forked from OSchip/llvm-project
3602 lines
143 KiB
C++
3602 lines
143 KiB
C++
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// InstructionCombining - Combine instructions to form fewer, simple
|
|
// instructions. This pass does not modify the CFG. This pass is where
|
|
// algebraic simplification happens.
|
|
//
|
|
// This pass combines things like:
|
|
// %Y = add i32 %X, 1
|
|
// %Z = add i32 %Y, 1
|
|
// into:
|
|
// %Z = add i32 %X, 2
|
|
//
|
|
// This is a simple worklist driven algorithm.
|
|
//
|
|
// This pass guarantees that the following canonicalizations are performed on
|
|
// the program:
|
|
// 1. If a binary operator has a constant operand, it is moved to the RHS
|
|
// 2. Bitwise operators with constant operands are always grouped so that
|
|
// shifts are performed first, then or's, then and's, then xor's.
|
|
// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
|
|
// 4. All cmp instructions on boolean values are replaced with logical ops
|
|
// 5. add X, X is represented as (X*2) => (X << 1)
|
|
// 6. Multiplies with a power-of-two constant argument are transformed into
|
|
// shifts.
|
|
// ... etc.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm-c/Initialization.h"
|
|
#include "llvm-c/Transforms/InstCombine.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CBindingWrapping.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombine.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NumCombined , "Number of insts combined");
|
|
STATISTIC(NumConstProp, "Number of constant folds");
|
|
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
|
|
STATISTIC(NumSunkInst , "Number of instructions sunk");
|
|
STATISTIC(NumExpand, "Number of expansions");
|
|
STATISTIC(NumFactor , "Number of factorizations");
|
|
STATISTIC(NumReassoc , "Number of reassociations");
|
|
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
|
|
"Controls which instructions are visited");
|
|
|
|
static cl::opt<bool>
|
|
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
EnableExpensiveCombines("expensive-combines",
|
|
cl::desc("Enable expensive instruction combines"));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
|
|
cl::desc("Maximum array size considered when doing a combine"));
|
|
|
|
// FIXME: Remove this flag when it is no longer necessary to convert
|
|
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
|
|
// increases variable availability at the cost of accuracy. Variables that
|
|
// cannot be promoted by mem2reg or SROA will be described as living in memory
|
|
// for their entire lifetime. However, passes like DSE and instcombine can
|
|
// delete stores to the alloca, leading to misleading and inaccurate debug
|
|
// information. This flag can be removed when those passes are fixed.
|
|
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
Value *InstCombiner::EmitGEPOffset(User *GEP) {
|
|
return llvm::EmitGEPOffset(&Builder, DL, GEP);
|
|
}
|
|
|
|
/// Return true if it is desirable to convert an integer computation from a
|
|
/// given bit width to a new bit width.
|
|
/// We don't want to convert from a legal to an illegal type or from a smaller
|
|
/// to a larger illegal type. A width of '1' is always treated as a legal type
|
|
/// because i1 is a fundamental type in IR, and there are many specialized
|
|
/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
|
|
/// legal to convert to, in order to open up more combining opportunities.
|
|
/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
|
|
/// from frontend languages.
|
|
bool InstCombiner::shouldChangeType(unsigned FromWidth,
|
|
unsigned ToWidth) const {
|
|
bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
|
|
bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
|
|
|
|
// Convert to widths of 8, 16 or 32 even if they are not legal types. Only
|
|
// shrink types, to prevent infinite loops.
|
|
if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
|
|
return true;
|
|
|
|
// If this is a legal integer from type, and the result would be an illegal
|
|
// type, don't do the transformation.
|
|
if (FromLegal && !ToLegal)
|
|
return false;
|
|
|
|
// Otherwise, if both are illegal, do not increase the size of the result. We
|
|
// do allow things like i160 -> i64, but not i64 -> i160.
|
|
if (!FromLegal && !ToLegal && ToWidth > FromWidth)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if it is desirable to convert a computation from 'From' to 'To'.
|
|
/// We don't want to convert from a legal to an illegal type or from a smaller
|
|
/// to a larger illegal type. i1 is always treated as a legal type because it is
|
|
/// a fundamental type in IR, and there are many specialized optimizations for
|
|
/// i1 types.
|
|
bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
|
|
// TODO: This could be extended to allow vectors. Datalayout changes might be
|
|
// needed to properly support that.
|
|
if (!From->isIntegerTy() || !To->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned FromWidth = From->getPrimitiveSizeInBits();
|
|
unsigned ToWidth = To->getPrimitiveSizeInBits();
|
|
return shouldChangeType(FromWidth, ToWidth);
|
|
}
|
|
|
|
// Return true, if No Signed Wrap should be maintained for I.
|
|
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
|
|
// where both B and C should be ConstantInts, results in a constant that does
|
|
// not overflow. This function only handles the Add and Sub opcodes. For
|
|
// all other opcodes, the function conservatively returns false.
|
|
static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
|
|
OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
|
|
if (!OBO || !OBO->hasNoSignedWrap())
|
|
return false;
|
|
|
|
// We reason about Add and Sub Only.
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
|
|
return false;
|
|
|
|
const APInt *BVal, *CVal;
|
|
if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
|
|
return false;
|
|
|
|
bool Overflow = false;
|
|
if (Opcode == Instruction::Add)
|
|
(void)BVal->sadd_ov(*CVal, Overflow);
|
|
else
|
|
(void)BVal->ssub_ov(*CVal, Overflow);
|
|
|
|
return !Overflow;
|
|
}
|
|
|
|
/// Conservatively clears subclassOptionalData after a reassociation or
|
|
/// commutation. We preserve fast-math flags when applicable as they can be
|
|
/// preserved.
|
|
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
|
|
FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
|
|
if (!FPMO) {
|
|
I.clearSubclassOptionalData();
|
|
return;
|
|
}
|
|
|
|
FastMathFlags FMF = I.getFastMathFlags();
|
|
I.clearSubclassOptionalData();
|
|
I.setFastMathFlags(FMF);
|
|
}
|
|
|
|
/// Combine constant operands of associative operations either before or after a
|
|
/// cast to eliminate one of the associative operations:
|
|
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
|
|
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
|
|
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
|
|
auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
|
|
if (!Cast || !Cast->hasOneUse())
|
|
return false;
|
|
|
|
// TODO: Enhance logic for other casts and remove this check.
|
|
auto CastOpcode = Cast->getOpcode();
|
|
if (CastOpcode != Instruction::ZExt)
|
|
return false;
|
|
|
|
// TODO: Enhance logic for other BinOps and remove this check.
|
|
if (!BinOp1->isBitwiseLogicOp())
|
|
return false;
|
|
|
|
auto AssocOpcode = BinOp1->getOpcode();
|
|
auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
|
|
if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
|
|
return false;
|
|
|
|
Constant *C1, *C2;
|
|
if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
|
|
!match(BinOp2->getOperand(1), m_Constant(C2)))
|
|
return false;
|
|
|
|
// TODO: This assumes a zext cast.
|
|
// Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
|
|
// to the destination type might lose bits.
|
|
|
|
// Fold the constants together in the destination type:
|
|
// (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
|
|
Type *DestTy = C1->getType();
|
|
Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
|
|
Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
|
|
Cast->setOperand(0, BinOp2->getOperand(0));
|
|
BinOp1->setOperand(1, FoldedC);
|
|
return true;
|
|
}
|
|
|
|
/// This performs a few simplifications for operators that are associative or
|
|
/// commutative:
|
|
///
|
|
/// Commutative operators:
|
|
///
|
|
/// 1. Order operands such that they are listed from right (least complex) to
|
|
/// left (most complex). This puts constants before unary operators before
|
|
/// binary operators.
|
|
///
|
|
/// Associative operators:
|
|
///
|
|
/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
|
|
/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
|
|
///
|
|
/// Associative and commutative operators:
|
|
///
|
|
/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
|
|
/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
|
|
/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
|
|
/// if C1 and C2 are constants.
|
|
bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
bool Changed = false;
|
|
|
|
do {
|
|
// Order operands such that they are listed from right (least complex) to
|
|
// left (most complex). This puts constants before unary operators before
|
|
// binary operators.
|
|
if (I.isCommutative() && getComplexity(I.getOperand(0)) <
|
|
getComplexity(I.getOperand(1)))
|
|
Changed = !I.swapOperands();
|
|
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
|
|
|
|
if (I.isAssociative()) {
|
|
// Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
|
|
if (Op0 && Op0->getOpcode() == Opcode) {
|
|
Value *A = Op0->getOperand(0);
|
|
Value *B = Op0->getOperand(1);
|
|
Value *C = I.getOperand(1);
|
|
|
|
// Does "B op C" simplify?
|
|
if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "A op V".
|
|
I.setOperand(0, A);
|
|
I.setOperand(1, V);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
if (MaintainNoSignedWrap(I, B, C) &&
|
|
(!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
|
|
// Note: this is only valid because SimplifyBinOp doesn't look at
|
|
// the operands to Op0.
|
|
I.clearSubclassOptionalData();
|
|
I.setHasNoSignedWrap(true);
|
|
} else {
|
|
ClearSubclassDataAfterReassociation(I);
|
|
}
|
|
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
|
|
if (Op1 && Op1->getOpcode() == Opcode) {
|
|
Value *A = I.getOperand(0);
|
|
Value *B = Op1->getOperand(0);
|
|
Value *C = Op1->getOperand(1);
|
|
|
|
// Does "A op B" simplify?
|
|
if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "V op C".
|
|
I.setOperand(0, V);
|
|
I.setOperand(1, C);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (I.isAssociative() && I.isCommutative()) {
|
|
if (simplifyAssocCastAssoc(&I)) {
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
|
|
// Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
|
|
if (Op0 && Op0->getOpcode() == Opcode) {
|
|
Value *A = Op0->getOperand(0);
|
|
Value *B = Op0->getOperand(1);
|
|
Value *C = I.getOperand(1);
|
|
|
|
// Does "C op A" simplify?
|
|
if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "V op B".
|
|
I.setOperand(0, V);
|
|
I.setOperand(1, B);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
|
|
if (Op1 && Op1->getOpcode() == Opcode) {
|
|
Value *A = I.getOperand(0);
|
|
Value *B = Op1->getOperand(0);
|
|
Value *C = Op1->getOperand(1);
|
|
|
|
// Does "C op A" simplify?
|
|
if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "B op V".
|
|
I.setOperand(0, B);
|
|
I.setOperand(1, V);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
|
|
// if C1 and C2 are constants.
|
|
Value *A, *B;
|
|
Constant *C1, *C2;
|
|
if (Op0 && Op1 &&
|
|
Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
|
|
match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
|
|
match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
|
|
BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
|
|
if (isa<FPMathOperator>(NewBO)) {
|
|
FastMathFlags Flags = I.getFastMathFlags();
|
|
Flags &= Op0->getFastMathFlags();
|
|
Flags &= Op1->getFastMathFlags();
|
|
NewBO->setFastMathFlags(Flags);
|
|
}
|
|
InsertNewInstWith(NewBO, I);
|
|
NewBO->takeName(Op1);
|
|
I.setOperand(0, NewBO);
|
|
I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// No further simplifications.
|
|
return Changed;
|
|
} while (true);
|
|
}
|
|
|
|
/// Return whether "X LOp (Y ROp Z)" is always equal to
|
|
/// "(X LOp Y) ROp (X LOp Z)".
|
|
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
|
|
Instruction::BinaryOps ROp) {
|
|
// X & (Y | Z) <--> (X & Y) | (X & Z)
|
|
// X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
|
|
if (LOp == Instruction::And)
|
|
return ROp == Instruction::Or || ROp == Instruction::Xor;
|
|
|
|
// X | (Y & Z) <--> (X | Y) & (X | Z)
|
|
if (LOp == Instruction::Or)
|
|
return ROp == Instruction::And;
|
|
|
|
// X * (Y + Z) <--> (X * Y) + (X * Z)
|
|
// X * (Y - Z) <--> (X * Y) - (X * Z)
|
|
if (LOp == Instruction::Mul)
|
|
return ROp == Instruction::Add || ROp == Instruction::Sub;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return whether "(X LOp Y) ROp Z" is always equal to
|
|
/// "(X ROp Z) LOp (Y ROp Z)".
|
|
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
|
|
Instruction::BinaryOps ROp) {
|
|
if (Instruction::isCommutative(ROp))
|
|
return leftDistributesOverRight(ROp, LOp);
|
|
|
|
// (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
|
|
return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
|
|
|
|
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
|
|
// but this requires knowing that the addition does not overflow and other
|
|
// such subtleties.
|
|
}
|
|
|
|
/// This function returns identity value for given opcode, which can be used to
|
|
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
|
|
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
|
|
if (isa<Constant>(V))
|
|
return nullptr;
|
|
|
|
return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
|
|
}
|
|
|
|
/// This function predicates factorization using distributive laws. By default,
|
|
/// it just returns the 'Op' inputs. But for special-cases like
|
|
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
|
|
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
|
|
/// allow more factorization opportunities.
|
|
static Instruction::BinaryOps
|
|
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
|
|
Value *&LHS, Value *&RHS) {
|
|
assert(Op && "Expected a binary operator");
|
|
LHS = Op->getOperand(0);
|
|
RHS = Op->getOperand(1);
|
|
if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
|
|
Constant *C;
|
|
if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
|
|
// X << C --> X * (1 << C)
|
|
RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
|
|
return Instruction::Mul;
|
|
}
|
|
// TODO: We can add other conversions e.g. shr => div etc.
|
|
}
|
|
return Op->getOpcode();
|
|
}
|
|
|
|
/// This tries to simplify binary operations by factorizing out common terms
|
|
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
|
|
Value *InstCombiner::tryFactorization(BinaryOperator &I,
|
|
Instruction::BinaryOps InnerOpcode,
|
|
Value *A, Value *B, Value *C, Value *D) {
|
|
assert(A && B && C && D && "All values must be provided");
|
|
|
|
Value *V = nullptr;
|
|
Value *SimplifiedInst = nullptr;
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
|
|
// Does "X op' Y" always equal "Y op' X"?
|
|
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
|
|
|
|
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
|
|
if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
|
|
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
|
|
// commutative case, "(A op' B) op (C op' A)"?
|
|
if (A == C || (InnerCommutative && A == D)) {
|
|
if (A != C)
|
|
std::swap(C, D);
|
|
// Consider forming "A op' (B op D)".
|
|
// If "B op D" simplifies then it can be formed with no cost.
|
|
V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
|
|
// If "B op D" doesn't simplify then only go on if both of the existing
|
|
// operations "A op' B" and "C op' D" will be zapped as no longer used.
|
|
if (!V && LHS->hasOneUse() && RHS->hasOneUse())
|
|
V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
|
|
if (V) {
|
|
SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
|
|
}
|
|
}
|
|
|
|
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
|
|
if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
|
|
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
|
|
// commutative case, "(A op' B) op (B op' D)"?
|
|
if (B == D || (InnerCommutative && B == C)) {
|
|
if (B != D)
|
|
std::swap(C, D);
|
|
// Consider forming "(A op C) op' B".
|
|
// If "A op C" simplifies then it can be formed with no cost.
|
|
V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
|
|
|
|
// If "A op C" doesn't simplify then only go on if both of the existing
|
|
// operations "A op' B" and "C op' D" will be zapped as no longer used.
|
|
if (!V && LHS->hasOneUse() && RHS->hasOneUse())
|
|
V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
|
|
if (V) {
|
|
SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
|
|
}
|
|
}
|
|
|
|
if (SimplifiedInst) {
|
|
++NumFactor;
|
|
SimplifiedInst->takeName(&I);
|
|
|
|
// Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
|
|
// TODO: Check for NUW.
