding a clobber. This clobber
|
|
/// may or may not be present in the path of defs from LastNode..SearchStart,
|
|
/// since it may have been retrieved from cache.
|
|
struct TerminatedPath {
|
|
MemoryAccess *Clobber;
|
|
ListIndex LastNode;
|
|
};
|
|
|
|
/// Get an access that keeps us from optimizing to the given phi.
|
|
///
|
|
/// PausedSearches is an array of indices into the Paths array. Its incoming
|
|
/// value is the indices of searches that stopped at the last phi optimization
|
|
/// target. It's left in an unspecified state.
|
|
///
|
|
/// If this returns None, NewPaused is a vector of searches that terminated
|
|
/// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
|
|
Optional<TerminatedPath>
|
|
getBlockingAccess(MemoryAccess *StopWhere,
|
|
SmallVectorImpl<ListIndex> &PausedSearches,
|
|
SmallVectorImpl<ListIndex> &NewPaused,
|
|
SmallVectorImpl<TerminatedPath> &Terminated) {
|
|
assert(!PausedSearches.empty() && "No searches to continue?");
|
|
|
|
// BFS vs DFS really doesn't make a difference here, so just do a DFS with
|
|
// PausedSearches as our stack.
|
|
while (!PausedSearches.empty()) {
|
|
ListIndex PathIndex = PausedSearches.pop_back_val();
|
|
DefPath &Node = Paths[PathIndex];
|
|
|
|
// If we've already visited this path with this MemoryLocation, we don't
|
|
// need to do so again.
|
|
//
|
|
// NOTE: That we just drop these paths on the ground makes caching
|
|
// behavior sporadic. e.g. given a diamond:
|
|
// A
|
|
// B C
|
|
// D
|
|
//
|
|
// ...If we walk D, B, A, C, we'll only cache the result of phi
|
|
// optimization for A, B, and D; C will be skipped because it dies here.
|
|
// This arguably isn't the worst thing ever, since:
|
|
// - We generally query things in a top-down order, so if we got below D
|
|
// without needing cache entries for {C, MemLoc}, then chances are
|
|
// that those cache entries would end up ultimately unused.
|
|
// - We still cache things for A, so C only needs to walk up a bit.
|
|
// If this behavior becomes problematic, we can fix without a ton of extra
|
|
// work.
|
|
if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
|
|
continue;
|
|
|
|
UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
|
|
if (Res.IsKnownClobber) {
|
|
assert(Res.Result != StopWhere || Res.FromCache);
|
|
// If this wasn't a cache hit, we hit a clobber when walking. That's a
|
|
// failure.
|
|
TerminatedPath Term{Res.Result, PathIndex};
|
|
if (!Res.FromCache || !MSSA.dominates(Res.Result, StopWhere))
|
|
return Term;
|
|
|
|
// Otherwise, it's a valid thing to potentially optimize to.
|
|
Terminated.push_back(Term);
|
|
continue;
|
|
}
|
|
|
|
if (Res.Result == StopWhere) {
|
|
// We've hit our target. Save this path off for if we want to continue
|
|
// walking.
|
|
NewPaused.push_back(PathIndex);
|
|
continue;
|
|
}
|
|
|
|
assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
|
|
addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
template <typename T, typename Walker>
|
|
struct generic_def_path_iterator
|
|
: public iterator_facade_base<generic_def_path_iterator<T, Walker>,
|
|
std::forward_iterator_tag, T *> {
|
|
generic_def_path_iterator() : W(nullptr), N(None) {}
|
|
generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
|
|
|
|
T &operator*() const { return curNode(); }
|
|
|
|
generic_def_path_iterator &operator++() {
|
|
N = curNode().Previous;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const generic_def_path_iterator &O) const {
|
|
if (N.hasValue() != O.N.hasValue())
|
|
return false;
|
|
return !N.hasValue() || *N == *O.N;
|
|
}
|
|
|
|
private:
|
|
T &curNode() const { return W->Paths[*N]; }
|
|
|
|
Walker *W;
|
|
Optional<ListIndex> N;
|
|
};
|
|
|
|
using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
|
|
using const_def_path_iterator =
|
|
generic_def_path_iterator<const DefPath, const ClobberWalker>;
|
|
|
|
iterator_range<def_path_iterator> def_path(ListIndex From) {
|
|
return make_range(def_path_iterator(this, From), def_path_iterator());
|
|
}
|
|
|
|
iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
|
|
return make_range(const_def_path_iterator(this, From),
|
|
const_def_path_iterator());
|
|
}
|
|
|
|
struct OptznResult {
|
|
/// The path that contains our result.
|
|
TerminatedPath PrimaryClobber;
|
|
/// The paths that we can legally cache back from, but that aren't
|
|
/// necessarily the result of the Phi optimization.
|
|
SmallVector<TerminatedPath, 4> OtherClobbers;
|
|
};
|
|
|
|
ListIndex defPathIndex(const DefPath &N) const {
|
|
// The assert looks nicer if we don't need to do &N
|
|
const DefPath *NP = &N;
|
|
assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
|
|
"Out of bounds DefPath!");
|
|
return NP - &Paths.front();
|
|
}
|
|
|
|
/// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
|
|
/// that act as legal clobbers. Note that this won't return *all* clobbers.
|
|
///
|
|
/// Phi optimization algorithm tl;dr:
|
|
/// - Find the earliest def/phi, A, we can optimize to
|
|
/// - Find if all paths from the starting memory access ultimately reach A
|
|
/// - If not, optimization isn't possible.
|
|
/// - Otherwise, walk from A to another clobber or phi, A'.
|
|
/// - If A' is a def, we're done.
|
|
/// - If A' is a phi, try to optimize it.
|
|
///
|
|
/// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
|
|
/// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
|
|
OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
|
|
const MemoryLocation &Loc) {
|
|
assert(Paths.empty() && VisitedPhis.empty() &&
|
|
"Reset the optimization state.");
|
|
|
|
Paths.emplace_back(Loc, Start, Phi, None);
|
|
// Stores how many "valid" optimization nodes we had prior to calling
|
|
// addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
|
|
auto PriorPathsSize = Paths.size();
|
|
|
|
SmallVector<ListIndex, 16> PausedSearches;
|
|
SmallVector<ListIndex, 8> NewPaused;
|
|
SmallVector<TerminatedPath, 4> TerminatedPaths;
|
|
|
|
addSearches(Phi, PausedSearches, 0);
|
|
|
|
// Moves the TerminatedPath with the "most dominated" Clobber to the end of
|
|
// Paths.
|
|
auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
|
|
assert(!Paths.empty() && "Need a path to move");
|
|
auto Dom = Paths.begin();
|
|
for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
|
|
if (!MSSA.dominates(I->Clobber, Dom->Clobber))
|
|
Dom = I;
|
|
auto Last = Paths.end() - 1;
|
|
if (Last != Dom)
|
|
std::iter_swap(Last, Dom);
|
|
};
|
|
|
|
MemoryPhi *Current = Phi;
|
|
while (1) {
|
|
assert(!MSSA.isLiveOnEntryDef(Current) &&
|
|
"liveOnEntry wasn't treated as a clobber?");
|
|
|
|
MemoryAccess *Target = getWalkTarget(Current);
|
|
// If a TerminatedPath doesn't dominate Target, then it wasn't a legal
|
|
// optimization for the prior phi.
|
|
assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
|
|
return MSSA.dominates(P.Clobber, Target);
|
|
}));
|
|
|
|
// FIXME: This is broken, because the Blocker may be reported to be
|
|
// liveOnEntry, and we'll happily wait for that to disappear (read: never)
|
|
// For the moment, this is fine, since we do basically nothing with
|
|
// blocker info.
|
|
if (Optional<TerminatedPath> Blocker = getBlockingAccess(
|
|
Target, PausedSearches, NewPaused, TerminatedPaths)) {
|
|
// Cache our work on the blocking node, since we know that's correct.
