llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp

972 lines
34 KiB
C++

//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass hoists expressions from branches to a common dominator. It uses
// GVN (global value numbering) to discover expressions computing the same
// values. The primary goal is to reduce the code size, and in some
// cases reduce critical path (by exposing more ILP).
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
// is disabled in the following cases.
// 1. Scalars across calls.
// 2. geps when corresponding load/store cannot be hoisted.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/MemorySSA.h"
using namespace llvm;
#define DEBUG_TYPE "gvn-hoist"
STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
STATISTIC(NumLoadsRemoved, "Number of loads removed");
STATISTIC(NumStoresHoisted, "Number of stores hoisted");
STATISTIC(NumStoresRemoved, "Number of stores removed");
STATISTIC(NumCallsHoisted, "Number of calls hoisted");
STATISTIC(NumCallsRemoved, "Number of calls removed");
static cl::opt<int>
MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
cl::desc("Max number of instructions to hoist "
"(default unlimited = -1)"));
static cl::opt<int> MaxNumberOfBBSInPath(
"gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
cl::desc("Max number of basic blocks on the path between "
"hoisting locations (default = 4, unlimited = -1)"));
static cl::opt<int> MaxDepthInBB(
"gvn-hoist-max-depth", cl::Hidden, cl::init(100),
cl::desc("Hoist instructions from the beginning of the BB up to the "
"maximum specified depth (default = 100, unlimited = -1)"));
static cl::opt<int> MaxChainLength(
"gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
cl::desc("Maximum length of dependent chains to hoist "
"(default = 10, unlimited = -1)"));
namespace {
// Provides a sorting function based on the execution order of two instructions.
struct SortByDFSIn {
private:
DenseMap<const Value *, unsigned> &DFSNumber;
public:
SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {}
// Returns true when A executes before B.
bool operator()(const Instruction *A, const Instruction *B) const {
// FIXME: libc++ has a std::sort() algorithm that will call the compare
// function on the same element. Once PR20837 is fixed and some more years
// pass by and all the buildbots have moved to a corrected std::sort(),
// enable the following assert:
//
// assert(A != B);
const BasicBlock *BA = A->getParent();
const BasicBlock *BB = B->getParent();
unsigned ADFS, BDFS;
if (BA == BB) {
ADFS = DFSNumber.lookup(A);
BDFS = DFSNumber.lookup(B);
} else {
ADFS = DFSNumber.lookup(BA);
BDFS = DFSNumber.lookup(BB);
}
assert (ADFS && BDFS);
return ADFS < BDFS;
}
};
// A map from a pair of VNs to all the instructions with those VNs.
typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>>
VNtoInsns;
// An invalid value number Used when inserting a single value number into
// VNtoInsns.
enum : unsigned { InvalidVN = ~2U };
// Records all scalar instructions candidate for code hoisting.
class InsnInfo {
VNtoInsns VNtoScalars;
public:
// Inserts I and its value number in VNtoScalars.
void insert(Instruction *I, GVN::ValueTable &VN) {
// Scalar instruction.
unsigned V = VN.lookupOrAdd(I);
VNtoScalars[{V, InvalidVN}].push_back(I);
}
const VNtoInsns &getVNTable() const { return VNtoScalars; }
};
// Records all load instructions candidate for code hoisting.
class LoadInfo {
VNtoInsns VNtoLoads;
public:
// Insert Load and the value number of its memory address in VNtoLoads.
void insert(LoadInst *Load, GVN::ValueTable &VN) {
if (Load->isSimple()) {
unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
VNtoLoads[{V, InvalidVN}].push_back(Load);
}
}
const VNtoInsns &getVNTable() const { return VNtoLoads; }
};
// Records all store instructions candidate for code hoisting.
class StoreInfo {
VNtoInsns VNtoStores;
public:
// Insert the Store and a hash number of the store address and the stored
// value in VNtoStores.
void insert(StoreInst *Store, GVN::ValueTable &VN) {
if (!Store->isSimple())
return;
// Hash the store address and the stored value.
