forked from OSchip/llvm-project
1177 lines
43 KiB
C++
1177 lines
43 KiB
C++
//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines ExprEngine's support for C expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using llvm::APSInt;
|
|
|
|
/// Optionally conjure and return a symbol for offset when processing
|
|
/// an expression \p Expression.
|
|
/// If \p Other is a location, conjure a symbol for \p Symbol
|
|
/// (offset) if it is unknown so that memory arithmetic always
|
|
/// results in an ElementRegion.
|
|
/// \p Count The number of times the current basic block was visited.
|
|
static SVal conjureOffsetSymbolOnLocation(
|
|
SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
|
|
unsigned Count, const LocationContext *LCtx) {
|
|
QualType Ty = Expression->getType();
|
|
if (Other.getAs<Loc>() &&
|
|
Ty->isIntegralOrEnumerationType() &&
|
|
Symbol.isUnknown()) {
|
|
return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
|
|
}
|
|
return Symbol;
|
|
}
|
|
|
|
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
Expr *LHS = B->getLHS()->IgnoreParens();
|
|
Expr *RHS = B->getRHS()->IgnoreParens();
|
|
|
|
// FIXME: Prechecks eventually go in ::Visit().
|
|
ExplodedNodeSet CheckedSet;
|
|
ExplodedNodeSet Tmp2;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
|
|
|
|
// With both the LHS and RHS evaluated, process the operation itself.
|
|
for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
|
|
it != ei; ++it) {
|
|
|
|
ProgramStateRef state = (*it)->getState();
|
|
const LocationContext *LCtx = (*it)->getLocationContext();
|
|
SVal LeftV = state->getSVal(LHS, LCtx);
|
|
SVal RightV = state->getSVal(RHS, LCtx);
|
|
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
if (Op == BO_Assign) {
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
if (RightV.isUnknown()) {
|
|
unsigned Count = currBldrCtx->blockCount();
|
|
RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
|
|
Count);
|
|
}
|
|
// Simulate the effects of a "store": bind the value of the RHS
|
|
// to the L-Value represented by the LHS.
|
|
SVal ExprVal = B->isGLValue() ? LeftV : RightV;
|
|
evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
|
|
LeftV, RightV);
|
|
continue;
|
|
}
|
|
|
|
if (!B->isAssignmentOp()) {
|
|
StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
|
|
|
|
if (B->isAdditiveOp()) {
|
|
// TODO: This can be removed after we enable history tracking with
|
|
// SymSymExpr.
|
|
unsigned Count = currBldrCtx->blockCount();
|
|
RightV = conjureOffsetSymbolOnLocation(
|
|
RightV, LeftV, RHS, svalBuilder, Count, LCtx);
|
|
LeftV = conjureOffsetSymbolOnLocation(
|
|
LeftV, RightV, LHS, svalBuilder, Count, LCtx);
|
|
}
|
|
|
|
// Although we don't yet model pointers-to-members, we do need to make
|
|
// sure that the members of temporaries have a valid 'this' pointer for
|
|
// other checks.
|
|
if (B->getOpcode() == BO_PtrMemD)
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
|
|
|
|
// Process non-assignments except commas or short-circuited
|
|
// logical expressions (LAnd and LOr).
|
|
SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
|
|
if (!Result.isUnknown()) {
|
|
state = state->BindExpr(B, LCtx, Result);
|
|
} else {
|
|
// If we cannot evaluate the operation escape the operands.
|
|
state = escapeValues(state, LeftV, PSK_EscapeOther);
|
|
state = escapeValues(state, RightV, PSK_EscapeOther);
|
|
}
|
|
|
|
Bldr.generateNode(B, *it, state);
|
|
continue;
|
|
}
|
|
|
|
assert (B->isCompoundAssignmentOp());
|
|
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Invalid opcode for compound assignment.");
|
|
case BO_MulAssign: Op = BO_Mul; break;
|
|
case BO_DivAssign: Op = BO_Div; break;
|
|
case BO_RemAssign: Op = BO_Rem; break;
|
|
case BO_AddAssign: Op = BO_Add; break;
|
|
case BO_SubAssign: Op = BO_Sub; break;
|
|
case BO_ShlAssign: Op = BO_Shl; break;
|
|
case BO_ShrAssign: Op = BO_Shr; break;
|
|
case BO_AndAssign: Op = BO_And; break;
|
|
case BO_XorAssign: Op = BO_Xor; break;
|
|
case BO_OrAssign: Op = BO_Or; break;
|
|
}
|
|
|
|
// Perform a load (the LHS). This performs the checks for
|
|
// null dereferences, and so on.
