forked from OSchip/llvm-project
594 lines
20 KiB
C++
594 lines
20 KiB
C++
//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass turns explicit null checks of the form
|
|
//
|
|
// test %r10, %r10
|
|
// je throw_npe
|
|
// movl (%r10), %esi
|
|
// ...
|
|
//
|
|
// to
|
|
//
|
|
// faulting_load_op("movl (%r10), %esi", throw_npe)
|
|
// ...
|
|
//
|
|
// With the help of a runtime that understands the .fault_maps section,
|
|
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
|
|
// a page fault.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<int> PageSize("imp-null-check-page-size",
|
|
cl::desc("The page size of the target in bytes"),
|
|
cl::init(4096));
|
|
|
|
#define DEBUG_TYPE "implicit-null-checks"
|
|
|
|
STATISTIC(NumImplicitNullChecks,
|
|
"Number of explicit null checks made implicit");
|
|
|
|
namespace {
|
|
|
|
class ImplicitNullChecks : public MachineFunctionPass {
|
|
/// Represents one null check that can be made implicit.
|
|
class NullCheck {
|
|
// The memory operation the null check can be folded into.
|
|
MachineInstr *MemOperation;
|
|
|
|
// The instruction actually doing the null check (Ptr != 0).
|
|
MachineInstr *CheckOperation;
|
|
|
|
// The block the check resides in.
|
|
MachineBasicBlock *CheckBlock;
|
|
|
|
// The block branched to if the pointer is non-null.
|
|
MachineBasicBlock *NotNullSucc;
|
|
|
|
// The block branched to if the pointer is null.
|
|
MachineBasicBlock *NullSucc;
|
|
|
|
// If this is non-null, then MemOperation has a dependency on on this
|
|
// instruction; and it needs to be hoisted to execute before MemOperation.
|
|
MachineInstr *OnlyDependency;
|
|
|
|
public:
|
|
explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
|
|
MachineBasicBlock *checkBlock,
|
|
MachineBasicBlock *notNullSucc,
|
|
MachineBasicBlock *nullSucc,
|
|
MachineInstr *onlyDependency)
|
|
: MemOperation(memOperation), CheckOperation(checkOperation),
|
|
CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
|
|
OnlyDependency(onlyDependency) {}
|
|
|
|
MachineInstr *getMemOperation() const { return MemOperation; }
|
|
|
|
MachineInstr *getCheckOperation() const { return CheckOperation; }
|
|
|
|
MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
|
|
|
|
MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
|
|
|
|
MachineBasicBlock *getNullSucc() const { return NullSucc; }
|
|
|
|
MachineInstr *getOnlyDependency() const { return OnlyDependency; }
|
|
};
|
|
|
|
const TargetInstrInfo *TII = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
AliasAnalysis *AA = nullptr;
|
|
MachineModuleInfo *MMI = nullptr;
|
|
|
|
bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
|
|
SmallVectorImpl<NullCheck> &NullCheckList);
|
|
MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB,
|
|
MachineBasicBlock *HandlerMBB);
|
|
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ImplicitNullChecks() : MachineFunctionPass(ID) {
|
|
initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
};
|
|
|
|
/// \brief Detect re-ordering hazards and dependencies.
|
|
///
|
|
/// This class keeps track of defs and uses, and can be queried if a given
|
|
/// machine instruction can be re-ordered from after the machine instructions
|
|
/// seen so far to before them.
|
|
class HazardDetector {
|
|
static MachineInstr *getUnknownMI() {
|
|
return DenseMapInfo<MachineInstr *>::getTombstoneKey();
|
|
}
|
|
|
|
// Maps physical registers to the instruction defining them. If there has
|
|
// been more than one def of an specific register, that register is mapped to
|
|
// getUnknownMI().