Value *Ptr = Store->getPointerOperand();
Value *Val = Store->getValueOperand();
VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
}
const VNtoInsns &getVNTable() const { return VNtoStores; }
};
// Records all call instructions candidate for code hoisting.
class CallInfo {
VNtoInsns VNtoCallsScalars;
VNtoInsns VNtoCallsLoads;
VNtoInsns VNtoCallsStores;
public:
// Insert Call and its value numbering in one of the VNtoCalls* containers.
void insert(CallInst *Call, GVN::ValueTable &VN) {
// A call that doesNotAccessMemory is handled as a Scalar,
// onlyReadsMemory will be handled as a Load instruction,
// all other calls will be handled as stores.
unsigned V = VN.lookupOrAdd(Call);
auto Entry = std::make_pair(V, InvalidVN);
if (Call->doesNotAccessMemory())
VNtoCallsScalars[Entry].push_back(Call);
else if (Call->onlyReadsMemory())
VNtoCallsLoads[Entry].push_back(Call);
else
VNtoCallsStores[Entry].push_back(Call);
}
const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
};
typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
typedef SmallVector<Instruction *, 4> SmallVecInsn;
typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;
static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
static const unsigned KnownIDs[] = {
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias, LLVMContext::MD_range,
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
LLVMContext::MD_invariant_group};
combineMetadata(ReplInst, I, KnownIDs);
}
// This pass hoists common computations across branches sharing common
// dominator. The primary goal is to reduce the code size, and in some
// cases reduce critical path (by exposing more ILP).
class GVNHoist {
public:
GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md,
bool OptForMinSize)
: DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize),
HoistingGeps(OptForMinSize), HoistedCtr(0) {}
bool run(Function &F) {
VN.setDomTree(DT);
VN.setAliasAnalysis(AA);
VN.setMemDep(MD);
bool Res = false;
MemorySSA M(F, AA, DT);
MSSA = &M;
// Perform DFS Numbering of instructions.
unsigned BBI = 0;
for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
DFSNumber[BB] = ++BBI;
unsigned I = 0;
for (auto &Inst: *BB)
DFSNumber[&Inst] = ++I;
}
int ChainLength = 0;
// FIXME: use lazy evaluation of VN to avoid the fix-point computation.
while (1) {
if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
return Res;
auto HoistStat = hoistExpressions(F);
if (HoistStat.first + HoistStat.second == 0)
return Res;
if (HoistStat.second > 0)
// To address a limitation of the current GVN, we need to rerun the
// hoisting after we hoisted loads or stores in order to be able to
// hoist all scalars dependent on the hoisted ld/st.
VN.clear();
Res = true;
}
return Res;
}
private:
GVN::ValueTable VN;
DominatorTree *DT;
AliasAnalysis *AA;
MemoryDependenceResults *MD;
const bool OptForMinSize;
const bool HoistingGeps;
DenseMap<const Value *, unsigned> DFSNumber;
BBSideEffectsSet BBSideEffects;
MemorySSA *MSSA;
int HoistedCtr;
enum InsKind { Unknown, Scalar, Load, Store };
// Return true when there are exception handling in BB.
bool hasEH(const BasicBlock *BB) {
auto It = BBSideEffects.find(BB);
if (It != BBSideEffects.end())
return It->second;
if (BB->isEHPad() || BB->hasAddressTaken()) {
BBSideEffects[BB] = true;
return true;
}
if (BB->getTerminator()->mayThrow()) {
BBSideEffects[BB] = true;
return true;
}
BBSideEffects[BB] = false;
return false;
}
// Return true when all paths from A to the end of the function pass through
// either B or C.
bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B,
const BasicBlock *C) {
// We fully copy the WL in order to be able to remove items from it.
SmallPtrSet<const BasicBlock *, 2> WL;
WL.insert(B);
WL.insert(C);
for (auto It = df_begin(A), E = df_end(A); It != E;) {
// There exists a path from A to the exit of the function if we are still
// iterating in DF traversal and we removed all instructions from the work
// list.
if (WL.empty())
return false;
const BasicBlock *BB = *It;
if (WL.erase(BB)) {
// Stop DFS traversal when BB is in the work list.
It.skipChildren();
continue;
}
// Check for end of function, calls that do not return, etc.
if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator()))
return false;
// Increment DFS traversal when not skipping children.
++It;
}
return true;
}
/* Return true when I1 appears before I2 in the instructions of BB. */
bool firstInBB(const Instruction *I1, const Instruction *I2) {
assert (I1->getParent() == I2->getParent());
unsigned I1DFS = DFSNumber.lookup(I1);
unsigned I2DFS = DFSNumber.lookup(I2);
assert (I1DFS && I2DFS);
return I1DFS < I2DFS;
}
// Return true when there are users of Def in BB.
bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB,
const Instruction *OldPt) {
const BasicBlock *DefBB = Def->getBlock();
const BasicBlock *OldBB = OldPt->getParent();
for (User *U : Def->users())
if (auto *MU = dyn_cast<MemoryUse>(U)) {
// FIXME: MU->getBlock() does not get updated when we move the instruction.