|
|
ExplodedNodeSet Tmp;
|
|
SVal location = LeftV;
|
|
evalLoad(Tmp, B, LHS, *it, state, location);
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
|
|
++I) {
|
|
|
|
state = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
SVal V = state->getSVal(LHS, LCtx);
|
|
|
|
// Get the computation type.
|
|
QualType CTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationResultType();
|
|
CTy = getContext().getCanonicalType(CTy);
|
|
|
|
QualType CLHSTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationLHSType();
|
|
CLHSTy = getContext().getCanonicalType(CLHSTy);
|
|
|
|
QualType LTy = getContext().getCanonicalType(LHS->getType());
|
|
|
|
// Promote LHS.
|
|
V = svalBuilder.evalCast(V, CLHSTy, LTy);
|
|
|
|
// Compute the result of the operation.
|
|
SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
|
|
B->getType(), CTy);
|
|
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
|
|
SVal LHSVal;
|
|
|
|
if (Result.isUnknown()) {
|
|
// The symbolic value is actually for the type of the left-hand side
|
|
// expression, not the computation type, as this is the value the
|
|
// LValue on the LHS will bind to.
|
|
LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
|
|
currBldrCtx->blockCount());
|
|
// However, we need to convert the symbol to the computation type.
|
|
Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
|
|
}
|
|
else {
|
|
// The left-hand side may bind to a different value then the
|
|
// computation type.
|
|
LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
|
|
}
|
|
|
|
// In C++, assignment and compound assignment operators return an
|
|
// lvalue.
|
|
if (B->isGLValue())
|
|
state = state->BindExpr(B, LCtx, location);
|
|
else
|
|
state = state->BindExpr(B, LCtx, Result);
|
|
|
|
evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
|
|
}
|
|
}
|
|
|
|
// FIXME: postvisits eventually go in ::Visit()
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
CanQualType T = getContext().getCanonicalType(BE->getType());
|
|
|
|
const BlockDecl *BD = BE->getBlockDecl();
|
|
// Get the value of the block itself.
|
|
SVal V = svalBuilder.getBlockPointer(BD, T,
|
|
Pred->getLocationContext(),
|
|
currBldrCtx->blockCount());
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
// If we created a new MemRegion for the block, we should explicitly bind
|
|
// the captured variables.
|
|
if (const BlockDataRegion *BDR =
|
|
dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
|
|
|
|
BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
|
|
E = BDR->referenced_vars_end();
|
|
|
|
auto CI = BD->capture_begin();
|
|
auto CE = BD->capture_end();
|
|
for (; I != E; ++I) {
|
|
const VarRegion *capturedR = I.getCapturedRegion();
|
|
const TypedValueRegion *originalR = I.getOriginalRegion();
|
|
|
|
// If the capture had a copy expression, use the result of evaluating
|
|
// that expression, otherwise use the original value.
|
|
// We rely on the invariant that the block declaration's capture variables
|
|
// are a prefix of the BlockDataRegion's referenced vars (which may include
|
|
// referenced globals, etc.) to enable fast lookup of the capture for a
|
|
// given referenced var.
|
|
const Expr *copyExpr = nullptr;
|
|
if (CI != CE) {
|
|
assert(CI->getVariable() == capturedR->getDecl());
|
|
copyExpr = CI->getCopyExpr();
|
|
CI++;
|
|
}
|
|
|
|
if (capturedR != originalR) {
|
|
SVal originalV;
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
if (copyExpr) {
|
|
originalV = State->getSVal(copyExpr, LCtx);
|
|
} else {
|
|
originalV = State->getSVal(loc::MemRegionVal(originalR));
|
|
}
|
|
State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
|
|
}
|
|
}
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
|
|
Bldr.generateNode(BE, Pred,
|
|
State->BindExpr(BE, Pred->getLocationContext(), V),
|
|
nullptr, ProgramPoint::PostLValueKind);
|
|
|
|
// FIXME: Move all post/pre visits to ::Visit().