|
|
DenseMap<unsigned, MachineInstr *> RegDefs;
|
|
DenseSet<unsigned> RegUses;
|
|
const TargetRegisterInfo &TRI;
|
|
bool hasSeenClobber;
|
|
AliasAnalysis &AA;
|
|
|
|
public:
|
|
explicit HazardDetector(const TargetRegisterInfo &TRI, AliasAnalysis &AA)
|
|
: TRI(TRI), hasSeenClobber(false), AA(AA) {}
|
|
|
|
/// \brief Make a note of \p MI for later queries to isSafeToHoist.
|
|
///
|
|
/// May clobber this HazardDetector instance. \see isClobbered.
|
|
void rememberInstruction(MachineInstr *MI);
|
|
|
|
/// \brief Return true if it is safe to hoist \p MI from after all the
|
|
/// instructions seen so far (via rememberInstruction) to before it. If \p MI
|
|
/// has one and only one transitive dependency, set \p Dependency to that
|
|
/// instruction. If there are more dependencies, return false.
|
|
bool isSafeToHoist(MachineInstr *MI, MachineInstr *&Dependency);
|
|
|
|
/// \brief Return true if this instance of HazardDetector has been clobbered
|
|
/// (i.e. has no more useful information).
|
|
///
|
|
/// A HazardDetecter is clobbered when it sees a construct it cannot
|
|
/// understand, and it would have to return a conservative answer for all
|
|
/// future queries. Having a separate clobbered state lets the client code
|
|
/// bail early, without making queries about all of the future instructions
|
|
/// (which would have returned the most conservative answer anyway).
|
|
///
|
|
/// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector
|
|
/// is an error.
|
|
bool isClobbered() { return hasSeenClobber; }
|
|
};
|
|
}
|
|
|
|
|
|
void HazardDetector::rememberInstruction(MachineInstr *MI) {
|
|
assert(!isClobbered() &&
|
|
"Don't add instructions to a clobbered hazard detector");
|
|
|
|
// There may be readonly calls that we can handle in theory, but for
|
|
// now we don't bother since we don't handle callee clobbered
|
|
// registers.
|
|
if (MI->isCall() || MI->mayStore() || MI->hasUnmodeledSideEffects()) {
|
|
hasSeenClobber = true;
|
|
return;
|
|
}
|
|
|
|
for (auto *MMO : MI->memoperands()) {
|
|
// Right now we don't want to worry about LLVM's memory model.
|
|
if (!MMO->isUnordered()) {
|
|
hasSeenClobber = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (auto &MO : MI->operands()) {
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
|
|
if (MO.isDef()) {
|
|
auto It = RegDefs.find(MO.getReg());
|
|
if (It == RegDefs.end())
|
|
RegDefs.insert({MO.getReg(), MI});
|
|
else {
|
|
assert(It->second && "Found null MI?");
|
|
It->second = getUnknownMI();
|
|
}
|
|
} else
|
|
RegUses.insert(MO.getReg());
|
|
}
|
|
}
|
|
|
|
bool HazardDetector::isSafeToHoist(MachineInstr *MI,
|
|
MachineInstr *&Dependency) {
|
|
assert(!isClobbered() && "isSafeToHoist cannot do anything useful!");
|
|
Dependency = nullptr;
|
|
|
|
// Right now we don't want to worry about LLVM's memory model. This can be
|
|
// made more precise later.
|
|
for (auto *MMO : MI->memoperands())
|
|
if (!MMO->isUnordered())
|
|
return false;
|
|
|
|
for (auto &MO : MI->operands()) {
|
|
if (MO.isReg() && MO.getReg()) {
|
|
for (auto &RegDef : RegDefs) {
|
|
unsigned Reg = RegDef.first;
|
|
MachineInstr *MI = RegDef.second;
|
|
if (!TRI.regsOverlap(Reg, MO.getReg()))
|
|
continue;
|
|
|
|
// We found a write-after-write or read-after-write, see if the
|
|
// instruction causing this dependency can be hoisted too.
|
|
|
|
if (MI == getUnknownMI())
|
|
// We don't have precise dependency information.