|
|
cacheDefPath(Paths[Blocker->LastNode], Blocker->Clobber);
|
|
|
|
// Find the node we started at. We can't search based on N->Last, since
|
|
// we may have gone around a loop with a different MemoryLocation.
|
|
auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
|
|
return defPathIndex(N) < PriorPathsSize;
|
|
});
|
|
assert(Iter != def_path_iterator());
|
|
|
|
DefPath &CurNode = *Iter;
|
|
assert(CurNode.Last == Current);
|
|
CurNode.Blocker = Blocker->Clobber;
|
|
|
|
// Two things:
|
|
// A. We can't reliably cache all of NewPaused back. Consider a case
|
|
// where we have two paths in NewPaused; one of which can't optimize
|
|
// above this phi, whereas the other can. If we cache the second path
|
|
// back, we'll end up with suboptimal cache entries. We can handle
|
|
// cases like this a bit better when we either try to find all
|
|
// clobbers that block phi optimization, or when our cache starts
|
|
// supporting unfinished searches.
|
|
// B. We can't reliably cache TerminatedPaths back here without doing
|
|
// extra checks; consider a case like:
|
|
// T
|
|
// / \
|
|
// D C
|
|
// \ /
|
|
// S
|
|
// Where T is our target, C is a node with a clobber on it, D is a
|
|
// diamond (with a clobber *only* on the left or right node, N), and
|
|
// S is our start. Say we walk to D, through the node opposite N
|
|
// (read: ignoring the clobber), and see a cache entry in the top
|
|
// node of D. That cache entry gets put into TerminatedPaths. We then
|
|
// walk up to C (N is later in our worklist), find the clobber, and
|
|
// quit. If we append TerminatedPaths to OtherClobbers, we'll cache
|
|
// the bottom part of D to the cached clobber, ignoring the clobber
|
|
// in N. Again, this problem goes away if we start tracking all
|
|
// blockers for a given phi optimization.
|
|
TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
|
|
return {Result, {}};
|
|
}
|
|
|
|
// If there's nothing left to search, then all paths led to valid clobbers
|
|
// that we got from our cache; pick the nearest to the start, and allow
|
|
// the rest to be cached back.
|
|
if (NewPaused.empty()) {
|
|
MoveDominatedPathToEnd(TerminatedPaths);
|
|
TerminatedPath Result = TerminatedPaths.pop_back_val();
|
|
return {Result, std::move(TerminatedPaths)};
|
|
}
|
|
|
|
MemoryAccess *DefChainEnd = nullptr;
|
|
SmallVector<TerminatedPath, 4> Clobbers;
|
|
for (ListIndex Paused : NewPaused) {
|
|
UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
|
|
if (WR.IsKnownClobber)
|
|
Clobbers.push_back({WR.Result, Paused});
|
|
else
|
|
// Micro-opt: If we hit the end of the chain, save it.
|
|
DefChainEnd = WR.Result;
|
|
}
|
|
|
|
if (!TerminatedPaths.empty()) {
|
|
// If we couldn't find the dominating phi/liveOnEntry in the above loop,
|
|
// do it now.
|
|
if (!DefChainEnd)
|
|
for (MemoryAccess *MA : def_chain(Target))
|
|
DefChainEnd = MA;
|
|
|
|
// If any of the terminated paths don't dominate the phi we'll try to
|
|
// optimize, we need to figure out what they are and quit.
|
|
const BasicBlock *ChainBB = DefChainEnd->getBlock();
|
|
for (const TerminatedPath &TP : TerminatedPaths) {
|
|
// Because we know that DefChainEnd is as "high" as we can go, we
|
|
// don't need local dominance checks; BB dominance is sufficient.
|
|
if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
|
|
Clobbers.push_back(TP);
|
|
}
|
|
}
|
|
|
|
// If we have clobbers in the def chain, find the one closest to Current
|
|
// and quit.
|
|
if (!Clobbers.empty()) {
|
|
MoveDominatedPathToEnd(Clobbers);
|
|
TerminatedPath Result = Clobbers.pop_back_val();
|
|
return {Result, std::move(Clobbers)};
|
|
}
|
|
|
|
assert(all_of(NewPaused,
|
|
[&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
|
|
|
|
// Because liveOnEntry is a clobber, this must be a phi.
|
|
auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
|
|
|
|
PriorPathsSize = Paths.size();
|
|
PausedSearches.clear();
|
|
for (ListIndex I : NewPaused)
|
|
addSearches(DefChainPhi, PausedSearches, I);
|
|
NewPaused.clear();
|
|
|
|
Current = DefChainPhi;
|
|
}
|
|
}
|
|
|
|
/// Caches everything in an OptznResult.
|
|
void cacheOptResult(const OptznResult &R) {
|
|
if (R.OtherClobbers.empty()) {
|
|
// If we're not going to be caching OtherClobbers, don't bother with
|
|
// marking visited/etc.
|
|
for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode))
|
|
cacheDefPath(N, R.PrimaryClobber.Clobber);
|
|
return;
|
|
}
|
|
|
|
// PrimaryClobber is our answer. If we can cache anything back, we need to
|
|
// stop caching when we visit PrimaryClobber.
|
|
SmallBitVector Visited(Paths.size());
|
|
for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode)) {
|
|
Visited[defPathIndex(N)] = true;
|
|
cacheDefPath(N, R.PrimaryClobber.Clobber);
|
|
}
|
|
|
|
for (const TerminatedPath &P : R.OtherClobbers) {
|
|
for (const DefPath &N : const_def_path(P.LastNode)) {
|
|
ListIndex NIndex = defPathIndex(N);
|
|
if (Visited[NIndex])
|
|
break;
|
|
Visited[NIndex] = true;
|
|
cacheDefPath(N, P.Clobber);
|
|
}
|
|
}
|
|
}
|
|
|
|
void verifyOptResult(const OptznResult &R) const {
|
|
assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
|
|
return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
|
|
}));
|
|
}
|
|
|
|
void resetPhiOptznState() {
|
|
Paths.clear();
|
|
VisitedPhis.clear();
|
|
}
|
|
|
|
public:
|
|
ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT,
|
|
WalkerCache &WC)
|
|
: MSSA(MSSA), AA(AA), DT(DT), WC(WC), UseCache(true) {}
|
|
|
|
void reset() { WalkTargetCache.clear(); }
|
|
|
|
/// Finds the nearest clobber for the given query, optimizing phis if
|
|
/// possible.
|
|
MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
|
|
bool UseWalkerCache = true) {
|
|
setUseCache(UseWalkerCache);
|
|
Query = &Q;
|
|
|
|
MemoryAccess *Current = Start;
|
|
// This walker pretends uses don't exist. If we're handed one, silently grab
|
|
// its def. (This has the nice side-effect of ensuring we never cache uses)
|
|
if (auto *MU = dyn_cast<MemoryUse>(Start))
|
|
Current = MU->getDefiningAccess();
|
|
|
|
DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
|
|
// Fast path for the overly-common case (no crazy phi optimization
|
|
// necessary)
|
|
UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
|
|
MemoryAccess *Result;
|
|
if (WalkResult.IsKnownClobber) {
|
|
cacheDefPath(FirstDesc, WalkResult.Result);
|
|
Result = WalkResult.Result;
|
|
} else {
|
|
OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
|
|
Current, Q.StartingLoc);
|
|
verifyOptResult(OptRes);
|
|
cacheOptResult(OptRes);
|
|
resetPhiOptznState();
|
|
Result = OptRes.PrimaryClobber.Clobber;
|
|
}
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
|
|
#endif
|
|
return Result;
|
|
}
|
|
|
|
void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
|
|
};
|
|
|
|
struct RenamePassData {
|
|
DomTreeNode *DTN;
|
|
DomTreeNode::const_iterator ChildIt;
|
|
MemoryAccess *IncomingVal;
|
|
|
|
RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
|
|
MemoryAccess *M)
|
|
: DTN(D), ChildIt(It), IncomingVal(M) {}
|
|
void swap(RenamePassData &RHS) {
|
|
std::swap(DTN, RHS.DTN);
|
|
std::swap(ChildIt, RHS.ChildIt);
|
|
std::swap(IncomingVal, RHS.IncomingVal);
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
namespace llvm {
|
|
/// \brief A MemorySSAWalker that does AA walks and caching of lookups to
|
|
/// disambiguate accesses.