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::handleLValueBitCast(
|
|
ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
|
|
QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
|
|
ExplodedNode* Pred) {
|
|
if (T->isLValueReferenceType()) {
|
|
assert(!CastE->getType()->isLValueReferenceType());
|
|
ExTy = getContext().getLValueReferenceType(ExTy);
|
|
} else if (T->isRValueReferenceType()) {
|
|
assert(!CastE->getType()->isRValueReferenceType());
|
|
ExTy = getContext().getRValueReferenceType(ExTy);
|
|
}
|
|
// Delegate to SValBuilder to process.
|
|
SVal OrigV = state->getSVal(Ex, LCtx);
|
|
SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
|
|
// Negate the result if we're treating the boolean as a signed i1
|
|
if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
|
|
V = evalMinus(V);
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
if (V.isUnknown() && !OrigV.isUnknown()) {
|
|
state = escapeValues(state, OrigV, PSK_EscapeOther);
|
|
}
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
|
|
return state;
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::handleLVectorSplat(
|
|
ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
|
|
StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
|
|
// Recover some path sensitivity by conjuring a new value.
|
|
QualType resultType = CastE->getType();
|
|
if (CastE->isGLValue())
|
|
resultType = getContext().getPointerType(resultType);
|
|
SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
|
|
resultType,
|
|
currBldrCtx->blockCount());
|
|
state = state->BindExpr(CastE, LCtx, result);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
|
|
return state;
|
|
}
|
|
|
|
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
|
|
ExplodedNodeSet dstPreStmt;
|
|
getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
|
|
|
|
if (CastE->getCastKind() == CK_LValueToRValue) {
|
|
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *subExprNode = *I;
|
|
ProgramStateRef state = subExprNode->getState();
|
|
const LocationContext *LCtx = subExprNode->getLocationContext();
|
|
evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// All other casts.
|
|
QualType T = CastE->getType();
|
|
QualType ExTy = Ex->getType();
|
|
|
|
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
|
|
T = ExCast->getTypeAsWritten();
|
|
|
|
StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
|
|
I != E; ++I) {
|
|
|
|
Pred = *I;
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
switch (CastE->getCastKind()) {
|
|
case CK_LValueToRValue:
|
|
llvm_unreachable("LValueToRValue casts handled earlier.");
|
|
case CK_ToVoid:
|
|
continue;
|
|
// The analyzer doesn't do anything special with these casts,
|
|
// since it understands retain/release semantics already.
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject: // Fall-through.
|
|
case CK_CopyAndAutoreleaseBlockObject:
|
|
// The analyser can ignore atomic casts for now, although some future
|
|
// checkers may want to make certain that you're not modifying the same
|
|
// value through atomic and nonatomic pointers.
|
|
case CK_AtomicToNonAtomic:
|
|
case CK_NonAtomicToAtomic:
|
|
// True no-ops.
|
|
case CK_NoOp:
|
|
case CK_ConstructorConversion:
|
|
case CK_UserDefinedConversion:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_BuiltinFnToFnPtr: {
|
|
// Copy the SVal of Ex to CastE.
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_PointerToBoolean: {
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
auto PTMSV = V.getAs<nonloc::PointerToMember>();
|
|
if (PTMSV)
|
|
V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
|
|
if (V.isUndef() || PTMSV) {
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
// Explicitly proceed with default handler for this case cascade.
|
|
state =
|
|
handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
|
|
continue;
|
|
}
|
|
case CK_Dependent:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_BitCast:
|
|
case CK_LValueToRValueBitCast:
|
|
case CK_AddressSpaceConversion:
|
|
case CK_BooleanToSignedIntegral:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral: {
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
if (V.getAs<nonloc::PointerToMember>()) {
|
|
state = state->BindExpr(CastE, LCtx, UnknownVal());
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
// Explicitly proceed with default handler for this case cascade.
|
|
state =
|
|
handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
|
|
continue;
|
|
}
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ObjCObjectLValueCast:
|
|
case CK_ZeroToOCLOpaqueType:
|
|
case CK_IntToOCLSampler:
|
|
case CK_LValueBitCast:
|
|
case CK_FloatingToFixedPoint:
|
|
case CK_FixedPointToFloating:
|
|
case CK_FixedPointCast:
|
|
case CK_FixedPointToBoolean:
|
|
case CK_FixedPointToIntegral:
|
|
case CK_IntegralToFixedPoint: {
|
|
state =
|
|
handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
|
|
continue;
|
|
}
|
|
case CK_IntegralCast: {
|
|
// Delegate to SValBuilder to process.