|
|
return false;
|
|
|
|
if (Dependency) {
|
|
if (Dependency == MI)
|
|
continue;
|
|
// We already have one dependency, and we can track only one.
|
|
return false;
|
|
}
|
|
|
|
// Now check if MI is actually a dependency that can be hoisted.
|
|
|
|
// We don't want to track transitive dependencies. We already know that
|
|
// MI is the only instruction that defines Reg, but we need to be sure
|
|
// that it does not use any registers that have been defined (trivially
|
|
// checked below by ensuring that there are no register uses), and that
|
|
// it is the only def for every register it defines (otherwise we could
|
|
// violate a write after write hazard).
|
|
auto IsMIOperandSafe = [&](MachineOperand &MO) {
|
|
if (!MO.isReg() || !MO.getReg())
|
|
return true;
|
|
if (MO.isUse())
|
|
return false;
|
|
assert(MO.isDef() &&
|
|
"Register MachineOperands must either be uses or be defs.");
|
|
assert(RegDefs.count(MO.getReg()) &&
|
|
"All defs must be tracked in RegDefs by now!");
|
|
|
|
for (unsigned Reg : RegUses)
|
|
if (TRI.regsOverlap(Reg, MO.getReg()))
|
|
return false; // We found a write-after-read
|
|
|
|
for (auto &OtherDef : RegDefs) {
|
|
unsigned OtherReg = OtherDef.first;
|
|
MachineInstr *OtherMI = OtherDef.second;
|
|
if (OtherMI != MI && TRI.regsOverlap(OtherReg, MO.getReg()))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!all_of(MI->operands(), IsMIOperandSafe))
|
|
return false;
|
|
|
|
// Now check for speculation safety:
|
|
bool SawStore = true;
|
|
if (!MI->isSafeToMove(&AA, SawStore) || MI->mayLoad())
|
|
return false;
|
|
|
|
Dependency = MI;
|
|
}
|
|
|
|
if (MO.isDef())
|
|
for (unsigned Reg : RegUses)
|
|
if (TRI.regsOverlap(Reg, MO.getReg()))
|
|
return false; // We found a write-after-read
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TRI = MF.getRegInfo().getTargetRegisterInfo();
|
|
MMI = &MF.getMMI();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
SmallVector<NullCheck, 16> NullCheckList;
|
|
|
|
for (auto &MBB : MF)
|
|
analyzeBlockForNullChecks(MBB, NullCheckList);
|
|
|
|
if (!NullCheckList.empty())
|
|
rewriteNullChecks(NullCheckList);
|
|
|
|
return !NullCheckList.empty();
|
|
}
|
|
|
|
// Return true if any register aliasing \p Reg is live-in into \p MBB.
|
|
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
|
|
MachineBasicBlock *MBB, unsigned Reg) {
|
|
for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
|
|
++AR)
|
|
if (MBB->isLiveIn(*AR))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Analyze MBB to check if its terminating branch can be turned into an
|
|
/// implicit null check. If yes, append a description of the said null check to
|
|
/// NullCheckList and return true, else return false.
|
|
bool ImplicitNullChecks::analyzeBlockForNullChecks(
|
|
MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
|
|
typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
|
|
|
|
MDNode *BranchMD = nullptr;
|
|
if (auto *BB = MBB.getBasicBlock())
|
|
BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
|
|
|
|
if (!BranchMD)
|
|
return false;
|
|
|
|
MachineBranchPredicate MBP;
|
|
|
|
if (TII->analyzeBranchPredicate(MBB, MBP, true))
|
|
return false;
|
|
|
|
// Is the predicate comparing an integer to zero?
|
|
if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
|
|
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
|
|
MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
|
|
return false;
|
|
|
|
// If we cannot erase the test instruction itself, then making the null check
|
|
// implicit does not buy us much.