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
|
|
if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
|
|
bool HasNSW = false;
|
|
if (isa<OverflowingBinaryOperator>(&I))
|
|
HasNSW = I.hasNoSignedWrap();
|
|
|
|
if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
|
|
HasNSW &= LOBO->hasNoSignedWrap();
|
|
|
|
if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
|
|
HasNSW &= ROBO->hasNoSignedWrap();
|
|
|
|
// We can propagate 'nsw' if we know that
|
|
// %Y = mul nsw i16 %X, C
|
|
// %Z = add nsw i16 %Y, %X
|
|
// =>
|
|
// %Z = mul nsw i16 %X, C+1
|
|
//
|
|
// iff C+1 isn't INT_MIN
|
|
const APInt *CInt;
|
|
if (TopLevelOpcode == Instruction::Add &&
|
|
InnerOpcode == Instruction::Mul)
|
|
if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
|
|
BO->setHasNoSignedWrap(HasNSW);
|
|
}
|
|
}
|
|
}
|
|
return SimplifiedInst;
|
|
}
|
|
|
|
/// This tries to simplify binary operations which some other binary operation
|
|
/// distributes over either by factorizing out common terms
|
|
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
|
|
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
|
|
/// Returns the simplified value, or null if it didn't simplify.
|
|
Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
|
|
{
|
|
// Factorization.
|
|
Value *A, *B, *C, *D;
|
|
Instruction::BinaryOps LHSOpcode, RHSOpcode;
|
|
if (Op0)
|
|
LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
|
|
if (Op1)
|
|
RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
|
|
|
|
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
|
|
// a common term.
|
|
if (Op0 && Op1 && LHSOpcode == RHSOpcode)
|
|
if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
|
|
return V;
|
|
|
|
// The instruction has the form "(A op' B) op (C)". Try to factorize common
|
|
// term.
|
|
if (Op0)
|
|
if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
|
|
if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
|
|
return V;
|
|
|
|
// The instruction has the form "(B) op (C op' D)". Try to factorize common
|
|
// term.
|
|
if (Op1)
|
|
if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
|
|
if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
|
|
return V;
|
|
}
|
|
|
|
// Expansion.
|
|
if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
|
|
// The instruction has the form "(A op' B) op C". See if expanding it out
|
|
// to "(A op C) op' (B op C)" results in simplifications.
|
|
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
|
|
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
|
|
|
|
Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
|
|
Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
|
|
|
|
// Do "A op C" and "B op C" both simplify?
|
|
if (L && R) {
|
|
// They do! Return "L op' R".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(InnerOpcode, L, R);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
|
|
// Does "A op C" simplify to the identity value for the inner opcode?
|
|
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
|
|
// They do! Return "B op C".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(TopLevelOpcode, B, C);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
|
|
// Does "B op C" simplify to the identity value for the inner opcode?
|
|
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
|
|
// They do! Return "A op C".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(TopLevelOpcode, A, C);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
}
|
|
|
|
if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
|
|
// The instruction has the form "A op (B op' C)". See if expanding it out
|
|
// to "(A op B) op' (A op C)" results in simplifications.
|
|
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
|
|
Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
|
|
|
|
Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
|
|
Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
|
|
|
|
// Do "A op B" and "A op C" both simplify?
|
|
if (L && R) {
|
|
// They do! Return "L op' R".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(InnerOpcode, L, R);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
|
|
// Does "A op B" simplify to the identity value for the inner opcode?
|
|
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
|
|
// They do! Return "A op C".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(TopLevelOpcode, A, C);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
|
|
// Does "A op C" simplify to the identity value for the inner opcode?
|
|
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
|
|
// They do! Return "A op B".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(TopLevelOpcode, A, B);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
}
|
|
|
|
return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
|
|
}
|
|
|
|
Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
|
|
Value *LHS, Value *RHS) {
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
// (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
|
|
// c, e)))
|
|
Value *A, *B, *C, *D, *E;
|
|
Value *SI = nullptr;
|
|
if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
|
|
match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
|
|
bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
if (isa<FPMathOperator>(&I))
|
|
Builder.setFastMathFlags(I.getFastMathFlags());
|
|
|
|
Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I));
|
|
Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I));
|
|
if (V1 && V2)
|
|
SI = Builder.CreateSelect(A, V2, V1);
|
|
else if (V2 && SelectsHaveOneUse)
|
|
SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
|
|
else if (V1 && SelectsHaveOneUse)
|
|
SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
|
|
|
|
if (SI)
|
|
SI->takeName(&I);
|
|
}
|
|
|
|
return SI;
|
|
}
|
|
|
|
/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
|
|
/// constant zero (which is the 'negate' form).
|
|
Value *InstCombiner::dyn_castNegVal(Value *V) const {
|
|
Value *NegV;
|
|
if (match(V, m_Neg(m_Value(NegV))))
|
|
return NegV;
|
|
|
|
// Constants can be considered to be negated values if they can be folded.
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
|
|
return ConstantExpr::getNeg(C);
|
|
|
|
if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
|
|
if (C->getType()->getElementType()->isIntegerTy())
|
|
return ConstantExpr::getNeg(C);
|
|
|
|
if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
|
|
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
|
|
Constant *Elt = CV->getAggregateElement(i);
|
|
if (!Elt)
|
|
return nullptr;
|
|
|
|
if (isa<UndefValue>(Elt))
|
|
continue;
|
|
|
|
if (!isa<ConstantInt>(Elt))
|
|
return nullptr;
|
|
}
|
|
return ConstantExpr::getNeg(CV);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (auto *Cast = dyn_cast<CastInst>(&I))
|
|
return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
|
|
|
|
assert(I.isBinaryOp() && "Unexpected opcode for select folding");
|
|
|
|
// Figure out if the constant is the left or the right argument.
|
|
bool ConstIsRHS = isa<Constant>(I.getOperand(1));
|
|
Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
|
|
|
|
if (auto *SOC = dyn_cast<Constant>(SO)) {
|
|
if (ConstIsRHS)
|
|
return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
|
|
return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
|
|
}
|
|
|
|
Value *Op0 = SO, *Op1 = ConstOperand;
|
|
if (!ConstIsRHS)
|
|
std::swap(Op0, Op1);
|
|
|
|
auto *BO = cast<BinaryOperator>(&I);
|
|
Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
|
|
SO->getName() + ".op");
|
|
auto *FPInst = dyn_cast<Instruction>(RI);
|
|
if (FPInst && isa<FPMathOperator>(FPInst))
|
|
FPInst->copyFastMathFlags(BO);
|
|
return RI;
|
|
}
|
|
|
|
Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
|
|
// Don't modify shared select instructions.
|
|
if (!SI->hasOneUse())
|
|
return nullptr;
|
|
|
|
Value *TV = SI->getTrueValue();
|
|
Value *FV = SI->getFalseValue();
|
|
if (!(isa<Constant>(TV) || isa<Constant>(FV)))
|
|
return nullptr;
|
|
|
|
// Bool selects with constant operands can be folded to logical ops.
|
|
if (SI->getType()->isIntOrIntVectorTy(1))
|
|
return nullptr;
|
|
|
|
// If it's a bitcast involving vectors, make sure it has the same number of
|
|
// elements on both sides.
|
|
if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
|
|
VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
|
|
VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
|
|
|
|
// Verify that either both or neither are vectors.
|
|
if ((SrcTy == nullptr) != (DestTy == nullptr))
|
|
return nullptr;
|
|
|
|
// If vectors, verify that they have the same number of elements.
|
|
if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
|
|
return nullptr;
|
|
}
|
|
|
|
// Test if a CmpInst instruction is used exclusively by a select as
|
|
// part of a minimum or maximum operation. If so, refrain from doing
|
|
// any other folding. This helps out other analyses which understand
|
|
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
|
|
// and CodeGen. And in this case, at least one of the comparison
|
|
// operands has at least one user besides the compare (the select),
|
|
// which would often largely negate the benefit of folding anyway.
|
|
if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
|
|
if (CI->hasOneUse()) {
|
|
Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
|
|
if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
|
|
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
|
|
Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
|
|
return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
|
|
}
|
|
|
|
static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
bool ConstIsRHS = isa<Constant>(I->getOperand(1));
|
|
Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
|
|
|
|
if (auto *InC = dyn_cast<Constant>(InV)) {
|
|
if (ConstIsRHS)
|
|
return ConstantExpr::get(I->getOpcode(), InC, C);
|
|
return ConstantExpr::get(I->getOpcode(), C, InC);
|
|
}
|
|
|
|
Value *Op0 = InV, *Op1 = C;
|
|
if (!ConstIsRHS)
|
|
std::swap(Op0, Op1);
|
|
|
|
Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
|
|
auto *FPInst = dyn_cast<Instruction>(RI);
|
|
if (FPInst && isa<FPMathOperator>(FPInst))
|
|
FPInst->copyFastMathFlags(I);
|
|
return RI;
|
|
}
|
|
|
|
Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
|
|
unsigned NumPHIValues = PN->getNumIncomingValues();
|
|
if (NumPHIValues == 0)
|
|
return nullptr;
|
|
|
|
// We normally only transform phis with a single use. However, if a PHI has
|
|
// multiple uses and they are all the same operation, we can fold *all* of the
|
|
// uses into the PHI.
|
|
if (!PN->hasOneUse()) {
|
|
// Walk the use list for the instruction, comparing them to I.
|
|
for (User *U : PN->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
if (UI != &I && !I.isIdenticalTo(UI))
|
|
return nullptr;
|
|
}
|
|
// Otherwise, we can replace *all* users with the new PHI we form.
|
|
}
|
|
|
|
// Check to see if all of the operands of the PHI are simple constants
|
|
// (constantint/constantfp/undef). If there is one non-constant value,
|
|
// remember the BB it is in. If there is more than one or if *it* is a PHI,
|
|
// bail out. We don't do arbitrary constant expressions here because moving
|
|
// their computation can be expensive without a cost model.
|
|
BasicBlock *NonConstBB = nullptr;
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
|
|
continue;
|
|
|
|
if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
|
|
if (NonConstBB) return nullptr; // More than one non-const value.
|
|
|
|
NonConstBB = PN->getIncomingBlock(i);
|
|
|
|
// If the InVal is an invoke at the end of the pred block, then we can't
|
|
// insert a computation after it without breaking the edge.
|
|
if (isa<InvokeInst>(InVal))
|
|
if (cast<Instruction>(InVal)->getParent() == NonConstBB)
|
|
return nullptr;
|
|
|
|
// If the incoming non-constant value is in I's block, we will remove one
|
|
// instruction, but insert another equivalent one, leading to infinite
|
|
// instcombine.
|
|
if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
|
|
return nullptr;
|
|
}
|
|
|
|
// If there is exactly one non-constant value, we can insert a copy of the
|
|
// operation in that block. However, if this is a critical edge, we would be
|
|
// inserting the computation on some other paths (e.g. inside a loop). Only
|
|
// do this if the pred block is unconditionally branching into the phi block.
|
|
if (NonConstBB != nullptr) {
|
|
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
|
|
if (!BI || !BI->isUnconditional()) return nullptr;
|
|
}
|
|
|
|
// Okay, we can do the transformation: create the new PHI node.
|
|
PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
|
|
InsertNewInstBefore(NewPN, *PN);
|
|
NewPN->takeName(PN);
|
|
|
|
// If we are going to have to insert a new computation, do so right before the
|
|
// predecessor's terminator.
|
|
if (NonConstBB)
|
|
Builder.SetInsertPoint(NonConstBB->getTerminator());
|
|
|
|
// Next, add all of the operands to the PHI.
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
|
|
// We only currently try to fold the condition of a select when it is a phi,
|
|
// not the true/false values.
|
|
Value *TrueV = SI->getTrueValue();
|
|
Value *FalseV = SI->getFalseValue();
|
|
BasicBlock *PhiTransBB = PN->getParent();
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
BasicBlock *ThisBB = PN->getIncomingBlock(i);
|
|
Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
|
|
Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
|
|
Value *InV = nullptr;
|
|
// Beware of ConstantExpr: it may eventually evaluate to getNullValue,
|
|
// even if currently isNullValue gives false.
|
|
Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
|
|
// For vector constants, we cannot use isNullValue to fold into
|
|
// FalseVInPred versus TrueVInPred. When we have individual nonzero
|
|
// elements in the vector, we will incorrectly fold InC to
|
|
// `TrueVInPred`.
|
|
if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
|
|
InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
|
|
else {
|
|
// Generate the select in the same block as PN's current incoming block.
|
|
// Note: ThisBB need not be the NonConstBB because vector constants
|
|
// which are constants by definition are handled here.
|
|
// FIXME: This can lead to an increase in IR generation because we might
|
|
// generate selects for vector constant phi operand, that could not be
|
|
// folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
|
|
// non-vector phis, this transformation was always profitable because
|
|
// the select would be generated exactly once in the NonConstBB.
|
|
Builder.SetInsertPoint(ThisBB->getTerminator());
|
|
InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
|
|
FalseVInPred, "phitmp");
|
|
}
|
|
NewPN->addIncoming(InV, ThisBB);
|
|
}
|
|
} else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
|
|
Constant *C = cast<Constant>(I.getOperand(1));
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
Value *InV = nullptr;
|
|
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
|
|
InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
|
|
else if (isa<ICmpInst>(CI))
|
|
InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
|
|
C, "phitmp");
|
|
else
|
|
InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
|
|
C, "phitmp");
|
|
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
|
|
}
|
|
} else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
|
|
Builder);
|
|
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
|
|
}
|
|
} else {
|
|
CastInst *CI = cast<CastInst>(&I);
|
|
Type *RetTy = CI->getType();
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
Value *InV;
|
|
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
|
|
InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
|
|
else
|
|
InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
|
|
I.getType(), "phitmp");
|
|
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
|
|
}
|
|
}
|
|
|
|
for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
|
|
Instruction *User = cast<Instruction>(*UI++);
|
|
if (User == &I) continue;
|
|
replaceInstUsesWith(*User, NewPN);
|
|
eraseInstFromFunction(*User);
|
|
}
|
|
return replaceInstUsesWith(I, NewPN);
|
|
}
|
|
|
|
Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
|
|
if (!isa<Constant>(I.getOperand(1)))
|
|
return nullptr;
|
|
|
|
if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
|
|
if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
|
|
return NewSel;
|
|
} else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
|
|
if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
|
|
return NewPhi;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Given a pointer type and a constant offset, determine whether or not there
|
|
/// is a sequence of GEP indices into the pointed type that will land us at the
|
|
/// specified offset. If so, fill them into NewIndices and return the resultant
|
|
/// element type, otherwise return null.