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase: {
|
|
// For DerivedToBase cast, delegate to the store manager.
|
|
SVal val = state->getSVal(Ex, LCtx);
|
|
val = getStoreManager().evalDerivedToBase(val, CastE);
|
|
state = state->BindExpr(CastE, LCtx, val);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
// Handle C++ dyn_cast.
|
|
case CK_Dynamic: {
|
|
SVal val = state->getSVal(Ex, LCtx);
|
|
|
|
// Compute the type of the result.
|
|
QualType resultType = CastE->getType();
|
|
if (CastE->isGLValue())
|
|
resultType = getContext().getPointerType(resultType);
|
|
|
|
bool Failed = false;
|
|
|
|
// Check if the value being cast evaluates to 0.
|
|
if (val.isZeroConstant())
|
|
Failed = true;
|
|
// Else, evaluate the cast.
|
|
else
|
|
val = getStoreManager().attemptDownCast(val, T, Failed);
|
|
|
|
if (Failed) {
|
|
if (T->isReferenceType()) {
|
|
// A bad_cast exception is thrown if input value is a reference.
|
|
// Currently, we model this, by generating a sink.
|
|
Bldr.generateSink(CastE, Pred, state);
|
|
continue;
|
|
} else {
|
|
// If the cast fails on a pointer, bind to 0.
|
|
state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
|
|
}
|
|
} else {
|
|
// If we don't know if the cast succeeded, conjure a new symbol.
|
|
if (val.isUnknown()) {
|
|
DefinedOrUnknownSVal NewSym =
|
|
svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
|
|
currBldrCtx->blockCount());
|
|
state = state->BindExpr(CastE, LCtx, NewSym);
|
|
} else
|
|
// Else, bind to the derived region value.
|
|
state = state->BindExpr(CastE, LCtx, val);
|
|
}
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_BaseToDerived: {
|
|
SVal val = state->getSVal(Ex, LCtx);
|
|
QualType resultType = CastE->getType();
|
|
if (CastE->isGLValue())
|
|
resultType = getContext().getPointerType(resultType);
|
|
|
|
bool Failed = false;
|
|
|
|
if (!val.isConstant()) {
|
|
val = getStoreManager().attemptDownCast(val, T, Failed);
|
|
}
|
|
|
|
// Failed to cast or the result is unknown, fall back to conservative.
|
|
if (Failed || val.isUnknown()) {
|
|
val =
|
|
svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
|
|
currBldrCtx->blockCount());
|
|
}
|
|
state = state->BindExpr(CastE, LCtx, val);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_NullToPointer: {
|
|
SVal V = svalBuilder.makeNull();
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_NullToMemberPointer: {
|
|
SVal V = svalBuilder.getMemberPointer(nullptr);
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_ReinterpretMemberPointer: {
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
|
|
SVal CastedPTMSV =
|
|
svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
|
|
CastE->path(), *PTMSV, CastE->getCastKind()));
|
|
state = state->BindExpr(CastE, LCtx, CastedPTMSV);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
// Explicitly proceed with default handler for this case cascade.
|
|
state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
|
|
continue;
|
|
}
|
|
// Various C++ casts that are not handled yet.
|
|
case CK_ToUnion:
|
|
case CK_VectorSplat: {
|
|
state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
const Expr *Init = CL->getInitializer();
|
|
SVal V = State->getSVal(CL->getInitializer(), LCtx);
|
|
|
|
if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
|
|
// No work needed. Just pass the value up to this expression.
|
|
} else {
|
|
assert(isa<InitListExpr>(Init));
|
|
Loc CLLoc = State->getLValue(CL, LCtx);
|
|
State = State->bindLoc(CLLoc, V, LCtx);
|
|
|
|
if (CL->isGLValue())
|
|
V = CLLoc;
|
|
}
|
|
|
|
B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
|
|
}
|
|
|
|
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
if (isa<TypedefNameDecl>(*DS->decl_begin())) {
|
|
// C99 6.7.7 "Any array size expressions associated with variable length
|
|
// array declarators are evaluated each time the declaration of the typedef
|
|
// name is reached in the order of execution."
|
|
// The checkers should know about typedef to be able to handle VLA size
|
|
// expressions.
|
|
ExplodedNodeSet DstPre;
|
|
getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
|
|
return;
|
|
}
|
|
|
|
// Assumption: The CFG has one DeclStmt per Decl.
|
|
const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
|
|
|
|
if (!VD) {
|
|
//TODO:AZ: remove explicit insertion after refactoring is done.
|
|
Dst.insert(Pred);
|
|
return;
|
|
}
|
|
|
|
// FIXME: all pre/post visits should eventually be handled by ::Visit().
|
|
ExplodedNodeSet dstPreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
|
|
|
|
ExplodedNodeSet dstEvaluated;
|
|
StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *N = *I;
|
|
ProgramStateRef state = N->getState();
|
|
const LocationContext *LC = N->getLocationContext();
|
|
|
|
// Decls without InitExpr are not initialized explicitly.
|
|
if (const Expr *InitEx = VD->getInit()) {
|
|
|
|
// Note in the state that the initialization has occurred.