|
|
///
|
|
/// FIXME: The current implementation of this can take quadratic space in rare
|
|
/// cases. This can be fixed, but it is something to note until it is fixed.
|
|
///
|
|
/// In order to trigger this behavior, you need to store to N distinct locations
|
|
/// (that AA can prove don't alias), perform M stores to other memory
|
|
/// locations that AA can prove don't alias any of the initial N locations, and
|
|
/// then load from all of the N locations. In this case, we insert M cache
|
|
/// entries for each of the N loads.
|
|
///
|
|
/// For example:
|
|
/// define i32 @foo() {
|
|
/// %a = alloca i32, align 4
|
|
/// %b = alloca i32, align 4
|
|
/// store i32 0, i32* %a, align 4
|
|
/// store i32 0, i32* %b, align 4
|
|
///
|
|
/// ; Insert M stores to other memory that doesn't alias %a or %b here
|
|
///
|
|
/// %c = load i32, i32* %a, align 4 ; Caches M entries in
|
|
/// ; CachedUpwardsClobberingAccess for the
|
|
/// ; MemoryLocation %a
|
|
/// %d = load i32, i32* %b, align 4 ; Caches M entries in
|
|
/// ; CachedUpwardsClobberingAccess for the
|
|
/// ; MemoryLocation %b
|
|
///
|
|
/// ; For completeness' sake, loading %a or %b again would not cache *another*
|
|
/// ; M entries.
|
|
/// %r = add i32 %c, %d
|
|
/// ret i32 %r
|
|
/// }
|
|
class MemorySSA::CachingWalker final : public MemorySSAWalker {
|
|
WalkerCache Cache;
|
|
ClobberWalker Walker;
|
|
bool AutoResetWalker;
|
|
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
|
|
void verifyRemoved(MemoryAccess *);
|
|
|
|
public:
|
|
CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
|
|
~CachingWalker() override;
|
|
|
|
using MemorySSAWalker::getClobberingMemoryAccess;
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
|
|
MemoryLocation &) override;
|
|
void invalidateInfo(MemoryAccess *) override;
|
|
|
|
/// Whether we call resetClobberWalker() after each time we *actually* walk to
|
|
/// answer a clobber query.
|
|
void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
|
|
|
|
/// Drop the walker's persistent data structures. At the moment, this means
|
|
/// "drop the walker's cache of BasicBlocks ->
|
|
/// earliest-MemoryAccess-we-can-optimize-to". This is necessary if we're
|
|
/// going to have DT updates, if we remove MemoryAccesses, etc.
|
|
void resetClobberWalker() { Walker.reset(); }
|
|
|
|
void verify(const MemorySSA *MSSA) override {
|
|
MemorySSAWalker::verify(MSSA);
|
|
Walker.verify(MSSA);
|
|
}
|
|
};
|
|
|
|
/// \brief Rename a single basic block into MemorySSA form.
|
|
/// Uses the standard SSA renaming algorithm.
|
|
/// \returns The new incoming value.
|
|
MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB,
|
|
MemoryAccess *IncomingVal) {
|
|
auto It = PerBlockAccesses.find(BB);
|
|
// Skip most processing if the list is empty.
|
|
if (It != PerBlockAccesses.end()) {
|
|
AccessList *Accesses = It->second.get();
|
|
for (MemoryAccess &L : *Accesses) {
|
|
switch (L.getValueID()) {
|
|
case Value::MemoryUseVal:
|
|
cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal);
|
|
break;
|
|
case Value::MemoryDefVal:
|
|
// We can't legally optimize defs, because we only allow single
|
|
// memory phis/uses on operations, and if we optimize these, we can
|
|
// end up with multiple reaching defs. Uses do not have this
|
|
// problem, since they do not produce a value
|
|
cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal);
|
|
IncomingVal = &L;
|
|
break;
|
|
case Value::MemoryPhiVal:
|
|
IncomingVal = &L;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass through values to our successors
|
|
for (const BasicBlock *S : successors(BB)) {
|
|
auto It = PerBlockAccesses.find(S);
|
|
// Rename the phi nodes in our successor block
|
|
if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
|
|
continue;
|
|
AccessList *Accesses = It->second.get();
|
|
auto *Phi = cast<MemoryPhi>(&Accesses->front());
|
|
Phi->addIncoming(IncomingVal, BB);
|
|
}
|
|
|
|
return IncomingVal;
|
|
}
|
|
|
|
/// \brief This is the standard SSA renaming algorithm.
|
|
///
|
|
/// We walk the dominator tree in preorder, renaming accesses, and then filling
|
|
/// in phi nodes in our successors.
|
|
void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
|
|
SmallPtrSet<BasicBlock *, 16> &Visited) {
|
|
SmallVector<RenamePassData, 32> WorkStack;
|
|
IncomingVal = renameBlock(Root->getBlock(), IncomingVal);
|
|
WorkStack.push_back({Root, Root->begin(), IncomingVal});
|
|
Visited.insert(Root->getBlock());
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNode *Node = WorkStack.back().DTN;
|
|
DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
|
|
IncomingVal = WorkStack.back().IncomingVal;
|
|
|
|
if (ChildIt == Node->end()) {
|
|
WorkStack.pop_back();
|
|
} else {
|
|
DomTreeNode *Child = *ChildIt;
|
|
++WorkStack.back().ChildIt;
|
|
BasicBlock *BB = Child->getBlock();
|
|
Visited.insert(BB);
|
|
IncomingVal = renameBlock(BB, IncomingVal);
|
|
WorkStack.push_back({Child, Child->begin(), IncomingVal});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Compute dominator levels, used by the phi insertion algorithm above.
|
|
void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) {
|
|
for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode());
|
|
DFI != DFE; ++DFI)
|
|
DomLevels[*DFI] = DFI.getPathLength() - 1;
|
|
}
|
|
|
|
/// \brief This handles unreachable block accesses by deleting phi nodes in
|
|
/// unreachable blocks, and marking all other unreachable MemoryAccess's as
|
|
/// being uses of the live on entry definition.
|
|
void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
|
|
assert(!DT->isReachableFromEntry(BB) &&
|
|
"Reachable block found while handling unreachable blocks");
|
|
|
|
// Make sure phi nodes in our reachable successors end up with a
|
|
// LiveOnEntryDef for our incoming edge, even though our block is forward
|
|
// unreachable. We could just disconnect these blocks from the CFG fully,
|
|
// but we do not right now.
|
|
for (const BasicBlock *S : successors(BB)) {
|
|
if (!DT->isReachableFromEntry(S))
|
|
continue;
|
|
auto It = PerBlockAccesses.find(S);
|
|
// Rename the phi nodes in our successor block
|
|
if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
|
|
continue;
|
|
AccessList *Accesses = It->second.get();
|
|
auto *Phi = cast<MemoryPhi>(&Accesses->front());
|
|
Phi->addIncoming(LiveOnEntryDef.get(), BB);
|
|
}
|
|
|
|
auto It = PerBlockAccesses.find(BB);
|
|
if (It == PerBlockAccesses.end())
|
|
return;
|
|
|
|
auto &Accesses = It->second;
|
|
for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
|
|
auto Next = std::next(AI);
|
|
// If we have a phi, just remove it. We are going to replace all
|
|
// users with live on entry.