|
|
Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
|
|
SmallVectorImpl<Value *> &NewIndices) {
|
|
Type *Ty = PtrTy->getElementType();
|
|
if (!Ty->isSized())
|
|
return nullptr;
|
|
|
|
// Start with the index over the outer type. Note that the type size
|
|
// might be zero (even if the offset isn't zero) if the indexed type
|
|
// is something like [0 x {int, int}]
|
|
Type *IndexTy = DL.getIndexType(PtrTy);
|
|
int64_t FirstIdx = 0;
|
|
if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
|
|
FirstIdx = Offset/TySize;
|
|
Offset -= FirstIdx*TySize;
|
|
|
|
// Handle hosts where % returns negative instead of values [0..TySize).
|
|
if (Offset < 0) {
|
|
--FirstIdx;
|
|
Offset += TySize;
|
|
assert(Offset >= 0);
|
|
}
|
|
assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
|
|
}
|
|
|
|
NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
|
|
|
|
// Index into the types. If we fail, set OrigBase to null.
|
|
while (Offset) {
|
|
// Indexing into tail padding between struct/array elements.
|
|
if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
|
|
return nullptr;
|
|
|
|
if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
assert(Offset < (int64_t)SL->getSizeInBytes() &&
|
|
"Offset must stay within the indexed type");
|
|
|
|
unsigned Elt = SL->getElementContainingOffset(Offset);
|
|
NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
|
|
Elt));
|
|
|
|
Offset -= SL->getElementOffset(Elt);
|
|
Ty = STy->getElementType(Elt);
|
|
} else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
|
|
uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
|
|
assert(EltSize && "Cannot index into a zero-sized array");
|
|
NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
|
|
Offset %= EltSize;
|
|
Ty = AT->getElementType();
|
|
} else {
|
|
// Otherwise, we can't index into the middle of this atomic type, bail.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return Ty;
|
|
}
|
|
|
|
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
|
|
// If this GEP has only 0 indices, it is the same pointer as
|
|
// Src. If Src is not a trivial GEP too, don't combine
|
|
// the indices.
|
|
if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
|
|
!Src.hasOneUse())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return a value X such that Val = X * Scale, or null if none.
|
|
/// If the multiplication is known not to overflow, then NoSignedWrap is set.
|
|
Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
|
|
assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
|
|
assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
|
|
Scale.getBitWidth() && "Scale not compatible with value!");
|
|
|
|
// If Val is zero or Scale is one then Val = Val * Scale.
|
|
if (match(Val, m_Zero()) || Scale == 1) {
|
|
NoSignedWrap = true;
|
|
return Val;
|
|
}
|
|
|
|
// If Scale is zero then it does not divide Val.
|
|
if (Scale.isMinValue())
|
|
return nullptr;
|
|
|
|
// Look through chains of multiplications, searching for a constant that is
|
|
// divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
|
|
// will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
|
|
// a factor of 4 will produce X*(Y*2). The principle of operation is to bore
|
|
// down from Val:
|
|
//
|
|
// Val = M1 * X || Analysis starts here and works down
|
|
// M1 = M2 * Y || Doesn't descend into terms with more
|
|
// M2 = Z * 4 \/ than one use
|
|
//
|
|
// Then to modify a term at the bottom:
|
|
//
|
|
// Val = M1 * X
|
|
// M1 = Z * Y || Replaced M2 with Z
|
|
//
|
|
// Then to work back up correcting nsw flags.
|
|
|
|
// Op - the term we are currently analyzing. Starts at Val then drills down.
|
|
// Replaced with its descaled value before exiting from the drill down loop.
|
|
Value *Op = Val;
|
|
|
|
// Parent - initially null, but after drilling down notes where Op came from.
|
|
// In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
|
|
// 0'th operand of Val.
|
|
std::pair<Instruction *, unsigned> Parent;
|
|
|
|
// Set if the transform requires a descaling at deeper levels that doesn't
|
|
// overflow.
|
|
bool RequireNoSignedWrap = false;
|
|
|
|
// Log base 2 of the scale. Negative if not a power of 2.
|
|
int32_t logScale = Scale.exactLogBase2();
|
|
|
|
for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
|
|
// If Op is a constant divisible by Scale then descale to the quotient.
|
|
APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
|
|
APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
|
|
if (!Remainder.isMinValue())
|
|
// Not divisible by Scale.
|
|
return nullptr;
|
|
// Replace with the quotient in the parent.
|
|
Op = ConstantInt::get(CI->getType(), Quotient);
|
|
NoSignedWrap = true;
|
|
break;
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
|
|
if (BO->getOpcode() == Instruction::Mul) {
|
|
// Multiplication.
|
|
NoSignedWrap = BO->hasNoSignedWrap();
|
|
if (RequireNoSignedWrap && !NoSignedWrap)
|
|
return nullptr;
|
|
|
|
// There are three cases for multiplication: multiplication by exactly
|
|
// the scale, multiplication by a constant different to the scale, and
|
|
// multiplication by something else.
|
|
Value *LHS = BO->getOperand(0);
|
|
Value *RHS = BO->getOperand(1);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
|
|
// Multiplication by a constant.
|
|
if (CI->getValue() == Scale) {
|
|
// Multiplication by exactly the scale, replace the multiplication
|
|
// by its left-hand side in the parent.
|
|
Op = LHS;
|
|
break;
|
|
}
|
|
|
|
// Otherwise drill down into the constant.
|
|
if (!Op->hasOneUse())
|
|
return nullptr;
|
|
|
|
Parent = std::make_pair(BO, 1);
|
|
continue;
|
|
}
|
|
|
|
// Multiplication by something else. Drill down into the left-hand side
|
|
// since that's where the reassociate pass puts the good stuff.
|
|
if (!Op->hasOneUse())
|
|
return nullptr;
|
|
|
|
Parent = std::make_pair(BO, 0);
|
|
continue;
|
|
}
|
|
|
|
if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
|
|
isa<ConstantInt>(BO->getOperand(1))) {
|
|
// Multiplication by a power of 2.
|
|
NoSignedWrap = BO->hasNoSignedWrap();
|
|
if (RequireNoSignedWrap && !NoSignedWrap)
|
|
return nullptr;
|
|
|
|
Value *LHS = BO->getOperand(0);
|
|
int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
|
|
getLimitedValue(Scale.getBitWidth());
|
|
// Op = LHS << Amt.
|
|
|
|
if (Amt == logScale) {
|
|
// Multiplication by exactly the scale, replace the multiplication
|
|
// by its left-hand side in the parent.
|
|
Op = LHS;
|
|
break;
|
|
}
|
|
if (Amt < logScale || !Op->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Multiplication by more than the scale. Reduce the multiplying amount
|
|
// by the scale in the parent.
|
|
Parent = std::make_pair(BO, 1);
|
|
Op = ConstantInt::get(BO->getType(), Amt - logScale);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Op->hasOneUse())
|
|
return nullptr;
|
|
|
|
if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
|
|
if (Cast->getOpcode() == Instruction::SExt) {
|
|
// Op is sign-extended from a smaller type, descale in the smaller type.
|
|
unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
|
|
APInt SmallScale = Scale.trunc(SmallSize);
|
|
// Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
|
|
// descale Op as (sext Y) * Scale. In order to have
|
|
// sext (Y * SmallScale) = (sext Y) * Scale
|
|
// some conditions need to hold however: SmallScale must sign-extend to
|
|
// Scale and the multiplication Y * SmallScale should not overflow.
|
|
if (SmallScale.sext(Scale.getBitWidth()) != Scale)
|
|
// SmallScale does not sign-extend to Scale.
|
|
return nullptr;
|
|
assert(SmallScale.exactLogBase2() == logScale);
|
|
// Require that Y * SmallScale must not overflow.
|
|
RequireNoSignedWrap = true;
|
|
|
|
// Drill down through the cast.
|
|
Parent = std::make_pair(Cast, 0);
|
|
Scale = SmallScale;
|
|
continue;
|
|
}
|
|
|
|
if (Cast->getOpcode() == Instruction::Trunc) {
|
|
// Op is truncated from a larger type, descale in the larger type.
|
|
// Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
|
|
// trunc (Y * sext Scale) = (trunc Y) * Scale
|
|
// always holds. However (trunc Y) * Scale may overflow even if
|
|
// trunc (Y * sext Scale) does not, so nsw flags need to be cleared
|
|
// from this point up in the expression (see later).
|
|
if (RequireNoSignedWrap)
|
|
return nullptr;
|
|
|
|
// Drill down through the cast.
|
|
unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
|
|
Parent = std::make_pair(Cast, 0);
|
|
Scale = Scale.sext(LargeSize);
|
|
if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
|
|
logScale = -1;
|
|
assert(Scale.exactLogBase2() == logScale);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Unsupported expression, bail out.
|
|
return nullptr;
|
|
}
|
|
|
|
// If Op is zero then Val = Op * Scale.
|
|
if (match(Op, m_Zero())) {
|
|
NoSignedWrap = true;
|
|
return Op;
|
|
}
|
|
|
|
// We know that we can successfully descale, so from here on we can safely
|
|
// modify the IR. Op holds the descaled version of the deepest term in the
|
|
// expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
|
|
// not to overflow.
|
|
|
|
if (!Parent.first)
|
|
// The expression only had one term.
|
|
return Op;
|
|
|
|
// Rewrite the parent using the descaled version of its operand.
|
|
assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
|
|
assert(Op != Parent.first->getOperand(Parent.second) &&
|
|
"Descaling was a no-op?");
|
|
Parent.first->setOperand(Parent.second, Op);
|
|
Worklist.Add(Parent.first);
|
|
|
|
// Now work back up the expression correcting nsw flags. The logic is based
|
|
// on the following observation: if X * Y is known not to overflow as a signed
|
|
// multiplication, and Y is replaced by a value Z with smaller absolute value,
|
|
// then X * Z will not overflow as a signed multiplication either. As we work
|
|
// our way up, having NoSignedWrap 'true' means that the descaled value at the
|
|
// current level has strictly smaller absolute value than the original.
|
|
Instruction *Ancestor = Parent.first;
|
|
do {
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
|
|
// If the multiplication wasn't nsw then we can't say anything about the
|
|
// value of the descaled multiplication, and we have to clear nsw flags
|
|
// from this point on up.
|
|
bool OpNoSignedWrap = BO->hasNoSignedWrap();
|
|
NoSignedWrap &= OpNoSignedWrap;
|
|
if (NoSignedWrap != OpNoSignedWrap) {
|
|
BO->setHasNoSignedWrap(NoSignedWrap);
|
|
Worklist.Add(Ancestor);
|
|
}
|
|
} else if (Ancestor->getOpcode() == Instruction::Trunc) {
|
|
// The fact that the descaled input to the trunc has smaller absolute
|
|
// value than the original input doesn't tell us anything useful about
|
|
// the absolute values of the truncations.
|
|
NoSignedWrap = false;
|
|
}
|
|
assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
|
|
"Failed to keep proper track of nsw flags while drilling down?");
|
|
|
|
if (Ancestor == Val)
|
|
// Got to the top, all done!
|
|
return Val;
|
|
|
|
// Move up one level in the expression.
|
|
assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
|
|
Ancestor = Ancestor->user_back();
|
|
} while (true);
|
|
}
|
|
|
|
Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
|
|
if (!Inst.getType()->isVectorTy()) return nullptr;
|
|
|
|
BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
|
|
unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
|
|
Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
|
|
assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
|
|
assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
|
|
|
|
// If both operands of the binop are vector concatenations, then perform the
|
|
// narrow binop on each pair of the source operands followed by concatenation
|
|
// of the results.
|
|
Value *L0, *L1, *R0, *R1;
|
|
Constant *Mask;
|
|
if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
|
|
match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
|
|
LHS->hasOneUse() && RHS->hasOneUse() &&
|
|
cast<ShuffleVectorInst>(LHS)->isConcat() &&
|
|
cast<ShuffleVectorInst>(RHS)->isConcat()) {
|
|
// This transform does not have the speculative execution constraint as
|
|
// below because the shuffle is a concatenation. The new binops are
|
|
// operating on exactly the same elements as the existing binop.
|
|
// TODO: We could ease the mask requirement to allow different undef lanes,
|
|
// but that requires an analysis of the binop-with-undef output value.
|
|
Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
|
|
BO->copyIRFlags(&Inst);
|
|
Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
|
|
BO->copyIRFlags(&Inst);
|
|
return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
|
|
}
|
|
|
|
// It may not be safe to reorder shuffles and things like div, urem, etc.
|
|
// because we may trap when executing those ops on unknown vector elements.
|
|
// See PR20059.
|
|
if (!isSafeToSpeculativelyExecute(&Inst))
|
|
return nullptr;
|
|
|
|
auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
|
|
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(XY))
|
|
BO->copyIRFlags(&Inst);
|
|
return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
|
|
};
|
|
|
|
// If both arguments of the binary operation are shuffles that use the same
|
|
// mask and shuffle within a single vector, move the shuffle after the binop.
|
|
Value *V1, *V2;
|
|
if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
|
|
match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
|
|
V1->getType() == V2->getType() &&
|
|
(LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
|
|
// Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
|
|
return createBinOpShuffle(V1, V2, Mask);
|
|
}
|
|
|
|
// If both arguments of a commutative binop are select-shuffles that use the
|
|
// same mask with commuted operands, the shuffles are unnecessary.
|
|
if (Inst.isCommutative() &&
|
|
match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) &&
|
|
match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
|
|
m_Specific(Mask)))) {
|
|
auto *LShuf = cast<ShuffleVectorInst>(LHS);
|
|
auto *RShuf = cast<ShuffleVectorInst>(RHS);
|
|
// TODO: Allow shuffles that contain undefs in the mask?
|
|
// That is legal, but it reduces undef knowledge.
|
|
// TODO: Allow arbitrary shuffles by shuffling after binop?
|
|
// That might be legal, but we have to deal with poison.
|
|
if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() &&
|
|
RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) {
|
|
// Example:
|
|
// LHS = shuffle V1, V2, <0, 5, 6, 3>
|
|
// RHS = shuffle V2, V1, <0, 5, 6, 3>
|
|
// LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
|
|
Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
|
|
NewBO->copyIRFlags(&Inst);
|
|
return NewBO;
|
|
}
|
|
}
|
|
|
|
// If one argument is a shuffle within one vector and the other is a constant,
|
|
// try moving the shuffle after the binary operation. This canonicalization
|
|
// intends to move shuffles closer to other shuffles and binops closer to
|
|
// other binops, so they can be folded. It may also enable demanded elements
|
|
// transforms.