|
|
ExplodedNode *UpdatedN = N;
|
|
SVal InitVal = state->getSVal(InitEx, LC);
|
|
|
|
assert(DS->isSingleDecl());
|
|
if (getObjectUnderConstruction(state, DS, LC)) {
|
|
state = finishObjectConstruction(state, DS, LC);
|
|
// We constructed the object directly in the variable.
|
|
// No need to bind anything.
|
|
B.generateNode(DS, UpdatedN, state);
|
|
} else {
|
|
// Recover some path-sensitivity if a scalar value evaluated to
|
|
// UnknownVal.
|
|
if (InitVal.isUnknown()) {
|
|
QualType Ty = InitEx->getType();
|
|
if (InitEx->isGLValue()) {
|
|
Ty = getContext().getPointerType(Ty);
|
|
}
|
|
|
|
InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
|
|
currBldrCtx->blockCount());
|
|
}
|
|
|
|
|
|
B.takeNodes(UpdatedN);
|
|
ExplodedNodeSet Dst2;
|
|
evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
|
|
B.addNodes(Dst2);
|
|
}
|
|
}
|
|
else {
|
|
B.generateNode(DS, N, state);
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// This method acts upon CFG elements for logical operators && and ||
|
|
// and attaches the value (true or false) to them as expressions.
|
|
// It doesn't produce any state splits.
|
|
// If we made it that far, we're past the point when we modeled the short
|
|
// circuit. It means that we should have precise knowledge about whether
|
|
// we've short-circuited. If we did, we already know the value we need to
|
|
// bind. If we didn't, the value of the RHS (casted to the boolean type)
|
|
// is the answer.
|
|
// Currently this method tries to figure out whether we've short-circuited
|
|
// by looking at the ExplodedGraph. This method is imperfect because there
|
|
// could inevitably have been merges that would have resulted in multiple
|
|
// potential path traversal histories. We bail out when we fail.
|
|
// Due to this ambiguity, a more reliable solution would have been to
|
|
// track the short circuit operation history path-sensitively until
|
|
// we evaluate the respective logical operator.
|
|
assert(B->getOpcode() == BO_LAnd ||
|
|
B->getOpcode() == BO_LOr);
|
|
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
ProgramStateRef state = Pred->getState();
|
|
|
|
if (B->getType()->isVectorType()) {
|
|
// FIXME: We do not model vector arithmetic yet. When adding support for
|
|
// that, note that the CFG-based reasoning below does not apply, because
|
|
// logical operators on vectors are not short-circuit. Currently they are
|
|
// modeled as short-circuit in Clang CFG but this is incorrect.
|
|
// Do not set the value for the expression. It'd be UnknownVal by default.
|
|
Bldr.generateNode(B, Pred, state);
|
|
return;
|
|
}
|
|
|
|
ExplodedNode *N = Pred;
|
|
while (!N->getLocation().getAs<BlockEntrance>()) {
|
|
ProgramPoint P = N->getLocation();
|
|
assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
|
|
(void) P;
|
|
if (N->pred_size() != 1) {
|
|
// We failed to track back where we came from.
|
|
Bldr.generateNode(B, Pred, state);
|
|
return;
|
|
}
|
|
N = *N->pred_begin();
|
|
}
|
|
|
|
if (N->pred_size() != 1) {
|
|
// We failed to track back where we came from.
|
|
Bldr.generateNode(B, Pred, state);
|
|
return;
|
|
}
|
|
|
|
N = *N->pred_begin();
|
|
BlockEdge BE = N->getLocation().castAs<BlockEdge>();
|
|
SVal X;
|
|
|
|
// Determine the value of the expression by introspecting how we
|
|
// got this location in the CFG. This requires looking at the previous
|
|
// block we were in and what kind of control-flow transfer was involved.
|
|
const CFGBlock *SrcBlock = BE.getSrc();
|
|
// The only terminator (if there is one) that makes sense is a logical op.
|
|
CFGTerminator T = SrcBlock->getTerminator();
|
|
if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
|
|
(void) Term;
|
|
assert(Term->isLogicalOp());
|
|
assert(SrcBlock->succ_size() == 2);
|
|
// Did we take the true or false branch?
|
|
unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
|
|
X = svalBuilder.makeIntVal(constant, B->getType());
|
|
}
|
|
else {
|
|
// If there is no terminator, by construction the last statement
|
|
// in SrcBlock is the value of the enclosing expression.
|
|
// However, we still need to constrain that value to be 0 or 1.