|
|
if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
|
|
UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
|
|
else
|
|
Accesses->erase(AI);
|
|
AI = Next;
|
|
}
|
|
}
|
|
|
|
MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
|
|
: AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
|
|
NextID(0) {
|
|
buildMemorySSA();
|
|
}
|
|
|
|
MemorySSA::~MemorySSA() {
|
|
// Drop all our references
|
|
for (const auto &Pair : PerBlockAccesses)
|
|
for (MemoryAccess &MA : *Pair.second)
|
|
MA.dropAllReferences();
|
|
}
|
|
|
|
MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
|
|
auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
|
|
|
|
if (Res.second)
|
|
Res.first->second = make_unique<AccessList>();
|
|
return Res.first->second.get();
|
|
}
|
|
|
|
/// This class is a batch walker of all MemoryUse's in the program, and points
|
|
/// their defining access at the thing that actually clobbers them. Because it
|
|
/// is a batch walker that touches everything, it does not operate like the
|
|
/// other walkers. This walker is basically performing a top-down SSA renaming
|
|
/// pass, where the version stack is used as the cache. This enables it to be
|
|
/// significantly more time and memory efficient than using the regular walker,
|
|
/// which is walking bottom-up.
|
|
class MemorySSA::OptimizeUses {
|
|
public:
|
|
OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
|
|
DominatorTree *DT)
|
|
: MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
|
|
Walker = MSSA->getWalker();
|
|
}
|
|
|
|
void optimizeUses();
|
|
|
|
private:
|
|
/// This represents where a given memorylocation is in the stack.
|
|
struct MemlocStackInfo {
|
|
// This essentially is keeping track of versions of the stack. Whenever
|
|
// the stack changes due to pushes or pops, these versions increase.
|
|
unsigned long StackEpoch;
|
|
unsigned long PopEpoch;
|
|
// This is the lower bound of places on the stack to check. It is equal to
|
|
// the place the last stack walk ended.
|
|
// Note: Correctness depends on this being initialized to 0, which densemap
|
|
// does
|
|
unsigned long LowerBound;
|
|
const BasicBlock *LowerBoundBlock;
|
|
// This is where the last walk for this memory location ended.
|
|
unsigned long LastKill;
|
|
bool LastKillValid;
|
|
};
|
|
void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
|
|
SmallVectorImpl<MemoryAccess *> &,
|
|
DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
|
|
MemorySSA *MSSA;
|
|
MemorySSAWalker *Walker;
|
|
AliasAnalysis *AA;
|
|
DominatorTree *DT;
|
|
};
|
|
|
|
/// Optimize the uses in a given block This is basically the SSA renaming
|
|
/// algorithm, with one caveat: We are able to use a single stack for all
|
|
/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
|
|
/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
|
|
/// going to be some position in that stack of possible ones.
|
|
///
|
|
/// We track the stack positions that each MemoryLocation needs
|
|
/// to check, and last ended at. This is because we only want to check the
|
|
/// things that changed since last time. The same MemoryLocation should
|
|
/// get clobbered by the same store (getModRefInfo does not use invariantness or
|
|
/// things like this, and if they start, we can modify MemoryLocOrCall to
|
|
/// include relevant data)
|
|
void MemorySSA::OptimizeUses::optimizeUsesInBlock(
|
|
const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
|
|
SmallVectorImpl<MemoryAccess *> &VersionStack,
|
|
DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
|
|
|
|
/// If no accesses, nothing to do.
|
|
MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
|
|
if (Accesses == nullptr)
|
|
return;
|
|
|
|
// Pop everything that doesn't dominate the current block off the stack,
|
|
// increment the PopEpoch to account for this.
|
|
while (!VersionStack.empty()) {
|
|
BasicBlock *BackBlock = VersionStack.back()->getBlock();
|
|
if (DT->dominates(BackBlock, BB))
|
|
break;
|
|
while (VersionStack.back()->getBlock() == BackBlock)
|
|
VersionStack.pop_back();
|
|
++PopEpoch;
|
|
}
|
|
for (MemoryAccess &MA : *Accesses) {
|
|
auto *MU = dyn_cast<MemoryUse>(&MA);
|
|
if (!MU) {
|
|
VersionStack.push_back(&MA);
|
|
++StackEpoch;
|
|
continue;
|
|
}
|
|
|
|
if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
|
|
MU->setDefiningAccess(MSSA->getLiveOnEntryDef());
|
|
continue;
|
|
}
|
|
|
|
MemoryLocOrCall UseMLOC(MU);
|
|
auto &LocInfo = LocStackInfo[UseMLOC];
|
|
// If the pop epoch changed, it means we've removed stuff from top of
|
|
// stack due to changing blocks. We may have to reset the lower bound or
|
|
// last kill info.
|
|
if (LocInfo.PopEpoch != PopEpoch) {
|
|
LocInfo.PopEpoch = PopEpoch;
|
|
LocInfo.StackEpoch = StackEpoch;
|
|
// If the lower bound was in something that no longer dominates us, we
|
|
// have to reset it.
|
|
// We can't simply track stack size, because the stack may have had
|
|
// pushes/pops in the meantime.
|
|
// XXX: This is non-optimal, but only is slower cases with heavily
|
|
// branching dominator trees. To get the optimal number of queries would
|
|
// be to make lowerbound and lastkill a per-loc stack, and pop it until
|
|
// the top of that stack dominates us. This does not seem worth it ATM.
|
|
// A much cheaper optimization would be to always explore the deepest
|
|
// branch of the dominator tree first. This will guarantee this resets on
|
|
// the smallest set of blocks.
|
|
if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
|
|
!DT->dominates(LocInfo.LowerBoundBlock, BB)){
|
|
// Reset the lower bound of things to check.
|
|
// TODO: Some day we should be able to reset to last kill, rather than
|
|
// 0.
|
|
LocInfo.LowerBound = 0;
|
|
LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
|
|
LocInfo.LastKillValid = false;
|
|
}
|
|
} else if (LocInfo.StackEpoch != StackEpoch) {
|
|
// If all that has changed is the StackEpoch, we only have to check the
|
|
// new things on the stack, because we've checked everything before. In
|
|
// this case, the lower bound of things to check remains the same.
|
|
LocInfo.PopEpoch = PopEpoch;
|
|
LocInfo.StackEpoch = StackEpoch;
|
|
}
|
|
if (!LocInfo.LastKillValid) {
|
|
LocInfo.LastKill = VersionStack.size() - 1;
|
|
LocInfo.LastKillValid = true;
|
|
}
|
|
|
|
// At this point, we should have corrected last kill and LowerBound to be
|
|
// in bounds.
|
|
assert(LocInfo.LowerBound < VersionStack.size() &&
|
|
"Lower bound out of range");
|
|
assert(LocInfo.LastKill < VersionStack.size() &&
|
|
"Last kill info out of range");
|
|
// In any case, the new upper bound is the top of the stack.
|
|
unsigned long UpperBound = VersionStack.size() - 1;
|
|
|
|
if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
|
|
DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
|
|
<< *(MU->getMemoryInst()) << ")"
|
|
<< " because there are " << UpperBound - LocInfo.LowerBound
|
|
<< " stores to disambiguate\n");
|
|
// Because we did not walk, LastKill is no longer valid, as this may
|
|
// have been a kill.
|
|
LocInfo.LastKillValid = false;
|
|
continue;
|
|
}
|
|
bool FoundClobberResult = false;
|
|
while (UpperBound > LocInfo.LowerBound) {
|
|
if (isa<MemoryPhi>(VersionStack[UpperBound])) {
|
|
// For phis, use the walker, see where we ended up, go there
|
|
Instruction *UseInst = MU->getMemoryInst();
|
|
MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
|
|
// We are guaranteed to find it or something is wrong
|
|
while (VersionStack[UpperBound] != Result) {
|
|
assert(UpperBound != 0);
|
|
--UpperBound;
|
|
}
|
|
FoundClobberResult = true;
|
|
break;
|
|
}
|
|
|
|
MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
|
|
// If the lifetime of the pointer ends at this instruction, it's live on
|
|
// entry.