|
|
Constant *C;
|
|
if (match(&Inst, m_c_BinOp(
|
|
m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
|
|
m_Constant(C))) &&
|
|
V1->getType()->getVectorNumElements() <= NumElts) {
|
|
assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
|
|
"Shuffle should not change scalar type");
|
|
|
|
// Find constant NewC that has property:
|
|
// shuffle(NewC, ShMask) = C
|
|
// If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
|
|
// reorder is not possible. A 1-to-1 mapping is not required. Example:
|
|
// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
|
|
bool ConstOp1 = isa<Constant>(RHS);
|
|
SmallVector<int, 16> ShMask;
|
|
ShuffleVectorInst::getShuffleMask(Mask, ShMask);
|
|
unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
|
|
UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
|
|
SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
|
|
bool MayChange = true;
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
Constant *CElt = C->getAggregateElement(I);
|
|
if (ShMask[I] >= 0) {
|
|
assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
|
|
Constant *NewCElt = NewVecC[ShMask[I]];
|
|
// Bail out if:
|
|
// 1. The constant vector contains a constant expression.
|
|
// 2. The shuffle needs an element of the constant vector that can't
|
|
// be mapped to a new constant vector.
|
|
// 3. This is a widening shuffle that copies elements of V1 into the
|
|
// extended elements (extending with undef is allowed).
|
|
if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
|
|
I >= SrcVecNumElts) {
|
|
MayChange = false;
|
|
break;
|
|
}
|
|
NewVecC[ShMask[I]] = CElt;
|
|
}
|
|
// If this is a widening shuffle, we must be able to extend with undef
|
|
// elements. If the original binop does not produce an undef in the high
|
|
// lanes, then this transform is not safe.
|
|
// TODO: We could shuffle those non-undef constant values into the
|
|
// result by using a constant vector (rather than an undef vector)
|
|
// as operand 1 of the new binop, but that might be too aggressive
|
|
// for target-independent shuffle creation.
|
|
if (I >= SrcVecNumElts) {
|
|
Constant *MaybeUndef =
|
|
ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
|
|
: ConstantExpr::get(Opcode, CElt, UndefScalar);
|
|
if (!isa<UndefValue>(MaybeUndef)) {
|
|
MayChange = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (MayChange) {
|
|
Constant *NewC = ConstantVector::get(NewVecC);
|
|
// It may not be safe to execute a binop on a vector with undef elements
|
|
// because the entire instruction can be folded to undef or create poison
|
|
// that did not exist in the original code.
|
|
if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
|
|
NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
|
|
|
|
// Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
|
|
// Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
|
|
Value *NewLHS = ConstOp1 ? V1 : NewC;
|
|
Value *NewRHS = ConstOp1 ? NewC : V1;
|
|
return createBinOpShuffle(NewLHS, NewRHS, Mask);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to narrow the width of a binop if at least 1 operand is an extend of
|
|
/// of a value. This requires a potentially expensive known bits check to make
|
|
/// sure the narrow op does not overflow.
|
|
Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
|
|
// We need at least one extended operand.
|
|
Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
|
|
|
|
// If this is a sub, we swap the operands since we always want an extension
|
|
// on the RHS. The LHS can be an extension or a constant.
|
|
if (BO.getOpcode() == Instruction::Sub)
|
|
std::swap(Op0, Op1);
|
|
|
|
Value *X;
|
|
bool IsSext = match(Op0, m_SExt(m_Value(X)));
|
|
if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
|
|
return nullptr;
|
|
|
|
// If both operands are the same extension from the same source type and we
|
|
// can eliminate at least one (hasOneUse), this might work.
|
|
CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
|
|
Value *Y;
|
|
if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
|
|
cast<Operator>(Op1)->getOpcode() == CastOpc &&
|
|
(Op0->hasOneUse() || Op1->hasOneUse()))) {
|
|
// If that did not match, see if we have a suitable constant operand.
|
|
// Truncating and extending must produce the same constant.
|
|
Constant *WideC;
|
|
if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
|
|
return nullptr;
|
|
Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
|
|
if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
|
|
return nullptr;
|
|
Y = NarrowC;
|
|
}
|
|
|
|
// Swap back now that we found our operands.
|
|
if (BO.getOpcode() == Instruction::Sub)
|
|
std::swap(X, Y);
|
|
|
|
// Both operands have narrow versions. Last step: the math must not overflow
|
|
// in the narrow width.
|
|
if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
|
|
return nullptr;
|
|
|
|
// bo (ext X), (ext Y) --> ext (bo X, Y)
|
|
// bo (ext X), C --> ext (bo X, C')
|
|
Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
|
|
if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
|
|
if (IsSext)
|
|
NewBinOp->setHasNoSignedWrap();
|
|
else
|
|
NewBinOp->setHasNoUnsignedWrap();
|
|
}
|
|
return CastInst::Create(CastOpc, NarrowBO, BO.getType());
|
|
}
|
|
|
|
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
|
|
Type *GEPType = GEP.getType();
|
|
Type *GEPEltType = GEP.getSourceElementType();
|
|
if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
|
|
return replaceInstUsesWith(GEP, V);
|
|
|
|
// For vector geps, use the generic demanded vector support.
|
|
if (GEP.getType()->isVectorTy()) {
|
|
auto VWidth = GEP.getType()->getVectorNumElements();
|
|
APInt UndefElts(VWidth, 0);
|
|
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
|
|
if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
|
|
UndefElts)) {
|
|
if (V != &GEP)
|
|
return replaceInstUsesWith(GEP, V);
|
|
return &GEP;
|
|
}
|
|
|
|
// TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
|
|
// possible (decide on canonical form for pointer broadcast), 3) exploit
|
|
// undef elements to decrease demanded bits
|
|
}
|
|
|
|
Value *PtrOp = GEP.getOperand(0);
|
|
|
|
// Eliminate unneeded casts for indices, and replace indices which displace
|
|
// by multiples of a zero size type with zero.
|
|
bool MadeChange = false;
|
|
|
|
// Index width may not be the same width as pointer width.
|
|
// Data layout chooses the right type based on supported integer types.
|
|
Type *NewScalarIndexTy =
|
|
DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
|
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
|
|
++I, ++GTI) {
|
|
// Skip indices into struct types.
|
|
if (GTI.isStruct())
|
|
continue;
|
|
|
|
Type *IndexTy = (*I)->getType();
|
|
Type *NewIndexType =
|
|
IndexTy->isVectorTy()
|
|
? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
|
|
: NewScalarIndexTy;
|
|
|
|
// If the element type has zero size then any index over it is equivalent
|
|
// to an index of zero, so replace it with zero if it is not zero already.
|
|
Type *EltTy = GTI.getIndexedType();
|
|
if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
|
|
if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
|
|
*I = Constant::getNullValue(NewIndexType);
|
|
MadeChange = true;
|
|
}
|
|
|
|
if (IndexTy != NewIndexType) {
|
|
// If we are using a wider index than needed for this platform, shrink
|
|
// it to what we need. If narrower, sign-extend it to what we need.
|
|
// This explicit cast can make subsequent optimizations more obvious.
|
|
*I = Builder.CreateIntCast(*I, NewIndexType, true);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
if (MadeChange)
|
|
return &GEP;
|
|
|
|
// Check to see if the inputs to the PHI node are getelementptr instructions.
|
|
if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
|
|
auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
|
|
if (!Op1)
|
|
return nullptr;
|
|
|
|
// Don't fold a GEP into itself through a PHI node. This can only happen
|
|
// through the back-edge of a loop. Folding a GEP into itself means that
|
|
// the value of the previous iteration needs to be stored in the meantime,
|
|
// thus requiring an additional register variable to be live, but not
|
|
// actually achieving anything (the GEP still needs to be executed once per
|
|
// loop iteration).
|
|
if (Op1 == &GEP)
|
|
return nullptr;
|
|
|
|
int DI = -1;
|
|
|
|
for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
|
|
auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
|
|
if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
|
|
return nullptr;
|
|
|
|
// As for Op1 above, don't try to fold a GEP into itself.
|
|
if (Op2 == &GEP)
|
|
return nullptr;
|
|
|
|
// Keep track of the type as we walk the GEP.
|
|
Type *CurTy = nullptr;
|
|
|
|
for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
|
|
if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
|
|
return nullptr;
|
|
|
|
if (Op1->getOperand(J) != Op2->getOperand(J)) {
|
|
if (DI == -1) {
|
|
// We have not seen any differences yet in the GEPs feeding the
|
|
// PHI yet, so we record this one if it is allowed to be a
|
|
// variable.
|
|
|
|
// The first two arguments can vary for any GEP, the rest have to be
|
|
// static for struct slots
|
|
if (J > 1 && CurTy->isStructTy())
|
|
return nullptr;
|
|
|
|
DI = J;
|
|
} else {
|
|
// The GEP is different by more than one input. While this could be
|
|
// extended to support GEPs that vary by more than one variable it
|
|
// doesn't make sense since it greatly increases the complexity and
|
|
// would result in an R+R+R addressing mode which no backend
|
|
// directly supports and would need to be broken into several
|
|
// simpler instructions anyway.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Sink down a layer of the type for the next iteration.
|
|
if (J > 0) {
|
|
if (J == 1) {
|
|
CurTy = Op1->getSourceElementType();
|
|
} else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
|
|
CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
|
|
} else {
|
|
CurTy = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If not all GEPs are identical we'll have to create a new PHI node.
|
|
// Check that the old PHI node has only one use so that it will get
|
|
// removed.
|
|
if (DI != -1 && !PN->hasOneUse())
|
|
return nullptr;
|
|
|
|
auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
|
|
if (DI == -1) {
|
|
// All the GEPs feeding the PHI are identical. Clone one down into our
|
|
// BB so that it can be merged with the current GEP.
|
|
GEP.getParent()->getInstList().insert(
|
|
GEP.getParent()->getFirstInsertionPt(), NewGEP);
|
|
} else {
|
|
// All the GEPs feeding the PHI differ at a single offset. Clone a GEP
|
|
// into the current block so it can be merged, and create a new PHI to
|
|
// set that index.
|
|
PHINode *NewPN;
|
|
{
|
|
IRBuilderBase::InsertPointGuard Guard(Builder);
|
|
Builder.SetInsertPoint(PN);
|
|
NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
|
|
PN->getNumOperands());
|
|
}
|
|
|
|
for (auto &I : PN->operands())
|
|
NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
|
|
PN->getIncomingBlock(I));
|
|
|
|
NewGEP->setOperand(DI, NewPN);
|
|
GEP.getParent()->getInstList().insert(
|
|
GEP.getParent()->getFirstInsertionPt(), NewGEP);
|
|
NewGEP->setOperand(DI, NewPN);
|
|
}
|
|
|
|
GEP.setOperand(0, NewGEP);
|
|
PtrOp = NewGEP;
|
|
}
|
|
|
|
// Combine Indices - If the source pointer to this getelementptr instruction
|
|
// is a getelementptr instruction, combine the indices of the two
|
|
// getelementptr instructions into a single instruction.
|
|
if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
|
|
if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
|
|
return nullptr;
|
|
|
|
// Try to reassociate loop invariant GEP chains to enable LICM.
|
|
if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
|
|
Src->hasOneUse()) {
|
|
if (Loop *L = LI->getLoopFor(GEP.getParent())) {
|
|
Value *GO1 = GEP.getOperand(1);
|
|
Value *SO1 = Src->getOperand(1);
|
|
// Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
|
|
// invariant: this breaks the dependence between GEPs and allows LICM
|
|
// to hoist the invariant part out of the loop.
|
|
if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
|
|
// We have to be careful here.
|
|
// We have something like:
|
|
// %src = getelementptr <ty>, <ty>* %base, <ty> %idx
|
|
// %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
|
|
// If we just swap idx & idx2 then we could inadvertantly
|
|
// change %src from a vector to a scalar, or vice versa.
|
|
// Cases:
|
|
// 1) %base a scalar & idx a scalar & idx2 a vector
|
|
// => Swapping idx & idx2 turns %src into a vector type.
|
|
// 2) %base a scalar & idx a vector & idx2 a scalar
|
|
// => Swapping idx & idx2 turns %src in a scalar type
|
|
// 3) %base, %idx, and %idx2 are scalars
|
|
// => %src & %gep are scalars
|
|
// => swapping idx & idx2 is safe
|
|
// 4) %base a vector
|
|
// => %src is a vector
|
|
// => swapping idx & idx2 is safe.
|
|
auto *SO0 = Src->getOperand(0);
|
|
auto *SO0Ty = SO0->getType();
|
|
if (!isa<VectorType>(GEPType) || // case 3
|
|
isa<VectorType>(SO0Ty)) { // case 4
|
|
Src->setOperand(1, GO1);
|
|
GEP.setOperand(1, SO1);
|
|
return &GEP;
|
|
} else {
|
|
// Case 1 or 2
|
|
// -- have to recreate %src & %gep
|
|
// put NewSrc at same location as %src
|
|
Builder.SetInsertPoint(cast<Instruction>(PtrOp));
|
|
auto *NewSrc = cast<GetElementPtrInst>(
|
|
Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
|
|
NewSrc->setIsInBounds(Src->isInBounds());
|
|
auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
|
|
NewGEP->setIsInBounds(GEP.isInBounds());
|
|
return NewGEP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that if our source is a gep chain itself then we wait for that
|
|
// chain to be resolved before we perform this transformation. This
|
|
// avoids us creating a TON of code in some cases.
|
|
if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
|
|
if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
|
|
return nullptr; // Wait until our source is folded to completion.
|
|
|
|
SmallVector<Value*, 8> Indices;
|
|
|
|
// Find out whether the last index in the source GEP is a sequential idx.
|
|
bool EndsWithSequential = false;
|
|
for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
|
|
I != E; ++I)
|
|
EndsWithSequential = I.isSequential();
|
|
|
|
// Can we combine the two pointer arithmetics offsets?
|
|
if (EndsWithSequential) {
|
|
// Replace: gep (gep %P, long B), long A, ...
|
|
// With: T = long A+B; gep %P, T, ...
|
|
Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
|
|
Value *GO1 = GEP.getOperand(1);
|
|
|
|
// If they aren't the same type, then the input hasn't been processed
|
|
// by the loop above yet (which canonicalizes sequential index types to
|
|
// intptr_t). Just avoid transforming this until the input has been
|
|
// normalized.
|
|
if (SO1->getType() != GO1->getType())
|
|
return nullptr;
|
|
|
|
Value *Sum =
|
|
SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
|
|
// Only do the combine when we are sure the cost after the
|
|
// merge is never more than that before the merge.
|
|
if (Sum == nullptr)
|
|
return nullptr;
|
|
|
|
// Update the GEP in place if possible.