|
|
assert(!SrcBlock->empty());
|
|
CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
|
|
const Expr *RHS = cast<Expr>(Elem.getStmt());
|
|
SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
|
|
|
|
if (RHSVal.isUndef()) {
|
|
X = RHSVal;
|
|
} else {
|
|
// We evaluate "RHSVal != 0" expression which result in 0 if the value is
|
|
// known to be false, 1 if the value is known to be true and a new symbol
|
|
// when the assumption is unknown.
|
|
nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
|
|
X = evalBinOp(N->getState(), BO_NE,
|
|
svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
|
|
Zero, B->getType());
|
|
}
|
|
}
|
|
Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
|
|
}
|
|
|
|
void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
QualType T = getContext().getCanonicalType(IE->getType());
|
|
unsigned NumInitElements = IE->getNumInits();
|
|
|
|
if (!IE->isGLValue() && !IE->isTransparent() &&
|
|
(T->isArrayType() || T->isRecordType() || T->isVectorType() ||
|
|
T->isAnyComplexType())) {
|
|
llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
|
|
|
|
// Handle base case where the initializer has no elements.
|
|
// e.g: static int* myArray[] = {};
|
|
if (NumInitElements == 0) {
|
|
SVal V = svalBuilder.makeCompoundVal(T, vals);
|
|
B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
|
|
return;
|
|
}
|
|
|
|
for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
|
|
ei = IE->rend(); it != ei; ++it) {
|
|
SVal V = state->getSVal(cast<Expr>(*it), LCtx);
|
|
vals = getBasicVals().prependSVal(V, vals);
|
|
}
|
|
|
|
B.generateNode(IE, Pred,
|
|
state->BindExpr(IE, LCtx,
|
|
svalBuilder.makeCompoundVal(T, vals)));
|
|
return;
|
|
}
|
|
|
|
// Handle scalars: int{5} and int{} and GLvalues.
|
|
// Note, if the InitListExpr is a GLvalue, it means that there is an address
|
|
// representing it, so it must have a single init element.
|
|
assert(NumInitElements <= 1);
|
|
|
|
SVal V;
|
|
if (NumInitElements == 0)
|
|
V = getSValBuilder().makeZeroVal(T);
|
|
else
|
|
V = state->getSVal(IE->getInit(0), LCtx);
|
|
|
|
B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
|
|
}
|
|
|
|
void ExprEngine::VisitGuardedExpr(const Expr *Ex,
|
|
const Expr *L,
|
|
const Expr *R,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
assert(L && R);
|
|
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
const CFGBlock *SrcBlock = nullptr;
|
|
|
|
// Find the predecessor block.
|
|
ProgramStateRef SrcState = state;
|
|
for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
|
|
ProgramPoint PP = N->getLocation();
|
|
if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
|
|
// If the state N has multiple predecessors P, it means that successors
|
|
// of P are all equivalent.
|
|
// In turn, that means that all nodes at P are equivalent in terms
|
|
// of observable behavior at N, and we can follow any of them.
|
|
// FIXME: a more robust solution which does not walk up the tree.
|
|
continue;
|
|
}
|
|
SrcBlock = PP.castAs<BlockEdge>().getSrc();
|
|
SrcState = N->getState();
|
|
break;
|
|
}
|
|
|
|
assert(SrcBlock && "missing function entry");
|
|
|
|
// Find the last expression in the predecessor block. That is the
|
|
// expression that is used for the value of the ternary expression.
|
|
bool hasValue = false;
|
|
SVal V;
|
|
|
|
for (CFGElement CE : llvm::reverse(*SrcBlock)) {
|
|
if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
|
|
const Expr *ValEx = cast<Expr>(CS->getStmt());
|
|
ValEx = ValEx->IgnoreParens();
|
|
|
|
// For GNU extension '?:' operator, the left hand side will be an
|
|
// OpaqueValueExpr, so get the underlying expression.
|
|
if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
|
|
L = OpaqueEx->getSourceExpr();
|
|
|
|
// If the last expression in the predecessor block matches true or false
|
|
// subexpression, get its the value.
|
|
if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
|
|
hasValue = true;
|
|
V = SrcState->getSVal(ValEx, LCtx);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!hasValue)
|
|
V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
|
|
currBldrCtx->blockCount());
|
|
|
|
// Generate a new node with the binding from the appropriate path.
|
|
B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
|
|
}
|
|
|
|
void ExprEngine::
|
|
VisitOffsetOfExpr(const OffsetOfExpr *OOE,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
Expr::EvalResult Result;
|
|
if (OOE->EvaluateAsInt(Result, getContext())) {
|
|
APSInt IV = Result.Val.getInt();
|
|
assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
|
|
assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
|
|
assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
|
|
SVal X = svalBuilder.makeIntVal(IV);
|
|
B.generateNode(OOE, Pred,
|
|
Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
|
|
X));
|
|
}
|
|
// FIXME: Handle the case where __builtin_offsetof is not a constant.
|
|
}
|
|
|
|
|
|
void ExprEngine::
|
|
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// FIXME: Prechecks eventually go in ::Visit().