BasicBlock *UBB = MU->getMemoryInst()->getParent();
// Only analyze uses in BB.
if (BB != UBB)
continue;
// A use in the same block as the Def is on the path.
if (UBB == DefBB) {
assert(MSSA->locallyDominates(Def, MU) && "def not dominating use");
return true;
}
if (UBB != OldBB)
return true;
// It is only harmful to hoist when the use is before OldPt.
if (firstInBB(MU->getMemoryInst(), OldPt))
return true;
}
return false;
}
// Return true when there are exception handling or loads of memory Def
// between OldPt and NewPt.
// Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
// return true when the counter NBBsOnAllPaths reaces 0, except when it is
// initialized to -1 which is unlimited.
bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt,
MemoryAccess *Def, int &NBBsOnAllPaths) {
const BasicBlock *NewBB = NewPt->getParent();
const BasicBlock *OldBB = OldPt->getParent();
assert(DT->dominates(NewBB, OldBB) && "invalid path");
assert(DT->dominates(Def->getBlock(), NewBB) &&
"def does not dominate new hoisting point");
// Walk all basic blocks reachable in depth-first iteration on the inverse
// CFG from OldBB to NewBB. These blocks are all the blocks that may be
// executed between the execution of NewBB and OldBB. Hoisting an expression
// from OldBB into NewBB has to be safe on all execution paths.
for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
if (*I == NewBB) {
// Stop traversal when reaching HoistPt.
I.skipChildren();
continue;
}
// Impossible to hoist with exceptions on the path.
if (hasEH(*I))
return true;
// Check that we do not move a store past loads.
if (hasMemoryUseOnPath(Def, *I, OldPt))
return true;
// Stop walk once the limit is reached.
if (NBBsOnAllPaths == 0)
return true;
// -1 is unlimited number of blocks on all paths.
if (NBBsOnAllPaths != -1)
--NBBsOnAllPaths;
++I;
}
return false;
}
// Return true when there are exception handling between HoistPt and BB.
// Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
// return true when the counter NBBsOnAllPaths reaches 0, except when it is
// initialized to -1 which is unlimited.
bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB,
int &NBBsOnAllPaths) {
assert(DT->dominates(HoistPt, BB) && "Invalid path");
// Walk all basic blocks reachable in depth-first iteration on
// the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
// blocks that may be executed between the execution of NewHoistPt and
// BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
// on all execution paths.
for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) {
if (*I == HoistPt) {
// Stop traversal when reaching NewHoistPt.
I.skipChildren();
continue;
}
// Impossible to hoist with exceptions on the path.
if (hasEH(*I))
return true;
// Stop walk once the limit is reached.
if (NBBsOnAllPaths == 0)
return true;
// -1 is unlimited number of blocks on all paths.
if (NBBsOnAllPaths != -1)
--NBBsOnAllPaths;
++I;
}
return false;
}
// Return true when it is safe to hoist a memory load or store U from OldPt
// to NewPt.
bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
// In place hoisting is safe.
if (NewPt == OldPt)
return true;
const BasicBlock *NewBB = NewPt->getParent();
const BasicBlock *OldBB = OldPt->getParent();
const BasicBlock *UBB = U->getBlock();
// Check for dependences on the Memory SSA.
MemoryAccess *D = U->getDefiningAccess();
BasicBlock *DBB = D->getBlock();
if (DT->properlyDominates(NewBB, DBB))
// Cannot move the load or store to NewBB above its definition in DBB.
return false;
if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
if (firstInBB(NewPt, UD->getMemoryInst()))
// Cannot move the load or store to NewPt above its definition in D.
return false;
// Check for unsafe hoistings due to side effects.
if (K == InsKind::Store) {
if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths))
return false;
} else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
return false;
if (UBB == NewBB) {
if (DT->properlyDominates(DBB, NewBB))
return true;
assert(UBB == DBB);
assert(MSSA->locallyDominates(D, U));
}
// No side effects: it is safe to hoist.
return true;
}
// Return true when it is safe to hoist scalar instructions from BB1 and BB2
// to HoistBB.
bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1,
const BasicBlock *BB2, int &NBBsOnAllPaths) {
// Check that the hoisted expression is needed on all paths. When HoistBB
// already contains an instruction to be hoisted, the expression is needed
// on all paths. Enable scalar hoisting at -Oz as it is safe to hoist
// scalars to a place where they are partially needed.