|
|
if (Src->getNumOperands() == 2) {
|
|
GEP.setOperand(0, Src->getOperand(0));
|
|
GEP.setOperand(1, Sum);
|
|
return &GEP;
|
|
}
|
|
Indices.append(Src->op_begin()+1, Src->op_end()-1);
|
|
Indices.push_back(Sum);
|
|
Indices.append(GEP.op_begin()+2, GEP.op_end());
|
|
} else if (isa<Constant>(*GEP.idx_begin()) &&
|
|
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
|
|
Src->getNumOperands() != 1) {
|
|
// Otherwise we can do the fold if the first index of the GEP is a zero
|
|
Indices.append(Src->op_begin()+1, Src->op_end());
|
|
Indices.append(GEP.idx_begin()+1, GEP.idx_end());
|
|
}
|
|
|
|
if (!Indices.empty())
|
|
return GEP.isInBounds() && Src->isInBounds()
|
|
? GetElementPtrInst::CreateInBounds(
|
|
Src->getSourceElementType(), Src->getOperand(0), Indices,
|
|
GEP.getName())
|
|
: GetElementPtrInst::Create(Src->getSourceElementType(),
|
|
Src->getOperand(0), Indices,
|
|
GEP.getName());
|
|
}
|
|
|
|
if (GEP.getNumIndices() == 1) {
|
|
unsigned AS = GEP.getPointerAddressSpace();
|
|
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
|
|
DL.getIndexSizeInBits(AS)) {
|
|
uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
|
|
|
|
bool Matched = false;
|
|
uint64_t C;
|
|
Value *V = nullptr;
|
|
if (TyAllocSize == 1) {
|
|
V = GEP.getOperand(1);
|
|
Matched = true;
|
|
} else if (match(GEP.getOperand(1),
|
|
m_AShr(m_Value(V), m_ConstantInt(C)))) {
|
|
if (TyAllocSize == 1ULL << C)
|
|
Matched = true;
|
|
} else if (match(GEP.getOperand(1),
|
|
m_SDiv(m_Value(V), m_ConstantInt(C)))) {
|
|
if (TyAllocSize == C)
|
|
Matched = true;
|
|
}
|
|
|
|
if (Matched) {
|
|
// Canonicalize (gep i8* X, -(ptrtoint Y))
|
|
// to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
|
|
// The GEP pattern is emitted by the SCEV expander for certain kinds of
|
|
// pointer arithmetic.
|
|
if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
|
|
Operator *Index = cast<Operator>(V);
|
|
Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
|
|
Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
|
|
return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
|
|
}
|
|
// Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
|
|
// to (bitcast Y)
|
|
Value *Y;
|
|
if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
|
|
m_PtrToInt(m_Specific(GEP.getOperand(0))))))
|
|
return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We do not handle pointer-vector geps here.
|
|
if (GEPType->isVectorTy())
|
|
return nullptr;
|
|
|
|
// Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
|
|
Value *StrippedPtr = PtrOp->stripPointerCasts();
|
|
PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
|
|
|
|
if (StrippedPtr != PtrOp) {
|
|
bool HasZeroPointerIndex = false;
|
|
Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
|
|
|
|
if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
|
|
HasZeroPointerIndex = C->isZero();
|
|
|
|
// Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
|
|
// into : GEP [10 x i8]* X, i32 0, ...
|
|
//
|
|
// Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
|
|
// into : GEP i8* X, ...
|
|
//
|
|
// This occurs when the program declares an array extern like "int X[];"
|
|
if (HasZeroPointerIndex) {
|
|
if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
|
|
// GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
|
|
if (CATy->getElementType() == StrippedPtrEltTy) {
|
|
// -> GEP i8* X, ...
|
|
SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
|
|
GetElementPtrInst *Res = GetElementPtrInst::Create(
|
|
StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
|
|
Res->setIsInBounds(GEP.isInBounds());
|
|
if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
|
|
return Res;
|
|
// Insert Res, and create an addrspacecast.
|
|
// e.g.,
|
|
// GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
|
|
// ->
|
|
// %0 = GEP i8 addrspace(1)* X, ...
|
|
// addrspacecast i8 addrspace(1)* %0 to i8*
|
|
return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
|
|
}
|
|
|
|
if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
|
|
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
|
|
if (CATy->getElementType() == XATy->getElementType()) {
|
|
// -> GEP [10 x i8]* X, i32 0, ...
|
|
// At this point, we know that the cast source type is a pointer
|
|
// to an array of the same type as the destination pointer
|
|
// array. Because the array type is never stepped over (there
|
|
// is a leading zero) we can fold the cast into this GEP.
|
|
if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
|
|
GEP.setOperand(0, StrippedPtr);
|
|
GEP.setSourceElementType(XATy);
|
|
return &GEP;
|
|
}
|
|
// Cannot replace the base pointer directly because StrippedPtr's
|
|
// address space is different. Instead, create a new GEP followed by
|
|
// an addrspacecast.
|
|
// e.g.,
|
|
// GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
|
|
// i32 0, ...
|
|
// ->
|
|
// %0 = GEP [10 x i8] addrspace(1)* X, ...
|
|
// addrspacecast i8 addrspace(1)* %0 to i8*
|
|
SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
|
|
Value *NewGEP =
|
|
GEP.isInBounds()
|
|
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
|
|
Idx, GEP.getName())
|
|
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
|
|
GEP.getName());
|
|
return new AddrSpaceCastInst(NewGEP, GEPType);
|
|
}
|
|
}
|
|
}
|
|
} else if (GEP.getNumOperands() == 2) {
|
|
// Transform things like:
|
|
// %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
|
|
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
|
|
if (StrippedPtrEltTy->isArrayTy() &&
|
|
DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
|
|
DL.getTypeAllocSize(GEPEltType)) {
|
|
Type *IdxType = DL.getIndexType(GEPType);
|
|
Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
|
|
Value *NewGEP =
|
|
GEP.isInBounds()
|
|
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
|
|
GEP.getName())
|
|
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
|
|
GEP.getName());
|
|
|
|
// V and GEP are both pointer types --> BitCast
|
|
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
|
|
}
|
|
|
|
// Transform things like:
|
|
// %V = mul i64 %N, 4
|
|
// %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
|
|
// into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
|
|
if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
|
|
// Check that changing the type amounts to dividing the index by a scale
|
|
// factor.
|
|
uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
|
|
uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
|
|
if (ResSize && SrcSize % ResSize == 0) {
|
|
Value *Idx = GEP.getOperand(1);
|
|
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
|
|
uint64_t Scale = SrcSize / ResSize;
|
|
|
|
// Earlier transforms ensure that the index has the right type
|
|
// according to Data Layout, which considerably simplifies the
|
|
// logic by eliminating implicit casts.
|
|
assert(Idx->getType() == DL.getIndexType(GEPType) &&
|
|
"Index type does not match the Data Layout preferences");
|
|
|
|
bool NSW;
|
|
if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
|
|
// Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
|
|
// If the multiplication NewIdx * Scale may overflow then the new
|
|
// GEP may not be "inbounds".
|
|
Value *NewGEP =
|
|
GEP.isInBounds() && NSW
|
|
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
|
|
NewIdx, GEP.getName())
|
|
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
|
|
GEP.getName());
|
|
|
|
// The NewGEP must be pointer typed, so must the old one -> BitCast
|
|
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
|
|
GEPType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Similarly, transform things like:
|
|
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
|
|
// (where tmp = 8*tmp2) into:
|
|
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
|
|
if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
|
|
StrippedPtrEltTy->isArrayTy()) {
|
|
// Check that changing to the array element type amounts to dividing the
|
|
// index by a scale factor.
|
|
uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
|
|
uint64_t ArrayEltSize =
|
|
DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
|
|
if (ResSize && ArrayEltSize % ResSize == 0) {
|
|
Value *Idx = GEP.getOperand(1);
|
|
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
|
|
uint64_t Scale = ArrayEltSize / ResSize;
|
|
|
|
// Earlier transforms ensure that the index has the right type
|
|
// according to the Data Layout, which considerably simplifies
|
|
// the logic by eliminating implicit casts.
|
|
assert(Idx->getType() == DL.getIndexType(GEPType) &&
|
|
"Index type does not match the Data Layout preferences");
|
|
|
|
bool NSW;
|
|
if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
|
|
// Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
|
|
// If the multiplication NewIdx * Scale may overflow then the new
|
|
// GEP may not be "inbounds".
|
|
Type *IndTy = DL.getIndexType(GEPType);
|
|
Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
|
|
|
|
Value *NewGEP =
|
|
GEP.isInBounds() && NSW
|
|
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
|
|
Off, GEP.getName())
|
|
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
|
|
GEP.getName());
|
|
// The NewGEP must be pointer typed, so must the old one -> BitCast
|
|
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
|
|
GEPType);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// addrspacecast between types is canonicalized as a bitcast, then an
|
|
// addrspacecast. To take advantage of the below bitcast + struct GEP, look
|
|
// through the addrspacecast.
|
|
Value *ASCStrippedPtrOp = PtrOp;
|
|
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
|
|
// X = bitcast A addrspace(1)* to B addrspace(1)*
|
|
// Y = addrspacecast A addrspace(1)* to B addrspace(2)*
|
|
// Z = gep Y, <...constant indices...>
|
|
// Into an addrspacecasted GEP of the struct.
|
|
if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
|
|
ASCStrippedPtrOp = BC;
|
|
}
|
|
|
|
if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
|
|
Value *SrcOp = BCI->getOperand(0);
|
|
PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
|
|
Type *SrcEltType = SrcType->getElementType();
|
|
|
|
// GEP directly using the source operand if this GEP is accessing an element
|
|
// of a bitcasted pointer to vector or array of the same dimensions:
|
|
// gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
|
|
// gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
|
|
auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
|
|
return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
|
|
ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
|
|
};
|
|
if (GEP.getNumOperands() == 3 &&
|
|
((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
|
|
areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
|
|
(GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
|
|
areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
|
|
|
|
// Create a new GEP here, as using `setOperand()` followed by
|
|
// `setSourceElementType()` won't actually update the type of the
|
|
// existing GEP Value. Causing issues if this Value is accessed when
|
|
// constructing an AddrSpaceCastInst
|
|
Value *NGEP =
|
|
GEP.isInBounds()
|
|
? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
|
|
: Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
|
|
NGEP->takeName(&GEP);
|
|
|
|
// Preserve GEP address space to satisfy users
|
|
if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
|
|
return new AddrSpaceCastInst(NGEP, GEPType);
|
|
|
|
return replaceInstUsesWith(GEP, NGEP);
|
|
}
|
|
|
|
// See if we can simplify:
|
|
// X = bitcast A* to B*
|
|
// Y = gep X, <...constant indices...>
|
|
// into a gep of the original struct. This is important for SROA and alias
|
|
// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
|
|
unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
|
|
APInt Offset(OffsetBits, 0);
|
|
if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
|
|
// If this GEP instruction doesn't move the pointer, just replace the GEP
|
|
// with a bitcast of the real input to the dest type.
|
|
if (!Offset) {
|
|
// If the bitcast is of an allocation, and the allocation will be
|
|
// converted to match the type of the cast, don't touch this.
|
|
if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
|
|
// See if the bitcast simplifies, if so, don't nuke this GEP yet.
|
|
if (Instruction *I = visitBitCast(*BCI)) {
|
|
if (I != BCI) {
|
|
I->takeName(BCI);
|
|
BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
|
|
replaceInstUsesWith(*BCI, I);
|
|
}
|
|
return &GEP;
|
|
}
|
|
}
|
|
|
|
if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
|
|
return new AddrSpaceCastInst(SrcOp, GEPType);
|
|
return new BitCastInst(SrcOp, GEPType);
|
|
}
|
|
|
|
// Otherwise, if the offset is non-zero, we need to find out if there is a
|
|
// field at Offset in 'A's type. If so, we can pull the cast through the
|
|
// GEP.
|
|
SmallVector<Value*, 8> NewIndices;
|
|
if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
|
|
Value *NGEP =
|
|
GEP.isInBounds()
|
|
? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
|
|
: Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
|
|
|
|
if (NGEP->getType() == GEPType)
|
|
return replaceInstUsesWith(GEP, NGEP);
|
|
NGEP->takeName(&GEP);
|
|
|
|
if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
|
|
return new AddrSpaceCastInst(NGEP, GEPType);
|
|
return new BitCastInst(NGEP, GEPType);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!GEP.isInBounds()) {
|
|
unsigned IdxWidth =
|
|
DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
|
|
APInt BasePtrOffset(IdxWidth, 0);
|
|
Value *UnderlyingPtrOp =
|
|
PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
|
|
BasePtrOffset);
|
|
if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
|
|
if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
|
|
BasePtrOffset.isNonNegative()) {
|
|
APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
|
|
if (BasePtrOffset.ule(AllocSize)) {
|
|
return GetElementPtrInst::CreateInBounds(
|
|
GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
|
|
GEP.getName());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
|
|
Instruction *AI) {
|
|
if (isa<ConstantPointerNull>(V))
|
|
return true;
|
|
if (auto *LI = dyn_cast<LoadInst>(V))
|
|
return isa<GlobalVariable>(LI->getPointerOperand());
|
|
// Two distinct allocations will never be equal.
|
|
// We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
|
|
// through bitcasts of V can cause
|
|
// the result statement below to be true, even when AI and V (ex:
|
|
// i8* ->i32* ->i8* of AI) are the same allocations.
|
|
return isAllocLikeFn(V, TLI) && V != AI;
|
|
}
|
|
|
|
static bool isAllocSiteRemovable(Instruction *AI,
|
|
SmallVectorImpl<WeakTrackingVH> &Users,
|
|
const TargetLibraryInfo *TLI) {
|
|
SmallVector<Instruction*, 4> Worklist;
|
|
Worklist.push_back(AI);
|
|
|
|
do {
|
|
Instruction *PI = Worklist.pop_back_val();
|
|
for (User *U : PI->users()) {
|
|
Instruction *I = cast<Instruction>(U);
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
// Give up the moment we see something we can't handle.
|
|
return false;
|
|
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
Users.emplace_back(I);
|
|
Worklist.push_back(I);
|
|
continue;
|
|
|
|
case Instruction::ICmp: {
|
|
ICmpInst *ICI = cast<ICmpInst>(I);
|
|
// We can fold eq/ne comparisons with null to false/true, respectively.
|
|
// We also fold comparisons in some conditions provided the alloc has
|
|
// not escaped (see isNeverEqualToUnescapedAlloc).
|
|
if (!ICI->isEquality())
|
|
return false;
|
|
unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
|
|
if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
|
|
return false;
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
|
|
case Instruction::Call:
|
|
// Ignore no-op and store intrinsics.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memset: {
|
|
MemIntrinsic *MI = cast<MemIntrinsic>(II);
|
|
if (MI->isVolatile() || MI->getRawDest() != PI)
|
|
return false;
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::objectsize:
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (isFreeCall(I, TLI)) {
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
return false;
|
|
|
|
case Instruction::Store: {
|
|
StoreInst *SI = cast<StoreInst>(I);
|
|
if (SI->isVolatile() || SI->getPointerOperand() != PI)
|
|
return false;
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
llvm_unreachable("missing a return?");
|
|
}
|
|
} while (!Worklist.empty());
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
|
|
// If we have a malloc call which is only used in any amount of comparisons to
|
|
// null and free calls, delete the calls and replace the comparisons with true
|
|
// or false as appropriate.