|
|
if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
|
|
// Reset UpperBound to liveOnEntryDef's place in the stack
|
|
UpperBound = 0;
|
|
FoundClobberResult = true;
|
|
break;
|
|
}
|
|
if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
|
|
FoundClobberResult = true;
|
|
break;
|
|
}
|
|
--UpperBound;
|
|
}
|
|
// At the end of this loop, UpperBound is either a clobber, or lower bound
|
|
// PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
|
|
if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
|
|
MU->setDefiningAccess(VersionStack[UpperBound]);
|
|
// We were last killed now by where we got to
|
|
LocInfo.LastKill = UpperBound;
|
|
} else {
|
|
// Otherwise, we checked all the new ones, and now we know we can get to
|
|
// LastKill.
|
|
MU->setDefiningAccess(VersionStack[LocInfo.LastKill]);
|
|
}
|
|
LocInfo.LowerBound = VersionStack.size() - 1;
|
|
LocInfo.LowerBoundBlock = BB;
|
|
}
|
|
}
|
|
|
|
/// Optimize uses to point to their actual clobbering definitions.
|
|
void MemorySSA::OptimizeUses::optimizeUses() {
|
|
|
|
// We perform a non-recursive top-down dominator tree walk
|
|
struct StackInfo {
|
|
const DomTreeNode *Node;
|
|
DomTreeNode::const_iterator Iter;
|
|
};
|
|
|
|
SmallVector<MemoryAccess *, 16> VersionStack;
|
|
SmallVector<StackInfo, 16> DomTreeWorklist;
|
|
DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
|
|
VersionStack.push_back(MSSA->getLiveOnEntryDef());
|
|
|
|
unsigned long StackEpoch = 1;
|
|
unsigned long PopEpoch = 1;
|
|
for (const auto *DomNode : depth_first(DT->getRootNode()))
|
|
optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
|
|
LocStackInfo);
|
|
}
|
|
|
|
void MemorySSA::buildMemorySSA() {
|
|
// We create an access to represent "live on entry", for things like
|
|
// arguments or users of globals, where the memory they use is defined before
|
|
// the beginning of the function. We do not actually insert it into the IR.
|
|
// We do not define a live on exit for the immediate uses, and thus our
|
|
// semantics do *not* imply that something with no immediate uses can simply
|
|
// be removed.
|
|
BasicBlock &StartingPoint = F.getEntryBlock();
|
|
LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
|
|
&StartingPoint, NextID++);
|
|
|
|
// We maintain lists of memory accesses per-block, trading memory for time. We
|
|
// could just look up the memory access for every possible instruction in the
|
|
// stream.
|
|
SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
|
|
SmallPtrSet<BasicBlock *, 32> DefUseBlocks;
|
|
// Go through each block, figure out where defs occur, and chain together all
|
|
// the accesses.
|
|
for (BasicBlock &B : F) {
|
|
bool InsertIntoDef = false;
|
|
AccessList *Accesses = nullptr;
|
|
for (Instruction &I : B) {
|
|
MemoryUseOrDef *MUD = createNewAccess(&I);
|
|
if (!MUD)
|
|
continue;
|
|
InsertIntoDef |= isa<MemoryDef>(MUD);
|
|
|
|
if (!Accesses)
|
|
Accesses = getOrCreateAccessList(&B);
|
|
Accesses->push_back(MUD);
|
|
}
|
|
if (InsertIntoDef)
|
|
DefiningBlocks.insert(&B);
|
|
if (Accesses)
|
|
DefUseBlocks.insert(&B);
|
|
}
|
|
|
|
// Compute live-in.
|
|
// Live in is normally defined as "all the blocks on the path from each def to
|
|
// each of it's uses".
|
|
// MemoryDef's are implicit uses of previous state, so they are also uses.
|
|
// This means we don't really have def-only instructions. The only
|
|
// MemoryDef's that are not really uses are those that are of the LiveOnEntry
|
|
// variable (because LiveOnEntry can reach anywhere, and every def is a
|
|
// must-kill of LiveOnEntry).
|
|
// In theory, you could precisely compute live-in by using alias-analysis to
|
|
// disambiguate defs and uses to see which really pair up with which.
|
|
// In practice, this would be really expensive and difficult. So we simply
|
|
// assume all defs are also uses that need to be kept live.
|
|
// Because of this, the end result of this live-in computation will be "the
|
|
// entire set of basic blocks that reach any use".
|
|
|
|
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
|
|
SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(),
|
|
DefUseBlocks.end());
|
|
// Now that we have a set of blocks where a value is live-in, recursively add
|
|
// predecessors until we find the full region the value is live.
|
|
while (!LiveInBlockWorklist.empty()) {
|
|
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
|
|
|
|
// The block really is live in here, insert it into the set. If already in
|
|
// the set, then it has already been processed.
|
|
if (!LiveInBlocks.insert(BB).second)
|
|
continue;
|
|
|
|
// Since the value is live into BB, it is either defined in a predecessor or
|
|
// live into it to.
|
|
LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB));
|
|
}
|
|
|
|
// Determine where our MemoryPhi's should go
|
|
ForwardIDFCalculator IDFs(*DT);
|
|
IDFs.setDefiningBlocks(DefiningBlocks);
|
|
IDFs.setLiveInBlocks(LiveInBlocks);
|
|
SmallVector<BasicBlock *, 32> IDFBlocks;
|
|
IDFs.calculate(IDFBlocks);
|
|
|
|
// Now place MemoryPhi nodes.
|
|
for (auto &BB : IDFBlocks) {
|
|
// Insert phi node
|
|
AccessList *Accesses = getOrCreateAccessList(BB);
|
|
MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
|
|
ValueToMemoryAccess[BB] = Phi;
|
|
// Phi's always are placed at the front of the block.
|
|
Accesses->push_front(Phi);
|
|
}
|
|
|
|
// Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
|
|
// filled in with all blocks.
|
|
SmallPtrSet<BasicBlock *, 16> Visited;
|
|
renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
|
|
|
|
CachingWalker *Walker = getWalkerImpl();
|
|
|
|
// We're doing a batch of updates; don't drop useful caches between them.
|
|
Walker->setAutoResetWalker(false);
|
|
OptimizeUses(this, Walker, AA, DT).optimizeUses();
|
|
Walker->setAutoResetWalker(true);
|
|
Walker->resetClobberWalker();
|
|
|
|
// Mark the uses in unreachable blocks as live on entry, so that they go
|
|
// somewhere.
|
|
for (auto &BB : F)
|
|
if (!Visited.count(&BB))
|
|
markUnreachableAsLiveOnEntry(&BB);
|
|
}
|
|
|
|
MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
|
|
|
|
MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
|
|
if (Walker)
|
|
return Walker.get();
|
|
|
|
Walker = make_unique<CachingWalker>(this, AA, DT);
|
|
return Walker.get();
|
|
}
|
|
|
|
MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
|
|
assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
|
|
AccessList *Accesses = getOrCreateAccessList(BB);
|
|
MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
|
|
ValueToMemoryAccess[BB] = Phi;
|
|
// Phi's always are placed at the front of the block.