if (!OptForMinSize && BB1 != HoistBB &&
!hoistingFromAllPaths(HoistBB, BB1, BB2))
return false;
if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) ||
hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths))
return false;
// Safe to hoist scalars from BB1 and BB2 to HoistBB.
return true;
}
// Each element of a hoisting list contains the basic block where to hoist and
// a list of instructions to be hoisted.
typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;
// Partition InstructionsToHoist into a set of candidates which can share a
// common hoisting point. The partitions are collected in HPL. IsScalar is
// true when the instructions in InstructionsToHoist are scalars. IsLoad is
// true when the InstructionsToHoist are loads, false when they are stores.
void partitionCandidates(SmallVecImplInsn &InstructionsToHoist,
HoistingPointList &HPL, InsKind K) {
// No need to sort for two instructions.
if (InstructionsToHoist.size() > 2) {
SortByDFSIn Pred(DFSNumber);
std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred);
}
int NBBsOnAllPaths = MaxNumberOfBBSInPath;
SmallVecImplInsn::iterator II = InstructionsToHoist.begin();
SmallVecImplInsn::iterator Start = II;
Instruction *HoistPt = *II;
BasicBlock *HoistBB = HoistPt->getParent();
MemoryUseOrDef *UD;
if (K != InsKind::Scalar)
UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt));
for (++II; II != InstructionsToHoist.end(); ++II) {
Instruction *Insn = *II;
BasicBlock *BB = Insn->getParent();
BasicBlock *NewHoistBB;
Instruction *NewHoistPt;
if (BB == HoistBB) {
NewHoistBB = HoistBB;
NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt;
} else {
NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB);
if (NewHoistBB == BB)
NewHoistPt = Insn;
else if (NewHoistBB == HoistBB)
NewHoistPt = HoistPt;
else
NewHoistPt = NewHoistBB->getTerminator();
}
if (K == InsKind::Scalar) {
if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) {
// Extend HoistPt to NewHoistPt.
HoistPt = NewHoistPt;
HoistBB = NewHoistBB;
continue;
}
} else {
// When NewBB already contains an instruction to be hoisted, the
// expression is needed on all paths.
// Check that the hoisted expression is needed on all paths: it is
// unsafe to hoist loads to a place where there may be a path not
// loading from the same address: for instance there may be a branch on
// which the address of the load may not be initialized.
if ((HoistBB == NewHoistBB || BB == NewHoistBB ||
hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) &&
// Also check that it is safe to move the load or store from HoistPt
// to NewHoistPt, and from Insn to NewHoistPt.
safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) &&
safeToHoistLdSt(NewHoistPt, Insn,
cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)),
K, NBBsOnAllPaths)) {
// Extend HoistPt to NewHoistPt.
HoistPt = NewHoistPt;
HoistBB = NewHoistBB;
continue;
}
}
// At this point it is not safe to extend the current hoisting to
// NewHoistPt: save the hoisting list so far.
if (std::distance(Start, II) > 1)
HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
// Start over from BB.
Start = II;
if (K != InsKind::Scalar)
UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start));
HoistPt = Insn;
HoistBB = BB;
NBBsOnAllPaths = MaxNumberOfBBSInPath;
}
// Save the last partition.
if (std::distance(Start, II) > 1)
HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
}
// Initialize HPL from Map.
void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
InsKind K) {
for (const auto &Entry : Map) {
if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold)
return;
const SmallVecInsn &V = Entry.second;
if (V.size() < 2)
continue;
// Compute the insertion point and the list of expressions to be hoisted.
SmallVecInsn InstructionsToHoist;
for (auto I : V)
if (!hasEH(I->getParent()))
InstructionsToHoist.push_back(I);
if (!InstructionsToHoist.empty())
partitionCandidates(InstructionsToHoist, HPL, K);
}
}
// Return true when all operands of Instr are available at insertion point
// HoistPt. When limiting the number of hoisted expressions, one could hoist
// a load without hoisting its access function. So before hoisting any
// expression, make sure that all its operands are available at insert point.
bool allOperandsAvailable(const Instruction *I,
const BasicBlock *HoistPt) const {
for (const Use &Op : I->operands())
if (const auto *Inst = dyn_cast<Instruction>(&Op))
if (!DT->dominates(Inst->getParent(), HoistPt))
return false;
return true;
}
// Same as allOperandsAvailable with recursive check for GEP operands.
bool allGepOperandsAvailable(const Instruction *I,
const BasicBlock *HoistPt) const {
for (const Use &Op : I->operands())
if (const auto *Inst = dyn_cast<Instruction>(&Op))
if (!DT->dominates(Inst->getParent(), HoistPt)) {
if (const GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Inst)) {
if (!allGepOperandsAvailable(GepOp, HoistPt))
return false;
// Gep is available if all operands of GepOp are available.