|
|
|
|
// This is based on the principle that we can substitute our own allocation
|
|
// function (which will never return null) rather than knowledge of the
|
|
// specific function being called. In some sense this can change the permitted
|
|
// outputs of a program (when we convert a malloc to an alloca, the fact that
|
|
// the allocation is now on the stack is potentially visible, for example),
|
|
// but we believe in a permissible manner.
|
|
SmallVector<WeakTrackingVH, 64> Users;
|
|
|
|
// If we are removing an alloca with a dbg.declare, insert dbg.value calls
|
|
// before each store.
|
|
TinyPtrVector<DbgVariableIntrinsic *> DIIs;
|
|
std::unique_ptr<DIBuilder> DIB;
|
|
if (isa<AllocaInst>(MI)) {
|
|
DIIs = FindDbgAddrUses(&MI);
|
|
DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
|
|
}
|
|
|
|
if (isAllocSiteRemovable(&MI, Users, &TLI)) {
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
|
|
// Lowering all @llvm.objectsize calls first because they may
|
|
// use a bitcast/GEP of the alloca we are removing.
|
|
if (!Users[i])
|
|
continue;
|
|
|
|
Instruction *I = cast<Instruction>(&*Users[i]);
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::objectsize) {
|
|
Value *Result =
|
|
lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
|
|
replaceInstUsesWith(*I, Result);
|
|
eraseInstFromFunction(*I);
|
|
Users[i] = nullptr; // Skip examining in the next loop.
|
|
}
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
|
|
if (!Users[i])
|
|
continue;
|
|
|
|
Instruction *I = cast<Instruction>(&*Users[i]);
|
|
|
|
if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
|
|
replaceInstUsesWith(*C,
|
|
ConstantInt::get(Type::getInt1Ty(C->getContext()),
|
|
C->isFalseWhenEqual()));
|
|
} else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
|
|
isa<AddrSpaceCastInst>(I)) {
|
|
replaceInstUsesWith(*I, UndefValue::get(I->getType()));
|
|
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
|
|
for (auto *DII : DIIs)
|
|
ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
|
|
}
|
|
eraseInstFromFunction(*I);
|
|
}
|
|
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
|
|
// Replace invoke with a NOP intrinsic to maintain the original CFG
|
|
Module *M = II->getModule();
|
|
Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
|
|
InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
|
|
None, "", II->getParent());
|
|
}
|
|
|
|
for (auto *DII : DIIs)
|
|
eraseInstFromFunction(*DII);
|
|
|
|
return eraseInstFromFunction(MI);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Move the call to free before a NULL test.
|
|
///
|
|
/// Check if this free is accessed after its argument has been test
|
|
/// against NULL (property 0).
|
|
/// If yes, it is legal to move this call in its predecessor block.
|
|
///
|
|
/// The move is performed only if the block containing the call to free
|
|
/// will be removed, i.e.:
|
|
/// 1. it has only one predecessor P, and P has two successors
|
|
/// 2. it contains the call, noops, and an unconditional branch
|
|
/// 3. its successor is the same as its predecessor's successor
|
|
///
|
|
/// The profitability is out-of concern here and this function should
|
|
/// be called only if the caller knows this transformation would be
|
|
/// profitable (e.g., for code size).
|
|
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
|
|
const DataLayout &DL) {
|
|
Value *Op = FI.getArgOperand(0);
|
|
BasicBlock *FreeInstrBB = FI.getParent();
|
|
BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
|
|
|
|
// Validate part of constraint #1: Only one predecessor
|
|
// FIXME: We can extend the number of predecessor, but in that case, we
|
|
// would duplicate the call to free in each predecessor and it may
|
|
// not be profitable even for code size.
|
|
if (!PredBB)
|
|
return nullptr;
|
|
|
|
// Validate constraint #2: Does this block contains only the call to
|
|
// free, noops, and an unconditional branch?
|
|
BasicBlock *SuccBB;
|
|
Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
|
|
if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
|
|
return nullptr;
|
|
|
|
// If there are only 2 instructions in the block, at this point,
|
|
// this is the call to free and unconditional.
|
|
// If there are more than 2 instructions, check that they are noops
|
|
// i.e., they won't hurt the performance of the generated code.
|
|
if (FreeInstrBB->size() != 2) {
|
|
for (const Instruction &Inst : *FreeInstrBB) {
|
|
if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
|
|
continue;
|
|
auto *Cast = dyn_cast<CastInst>(&Inst);
|
|
if (!Cast || !Cast->isNoopCast(DL))
|
|
return nullptr;
|
|
}
|
|
}
|
|
// Validate the rest of constraint #1 by matching on the pred branch.
|
|
Instruction *TI = PredBB->getTerminator();
|
|
BasicBlock *TrueBB, *FalseBB;
|
|
ICmpInst::Predicate Pred;
|
|
if (!match(TI, m_Br(m_ICmp(Pred,
|
|
m_CombineOr(m_Specific(Op),
|
|
m_Specific(Op->stripPointerCasts())),
|
|
m_Zero()),
|
|
TrueBB, FalseBB)))
|
|
return nullptr;
|
|
if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
|
|
return nullptr;
|
|
|
|
// Validate constraint #3: Ensure the null case just falls through.
|
|
if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
|
|
return nullptr;
|
|
assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
|
|
"Broken CFG: missing edge from predecessor to successor");
|
|
|
|
// At this point, we know that everything in FreeInstrBB can be moved
|
|
// before TI.
|
|
for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
|
|
It != End;) {
|
|
Instruction &Instr = *It++;
|
|
if (&Instr == FreeInstrBBTerminator)
|
|
break;
|
|
Instr.moveBefore(TI);
|
|
}
|
|
assert(FreeInstrBB->size() == 1 &&
|
|
"Only the branch instruction should remain");
|
|
return &FI;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFree(CallInst &FI) {
|
|
Value *Op = FI.getArgOperand(0);
|
|
|
|
// free undef -> unreachable.
|
|
if (isa<UndefValue>(Op)) {
|
|
// Leave a marker since we can't modify the CFG here.
|
|
CreateNonTerminatorUnreachable(&FI);
|
|
return eraseInstFromFunction(FI);
|
|
}
|
|
|
|
// If we have 'free null' delete the instruction. This can happen in stl code
|
|
// when lots of inlining happens.
|
|
if (isa<ConstantPointerNull>(Op))
|
|
return eraseInstFromFunction(FI);
|
|
|
|
// If we optimize for code size, try to move the call to free before the null
|
|
// test so that simplify cfg can remove the empty block and dead code
|
|
// elimination the branch. I.e., helps to turn something like:
|
|
// if (foo) free(foo);
|
|
// into
|
|
// free(foo);
|
|
if (MinimizeSize)
|
|
if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
|
|
return I;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
|
|
if (RI.getNumOperands() == 0) // ret void
|
|
return nullptr;
|
|
|
|
Value *ResultOp = RI.getOperand(0);
|
|
Type *VTy = ResultOp->getType();
|
|
if (!VTy->isIntegerTy())
|
|
return nullptr;
|
|
|
|
// There might be assume intrinsics dominating this return that completely
|
|
// determine the value. If so, constant fold it.
|
|
KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
|
|
if (Known.isConstant())
|
|
RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
|
|
// Change br (not X), label True, label False to: br X, label False, True
|
|
Value *X = nullptr;
|
|
BasicBlock *TrueDest;
|
|
BasicBlock *FalseDest;
|
|
if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
|
|
!isa<Constant>(X)) {
|
|
// Swap Destinations and condition...
|
|
BI.setCondition(X);
|
|
BI.swapSuccessors();
|
|
return &BI;
|
|
}
|
|
|
|
// If the condition is irrelevant, remove the use so that other
|
|
// transforms on the condition become more effective.
|
|
if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
|
|
BI.getSuccessor(0) == BI.getSuccessor(1)) {
|
|
BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
|
|
return &BI;
|
|
}
|
|
|
|
// Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
|
|
CmpInst::Predicate Pred;
|
|
if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest,
|
|
FalseDest)) &&
|
|
!isCanonicalPredicate(Pred)) {
|
|
// Swap destinations and condition.
|
|
CmpInst *Cond = cast<CmpInst>(BI.getCondition());
|
|
Cond->setPredicate(CmpInst::getInversePredicate(Pred));
|
|
BI.swapSuccessors();
|
|
Worklist.Add(Cond);
|
|
return &BI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
|
|
Value *Cond = SI.getCondition();
|
|
Value *Op0;
|
|
ConstantInt *AddRHS;
|
|
if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
|
|
// Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
|
|
for (auto Case : SI.cases()) {
|
|
Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
|
|
assert(isa<ConstantInt>(NewCase) &&
|
|
"Result of expression should be constant");
|
|
Case.setValue(cast<ConstantInt>(NewCase));
|
|
}
|
|
SI.setCondition(Op0);
|
|
return &SI;
|
|
}
|
|
|
|
KnownBits Known = computeKnownBits(Cond, 0, &SI);
|
|
unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
|
|
unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
|
|
|
|
// Compute the number of leading bits we can ignore.
|
|
// TODO: A better way to determine this would use ComputeNumSignBits().
|
|
for (auto &C : SI.cases()) {
|
|
LeadingKnownZeros = std::min(
|
|
LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
|
|
LeadingKnownOnes = std::min(
|
|
LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
|
|
}
|
|
|
|
unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
|
|
|
|
// Shrink the condition operand if the new type is smaller than the old type.
|
|
// But do not shrink to a non-standard type, because backend can't generate
|
|
// good code for that yet.
|
|
// TODO: We can make it aggressive again after fixing PR39569.
|
|
if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
|
|
shouldChangeType(Known.getBitWidth(), NewWidth)) {
|
|
IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
|
|
Builder.SetInsertPoint(&SI);
|
|
Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
|
|
SI.setCondition(NewCond);
|
|
|
|
for (auto Case : SI.cases()) {
|
|
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
|
|
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
|
|
}
|
|
return &SI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
|
|
Value *Agg = EV.getAggregateOperand();
|
|
|
|
if (!EV.hasIndices())
|
|
return replaceInstUsesWith(EV, Agg);
|
|
|
|
if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
|
|
SQ.getWithInstruction(&EV)))
|
|
return replaceInstUsesWith(EV, V);
|
|
|
|
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
|
|
// We're extracting from an insertvalue instruction, compare the indices
|
|
const unsigned *exti, *exte, *insi, *inse;
|
|
for (exti = EV.idx_begin(), insi = IV->idx_begin(),
|
|
exte = EV.idx_end(), inse = IV->idx_end();
|
|
exti != exte && insi != inse;
|
|
++exti, ++insi) {
|
|
if (*insi != *exti)
|
|
// The insert and extract both reference distinctly different elements.
|
|
// This means the extract is not influenced by the insert, and we can
|
|
// replace the aggregate operand of the extract with the aggregate
|
|
// operand of the insert. i.e., replace
|
|
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
|
|
// %E = extractvalue { i32, { i32 } } %I, 0
|
|
// with
|
|
// %E = extractvalue { i32, { i32 } } %A, 0
|
|
return ExtractValueInst::Create(IV->getAggregateOperand(),
|
|
EV.getIndices());
|
|
}
|
|
if (exti == exte && insi == inse)
|
|
// Both iterators are at the end: Index lists are identical. Replace
|
|
// %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
|
|
// %C = extractvalue { i32, { i32 } } %B, 1, 0
|
|
// with "i32 42"
|
|
return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
|
|
if (exti == exte) {
|
|
// The extract list is a prefix of the insert list. i.e. replace
|
|
// %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
|
|
// %E = extractvalue { i32, { i32 } } %I, 1
|
|
// with
|
|
// %X = extractvalue { i32, { i32 } } %A, 1
|
|
// %E = insertvalue { i32 } %X, i32 42, 0
|
|
// by switching the order of the insert and extract (though the
|
|
// insertvalue should be left in, since it may have other uses).
|
|
Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
|
|
EV.getIndices());
|
|
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
|
|
makeArrayRef(insi, inse));
|
|
}
|
|
if (insi == inse)
|
|
// The insert list is a prefix of the extract list
|
|
// We can simply remove the common indices from the extract and make it
|
|
// operate on the inserted value instead of the insertvalue result.
|
|
// i.e., replace
|
|
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
|
|
// %E = extractvalue { i32, { i32 } } %I, 1, 0
|
|
// with
|
|
// %E extractvalue { i32 } { i32 42 }, 0
|
|
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
|
|
makeArrayRef(exti, exte));
|
|
}
|
|
if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
|
|
// We're extracting from an overflow intrinsic, see if we're the only user,
|
|
// which allows us to simplify multiple result intrinsics to simpler
|
|
// things that just get one value.
|
|
if (WO->hasOneUse()) {
|
|
// Check if we're grabbing only the result of a 'with overflow' intrinsic
|
|
// and replace it with a traditional binary instruction.
|
|
if (*EV.idx_begin() == 0) {
|
|
Instruction::BinaryOps BinOp = WO->getBinaryOp();
|
|
Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
|
|
replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
|
|
eraseInstFromFunction(*WO);
|
|
return BinaryOperator::Create(BinOp, LHS, RHS);
|
|
}
|
|
|
|
// If the normal result of the add is dead, and the RHS is a constant,
|
|
// we can transform this into a range comparison.
|
|
// overflow = uadd a, -4 --> overflow = icmp ugt a, 3
|
|
if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
|
|
return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
|
|
ConstantExpr::getNot(CI));
|
|
}
|
|
}
|
|
if (LoadInst *L = dyn_cast<LoadInst>(Agg))
|
|
// If the (non-volatile) load only has one use, we can rewrite this to a
|
|
// load from a GEP. This reduces the size of the load. If a load is used
|
|
// only by extractvalue instructions then this either must have been
|
|
// optimized before, or it is a struct with padding, in which case we
|
|
// don't want to do the transformation as it loses padding knowledge.
|
|
if (L->isSimple() && L->hasOneUse()) {
|
|
// extractvalue has integer indices, getelementptr has Value*s. Convert.
|
|
SmallVector<Value*, 4> Indices;
|
|
// Prefix an i32 0 since we need the first element.
|
|
Indices.push_back(Builder.getInt32(0));
|
|
for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
|
|
I != E; ++I)
|
|
Indices.push_back(Builder.getInt32(*I));
|
|
|
|
// We need to insert these at the location of the old load, not at that of
|
|
// the extractvalue.
|
|
Builder.SetInsertPoint(L);
|
|
Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
|
|
L->getPointerOperand(), Indices);
|
|
Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
|
|
// Whatever aliasing information we had for the orignal load must also
|
|
// hold for the smaller load, so propagate the annotations.
|
|
AAMDNodes Nodes;
|
|
L->getAAMetadata(Nodes);
|
|
NL->setAAMetadata(Nodes);
|
|
// Returning the load directly will cause the main loop to insert it in
|
|
// the wrong spot, so use replaceInstUsesWith().
