llvm-project/compiler-rt/lib/tsan/tests/rtl/tsan_posix.cc

152 lines
4.1 KiB
C++

//===-- tsan_posix.cc -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_interface.h"
#include "tsan_test_util.h"
#include "gtest/gtest.h"
#include <pthread.h>
struct thread_key {
pthread_key_t key;
pthread_mutex_t *mtx;
int val;
int *cnt;
thread_key(pthread_key_t key, pthread_mutex_t *mtx, int val, int *cnt)
: key(key)
, mtx(mtx)
, val(val)
, cnt(cnt) {
}
};
static void thread_secific_dtor(void *v) {
thread_key *k = (thread_key *)v;
EXPECT_EQ(pthread_mutex_lock(k->mtx), 0);
(*k->cnt)++;
__tsan_write4(&k->cnt);
EXPECT_EQ(pthread_mutex_unlock(k->mtx), 0);
if (k->val == 42) {
// Okay.
} else if (k->val == 43 || k->val == 44) {
k->val--;
EXPECT_EQ(pthread_setspecific(k->key, k), 0);
} else {
ASSERT_TRUE(false);
}
}
static void *dtors_thread(void *p) {
thread_key *k = (thread_key *)p;
EXPECT_EQ(pthread_setspecific(k->key, k), 0);
return 0;
}
TEST(Posix, ThreadSpecificDtors) {
int cnt = 0;
pthread_key_t key;
EXPECT_EQ(pthread_key_create(&key, thread_secific_dtor), 0);
pthread_mutex_t mtx;
EXPECT_EQ(pthread_mutex_init(&mtx, 0), 0);
pthread_t th[3];
thread_key k1 = thread_key(key, &mtx, 42, &cnt);
thread_key k2 = thread_key(key, &mtx, 43, &cnt);
thread_key k3 = thread_key(key, &mtx, 44, &cnt);
EXPECT_EQ(pthread_create(&th[0], 0, dtors_thread, &k1), 0);
EXPECT_EQ(pthread_create(&th[1], 0, dtors_thread, &k2), 0);
EXPECT_EQ(pthread_join(th[0], 0), 0);
EXPECT_EQ(pthread_create(&th[2], 0, dtors_thread, &k3), 0);
EXPECT_EQ(pthread_join(th[1], 0), 0);
EXPECT_EQ(pthread_join(th[2], 0), 0);
EXPECT_EQ(pthread_key_delete(key), 0);
EXPECT_EQ(6, cnt);
}
#ifndef __aarch64__
static __thread int local_var;
static void *local_thread(void *p) {
__tsan_write1(&local_var);
__tsan_write1(&p);
if (p == 0)
return 0;
const int kThreads = 4;
pthread_t th[kThreads];
for (int i = 0; i < kThreads; i++)
EXPECT_EQ(pthread_create(&th[i], 0, local_thread,
(void*)((long)p - 1)), 0); // NOLINT
for (int i = 0; i < kThreads; i++)
EXPECT_EQ(pthread_join(th[i], 0), 0);
return 0;
}
#endif
TEST(Posix, ThreadLocalAccesses) {
// The test is failing with high thread count for aarch64.
// FIXME: track down the issue and re-enable the test.
#ifndef __aarch64__
local_thread((void*)2);
#endif
}
struct CondContext {
pthread_mutex_t m;
pthread_cond_t c;
int data;
};
static void *cond_thread(void *p) {
CondContext &ctx = *static_cast<CondContext*>(p);
EXPECT_EQ(pthread_mutex_lock(&ctx.m), 0);
EXPECT_EQ(ctx.data, 0);
ctx.data = 1;
EXPECT_EQ(pthread_cond_signal(&ctx.c), 0);
EXPECT_EQ(pthread_mutex_unlock(&ctx.m), 0);
EXPECT_EQ(pthread_mutex_lock(&ctx.m), 0);
while (ctx.data != 2)
EXPECT_EQ(pthread_cond_wait(&ctx.c, &ctx.m), 0);
EXPECT_EQ(pthread_mutex_unlock(&ctx.m), 0);
EXPECT_EQ(pthread_mutex_lock(&ctx.m), 0);
ctx.data = 3;
EXPECT_EQ(pthread_cond_broadcast(&ctx.c), 0);
EXPECT_EQ(pthread_mutex_unlock(&ctx.m), 0);
return 0;
}
TEST(Posix, CondBasic) {
CondContext ctx;
EXPECT_EQ(pthread_mutex_init(&ctx.m, 0), 0);
EXPECT_EQ(pthread_cond_init(&ctx.c, 0), 0);
ctx.data = 0;
pthread_t th;
EXPECT_EQ(pthread_create(&th, 0, cond_thread, &ctx), 0);
EXPECT_EQ(pthread_mutex_lock(&ctx.m), 0);
while (ctx.data != 1)
EXPECT_EQ(pthread_cond_wait(&ctx.c, &ctx.m), 0);
ctx.data = 2;
EXPECT_EQ(pthread_mutex_unlock(&ctx.m), 0);
EXPECT_EQ(pthread_cond_broadcast(&ctx.c), 0);
EXPECT_EQ(pthread_mutex_lock(&ctx.m), 0);
while (ctx.data != 3)
EXPECT_EQ(pthread_cond_wait(&ctx.c, &ctx.m), 0);
EXPECT_EQ(pthread_mutex_unlock(&ctx.m), 0);
EXPECT_EQ(pthread_join(th, 0), 0);
EXPECT_EQ(pthread_cond_destroy(&ctx.c), 0);
EXPECT_EQ(pthread_mutex_destroy(&ctx.m), 0);
}