} else {
// Gep is not available if it has operands other than GEPs that are
// defined in blocks not dominating HoistPt.
return false;
}
}
return true;
}
// Make all operands of the GEP available.
void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
const SmallVecInsn &InstructionsToHoist,
Instruction *Gep) const {
assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
Instruction *ClonedGep = Gep->clone();
for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
// Check whether the operand is already available.
if (DT->dominates(Op->getParent(), HoistPt))
continue;
// As a GEP can refer to other GEPs, recursively make all the operands
// of this GEP available at HoistPt.
if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
}
// Copy Gep and replace its uses in Repl with ClonedGep.
ClonedGep->insertBefore(HoistPt->getTerminator());
// Conservatively discard any optimization hints, they may differ on the
// other paths.
ClonedGep->dropUnknownNonDebugMetadata();
// If we have optimization hints which agree with each other along different
// paths, preserve them.
for (const Instruction *OtherInst : InstructionsToHoist) {
const GetElementPtrInst *OtherGep;
if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
else
OtherGep = cast<GetElementPtrInst>(
cast<StoreInst>(OtherInst)->getPointerOperand());
ClonedGep->intersectOptionalDataWith(OtherGep);
}
// Replace uses of Gep with ClonedGep in Repl.
Repl->replaceUsesOfWith(Gep, ClonedGep);
}
// In the case Repl is a load or a store, we make all their GEPs
// available: GEPs are not hoisted by default to avoid the address
// computations to be hoisted without the associated load or store.
bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
const SmallVecInsn &InstructionsToHoist) const {
// Check whether the GEP of a ld/st can be synthesized at HoistPt.
GetElementPtrInst *Gep = nullptr;
Instruction *Val = nullptr;
if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
} else if (auto *St = dyn_cast<StoreInst>(Repl)) {
Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
Val = dyn_cast<Instruction>(St->getValueOperand());
// Check that the stored value is available.
if (Val) {
if (isa<GetElementPtrInst>(Val)) {
// Check whether we can compute the GEP at HoistPt.
if (!allGepOperandsAvailable(Val, HoistPt))
return false;
} else if (!DT->dominates(Val->getParent(), HoistPt))
return false;
}
}
// Check whether we can compute the Gep at HoistPt.
if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
return false;
makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
if (Val && isa<GetElementPtrInst>(Val))
makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
return true;
}
std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
for (const HoistingPointInfo &HP : HPL) {
// Find out whether we already have one of the instructions in HoistPt,
// in which case we do not have to move it.
BasicBlock *HoistPt = HP.first;
const SmallVecInsn &InstructionsToHoist = HP.second;
Instruction *Repl = nullptr;
for (Instruction *I : InstructionsToHoist)
if (I->getParent() == HoistPt)
// If there are two instructions in HoistPt to be hoisted in place:
// update Repl to be the first one, such that we can rename the uses
// of the second based on the first.
if (!Repl || firstInBB(I, Repl))
Repl = I;
// Keep track of whether we moved the instruction so we know whether we
// should move the MemoryAccess.
bool MoveAccess = true;
if (Repl) {
// Repl is already in HoistPt: it remains in place.
assert(allOperandsAvailable(Repl, HoistPt) &&
"instruction depends on operands that are not available");
MoveAccess = false;
} else {
// When we do not find Repl in HoistPt, select the first in the list
// and move it to HoistPt.
Repl = InstructionsToHoist.front();
// We can move Repl in HoistPt only when all operands are available.
// The order in which hoistings are done may influence the availability
// of operands.
if (!allOperandsAvailable(Repl, HoistPt)) {
// When HoistingGeps there is nothing more we can do to make the
// operands available: just continue.
if (HoistingGeps)
continue;
// When not HoistingGeps we need to copy the GEPs.
if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist))
continue;
}
// Move the instruction at the end of HoistPt.
Instruction *Last = HoistPt->getTerminator();
Repl->moveBefore(Last);
DFSNumber[Repl] = DFSNumber[Last]++;
}
MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl);
if (MoveAccess) {
if (MemoryUseOrDef *OldMemAcc =
dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) {
// The definition of this ld/st will not change: ld/st hoisting is
// legal when the ld/st is not moved past its current definition.