|
|
return replaceInstUsesWith(EV, NL);
|
|
}
|
|
// We could simplify extracts from other values. Note that nested extracts may
|
|
// already be simplified implicitly by the above: extract (extract (insert) )
|
|
// will be translated into extract ( insert ( extract ) ) first and then just
|
|
// the value inserted, if appropriate. Similarly for extracts from single-use
|
|
// loads: extract (extract (load)) will be translated to extract (load (gep))
|
|
// and if again single-use then via load (gep (gep)) to load (gep).
|
|
// However, double extracts from e.g. function arguments or return values
|
|
// aren't handled yet.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return 'true' if the given typeinfo will match anything.
|
|
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
|
|
switch (Personality) {
|
|
case EHPersonality::GNU_C:
|
|
case EHPersonality::GNU_C_SjLj:
|
|
case EHPersonality::Rust:
|
|
// The GCC C EH and Rust personality only exists to support cleanups, so
|
|
// it's not clear what the semantics of catch clauses are.
|
|
return false;
|
|
case EHPersonality::Unknown:
|
|
return false;
|
|
case EHPersonality::GNU_Ada:
|
|
// While __gnat_all_others_value will match any Ada exception, it doesn't
|
|
// match foreign exceptions (or didn't, before gcc-4.7).
|
|
return false;
|
|
case EHPersonality::GNU_CXX:
|
|
case EHPersonality::GNU_CXX_SjLj:
|
|
case EHPersonality::GNU_ObjC:
|
|
case EHPersonality::MSVC_X86SEH:
|
|
case EHPersonality::MSVC_Win64SEH:
|
|
case EHPersonality::MSVC_CXX:
|
|
case EHPersonality::CoreCLR:
|
|
case EHPersonality::Wasm_CXX:
|
|
return TypeInfo->isNullValue();
|
|
}
|
|
llvm_unreachable("invalid enum");
|
|
}
|
|
|
|
static bool shorter_filter(const Value *LHS, const Value *RHS) {
|
|
return
|
|
cast<ArrayType>(LHS->getType())->getNumElements()
|
|
<
|
|
cast<ArrayType>(RHS->getType())->getNumElements();
|
|
}
|
|
|
|
Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
|
|
// The logic here should be correct for any real-world personality function.
|
|
// However if that turns out not to be true, the offending logic can always
|
|
// be conditioned on the personality function, like the catch-all logic is.
|
|
EHPersonality Personality =
|
|
classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
|
|
|
|
// Simplify the list of clauses, eg by removing repeated catch clauses
|
|
// (these are often created by inlining).
|
|
bool MakeNewInstruction = false; // If true, recreate using the following:
|
|
SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
|
|
bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
|
|
|
|
SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
|
|
for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
|
|
bool isLastClause = i + 1 == e;
|
|
if (LI.isCatch(i)) {
|
|
// A catch clause.
|
|
Constant *CatchClause = LI.getClause(i);
|
|
Constant *TypeInfo = CatchClause->stripPointerCasts();
|
|
|
|
// If we already saw this clause, there is no point in having a second
|
|
// copy of it.
|
|
if (AlreadyCaught.insert(TypeInfo).second) {
|
|
// This catch clause was not already seen.
|
|
NewClauses.push_back(CatchClause);
|
|
} else {
|
|
// Repeated catch clause - drop the redundant copy.
|
|
MakeNewInstruction = true;
|
|
}
|
|
|
|
// If this is a catch-all then there is no point in keeping any following
|
|
// clauses or marking the landingpad as having a cleanup.
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
if (!isLastClause)
|
|
MakeNewInstruction = true;
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
} else {
|
|
// A filter clause. If any of the filter elements were already caught
|
|
// then they can be dropped from the filter. It is tempting to try to
|
|
// exploit the filter further by saying that any typeinfo that does not
|
|
// occur in the filter can't be caught later (and thus can be dropped).
|
|
// However this would be wrong, since typeinfos can match without being
|
|
// equal (for example if one represents a C++ class, and the other some
|
|
// class derived from it).
|
|
assert(LI.isFilter(i) && "Unsupported landingpad clause!");
|
|
Constant *FilterClause = LI.getClause(i);
|
|
ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
|
|
unsigned NumTypeInfos = FilterType->getNumElements();
|
|
|
|
// An empty filter catches everything, so there is no point in keeping any
|
|
// following clauses or marking the landingpad as having a cleanup. By
|
|
// dealing with this case here the following code is made a bit simpler.
|
|
if (!NumTypeInfos) {
|
|
NewClauses.push_back(FilterClause);
|
|
if (!isLastClause)
|
|
MakeNewInstruction = true;
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
|
|
bool MakeNewFilter = false; // If true, make a new filter.
|
|
SmallVector<Constant *, 16> NewFilterElts; // New elements.
|
|
if (isa<ConstantAggregateZero>(FilterClause)) {
|
|
// Not an empty filter - it contains at least one null typeinfo.
|
|
assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
|
|
Constant *TypeInfo =
|
|
Constant::getNullValue(FilterType->getElementType());
|
|
// If this typeinfo is a catch-all then the filter can never match.
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
// Throw the filter away.
|
|
MakeNewInstruction = true;
|
|
continue;
|
|
}
|
|
|
|
// There is no point in having multiple copies of this typeinfo, so
|
|
// discard all but the first copy if there is more than one.
|
|
NewFilterElts.push_back(TypeInfo);
|
|
if (NumTypeInfos > 1)
|
|
MakeNewFilter = true;
|
|
} else {
|
|
ConstantArray *Filter = cast<ConstantArray>(FilterClause);
|
|
SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
|
|
NewFilterElts.reserve(NumTypeInfos);
|
|
|
|
// Remove any filter elements that were already caught or that already
|
|
// occurred in the filter. While there, see if any of the elements are
|
|
// catch-alls. If so, the filter can be discarded.
|
|
bool SawCatchAll = false;
|
|
for (unsigned j = 0; j != NumTypeInfos; ++j) {
|
|
Constant *Elt = Filter->getOperand(j);
|
|
Constant *TypeInfo = Elt->stripPointerCasts();
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
// This element is a catch-all. Bail out, noting this fact.
|
|
SawCatchAll = true;
|
|
break;
|
|
}
|
|
|
|
// Even if we've seen a type in a catch clause, we don't want to
|
|
// remove it from the filter. An unexpected type handler may be
|
|
// set up for a call site which throws an exception of the same
|
|
// type caught. In order for the exception thrown by the unexpected
|
|
// handler to propagate correctly, the filter must be correctly
|
|
// described for the call site.
|
|
//
|
|
// Example:
|
|
//
|
|
// void unexpected() { throw 1;}
|
|
// void foo() throw (int) {
|
|
// std::set_unexpected(unexpected);
|
|
// try {
|
|
// throw 2.0;
|
|
// } catch (int i) {}
|
|
// }
|
|
|
|
// There is no point in having multiple copies of the same typeinfo in
|
|
// a filter, so only add it if we didn't already.
|
|
if (SeenInFilter.insert(TypeInfo).second)
|
|
NewFilterElts.push_back(cast<Constant>(Elt));
|
|
}
|
|
// A filter containing a catch-all cannot match anything by definition.
|
|
if (SawCatchAll) {
|
|
// Throw the filter away.
|
|
MakeNewInstruction = true;
|
|
continue;
|
|
}
|
|
|
|
// If we dropped something from the filter, make a new one.
|
|
if (NewFilterElts.size() < NumTypeInfos)
|
|
MakeNewFilter = true;
|
|
}
|
|
if (MakeNewFilter) {
|
|
FilterType = ArrayType::get(FilterType->getElementType(),
|
|
NewFilterElts.size());
|
|
FilterClause = ConstantArray::get(FilterType, NewFilterElts);
|
|
MakeNewInstruction = true;
|
|
}
|
|
|
|
NewClauses.push_back(FilterClause);
|
|
|
|
// If the new filter is empty then it will catch everything so there is
|
|
// no point in keeping any following clauses or marking the landingpad
|
|
// as having a cleanup. The case of the original filter being empty was
|
|
// already handled above.
|
|
if (MakeNewFilter && !NewFilterElts.size()) {
|
|
assert(MakeNewInstruction && "New filter but not a new instruction!");
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If several filters occur in a row then reorder them so that the shortest
|
|
// filters come first (those with the smallest number of elements). This is
|
|
// advantageous because shorter filters are more likely to match, speeding up
|
|
// unwinding, but mostly because it increases the effectiveness of the other
|
|
// filter optimizations below.
|
|
for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
|
|
unsigned j;
|
|
// Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
|
|
for (j = i; j != e; ++j)
|
|
if (!isa<ArrayType>(NewClauses[j]->getType()))
|
|
break;
|
|
|
|
// Check whether the filters are already sorted by length. We need to know
|
|
// if sorting them is actually going to do anything so that we only make a
|
|
// new landingpad instruction if it does.
|
|
for (unsigned k = i; k + 1 < j; ++k)
|
|
if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
|
|
// Not sorted, so sort the filters now. Doing an unstable sort would be
|
|
// correct too but reordering filters pointlessly might confuse users.
|
|
std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
|
|
shorter_filter);
|
|
MakeNewInstruction = true;
|
|
break;
|
|
}
|
|
|
|
// Look for the next batch of filters.
|
|
i = j + 1;
|
|
}
|
|
|
|
// If typeinfos matched if and only if equal, then the elements of a filter L
|
|
// that occurs later than a filter F could be replaced by the intersection of
|
|
// the elements of F and L. In reality two typeinfos can match without being
|
|
// equal (for example if one represents a C++ class, and the other some class
|
|
// derived from it) so it would be wrong to perform this transform in general.
|
|
// However the transform is correct and useful if F is a subset of L. In that
|
|
// case L can be replaced by F, and thus removed altogether since repeating a
|
|
// filter is pointless. So here we look at all pairs of filters F and L where
|
|
// L follows F in the list of clauses, and remove L if every element of F is
|
|
// an element of L. This can occur when inlining C++ functions with exception
|
|
// specifications.
|
|
for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
|
|
// Examine each filter in turn.
|
|
Value *Filter = NewClauses[i];
|
|
ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
|
|
if (!FTy)
|
|
// Not a filter - skip it.
|
|
continue;
|
|
unsigned FElts = FTy->getNumElements();
|
|
// Examine each filter following this one. Doing this backwards means that
|
|
// we don't have to worry about filters disappearing under us when removed.
|
|
for (unsigned j = NewClauses.size() - 1; j != i; --j) {
|
|
Value *LFilter = NewClauses[j];
|
|
ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
|
|
if (!LTy)
|
|
// Not a filter - skip it.
|
|
continue;
|
|
// If Filter is a subset of LFilter, i.e. every element of Filter is also
|
|
// an element of LFilter, then discard LFilter.
|
|
SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
|
|
// If Filter is empty then it is a subset of LFilter.
|
|
if (!FElts) {
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
unsigned LElts = LTy->getNumElements();
|
|
// If Filter is longer than LFilter then it cannot be a subset of it.
|
|
if (FElts > LElts)
|
|
// Move on to the next filter.
|
|
continue;
|
|
// At this point we know that LFilter has at least one element.
|
|
if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
|
|
// Filter is a subset of LFilter iff Filter contains only zeros (as we
|
|
// already know that Filter is not longer than LFilter).
|
|
if (isa<ConstantAggregateZero>(Filter)) {
|
|
assert(FElts <= LElts && "Should have handled this case earlier!");
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
}
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
ConstantArray *LArray = cast<ConstantArray>(LFilter);
|
|
if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
|
|
// Since Filter is non-empty and contains only zeros, it is a subset of
|
|
// LFilter iff LFilter contains a zero.
|
|
assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
|
|
for (unsigned l = 0; l != LElts; ++l)
|
|
if (LArray->getOperand(l)->isNullValue()) {
|
|
// LFilter contains a zero - discard it.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
break;
|
|
}
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
// At this point we know that both filters are ConstantArrays. Loop over
|
|
// operands to see whether every element of Filter is also an element of
|
|
// LFilter. Since filters tend to be short this is probably faster than
|
|
// using a method that scales nicely.
|
|
ConstantArray *FArray = cast<ConstantArray>(Filter);
|
|
bool AllFound = true;
|
|
for (unsigned f = 0; f != FElts; ++f) {
|
|
Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
|
|
AllFound = false;
|
|
for (unsigned l = 0; l != LElts; ++l) {
|
|
Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
|
|
if (LTypeInfo == FTypeInfo) {
|
|
AllFound = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!AllFound)
|
|
break;
|
|
}
|
|
if (AllFound) {
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
}
|
|
// Move on to the next filter.
|
|
}
|
|
}
|
|
|
|
// If we changed any of the clauses, replace the old landingpad instruction
|
|
// with a new one.
|
|
if (MakeNewInstruction) {
|
|
LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
|
|
NewClauses.size());
|
|
for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
|
|
NLI->addClause(NewClauses[i]);
|
|
// A landing pad with no clauses must have the cleanup flag set. It is
|
|
// theoretically possible, though highly unlikely, that we eliminated all
|
|
// clauses. If so, force the cleanup flag to true.
|
|
if (NewClauses.empty())
|
|
CleanupFlag = true;
|
|
NLI->setCleanup(CleanupFlag);
|
|
return NLI;
|
|
}
|
|
|
|
// Even if none of the clauses changed, we may nonetheless have understood
|
|
// that the cleanup flag is pointless. Clear it if so.
|
|
if (LI.isCleanup() != CleanupFlag) {
|
|
assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
|
|
LI.setCleanup(CleanupFlag);
|
|
return &LI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to move the specified instruction from its current block into the
|
|
/// beginning of DestBlock, which can only happen if it's safe to move the
|
|
/// instruction past all of the instructions between it and the end of its
|
|
/// block.
|
|
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
|
|
assert(I->hasOneUse() && "Invariants didn't hold!");
|
|
BasicBlock *SrcBlock = I->getParent();
|
|
|
|
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
|
|
if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
|
|
I->isTerminator())
|
|
return false;
|
|
|
|
// Do not sink static or dynamic alloca instructions. Static allocas must
|
|
// remain in the entry block, and dynamic allocas must not be sunk in between
|
|
// a stacksave / stackrestore pair, which would incorrectly shorten its
|
|
// lifetime.
|
|
if (isa<AllocaInst>(I))
|
|
return false;
|
|
|
|
// Do not sink into catchswitch blocks.
|
|
if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
|
|
return false;
|
|
|
|
// Do not sink convergent call instructions.
|
|
if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
if (CI->isConvergent())
|
|
return false;
|
|
}
|
|
// We can only sink load instructions if there is nothing between the load and
|
|
// the end of block that could change the value.