|
|
Accesses->push_front(Phi);
|
|
BlockNumberingValid.erase(BB);
|
|
return Phi;
|
|
}
|
|
|
|
MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
|
|
MemoryAccess *Definition) {
|
|
assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
|
|
MemoryUseOrDef *NewAccess = createNewAccess(I);
|
|
assert(
|
|
NewAccess != nullptr &&
|
|
"Tried to create a memory access for a non-memory touching instruction");
|
|
NewAccess->setDefiningAccess(Definition);
|
|
return NewAccess;
|
|
}
|
|
|
|
MemoryAccess *MemorySSA::createMemoryAccessInBB(Instruction *I,
|
|
MemoryAccess *Definition,
|
|
const BasicBlock *BB,
|
|
InsertionPlace Point) {
|
|
MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition);
|
|
auto *Accesses = getOrCreateAccessList(BB);
|
|
if (Point == Beginning) {
|
|
// It goes after any phi nodes
|
|
auto AI = find_if(
|
|
*Accesses, [](const MemoryAccess &MA) { return !isa<MemoryPhi>(MA); });
|
|
|
|
Accesses->insert(AI, NewAccess);
|
|
} else {
|
|
Accesses->push_back(NewAccess);
|
|
}
|
|
BlockNumberingValid.erase(BB);
|
|
return NewAccess;
|
|
}
|
|
MemoryAccess *MemorySSA::createMemoryAccessBefore(Instruction *I,
|
|
MemoryAccess *Definition,
|
|
MemoryAccess *InsertPt) {
|
|
assert(I->getParent() == InsertPt->getBlock() &&
|
|
"New and old access must be in the same block");
|
|
MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition);
|
|
auto *Accesses = getOrCreateAccessList(InsertPt->getBlock());
|
|
Accesses->insert(AccessList::iterator(InsertPt), NewAccess);
|
|
BlockNumberingValid.erase(InsertPt->getBlock());
|
|
return NewAccess;
|
|
}
|
|
|
|
MemoryAccess *MemorySSA::createMemoryAccessAfter(Instruction *I,
|
|
MemoryAccess *Definition,
|
|
MemoryAccess *InsertPt) {
|
|
assert(I->getParent() == InsertPt->getBlock() &&
|
|
"New and old access must be in the same block");
|
|
MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition);
|
|
auto *Accesses = getOrCreateAccessList(InsertPt->getBlock());
|
|
Accesses->insertAfter(AccessList::iterator(InsertPt), NewAccess);
|
|
BlockNumberingValid.erase(InsertPt->getBlock());
|
|
return NewAccess;
|
|
}
|
|
|
|
/// \brief Helper function to create new memory accesses
|
|
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
|
|
// The assume intrinsic has a control dependency which we model by claiming
|
|
// that it writes arbitrarily. Ignore that fake memory dependency here.
|
|
// FIXME: Replace this special casing with a more accurate modelling of
|
|
// assume's control dependency.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
if (II->getIntrinsicID() == Intrinsic::assume)
|
|
return nullptr;
|
|
|
|
// Find out what affect this instruction has on memory.
|
|
ModRefInfo ModRef = AA->getModRefInfo(I);
|
|
bool Def = bool(ModRef & MRI_Mod);
|
|
bool Use = bool(ModRef & MRI_Ref);
|
|
|
|
// It's possible for an instruction to not modify memory at all. During
|
|
// construction, we ignore them.
|
|
if (!Def && !Use)
|
|
return nullptr;
|
|
|
|
assert((Def || Use) &&
|
|
"Trying to create a memory access with a non-memory instruction");
|
|
|
|
MemoryUseOrDef *MUD;
|
|
if (Def)
|
|
MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
|
|
else
|
|
MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
|
|
ValueToMemoryAccess[I] = MUD;
|
|
return MUD;
|
|
}
|
|
|
|
MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock,
|
|
enum InsertionPlace Where) {
|
|
// Handle the initial case
|
|
if (Where == Beginning)
|
|
// The only thing that could define us at the beginning is a phi node
|
|
if (MemoryPhi *Phi = getMemoryAccess(UseBlock))
|
|
return Phi;
|
|
|
|
DomTreeNode *CurrNode = DT->getNode(UseBlock);
|
|
// Need to be defined by our dominator
|
|
if (Where == Beginning)
|
|
CurrNode = CurrNode->getIDom();
|
|
Where = End;
|
|
while (CurrNode) {
|
|
auto It = PerBlockAccesses.find(CurrNode->getBlock());
|
|
if (It != PerBlockAccesses.end()) {
|
|
auto &Accesses = It->second;
|
|
for (MemoryAccess &RA : reverse(*Accesses)) {
|
|
if (isa<MemoryDef>(RA) || isa<MemoryPhi>(RA))
|
|
return &RA;
|
|
}
|
|
}
|
|
CurrNode = CurrNode->getIDom();
|
|
}
|
|
return LiveOnEntryDef.get();
|
|
}
|
|
|
|
/// \brief Returns true if \p Replacer dominates \p Replacee .
|
|
bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
|
|
const MemoryAccess *Replacee) const {
|
|
if (isa<MemoryUseOrDef>(Replacee))
|
|
return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
|
|
const auto *MP = cast<MemoryPhi>(Replacee);
|
|
// For a phi node, the use occurs in the predecessor block of the phi node.
|
|
// Since we may occur multiple times in the phi node, we have to check each
|
|
// operand to ensure Replacer dominates each operand where Replacee occurs.
|
|
for (const Use &Arg : MP->operands()) {
|
|
if (Arg.get() != Replacee &&
|
|
!DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief If all arguments of a MemoryPHI are defined by the same incoming
|
|
/// argument, return that argument.
|
|
static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
|
|
MemoryAccess *MA = nullptr;
|
|
|
|
for (auto &Arg : MP->operands()) {
|
|
if (!MA)
|
|
MA = cast<MemoryAccess>(Arg);
|
|
else if (MA != Arg)
|
|
return nullptr;
|
|
}
|
|
return MA;
|
|
}
|
|
|
|
/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
|
|
///
|
|
/// Because of the way the intrusive list and use lists work, it is important to
|
|
/// do removal in the right order.
|
|
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
|
|
assert(MA->use_empty() &&
|
|
"Trying to remove memory access that still has uses");
|
|
BlockNumbering.erase(MA);
|
|
if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
|
|
MUD->setDefiningAccess(nullptr);
|
|
// Invalidate our walker's cache if necessary
|
|
if (!isa<MemoryUse>(MA))
|
|
Walker->invalidateInfo(MA);
|
|
// The call below to erase will destroy MA, so we can't change the order we
|
|
// are doing things here
|
|
Value *MemoryInst;
|
|
if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
|
|
MemoryInst = MUD->getMemoryInst();
|
|
} else {
|
|
MemoryInst = MA->getBlock();
|
|
}
|
|
auto VMA = ValueToMemoryAccess.find(MemoryInst);
|
|
if (VMA->second == MA)
|
|
ValueToMemoryAccess.erase(VMA);
|
|
|
|
auto AccessIt = PerBlockAccesses.find(MA->getBlock());
|
|
std::unique_ptr<AccessList> &Accesses = AccessIt->second;
|
|
Accesses->erase(MA);
|
|
if (Accesses->empty())
|
|
PerBlockAccesses.erase(AccessIt);
|
|
}
|
|
|
|
void MemorySSA::removeMemoryAccess(MemoryAccess *MA) {
|
|
assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def");
|
|
// We can only delete phi nodes if they have no uses, or we can replace all
|
|
// uses with a single definition.
|
|
MemoryAccess *NewDefTarget = nullptr;
|
|
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
|
|
// Note that it is sufficient to know that all edges of the phi node have
|
|
// the same argument. If they do, by the definition of dominance frontiers
|
|
// (which we used to place this phi), that argument must dominate this phi,
|
|
// and thus, must dominate the phi's uses, and so we will not hit the assert
|
|
// below.
|
|
NewDefTarget = onlySingleValue(MP);
|
|
assert((NewDefTarget || MP->use_empty()) &&
|
|
"We can't delete this memory phi");
|
|
} else {
|
|
NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
|
|
}
|
|
|
|
// Re-point the uses at our defining access
|
|
if (!MA->use_empty())
|
|
MA->replaceAllUsesWith(NewDefTarget);
|
|
|
|
// The call below to erase will destroy MA, so we can't change the order we
|
|
// are doing things here
|
|
removeFromLookups(MA);
|
|
}
|
|
|
|
void MemorySSA::print(raw_ostream &OS) const {
|
|
MemorySSAAnnotatedWriter Writer(this);
|
|
F.print(OS, &Writer);
|
|
}
|
|
|
|
void MemorySSA::dump() const {
|
|
MemorySSAAnnotatedWriter Writer(this);
|
|
F.print(dbgs(), &Writer);
|
|
}
|
|
|
|
void MemorySSA::verifyMemorySSA() const {
|
|
verifyDefUses(F);
|
|
verifyDomination(F);
|
|
verifyOrdering(F);
|
|
Walker->verify(this);
|
|
}
|
|
|
|
/// \brief Verify that the order and existence of MemoryAccesses matches the
|
|
/// order and existence of memory affecting instructions.