MemoryAccess *Def = OldMemAcc->getDefiningAccess();
NewMemAcc =
MSSA->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End);
OldMemAcc->replaceAllUsesWith(NewMemAcc);
MSSA->removeMemoryAccess(OldMemAcc);
}
}
if (isa<LoadInst>(Repl))
++NL;
else if (isa<StoreInst>(Repl))
++NS;
else if (isa<CallInst>(Repl))
++NC;
else // Scalar
++NI;
// Remove and rename all other instructions.
for (Instruction *I : InstructionsToHoist)
if (I != Repl) {
++NR;
if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
ReplacementLoad->setAlignment(
std::min(ReplacementLoad->getAlignment(),
cast<LoadInst>(I)->getAlignment()));
++NumLoadsRemoved;
} else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
ReplacementStore->setAlignment(
std::min(ReplacementStore->getAlignment(),
cast<StoreInst>(I)->getAlignment()));
++NumStoresRemoved;
} else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
ReplacementAlloca->setAlignment(
std::max(ReplacementAlloca->getAlignment(),
cast<AllocaInst>(I)->getAlignment()));
} else if (isa<CallInst>(Repl)) {
++NumCallsRemoved;
}
if (NewMemAcc) {
// Update the uses of the old MSSA access with NewMemAcc.
MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
OldMA->replaceAllUsesWith(NewMemAcc);
MSSA->removeMemoryAccess(OldMA);
}
Repl->intersectOptionalDataWith(I);
combineKnownMetadata(Repl, I);
I->replaceAllUsesWith(Repl);
I->eraseFromParent();
}
// Remove MemorySSA phi nodes with the same arguments.
if (NewMemAcc) {
SmallPtrSet<MemoryPhi *, 4> UsePhis;
for (User *U : NewMemAcc->users())
if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
UsePhis.insert(Phi);
for (auto *Phi : UsePhis) {
auto In = Phi->incoming_values();
if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
Phi->replaceAllUsesWith(NewMemAcc);
MSSA->removeMemoryAccess(Phi);
}
}
}
}
NumHoisted += NL + NS + NC + NI;
NumRemoved += NR;
NumLoadsHoisted += NL;
NumStoresHoisted += NS;
NumCallsHoisted += NC;
return {NI, NL + NC + NS};
}
// Hoist all expressions. Returns Number of scalars hoisted
// and number of non-scalars hoisted.
std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
InsnInfo II;
LoadInfo LI;
StoreInfo SI;
CallInfo CI;
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
int InstructionNb = 0;
for (Instruction &I1 : *BB) {
// Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
// deeper may increase the register pressure and compilation time.
if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
break;
if (auto *Load = dyn_cast<LoadInst>(&I1))
LI.insert(Load, VN);
else if (auto *Store = dyn_cast<StoreInst>(&I1))
SI.insert(Store, VN);
else if (auto *Call = dyn_cast<CallInst>(&I1)) {
if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
if (isa<DbgInfoIntrinsic>(Intr) ||
Intr->getIntrinsicID() == Intrinsic::assume)
continue;
}
if (Call->mayHaveSideEffects()) {
if (!OptForMinSize)
break;
// We may continue hoisting across calls which write to memory.
if (Call->mayThrow())
break;
}
if (Call->isConvergent())
break;
CI.insert(Call, VN);
} else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
// Do not hoist scalars past calls that may write to memory because
// that could result in spills later. geps are handled separately.
// TODO: We can relax this for targets like AArch64 as they have more
// registers than X86.
II.insert(&I1, VN);
}
}
HoistingPointList HPL;
computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
return hoist(HPL);
}
};
class GVNHoistLegacyPass : public FunctionPass {
public:
static char ID;
GVNHoistLegacyPass() : FunctionPass(ID) {
initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
GVNHoist G(&DT, &AA, &MD, F.optForMinSize());
return G.run(F);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MemoryDependenceWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
};
} // namespace
PreservedAnalyses GVNHoistPass::run(Function &F,
FunctionAnalysisManager &AM) {
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
AliasAnalysis &AA = AM.getResult<AAManager>(F);
MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
GVNHoist G(&DT, &AA, &MD, F.optForMinSize());
if (!G.run(F))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
char GVNHoistLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
"Early GVN Hoisting of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
"Early GVN Hoisting of Expressions", false, false)
FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }