llvm-project/llvm/include/Support/DepthFirstIterator.h

150 lines
4.6 KiB
C++

//===- Support/DepthFirstIterator.h - Depth First iterator -------*- C++ -*--=//
//
// This file builds on the Support/GraphTraits.h file to build generic depth
// first graph iterator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_DEPTH_FIRST_ITERATOR_H
#define LLVM_SUPPORT_DEPTH_FIRST_ITERATOR_H
#include "Support/GraphTraits.h"
#include "Support/iterator"
#include <stack>
#include <set>
// Generic Depth First Iterator
template<class GraphT, class GT = GraphTraits<GraphT> >
class df_iterator : public forward_iterator<typename GT::NodeType, ptrdiff_t> {
typedef forward_iterator<typename GT::NodeType, ptrdiff_t> super;
typedef typename super::pointer pointer;
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
std::set<NodeType *> Visited; // All of the blocks visited so far...
// VisitStack - Used to maintain the ordering. Top = current block
// First element is node pointer, second is the 'next child' to visit
std::stack<std::pair<NodeType *, ChildItTy> > VisitStack;
const bool Reverse; // Iterate over children before self?
private:
void reverseEnterNode() {
std::pair<NodeType *, ChildItTy> &Top = VisitStack.top();
NodeType *Node = Top.first;
ChildItTy &It = Top.second;
for (; It != GT::child_end(Node); ++It) {
NodeType *Child = *It;
if (!Visited.count(Child)) {
Visited.insert(Child);
VisitStack.push(std::make_pair(Child, GT::child_begin(Child)));
reverseEnterNode();
return;
}
}
}
inline df_iterator(NodeType *Node, bool reverse) : Reverse(reverse) {
Visited.insert(Node);
VisitStack.push(std::make_pair(Node, GT::child_begin(Node)));
if (Reverse) reverseEnterNode();
}
inline df_iterator() { /* End is when stack is empty */ }
public:
typedef df_iterator<GraphT, GT> _Self;
// Provide static begin and end methods as our public "constructors"
static inline _Self begin(GraphT G, bool Reverse = false) {
return _Self(GT::getEntryNode(G), Reverse);
}
static inline _Self end(GraphT G) { return _Self(); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.top().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the Node, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
if (Reverse) { // Reverse Depth First Iterator
if (VisitStack.top().second == GT::child_end(VisitStack.top().first))
VisitStack.pop();
if (!VisitStack.empty())
reverseEnterNode();
} else { // Normal Depth First Iterator
do {
std::pair<NodeType *, ChildItTy> &Top = VisitStack.top();
NodeType *Node = Top.first;
ChildItTy &It = Top.second;
while (It != GT::child_end(Node)) {
NodeType *Next = *It++;
if (!Visited.count(Next)) { // Has our next sibling been visited?
// No, do it now.
Visited.insert(Next);
VisitStack.push(std::make_pair(Next, GT::child_begin(Next)));
return *this;
}
}
// Oops, ran out of successors... go up a level on the stack.
VisitStack.pop();
} while (!VisitStack.empty());
}
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
// nodeVisited - return true if this iterator has already visited the
// specified node. This is public, and will probably be used to iterate over
// nodes that a depth first iteration did not find: ie unreachable nodes.
//
inline bool nodeVisited(NodeType *Node) const {
return Visited.count(Node) != 0;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
df_iterator<T> df_begin(T G, bool Reverse = false) {
return df_iterator<T>::begin(G, Reverse);
}
template <class T>
df_iterator<T> df_end(T G) {
return df_iterator<T>::end(G);
}
// Provide global definitions of inverse depth first iterators...
template <class T>
struct idf_iterator : public df_iterator<Inverse<T> > {
idf_iterator(const df_iterator<Inverse<T> > &V) :df_iterator<Inverse<T> >(V){}
};
template <class T>
idf_iterator<T> idf_begin(T G, bool Reverse = false) {
return idf_iterator<T>::begin(G, Reverse);
}
template <class T>
idf_iterator<T> idf_end(T G){
return idf_iterator<T>::end(G);
}
#endif