|
|
if (!MBP.SingleUseCondition)
|
|
return false;
|
|
|
|
MachineBasicBlock *NotNullSucc, *NullSucc;
|
|
|
|
if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
|
|
NotNullSucc = MBP.TrueDest;
|
|
NullSucc = MBP.FalseDest;
|
|
} else {
|
|
NotNullSucc = MBP.FalseDest;
|
|
NullSucc = MBP.TrueDest;
|
|
}
|
|
|
|
// We handle the simplest case for now. We can potentially do better by using
|
|
// the machine dominator tree.
|
|
if (NotNullSucc->pred_size() != 1)
|
|
return false;
|
|
|
|
// Starting with a code fragment like:
|
|
//
|
|
// test %RAX, %RAX
|
|
// jne LblNotNull
|
|
//
|
|
// LblNull:
|
|
// callq throw_NullPointerException
|
|
//
|
|
// LblNotNull:
|
|
// Inst0
|
|
// Inst1
|
|
// ...
|
|
// Def = Load (%RAX + <offset>)
|
|
// ...
|
|
//
|
|
//
|
|
// we want to end up with
|
|
//
|
|
// Def = FaultingLoad (%RAX + <offset>), LblNull
|
|
// jmp LblNotNull ;; explicit or fallthrough
|
|
//
|
|
// LblNotNull:
|
|
// Inst0
|
|
// Inst1
|
|
// ...
|
|
//
|
|
// LblNull:
|
|
// callq throw_NullPointerException
|
|
//
|
|
//
|
|
// To see why this is legal, consider the two possibilities:
|
|
//
|
|
// 1. %RAX is null: since we constrain <offset> to be less than PageSize, the
|
|
// load instruction dereferences the null page, causing a segmentation
|
|
// fault.
|
|
//
|
|
// 2. %RAX is not null: in this case we know that the load cannot fault, as
|
|
// otherwise the load would've faulted in the original program too and the
|
|
// original program would've been undefined.
|
|
//
|
|
// This reasoning cannot be extended to justify hoisting through arbitrary
|
|
// control flow. For instance, in the example below (in pseudo-C)
|
|
//
|
|
// if (ptr == null) { throw_npe(); unreachable; }
|
|
// if (some_cond) { return 42; }
|
|
// v = ptr->field; // LD
|
|
// ...
|
|
//
|
|
// we cannot (without code duplication) use the load marked "LD" to null check
|
|
// ptr -- clause (2) above does not apply in this case. In the above program
|
|
// the safety of ptr->field can be dependent on some_cond; and, for instance,
|
|
// ptr could be some non-null invalid reference that never gets loaded from
|
|
// because some_cond is always true.
|
|
|
|
unsigned PointerReg = MBP.LHS.getReg();
|
|
|
|
HazardDetector HD(*TRI, *AA);
|
|
|
|
for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE;
|
|
++MII) {
|
|
MachineInstr &MI = *MII;
|
|
unsigned BaseReg;
|
|
int64_t Offset;
|
|
MachineInstr *Dependency = nullptr;
|
|
if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
|
|
if (MI.mayLoad() && !MI.isPredicable() && BaseReg == PointerReg &&
|
|
Offset < PageSize && MI.getDesc().getNumDefs() <= 1 &&
|
|
HD.isSafeToHoist(&MI, Dependency)) {
|
|
|
|
auto DependencyOperandIsOk = [&](MachineOperand &MO) {
|
|
assert(!(MO.isReg() && MO.isUse()) &&
|
|
"No transitive dependendencies please!");
|
|
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
|
|
return true;
|
|
|
|
// Make sure that we won't clobber any live ins to the sibling block
|
|
// by hoisting Dependency. For instance, we can't hoist INST to
|
|
// before the null check (even if it safe, and does not violate any
|
|
// dependencies in the non_null_block) if %rdx is live in to
|
|
// _null_block.
|
|
//
|
|
// test %rcx, %rcx
|
|
// je _null_block
|
|
// _non_null_block:
|
|
// %rdx<def> = INST
|
|
// ...