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
|
|
|
|
ExplodedNodeSet EvalSet;
|
|
StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
|
|
|
|
QualType T = Ex->getTypeOfArgument();
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I != E; ++I) {
|
|
if (Ex->getKind() == UETT_SizeOf) {
|
|
if (!T->isIncompleteType() && !T->isConstantSizeType()) {
|
|
assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
|
|
|
|
// FIXME: Add support for VLA type arguments and VLA expressions.
|
|
// When that happens, we should probably refactor VLASizeChecker's code.
|
|
continue;
|
|
} else if (T->getAs<ObjCObjectType>()) {
|
|
// Some code tries to take the sizeof an ObjCObjectType, relying that
|
|
// the compiler has laid out its representation. Just report Unknown
|
|
// for these.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
APSInt Value = Ex->EvaluateKnownConstInt(getContext());
|
|
CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
|
|
|
|
ProgramStateRef state = (*I)->getState();
|
|
state = state->BindExpr(Ex, (*I)->getLocationContext(),
|
|
svalBuilder.makeIntVal(amt.getQuantity(),
|
|
Ex->getType()));
|
|
Bldr.generateNode(Ex, *I, state);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
|
|
}
|
|
|
|
void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
|
|
const UnaryOperator *U,
|
|
StmtNodeBuilder &Bldr) {
|
|
// FIXME: We can probably just have some magic in Environment::getSVal()
|
|
// that propagates values, instead of creating a new node here.
|
|
//
|
|
// Unary "+" is a no-op, similar to a parentheses. We still have places
|
|
// where it may be a block-level expression, so we need to
|
|
// generate an extra node that just propagates the value of the
|
|
// subexpression.
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
ProgramStateRef state = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
|
|
state->getSVal(Ex, LCtx)));
|
|
}
|
|
|
|
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// FIXME: Prechecks eventually go in ::Visit().
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
|
|
|
|
ExplodedNodeSet EvalSet;
|
|
StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I != E; ++I) {
|
|
switch (U->getOpcode()) {
|
|
default: {
|
|
Bldr.takeNodes(*I);
|
|
ExplodedNodeSet Tmp;
|
|
VisitIncrementDecrementOperator(U, *I, Tmp);
|
|
Bldr.addNodes(Tmp);
|
|
break;
|
|
}
|
|
case UO_Real: {
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
break;
|
|
}
|
|
|
|
// For all other types, UO_Real is an identity operation.
|
|
assert (U->getType() == Ex->getType());
|
|
ProgramStateRef state = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
|
|
state->getSVal(Ex, LCtx)));
|
|
break;
|
|
}
|
|
|
|
case UO_Imag: {
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
break;
|
|
}
|
|
// For all other types, UO_Imag returns 0.
|
|
ProgramStateRef state = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
SVal X = svalBuilder.makeZeroVal(Ex->getType());
|
|
Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
|
|
break;
|
|
}
|
|
|
|
case UO_AddrOf: {
|
|
// Process pointer-to-member address operation.
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
|
|
const ValueDecl *VD = DRE->getDecl();
|
|
|
|
if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
|
|
isa<IndirectFieldDecl>(VD)) {
|
|
ProgramStateRef State = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
|
|
Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
|
|
break;
|
|
}
|
|
}
|
|
// Explicitly proceed with default handler for this case cascade.
|
|
handleUOExtension(I, U, Bldr);
|
|
break;
|
|
}
|
|
case UO_Plus:
|
|
assert(!U->isGLValue());
|
|
LLVM_FALLTHROUGH;
|
|
case UO_Deref:
|
|
case UO_Extension: {
|
|
handleUOExtension(I, U, Bldr);
|
|
break;
|
|
}
|
|
|
|
case UO_LNot:
|
|
case UO_Minus:
|
|
case UO_Not: {
|
|
assert (!U->isGLValue());
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
ProgramStateRef state = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
|
|
// Get the value of the subexpression.
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
|
|
if (V.isUnknownOrUndef()) {
|
|
Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
|
|
break;
|
|
}
|
|
|
|
switch (U->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Invalid Opcode.");
|
|
case UO_Not:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
|
|
break;
|
|
case UO_Minus:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
|
|
break;
|
|
case UO_LNot:
|
|
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
|
|
//
|
|
// Note: technically we do "E == 0", but this is the same in the
|
|
// transfer functions as "0 == E".
|
|
SVal Result;
|
|
if (Optional<Loc> LV = V.getAs<Loc>()) {
|
|
Loc X = svalBuilder.makeNullWithType(Ex->getType());
|
|
Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
|
|
} else if (Ex->getType()->isFloatingType()) {
|
|
// FIXME: handle floating point types.
|
|
Result = UnknownVal();
|
|
} else {
|
|
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
|
|
Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
|
|
U->getType());
|
|
}
|
|
|
|
state = state->BindExpr(U, LCtx, Result);
|
|
break;
|
|
}
|
|
Bldr.generateNode(U, *I, state);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// Handle ++ and -- (both pre- and post-increment).
|
|
assert (U->isIncrementDecrementOp());
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal loc = state->getSVal(Ex, LCtx);
|
|
|
|
// Perform a load.
|
|
ExplodedNodeSet Tmp;
|
|
evalLoad(Tmp, U, Ex, Pred, state, loc);
|
|
|
|
ExplodedNodeSet Dst2;
|
|
StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
|
|
|
|
state = (*I)->getState();
|
|
assert(LCtx == (*I)->getLocationContext());
|
|
SVal V2_untested = state->getSVal(Ex, LCtx);
|
|
|
|
// Propagate unknown and undefined values.
|
|
if (V2_untested.isUnknownOrUndef()) {
|
|
state = state->BindExpr(U, LCtx, V2_untested);
|
|
|
|
// Perform the store, so that the uninitialized value detection happens.
|
|
Bldr.takeNodes(*I);
|
|
ExplodedNodeSet Dst3;
|
|
evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
|
|
Bldr.addNodes(Dst3);
|
|
|
|
continue;
|
|
}
|
|
DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
|
|
|
|
// Handle all other values.
|
|
BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
|
|
|
|
// If the UnaryOperator has non-location type, use its type to create the
|
|
// constant value. If the UnaryOperator has location type, create the
|
|
// constant with int type and pointer width.
|
|
SVal RHS;
|
|
SVal Result;
|
|
|
|
if (U->getType()->isAnyPointerType())
|
|
RHS = svalBuilder.makeArrayIndex(1);
|
|
else if (U->getType()->isIntegralOrEnumerationType())
|
|
RHS = svalBuilder.makeIntVal(1, U->getType());
|
|
else
|
|
RHS = UnknownVal();
|
|
|
|
// The use of an operand of type bool with the ++ operators is deprecated
|
|
// but valid until C++17. And if the operand of the ++ operator is of type
|
|
// bool, it is set to true until C++17. Note that for '_Bool', it is also
|
|
// set to true when it encounters ++ operator.
|
|
if (U->getType()->isBooleanType() && U->isIncrementOp())
|
|
Result = svalBuilder.makeTruthVal(true, U->getType());
|
|
else
|
|
Result = evalBinOp(state, Op, V2, RHS, U->getType());
|
|
|
|
// Conjure a new symbol if necessary to recover precision.
|
|
if (Result.isUnknown()){
|
|
DefinedOrUnknownSVal SymVal =
|
|
svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
|
|
currBldrCtx->blockCount());
|
|
Result = SymVal;
|
|
|
|
// If the value is a location, ++/-- should always preserve
|
|
// non-nullness. Check if the original value was non-null, and if so
|
|
// propagate that constraint.
|
|
if (Loc::isLocType(U->getType())) {
|
|
DefinedOrUnknownSVal Constraint =
|
|
svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
|
|
|
|
if (!state->assume(Constraint, true)) {
|
|
// It isn't feasible for the original value to be null.
|
|
// Propagate this constraint.
|
|
Constraint = svalBuilder.evalEQ(state, SymVal,
|
|
svalBuilder.makeZeroVal(U->getType()));
|
|
|
|
state = state->assume(Constraint, false);
|
|
assert(state);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Since the lvalue-to-rvalue conversion is explicit in the AST,
|
|
// we bind an l-value if the operator is prefix and an lvalue (in C++).
|
|
if (U->isGLValue())
|
|
state = state->BindExpr(U, LCtx, loc);
|
|
else
|
|
state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
|
|
|
|
// Perform the store.
|
|
Bldr.takeNodes(*I);
|
|
ExplodedNodeSet Dst3;
|
|
evalStore(Dst3, U, Ex, *I, state, loc, Result);
|
|
Bldr.addNodes(Dst3);
|
|
}
|
|
Dst.insert(Dst2);
|
|
}
|