forked from OSchip/llvm-project
566 lines
20 KiB
C++
566 lines
20 KiB
C++
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave
|
|
/// occupancy on GCN hardware.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GCNSchedStrategy.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
#define DEBUG_TYPE "machine-scheduler"
|
|
|
|
using namespace llvm;
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
|
|
const MachineSchedContext *C) :
|
|
GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
|
|
|
|
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
|
|
const MachineFunction &MF) {
|
|
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
|
|
ST.getOccupancyWithNumVGPRs(VGPRs));
|
|
return std::min(MinRegOccupancy,
|
|
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
|
|
MF.getFunction()));
|
|
}
|
|
|
|
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
|
|
GenericScheduler::initialize(DAG);
|
|
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
MF = &DAG->MF;
|
|
|
|
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
|
|
|
|
// FIXME: This is also necessary, because some passes that run after
|
|
// scheduling and before regalloc increase register pressure.
|
|
const int ErrorMargin = 3;
|
|
|
|
SGPRExcessLimit = Context->RegClassInfo
|
|
->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
|
|
VGPRExcessLimit = Context->RegClassInfo
|
|
->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
|
|
if (TargetOccupancy) {
|
|
SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
|
|
VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
|
|
} else {
|
|
SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
|
|
SRI->getSGPRPressureSet());
|
|
VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
|
|
SRI->getVGPRPressureSet());
|
|
}
|
|
|
|
SGPRCriticalLimit -= ErrorMargin;
|
|
VGPRCriticalLimit -= ErrorMargin;
|
|
}
|
|
|
|
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
|
|
bool AtTop, const RegPressureTracker &RPTracker,
|
|
const SIRegisterInfo *SRI,
|
|
unsigned SGPRPressure,
|
|
unsigned VGPRPressure) {
|
|
|
|
Cand.SU = SU;
|
|
Cand.AtTop = AtTop;
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to
|
|
// the tracker, so we need to pass those function a non-const copy.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
std::vector<unsigned> Pressure;
|
|
std::vector<unsigned> MaxPressure;
|
|
|
|
if (AtTop)
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
else {
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached
|
|
// and can be retrieved by DAG->getPressureDif(SU).
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
}
|
|
|
|
unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
|
|
|
// If two instructions increase the pressure of different register sets
|
|
// by the same amount, the generic scheduler will prefer to schedule the
|
|
// instruction that increases the set with the least amount of registers,
|
|
// which in our case would be SGPRs. This is rarely what we want, so
|
|
// when we report excess/critical register pressure, we do it either
|
|
// only for VGPRs or only for SGPRs.
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
|
|
const unsigned MaxVGPRPressureInc = 16;
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
|
|
// to increase the likelihood we don't go over the limits. We should improve
|
|
// the analysis to look through dependencies to find the path with the least
|
|
// register pressure.
|
|
|
|
// We only need to update the RPDelata for instructions that increase
|
|
// register pressure. Instructions that decrease or keep reg pressure
|
|
// the same will be marked as RegExcess in tryCandidate() when they
|
|
// are compared with instructions that increase the register pressure.
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
|
|
}
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
|
|
}
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value
|
|
// that would reduce the wave occupancy for the execution unit. When
|
|
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
|
|
// has the same cost, so we don't need to prefer one over the other.
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
|
|
if (SGPRDelta > VGPRDelta) {
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
|
|
} else {
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeFromQueue()
|
|
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
|
|
const CandPolicy &ZonePolicy,
|
|
const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Cand) {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
|
|
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
|
ReadyQueue &Q = Zone.Available;
|
|
for (SUnit *SU : Q) {
|
|
|
|
SchedCandidate TryCand(ZonePolicy);
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
|
|
SGPRPressure, VGPRPressure);
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary.
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
|
|
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
|
|
if (TryCand.Reason != NoCand) {
|
|
// Initialize resource delta if needed in case future heuristics query it.
|
|
if (TryCand.ResDelta == SchedResourceDelta())
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel);
|
|
Cand.setBest(TryCand);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeBidirectional()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
// Set the bottom-up policy based on the state of the current bottom zone and
|
|
// the instructions outside the zone, including the top zone.
|
|
CandPolicy BotPolicy;
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
|
|
// Set the top-down policy based on the state of the current top zone and
|
|
// the instructions outside the zone, including the bottom zone.
|
|
CandPolicy TopPolicy;
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top).
|
|
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
|
|
BotCand.Policy != BotPolicy) {
|
|
BotCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(BotCand));
|
|
}
|
|
|
|
// Check if the top Q has a better candidate.
|
|
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
|
|
TopCand.Policy != TopPolicy) {
|
|
TopCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(TopCand));
|
|
}
|
|
|
|
// Pick best from BotCand and TopCand.
|
|
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
|
|
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
|
|
SchedCandidate Cand;
|
|
if (TopCand.Reason == BotCand.Reason) {
|
|
Cand = BotCand;
|
|
GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
|
|
TopCand.Reason = NoCand;
|
|
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
|
|
if (TopCand.Reason != NoCand) {
|
|
Cand.setBest(TopCand);
|
|
} else {
|
|
TopCand.Reason = TopReason;
|
|
}
|
|
} else {
|
|
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
Cand = TopCand;
|
|
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
Cand = BotCand;
|
|
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
Cand = TopCand;
|
|
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
Cand = BotCand;
|
|
} else {
|
|
if (BotCand.Reason > TopCand.Reason) {
|
|
Cand = TopCand;
|
|
} else {
|
|
Cand = BotCand;
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
|
|
|
|
IsTopNode = Cand.AtTop;
|
|
return Cand.SU;
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNode()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return nullptr;
|
|
}
|
|
SUnit *SU;
|
|
do {
|
|
if (RegionPolicy.OnlyTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
TopCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (RegionPolicy.OnlyBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
BotCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidirectional(IsTopNode);
|
|
}
|
|
} while (SU->isScheduled);
|
|
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
|
|
<< *SU->getInstr());
|
|
return SU;
|
|
}
|
|
|
|
GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
|
|
std::unique_ptr<MachineSchedStrategy> S) :
|
|
ScheduleDAGMILive(C, std::move(S)),
|
|
ST(MF.getSubtarget<SISubtarget>()),
|
|
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
|
|
StartingOccupancy(std::min(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(),
|
|
MF.getFunction()),
|
|
MFI.getMaxWavesPerEU())),
|
|
MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
|
|
|
|
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::schedule() {
|
|
if (Stage == 0) {
|
|
// Just record regions at the first pass.
|
|
Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
|
|
return;
|
|
}
|
|
|
|
std::vector<MachineInstr*> Unsched;
|
|
Unsched.reserve(NumRegionInstrs);
|
|
for (auto &I : *this) {
|
|
Unsched.push_back(&I);
|
|
}
|
|
|
|
GCNRegPressure PressureBefore;
|
|
if (LIS) {
|
|
PressureBefore = Pressure[RegionIdx];
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
|
|
GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
|
|
dbgs() << "Region live-in pressure: ";
|
|
llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
|
|
dbgs() << "Region register pressure: ";
|
|
PressureBefore.print(dbgs()));
|
|
}
|
|
|
|
ScheduleDAGMILive::schedule();
|
|
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
|
|
|
|
if (!LIS)
|
|
return;
|
|
|
|
// Check the results of scheduling.
|
|
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
|
|
auto PressureAfter = getRealRegPressure();
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
|
|
PressureAfter.print(dbgs()));
|
|
|
|
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
|
|
PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
|
|
Pressure[RegionIdx] = PressureAfter;
|
|
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
|
|
return;
|
|
}
|
|
unsigned WavesAfter = getMaxWaves(PressureAfter.getSGPRNum(),
|
|
PressureAfter.getVGPRNum(), MF);
|
|
unsigned WavesBefore = getMaxWaves(PressureBefore.getSGPRNum(),
|
|
PressureBefore.getVGPRNum(), MF);
|
|
WavesAfter = std::min(WavesAfter, MFI.getMaxWavesPerEU());
|
|
WavesBefore = std::min(WavesBefore, MFI.getMaxWavesPerEU());
|
|
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
|
|
<< ", after " << WavesAfter << ".\n");
|
|
|
|
// We could not keep current target occupancy because of the just scheduled
|
|
// region. Record new occupancy for next scheduling cycle.
|
|
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
|
|
// Allow memory bound functions to drop to 4 waves if not limited by an
|
|
// attribute.
|
|
unsigned MinMemBoundWaves = std::max(MFI.getMinWavesPerEU(), 4u);
|
|
if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
|
|
WavesAfter >= MinMemBoundWaves &&
|
|
(MFI.isMemoryBound() || MFI.needsWaveLimiter())) {
|
|
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
|
|
<< MinMemBoundWaves << " waves\n");
|
|
NewOccupancy = WavesAfter;
|
|
}
|
|
if (NewOccupancy < MinOccupancy) {
|
|
MinOccupancy = NewOccupancy;
|
|
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
|
|
<< MinOccupancy << ".\n");
|
|
}
|
|
|
|
if (WavesAfter >= MinOccupancy) {
|
|
Pressure[RegionIdx] = PressureAfter;
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
|
|
RegionEnd = RegionBegin;
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->isDebugInstr())
|
|
continue;
|
|
|
|
if (MI->getIterator() != RegionEnd) {
|
|
BB->remove(MI);
|
|
BB->insert(RegionEnd, MI);
|
|
if (!MI->isDebugInstr())
|
|
LIS->handleMove(*MI, true);
|
|
}
|
|
// Reset read-undef flags and update them later.
|
|
for (auto &Op : MI->operands())
|
|
if (Op.isReg() && Op.isDef())
|
|
Op.setIsUndef(false);
|
|
RegisterOperands RegOpers;
|
|
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
|
|
if (!MI->isDebugInstr()) {
|
|
if (ShouldTrackLaneMasks) {
|
|
// Adjust liveness and add missing dead+read-undef flags.
|
|
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
|
|
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
|
|
} else {
|
|
// Adjust for missing dead-def flags.
|
|
RegOpers.detectDeadDefs(*MI, *LIS);
|
|
}
|
|
}
|
|
RegionEnd = MI->getIterator();
|
|
++RegionEnd;
|
|
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
|
|
}
|
|
RegionBegin = Unsched.front()->getIterator();
|
|
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
|
|
|
|
placeDebugValues();
|
|
}
|
|
|
|
GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
|
|
return RPTracker.moveMaxPressure();
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
|
|
// If the block has the only successor then live-ins of that successor are
|
|
// live-outs of the current block. We can reuse calculated live set if the
|
|
// successor will be sent to scheduling past current block.
|
|
const MachineBasicBlock *OnlySucc = nullptr;
|
|
if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
|
|
SlotIndexes *Ind = LIS->getSlotIndexes();
|
|
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
|
|
OnlySucc = *MBB->succ_begin();
|
|
}
|
|
|
|
// Scheduler sends regions from the end of the block upwards.
|
|
size_t CurRegion = RegionIdx;
|
|
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
|
|
if (Regions[CurRegion].first->getParent() != MBB)
|
|
break;
|
|
--CurRegion;
|
|
|
|
auto I = MBB->begin();
|
|
auto LiveInIt = MBBLiveIns.find(MBB);
|
|
if (LiveInIt != MBBLiveIns.end()) {
|
|
auto LiveIn = std::move(LiveInIt->second);
|
|
RPTracker.reset(*MBB->begin(), &LiveIn);
|
|
MBBLiveIns.erase(LiveInIt);
|
|
} else {
|
|
I = Regions[CurRegion].first;
|
|
RPTracker.reset(*I);
|
|
}
|
|
|
|
for ( ; ; ) {
|
|
I = RPTracker.getNext();
|
|
|
|
if (Regions[CurRegion].first == I) {
|
|
LiveIns[CurRegion] = RPTracker.getLiveRegs();
|
|
RPTracker.clearMaxPressure();
|
|
}
|
|
|
|
if (Regions[CurRegion].second == I) {
|
|
Pressure[CurRegion] = RPTracker.moveMaxPressure();
|
|
if (CurRegion-- == RegionIdx)
|
|
break;
|
|
}
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advanceBeforeNext();
|
|
}
|
|
|
|
if (OnlySucc) {
|
|
if (I != MBB->end()) {
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advance(MBB->end());
|
|
}
|
|
RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
|
|
RPTracker.advanceBeforeNext();
|
|
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
|
|
}
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::finalizeSchedule() {
|
|
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
|
|
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
|
|
|
|
LiveIns.resize(Regions.size());
|
|
Pressure.resize(Regions.size());
|
|
|
|
do {
|
|
Stage++;
|
|
RegionIdx = 0;
|
|
MachineBasicBlock *MBB = nullptr;
|
|
|
|
if (Stage > 1) {
|
|
// Retry function scheduling if we found resulting occupancy and it is
|
|
// lower than used for first pass scheduling. This will give more freedom
|
|
// to schedule low register pressure blocks.
|
|
// Code is partially copied from MachineSchedulerBase::scheduleRegions().
|
|
|
|
if (!LIS || StartingOccupancy <= MinOccupancy)
|
|
break;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Retrying function scheduling with lowest recorded occupancy "
|
|
<< MinOccupancy << ".\n");
|
|
|
|
S.setTargetOccupancy(MinOccupancy);
|
|
}
|
|
|
|
for (auto Region : Regions) {
|
|
RegionBegin = Region.first;
|
|
RegionEnd = Region.second;
|
|
|
|
if (RegionBegin->getParent() != MBB) {
|
|
if (MBB) finishBlock();
|
|
MBB = RegionBegin->getParent();
|
|
startBlock(MBB);
|
|
if (Stage == 1)
|
|
computeBlockPressure(MBB);
|
|
}
|
|
|
|
unsigned NumRegionInstrs = std::distance(begin(), end());
|
|
enterRegion(MBB, begin(), end(), NumRegionInstrs);
|
|
|
|
// Skip empty scheduling regions (0 or 1 schedulable instructions).
|
|
if (begin() == end() || begin() == std::prev(end())) {
|
|
exitRegion();
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
|
|
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
|
|
<< MBB->getName() << "\n From: " << *begin()
|
|
<< " To: ";
|
|
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
|
|
else dbgs() << "End";
|
|
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
|
|
|
|
schedule();
|
|
|
|
exitRegion();
|
|
++RegionIdx;
|
|
}
|
|
finishBlock();
|
|
|
|
} while (Stage < 2);
|
|
}
|