|
|
void MemorySSA::verifyOrdering(Function &F) const {
|
|
// Walk all the blocks, comparing what the lookups think and what the access
|
|
// lists think, as well as the order in the blocks vs the order in the access
|
|
// lists.
|
|
SmallVector<MemoryAccess *, 32> ActualAccesses;
|
|
for (BasicBlock &B : F) {
|
|
const AccessList *AL = getBlockAccesses(&B);
|
|
MemoryAccess *Phi = getMemoryAccess(&B);
|
|
if (Phi)
|
|
ActualAccesses.push_back(Phi);
|
|
for (Instruction &I : B) {
|
|
MemoryAccess *MA = getMemoryAccess(&I);
|
|
assert((!MA || AL) && "We have memory affecting instructions "
|
|
"in this block but they are not in the "
|
|
"access list");
|
|
if (MA)
|
|
ActualAccesses.push_back(MA);
|
|
}
|
|
// Either we hit the assert, really have no accesses, or we have both
|
|
// accesses and an access list
|
|
if (!AL)
|
|
continue;
|
|
assert(AL->size() == ActualAccesses.size() &&
|
|
"We don't have the same number of accesses in the block as on the "
|
|
"access list");
|
|
auto ALI = AL->begin();
|
|
auto AAI = ActualAccesses.begin();
|
|
while (ALI != AL->end() && AAI != ActualAccesses.end()) {
|
|
assert(&*ALI == *AAI && "Not the same accesses in the same order");
|
|
++ALI;
|
|
++AAI;
|
|
}
|
|
ActualAccesses.clear();
|
|
}
|
|
}
|
|
|
|
/// \brief Verify the domination properties of MemorySSA by checking that each
|
|
/// definition dominates all of its uses.
|
|
void MemorySSA::verifyDomination(Function &F) const {
|
|
#ifndef NDEBUG
|
|
for (BasicBlock &B : F) {
|
|
// Phi nodes are attached to basic blocks
|
|
if (MemoryPhi *MP = getMemoryAccess(&B))
|
|
for (const Use &U : MP->uses())
|
|
assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
|
|
|
|
for (Instruction &I : B) {
|
|
MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
|
|
if (!MD)
|
|
continue;
|
|
|
|
for (const Use &U : MD->uses())
|
|
assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
|
|
/// appears in the use list of \p Def.
|
|
|
|
void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
|
|
#ifndef NDEBUG
|
|
// The live on entry use may cause us to get a NULL def here
|
|
if (!Def)
|
|
assert(isLiveOnEntryDef(Use) &&
|
|
"Null def but use not point to live on entry def");
|
|
else
|
|
assert(is_contained(Def->users(), Use) &&
|
|
"Did not find use in def's use list");
|
|
#endif
|
|
}
|
|
|
|
/// \brief Verify the immediate use information, by walking all the memory
|
|
/// accesses and verifying that, for each use, it appears in the
|
|
/// appropriate def's use list
|
|
void MemorySSA::verifyDefUses(Function &F) const {
|
|
for (BasicBlock &B : F) {
|
|
// Phi nodes are attached to basic blocks
|
|
if (MemoryPhi *Phi = getMemoryAccess(&B)) {
|
|
assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
|
|
pred_begin(&B), pred_end(&B))) &&
|
|
"Incomplete MemoryPhi Node");
|
|
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
|
|
verifyUseInDefs(Phi->getIncomingValue(I), Phi);
|
|
}
|
|
|
|
for (Instruction &I : B) {
|
|
if (MemoryAccess *MA = getMemoryAccess(&I)) {
|
|
assert(isa<MemoryUseOrDef>(MA) &&
|
|
"Found a phi node not attached to a bb");
|
|
verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const {
|
|
return ValueToMemoryAccess.lookup(I);
|
|
}
|
|
|
|
MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
|
|
return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB));
|
|
}
|
|
|
|
/// Perform a local numbering on blocks so that instruction ordering can be
|
|
/// determined in constant time.
|
|
/// TODO: We currently just number in order. If we numbered by N, we could
|
|
/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
|
|
/// log2(N) sequences of mixed before and after) without needing to invalidate
|
|
/// the numbering.
|
|
void MemorySSA::renumberBlock(const BasicBlock *B) const {
|
|
// The pre-increment ensures the numbers really start at 1.
|
|
unsigned long CurrentNumber = 0;
|
|
const AccessList *AL = getBlockAccesses(B);
|
|
assert(AL != nullptr && "Asking to renumber an empty block");
|
|
for (const auto &I : *AL)
|
|
BlockNumbering[&I] = ++CurrentNumber;
|
|
BlockNumberingValid.insert(B);
|
|
}
|
|
|
|
/// \brief Determine, for two memory accesses in the same block,
|
|
/// whether \p Dominator dominates \p Dominatee.
|
|
/// \returns True if \p Dominator dominates \p Dominatee.
|
|
bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
|
|
const MemoryAccess *Dominatee) const {
|
|
|
|
const BasicBlock *DominatorBlock = Dominator->getBlock();
|
|
|
|
assert((DominatorBlock == Dominatee->getBlock()) &&
|
|
"Asking for local domination when accesses are in different blocks!");
|
|
// A node dominates itself.
|
|
if (Dominatee == Dominator)
|
|
return true;
|
|
|
|
// When Dominatee is defined on function entry, it is not dominated by another
|
|
// memory access.
|
|
if (isLiveOnEntryDef(Dominatee))
|
|
return false;
|
|
|
|
// When Dominator is defined on function entry, it dominates the other memory
|
|
// access.
|
|
if (isLiveOnEntryDef(Dominator))
|
|
return true;
|
|
|
|
if (!BlockNumberingValid.count(DominatorBlock))
|
|
renumberBlock(DominatorBlock);
|
|
|
|
unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
|
|
// All numbers start with 1
|
|
assert(DominatorNum != 0 && "Block was not numbered properly");
|
|
unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
|
|
assert(DominateeNum != 0 && "Block was not numbered properly");
|
|
return DominatorNum < DominateeNum;
|
|
}
|
|
|
|
bool MemorySSA::dominates(const MemoryAccess *Dominator,
|
|
const MemoryAccess *Dominatee) const {
|
|
if (Dominator == Dominatee)
|
|
return true;
|
|
|
|
if (isLiveOnEntryDef(Dominatee))
|
|
return false;
|
|
|
|
if (Dominator->getBlock() != Dominatee->getBlock())
|
|
return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
|
|
return locallyDominates(Dominator, Dominatee);
|
|
}
|
|
|
|
bool MemorySSA::dominates(const MemoryAccess *Dominator,
|
|
const Use &Dominatee) const {
|
|
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
|
|
BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
|
|
// The def must dominate the incoming block of the phi.
|
|
if (UseBB != Dominator->getBlock())
|
|
return DT->dominates(Dominator->getBlock(), UseBB);
|
|
// If the UseBB and the DefBB are the same, compare locally.
|
|
return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
|
|
}
|
|
// If it's not a PHI node use, the normal dominates can already handle it.