|
|
if (AnyAliasLiveIn(TRI, NullSucc, MO.getReg()))
|
|
return false;
|
|
|
|
// Make sure Dependency isn't re-defining the base register. Then we
|
|
// won't get the memory operation on the address we want.
|
|
if (TRI->regsOverlap(MO.getReg(), BaseReg))
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
|
|
bool DependencyOperandsAreOk =
|
|
!Dependency ||
|
|
all_of(Dependency->operands(), DependencyOperandIsOk);
|
|
|
|
if (DependencyOperandsAreOk) {
|
|
NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
|
|
NullSucc, Dependency);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
HD.rememberInstruction(&MI);
|
|
if (HD.isClobbered())
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine
|
|
/// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI
|
|
/// (defining the same register), and branches to HandlerMBB if the load
|
|
/// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB.
|
|
MachineInstr *
|
|
ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *HandlerMBB) {
|
|
const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
|
|
// all targets.
|
|
|
|
DebugLoc DL;
|
|
unsigned NumDefs = LoadMI->getDesc().getNumDefs();
|
|
assert(NumDefs <= 1 && "other cases unhandled!");
|
|
|
|
unsigned DefReg = NoRegister;
|
|
if (NumDefs != 0) {
|
|
DefReg = LoadMI->defs().begin()->getReg();
|
|
assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 &&
|
|
"expected exactly one def!");
|
|
}
|
|
|
|
auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg)
|
|
.addMBB(HandlerMBB)
|
|
.addImm(LoadMI->getOpcode());
|
|
|
|
for (auto &MO : LoadMI->uses())
|
|
MIB.addOperand(MO);
|
|
|
|
MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end());
|
|
|
|
return MIB;
|
|
}
|
|
|
|
/// Rewrite the null checks in NullCheckList into implicit null checks.
|
|
void ImplicitNullChecks::rewriteNullChecks(
|
|
ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
|
|
DebugLoc DL;
|
|
|
|
for (auto &NC : NullCheckList) {
|
|
// Remove the conditional branch dependent on the null check.
|
|
unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
|
|
(void)BranchesRemoved;
|
|
assert(BranchesRemoved > 0 && "expected at least one branch!");
|
|
|
|
if (auto *DepMI = NC.getOnlyDependency()) {
|
|
DepMI->removeFromParent();
|
|
NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
|
|
}
|
|
|
|
// Insert a faulting load where the conditional branch was originally. We
|
|
// check earlier ensures that this bit of code motion is legal. We do not
|
|
// touch the successors list for any basic block since we haven't changed
|
|
// control flow, we've just made it implicit.
|
|
MachineInstr *FaultingLoad = insertFaultingLoad(
|
|
NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
|
|
// Now the values defined by MemOperation, if any, are live-in of
|
|
// the block of MemOperation.
|
|
// The original load operation may define implicit-defs alongside
|
|
// the loaded value.
|
|
MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
|
|
for (const MachineOperand &MO : FaultingLoad->operands()) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg || MBB->isLiveIn(Reg))
|
|
continue;
|
|
MBB->addLiveIn(Reg);
|
|
}
|
|
|
|
if (auto *DepMI = NC.getOnlyDependency()) {
|
|
for (auto &MO : DepMI->operands()) {
|
|
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
|
|
continue;
|
|
if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
|
|
NC.getNotNullSucc()->addLiveIn(MO.getReg());
|
|
}
|
|
}
|
|
|
|
NC.getMemOperation()->eraseFromParent();
|
|
NC.getCheckOperation()->eraseFromParent();
|
|
|
|
// Insert an *unconditional* branch to not-null successor.
|
|
TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
|
|
/*Cond=*/None, DL);
|
|
|
|
NumImplicitNullChecks++;
|
|
}
|
|
}
|
|
|
|
char ImplicitNullChecks::ID = 0;
|
|
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
|
|
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks",
|
|
"Implicit null checks", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks",
|
|
"Implicit null checks", false, false)
|