|
|
if (I->mayReadFromMemory()) {
|
|
for (BasicBlock::iterator Scan = I->getIterator(),
|
|
E = I->getParent()->end();
|
|
Scan != E; ++Scan)
|
|
if (Scan->mayWriteToMemory())
|
|
return false;
|
|
}
|
|
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
|
|
I->moveBefore(&*InsertPos);
|
|
++NumSunkInst;
|
|
|
|
// Also sink all related debug uses from the source basic block. Otherwise we
|
|
// get debug use before the def. Attempt to salvage debug uses first, to
|
|
// maximise the range variables have location for. If we cannot salvage, then
|
|
// mark the location undef: we know it was supposed to receive a new location
|
|
// here, but that computation has been sunk.
|
|
SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
|
|
findDbgUsers(DbgUsers, I);
|
|
for (auto *DII : reverse(DbgUsers)) {
|
|
if (DII->getParent() == SrcBlock) {
|
|
// dbg.value is in the same basic block as the sunk inst, see if we can
|
|
// salvage it. Clone a new copy of the instruction: on success we need
|
|
// both salvaged and unsalvaged copies.
|
|
SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
|
|
cast<DbgVariableIntrinsic>(DII->clone())};
|
|
|
|
if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
|
|
// We are unable to salvage: sink the cloned dbg.value, and mark the
|
|
// original as undef, terminating any earlier variable location.
|
|
LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
|
|
TmpUser[0]->insertBefore(&*InsertPos);
|
|
Value *Undef = UndefValue::get(I->getType());
|
|
DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
|
|
ValueAsMetadata::get(Undef)));
|
|
} else {
|
|
// We successfully salvaged: place the salvaged dbg.value in the
|
|
// original location, and move the unmodified dbg.value to sink with
|
|
// the sunk inst.
|
|
TmpUser[0]->insertBefore(DII);
|
|
DII->moveBefore(&*InsertPos);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InstCombiner::run() {
|
|
while (!Worklist.isEmpty()) {
|
|
Instruction *I = Worklist.RemoveOne();
|
|
if (I == nullptr) continue; // skip null values.
|
|
|
|
// Check to see if we can DCE the instruction.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
|
|
eraseInstFromFunction(*I);
|
|
++NumDeadInst;
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
|
|
if (!DebugCounter::shouldExecute(VisitCounter))
|
|
continue;
|
|
|
|
// Instruction isn't dead, see if we can constant propagate it.
|
|
if (!I->use_empty() &&
|
|
(I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
|
|
if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
|
|
<< '\n');
|
|
|
|
// Add operands to the worklist.
|
|
replaceInstUsesWith(*I, C);
|
|
++NumConstProp;
|
|
if (isInstructionTriviallyDead(I, &TLI))
|
|
eraseInstFromFunction(*I);
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// In general, it is possible for computeKnownBits to determine all bits in
|
|
// a value even when the operands are not all constants.
|
|
Type *Ty = I->getType();
|
|
if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
|
|
KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
|
|
if (Known.isConstant()) {
|
|
Constant *C = ConstantInt::get(Ty, Known.getConstant());
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
|
|
<< " from: " << *I << '\n');
|
|
|
|
// Add operands to the worklist.
|
|
replaceInstUsesWith(*I, C);
|
|
++NumConstProp;
|
|
if (isInstructionTriviallyDead(I, &TLI))
|
|
eraseInstFromFunction(*I);
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// See if we can trivially sink this instruction to a successor basic block.
|
|
if (EnableCodeSinking && I->hasOneUse()) {
|
|
BasicBlock *BB = I->getParent();
|
|
Instruction *UserInst = cast<Instruction>(*I->user_begin());
|
|
BasicBlock *UserParent;
|
|
|
|
// Get the block the use occurs in.
|
|
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
|
|
UserParent = PN->getIncomingBlock(*I->use_begin());
|
|
else
|
|
UserParent = UserInst->getParent();
|
|
|
|
if (UserParent != BB) {
|
|
bool UserIsSuccessor = false;
|
|
// See if the user is one of our successors.
|
|
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
|
|
if (*SI == UserParent) {
|
|
UserIsSuccessor = true;
|
|
break;
|
|
}
|
|
|
|
// If the user is one of our immediate successors, and if that successor
|
|
// only has us as a predecessors (we'd have to split the critical edge
|
|
// otherwise), we can keep going.
|
|
if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
|
|
// Okay, the CFG is simple enough, try to sink this instruction.
|
|
if (TryToSinkInstruction(I, UserParent)) {
|
|
LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
|
|
MadeIRChange = true;
|
|
// We'll add uses of the sunk instruction below, but since sinking
|
|
// can expose opportunities for it's *operands* add them to the
|
|
// worklist
|
|
for (Use &U : I->operands())
|
|
if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
|
|
Worklist.Add(OpI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we have an instruction, try combining it to simplify it.
|
|
Builder.SetInsertPoint(I);
|
|
Builder.SetCurrentDebugLocation(I->getDebugLoc());
|
|
|
|
#ifndef NDEBUG
|
|
std::string OrigI;
|
|
#endif
|
|
LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
|
|
LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
|
|
|
|
if (Instruction *Result = visit(*I)) {
|
|
++NumCombined;
|
|
// Should we replace the old instruction with a new one?
|
|
if (Result != I) {
|
|
LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
|
|
<< " New = " << *Result << '\n');
|
|
|
|
if (I->getDebugLoc())
|
|
Result->setDebugLoc(I->getDebugLoc());
|
|
// Everything uses the new instruction now.
|
|
I->replaceAllUsesWith(Result);
|
|
|
|
// Move the name to the new instruction first.
|
|
Result->takeName(I);
|
|
|
|
// Push the new instruction and any users onto the worklist.
|
|
Worklist.AddUsersToWorkList(*Result);
|
|
Worklist.Add(Result);
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BasicBlock *InstParent = I->getParent();
|
|
BasicBlock::iterator InsertPos = I->getIterator();
|
|
|
|
// If we replace a PHI with something that isn't a PHI, fix up the
|
|
// insertion point.
|
|
if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
|
|
InsertPos = InstParent->getFirstInsertionPt();
|
|
|
|
InstParent->getInstList().insert(InsertPos, Result);
|
|
|
|
eraseInstFromFunction(*I);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
|
|
<< " New = " << *I << '\n');
|
|
|
|
// If the instruction was modified, it's possible that it is now dead.
|
|
// if so, remove it.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
eraseInstFromFunction(*I);
|
|
} else {
|
|
Worklist.AddUsersToWorkList(*I);
|
|
Worklist.Add(I);
|
|
}
|
|
}
|
|
MadeIRChange = true;
|
|
}
|
|
}
|
|
|
|
Worklist.Zap();
|
|
return MadeIRChange;
|
|
}
|
|
|
|
/// Walk the function in depth-first order, adding all reachable code to the
|
|
/// worklist.
|
|
///
|
|
/// This has a couple of tricks to make the code faster and more powerful. In
|
|
/// particular, we constant fold and DCE instructions as we go, to avoid adding
|
|
/// them to the worklist (this significantly speeds up instcombine on code where
|
|
/// many instructions are dead or constant). Additionally, if we find a branch
|
|
/// whose condition is a known constant, we only visit the reachable successors.
|
|
static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
|
|
SmallPtrSetImpl<BasicBlock *> &Visited,
|
|
InstCombineWorklist &ICWorklist,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool MadeIRChange = false;
|
|
SmallVector<BasicBlock*, 256> Worklist;
|
|
Worklist.push_back(BB);
|
|
|
|
SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
|
|
DenseMap<Constant *, Constant *> FoldedConstants;
|
|
|
|
do {
|
|
BB = Worklist.pop_back_val();
|
|
|
|
// We have now visited this block! If we've already been here, ignore it.
|
|
if (!Visited.insert(BB).second)
|
|
continue;
|
|
|
|
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
|
|
Instruction *Inst = &*BBI++;
|
|
|
|
// DCE instruction if trivially dead.
|
|
if (isInstructionTriviallyDead(Inst, TLI)) {
|
|
++NumDeadInst;
|
|
LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
|
|
if (!salvageDebugInfo(*Inst))
|
|
replaceDbgUsesWithUndef(Inst);
|
|
Inst->eraseFromParent();
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
|
|
// ConstantProp instruction if trivially constant.
|
|
if (!Inst->use_empty() &&
|
|
(Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
|
|
if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
|
|
<< '\n');
|
|
Inst->replaceAllUsesWith(C);
|
|
++NumConstProp;
|
|
if (isInstructionTriviallyDead(Inst, TLI))
|
|
Inst->eraseFromParent();
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
|
|
// See if we can constant fold its operands.
|
|
for (Use &U : Inst->operands()) {
|
|
if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
|
|
continue;
|
|
|
|
auto *C = cast<Constant>(U);
|
|
Constant *&FoldRes = FoldedConstants[C];
|
|
if (!FoldRes)
|
|
FoldRes = ConstantFoldConstant(C, DL, TLI);
|
|
if (!FoldRes)
|
|
FoldRes = C;
|
|
|
|
if (FoldRes != C) {
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
|
|
<< "\n Old = " << *C
|
|
<< "\n New = " << *FoldRes << '\n');
|
|
U = FoldRes;
|
|
MadeIRChange = true;
|
|
}
|
|
}
|
|
|
|
// Skip processing debug intrinsics in InstCombine. Processing these call instructions
|
|
// consumes non-trivial amount of time and provides no value for the optimization.
|
|
if (!isa<DbgInfoIntrinsic>(Inst))
|
|
InstrsForInstCombineWorklist.push_back(Inst);
|
|
}
|
|
|
|
// Recursively visit successors. If this is a branch or switch on a
|
|
// constant, only visit the reachable successor.
|
|
Instruction *TI = BB->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
|
|
bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
|
|
BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
|
|
Worklist.push_back(ReachableBB);
|
|
continue;
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
|
|
Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
for (BasicBlock *SuccBB : successors(TI))
|
|
Worklist.push_back(SuccBB);
|
|
} while (!Worklist.empty());
|
|
|
|
// Once we've found all of the instructions to add to instcombine's worklist,
|
|
// add them in reverse order. This way instcombine will visit from the top
|
|
// of the function down. This jives well with the way that it adds all uses
|
|
// of instructions to the worklist after doing a transformation, thus avoiding
|
|
// some N^2 behavior in pathological cases.
|
|
ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
|
|
|
|
return MadeIRChange;
|
|
}
|
|
|
|
/// Populate the IC worklist from a function, and prune any dead basic
|
|
/// blocks discovered in the process.
|
|
///
|
|
/// This also does basic constant propagation and other forward fixing to make
|
|
/// the combiner itself run much faster.
|
|
static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
|
|
TargetLibraryInfo *TLI,
|
|
InstCombineWorklist &ICWorklist) {
|
|
bool MadeIRChange = false;
|
|
|
|
// Do a depth-first traversal of the function, populate the worklist with
|
|
// the reachable instructions. Ignore blocks that are not reachable. Keep
|
|
// track of which blocks we visit.
|
|
SmallPtrSet<BasicBlock *, 32> Visited;
|
|
MadeIRChange |=
|
|
AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
|
|
|
|
// Do a quick scan over the function. If we find any blocks that are
|
|
// unreachable, remove any instructions inside of them. This prevents
|
|
// the instcombine code from having to deal with some bad special cases.
|
|
for (BasicBlock &BB : F) {
|
|
if (Visited.count(&BB))
|
|
continue;
|
|
|
|
unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
|
|
MadeIRChange |= NumDeadInstInBB > 0;
|
|
NumDeadInst += NumDeadInstInBB;
|
|
}
|
|
|
|
return MadeIRChange;
|
|
}
|
|
|
|
static bool combineInstructionsOverFunction(
|
|
Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
|
|
AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
|
|
OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
|
|
ProfileSummaryInfo *PSI, bool ExpensiveCombines = true,
|
|
LoopInfo *LI = nullptr) {
|
|
auto &DL = F.getParent()->getDataLayout();
|
|
ExpensiveCombines |= EnableExpensiveCombines;
|
|
|
|
/// Builder - This is an IRBuilder that automatically inserts new
|
|
/// instructions into the worklist when they are created.
|
|
IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
|
|
F.getContext(), TargetFolder(DL),
|
|
IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
|
|
Worklist.Add(I);
|
|
if (match(I, m_Intrinsic<Intrinsic::assume>()))
|
|
AC.registerAssumption(cast<CallInst>(I));
|
|
}));
|
|
|
|
// Lower dbg.declare intrinsics otherwise their value may be clobbered
|
|
// by instcombiner.
|
|
bool MadeIRChange = false;
|
|
if (ShouldLowerDbgDeclare)
|
|
MadeIRChange = LowerDbgDeclare(F);
|
|
|
|
// Iterate while there is work to do.
|
|
int Iteration = 0;
|
|
while (true) {
|
|
++Iteration;
|
|
LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
|
|
<< F.getName() << "\n");
|
|
|
|
MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
|
|
|
|
InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA,
|
|
AC, TLI, DT, ORE, BFI, PSI, DL, LI);
|
|
IC.MaxArraySizeForCombine = MaxArraySize;
|
|
|
|
if (!IC.run())
|
|
break;
|
|
}
|
|
|
|
return MadeIRChange || Iteration > 1;
|
|
}
|
|
|
|
PreservedAnalyses InstCombinePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
|
|
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
|
|
|
|
auto *AA = &AM.getResult<AAManager>(F);
|
|
const ModuleAnalysisManager &MAM =
|
|
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
|
|
ProfileSummaryInfo *PSI =
|
|
MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
|
|
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
|
|
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
|
|
|
|
if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
|
|
BFI, PSI, ExpensiveCombines, LI))
|
|
// No changes, all analyses are preserved.
|
|
return PreservedAnalyses::all();
|
|
|
|
// Mark all the analyses that instcombine updates as preserved.
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<AAManager>();
|
|
PA.preserve<BasicAA>();
|
|
PA.preserve<GlobalsAA>();
|
|
return PA;
|
|
}
|
|
|
|
void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
|
|
}
|
|
|
|
bool InstructionCombiningPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
// Required analyses.
|
|
auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
// Optional analyses.
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
ProfileSummaryInfo *PSI =
|
|
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
BlockFrequencyInfo *BFI =
|
|
(PSI && PSI->hasProfileSummary()) ?
|
|
&getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
|
|
nullptr;
|
|
|
|
return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
|
|
BFI, PSI, ExpensiveCombines, LI);
|
|
}
|
|
|
|
char InstructionCombiningPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
|
|
"Combine redundant instructions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
|
|
"Combine redundant instructions", false, false)
|
|
|
|
// Initialization Routines
|
|
void llvm::initializeInstCombine(PassRegistry &Registry) {
|
|
initializeInstructionCombiningPassPass(Registry);
|
|
}
|
|
|
|
void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
|
|
initializeInstructionCombiningPassPass(*unwrap(R));
|
|
}
|
|
|
|
FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
|
|
return new InstructionCombiningPass(ExpensiveCombines);
|
|
}
|
|
|
|
void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
|
|
unwrap(PM)->add(createInstructionCombiningPass());
|
|
}
|