|
|
return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
|
|
}
|
|
|
|
const static char LiveOnEntryStr[] = "liveOnEntry";
|
|
|
|
void MemoryDef::print(raw_ostream &OS) const {
|
|
MemoryAccess *UO = getDefiningAccess();
|
|
|
|
OS << getID() << " = MemoryDef(";
|
|
if (UO && UO->getID())
|
|
OS << UO->getID();
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << ')';
|
|
}
|
|
|
|
void MemoryPhi::print(raw_ostream &OS) const {
|
|
bool First = true;
|
|
OS << getID() << " = MemoryPhi(";
|
|
for (const auto &Op : operands()) {
|
|
BasicBlock *BB = getIncomingBlock(Op);
|
|
MemoryAccess *MA = cast<MemoryAccess>(Op);
|
|
if (!First)
|
|
OS << ',';
|
|
else
|
|
First = false;
|
|
|
|
OS << '{';
|
|
if (BB->hasName())
|
|
OS << BB->getName();
|
|
else
|
|
BB->printAsOperand(OS, false);
|
|
OS << ',';
|
|
if (unsigned ID = MA->getID())
|
|
OS << ID;
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << '}';
|
|
}
|
|
OS << ')';
|
|
}
|
|
|
|
MemoryAccess::~MemoryAccess() {}
|
|
|
|
void MemoryUse::print(raw_ostream &OS) const {
|
|
MemoryAccess *UO = getDefiningAccess();
|
|
OS << "MemoryUse(";
|
|
if (UO && UO->getID())
|
|
OS << UO->getID();
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << ')';
|
|
}
|
|
|
|
void MemoryAccess::dump() const {
|
|
print(dbgs());
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
char MemorySSAPrinterLegacyPass::ID = 0;
|
|
|
|
MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
|
|
initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
}
|
|
|
|
bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
|
|
auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
|
|
MSSA.print(dbgs());
|
|
if (VerifyMemorySSA)
|
|
MSSA.verifyMemorySSA();
|
|
return false;
|
|
}
|
|
|
|
char MemorySSAAnalysis::PassID;
|
|
|
|
MemorySSAAnalysis::Result
|
|
MemorySSAAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &AA = AM.getResult<AAManager>(F);
|
|
return MemorySSAAnalysis::Result(make_unique<MemorySSA>(F, &AA, &DT));
|
|
}
|
|
|
|
PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
OS << "MemorySSA for function: " << F.getName() << "\n";
|
|
AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
char MemorySSAWrapperPass::ID = 0;
|
|
|
|
MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
|
|
initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
|
|
|
|
void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
|
|
AU.addRequiredTransitive<AAResultsWrapperPass>();
|
|
}
|
|
|
|
bool MemorySSAWrapperPass::runOnFunction(Function &F) {
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
MSSA.reset(new MemorySSA(F, &AA, &DT));
|
|
return false;
|
|
}
|
|
|
|
void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
|
|
|
|
void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
|
|
MSSA->print(OS);
|
|
}
|
|
|
|
MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
|
|
|
|
MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
|
|
DominatorTree *D)
|
|
: MemorySSAWalker(M), Walker(*M, *A, *D, Cache), AutoResetWalker(true) {}
|
|
|
|
MemorySSA::CachingWalker::~CachingWalker() {}
|
|
|
|
void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
|
|
// TODO: We can do much better cache invalidation with differently stored
|
|
// caches. For now, for MemoryUses, we simply remove them
|
|
// from the cache, and kill the entire call/non-call cache for everything
|
|
// else. The problem is for phis or defs, currently we'd need to follow use
|
|
// chains down and invalidate anything below us in the chain that currently
|
|
// terminates at this access.
|
|
|
|
// See if this is a MemoryUse, if so, just remove the cached info. MemoryUse
|
|
// is by definition never a barrier, so nothing in the cache could point to
|
|
// this use. In that case, we only need invalidate the info for the use
|
|
// itself.
|
|
|
|
if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) {
|
|
UpwardsMemoryQuery Q(MU->getMemoryInst(), MU);
|
|
Cache.remove(MU, Q.StartingLoc, Q.IsCall);
|
|
} else {
|
|
// If it is not a use, the best we can do right now is destroy the cache.
|
|
Cache.clear();
|
|
}
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
verifyRemoved(MA);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Walk the use-def chains starting at \p MA and find
|
|
/// the MemoryAccess that actually clobbers Loc.
|
|
///
|
|
/// \returns our clobbering memory access
|
|
MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
|
|
MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
|
|
MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
|
|
#ifdef EXPENSIVE_CHECKS
|
|
MemoryAccess *NewNoCache =
|
|
Walker.findClobber(StartingAccess, Q, /*UseWalkerCache=*/false);
|
|
assert(NewNoCache == New && "Cache made us hand back a different result?");
|
|
#endif
|
|
if (AutoResetWalker)
|
|
resetClobberWalker();
|
|
return New;
|
|
}
|
|
|
|
MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
|
|
MemoryAccess *StartingAccess, MemoryLocation &Loc) {
|
|
if (isa<MemoryPhi>(StartingAccess))
|
|
return StartingAccess;
|
|
|
|
auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
|
|
if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
|
|
return StartingUseOrDef;
|
|
|
|
Instruction *I = StartingUseOrDef->getMemoryInst();
|
|
|
|
// Conservatively, fences are always clobbers, so don't perform the walk if we
|
|
// hit a fence.
|
|
if (!ImmutableCallSite(I) && I->isFenceLike())
|
|
return StartingUseOrDef;
|
|
|
|
UpwardsMemoryQuery Q;
|
|
Q.OriginalAccess = StartingUseOrDef;
|
|
Q.StartingLoc = Loc;
|
|
Q.Inst = I;
|
|
Q.IsCall = false;
|
|
|
|
if (auto *CacheResult = Cache.lookup(StartingUseOrDef, Loc, Q.IsCall))
|
|
return CacheResult;
|
|
|
|
// Unlike the other function, do not walk to the def of a def, because we are
|
|
// handed something we already believe is the clobbering access.
|
|
MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
|
|
? StartingUseOrDef->getDefiningAccess()
|
|
: StartingUseOrDef;
|
|
|
|
MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
|
|
DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *StartingUseOrDef << "\n");
|
|
DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *Clobber << "\n");
|
|
return Clobber;
|
|
}
|
|
|
|
MemoryAccess *
|
|
MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
|
|
auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
|
|
// If this is a MemoryPhi, we can't do anything.
|
|
if (!StartingAccess)
|
|
return MA;
|
|
|
|
const Instruction *I = StartingAccess->getMemoryInst();
|
|
UpwardsMemoryQuery Q(I, StartingAccess);
|
|
// We can't sanely do anything with a fences, they conservatively
|
|
// clobber all memory, and have no locations to get pointers from to
|
|
// try to disambiguate.
|
|
if (!Q.IsCall && I->isFenceLike())
|
|
return StartingAccess;
|
|
|
|
if (auto *CacheResult = Cache.lookup(StartingAccess, Q.StartingLoc, Q.IsCall))
|
|
return CacheResult;
|
|
|
|
if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
|
|
MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
|
|
Cache.insert(StartingAccess, LiveOnEntry, Q.StartingLoc, Q.IsCall);
|
|
return LiveOnEntry;
|
|
}
|
|
|
|
// Start with the thing we already think clobbers this location
|
|
MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
|
|
|
|
// At this point, DefiningAccess may be the live on entry def.
|
|
// If it is, we will not get a better result.
|
|
if (MSSA->isLiveOnEntryDef(DefiningAccess))
|
|
return DefiningAccess;
|
|
|
|
MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
|
|
DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *DefiningAccess << "\n");
|
|
DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *Result << "\n");
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Verify that MA doesn't exist in any of the caches.
|
|
void MemorySSA::CachingWalker::verifyRemoved(MemoryAccess *MA) {
|
|
assert(!Cache.contains(MA) && "Found removed MemoryAccess in cache.");
|
|
}
|
|
|
|
MemoryAccess *
|
|
DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
|
|
if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
|
|
return Use->getDefiningAccess();
|
|
return MA;
|
|
}
|
|
|
|
MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
|
|
MemoryAccess *StartingAccess, MemoryLocation &) {
|
|
if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
|
|
return Use->getDefiningAccess();
|
|
return StartingAccess;
|
|
}
|
|
} // namespace llvm
|