forked from OSchip/llvm-project
2232 lines
89 KiB
C++
2232 lines
89 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains functions to parse Mach-O object files. In this comment,
|
|
// we describe the Mach-O file structure and how we parse it.
|
|
//
|
|
// Mach-O is not very different from ELF or COFF. The notion of symbols,
|
|
// sections and relocations exists in Mach-O as it does in ELF and COFF.
|
|
//
|
|
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
|
|
// In ELF/COFF, sections are an atomic unit of data copied from input files to
|
|
// output files. When we merge or garbage-collect sections, we treat each
|
|
// section as an atomic unit. In Mach-O, that's not the case. Sections can
|
|
// consist of multiple subsections, and subsections are a unit of merging and
|
|
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
|
|
// ELF/COFF's sections than Mach-O's sections are.
|
|
//
|
|
// A section can have multiple symbols. A symbol that does not have the
|
|
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
|
|
// definition, a symbol is always present at the beginning of each subsection. A
|
|
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
|
|
// point to a middle of a subsection.
|
|
//
|
|
// The notion of subsections also affects how relocations are represented in
|
|
// Mach-O. All references within a section need to be explicitly represented as
|
|
// relocations if they refer to different subsections, because we obviously need
|
|
// to fix up addresses if subsections are laid out in an output file differently
|
|
// than they were in object files. To represent that, Mach-O relocations can
|
|
// refer to an unnamed location via its address. Scattered relocations (those
|
|
// with the R_SCATTERED bit set) always refer to unnamed locations.
|
|
// Non-scattered relocations refer to an unnamed location if r_extern is not set
|
|
// and r_symbolnum is zero.
|
|
//
|
|
// Without the above differences, I think you can use your knowledge about ELF
|
|
// and COFF for Mach-O.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Config.h"
|
|
#include "Driver.h"
|
|
#include "Dwarf.h"
|
|
#include "EhFrame.h"
|
|
#include "ExportTrie.h"
|
|
#include "InputSection.h"
|
|
#include "MachOStructs.h"
|
|
#include "ObjC.h"
|
|
#include "OutputSection.h"
|
|
#include "OutputSegment.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
|
|
#include "lld/Common/CommonLinkerContext.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "lld/Common/Reproduce.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/Support/BinaryStreamReader.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/TarWriter.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/TextAPI/Architecture.h"
|
|
#include "llvm/TextAPI/InterfaceFile.h"
|
|
|
|
#include <type_traits>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::MachO;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::sys;
|
|
using namespace lld;
|
|
using namespace lld::macho;
|
|
|
|
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
|
|
std::string lld::toString(const InputFile *f) {
|
|
if (!f)
|
|
return "<internal>";
|
|
|
|
// Multiple dylibs can be defined in one .tbd file.
|
|
if (auto dylibFile = dyn_cast<DylibFile>(f))
|
|
if (f->getName().endswith(".tbd"))
|
|
return (f->getName() + "(" + dylibFile->installName + ")").str();
|
|
|
|
if (f->archiveName.empty())
|
|
return std::string(f->getName());
|
|
return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
|
|
}
|
|
|
|
std::string lld::toString(const Section &sec) {
|
|
return (toString(sec.file) + ":(" + sec.name + ")").str();
|
|
}
|
|
|
|
SetVector<InputFile *> macho::inputFiles;
|
|
std::unique_ptr<TarWriter> macho::tar;
|
|
int InputFile::idCount = 0;
|
|
|
|
static VersionTuple decodeVersion(uint32_t version) {
|
|
unsigned major = version >> 16;
|
|
unsigned minor = (version >> 8) & 0xffu;
|
|
unsigned subMinor = version & 0xffu;
|
|
return VersionTuple(major, minor, subMinor);
|
|
}
|
|
|
|
static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
|
|
if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
|
|
return {};
|
|
|
|
const char *hdr = input->mb.getBufferStart();
|
|
|
|
// "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
|
|
std::vector<PlatformInfo> platformInfos;
|
|
for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
|
|
PlatformInfo info;
|
|
info.target.Platform = static_cast<PlatformType>(cmd->platform);
|
|
info.minimum = decodeVersion(cmd->minos);
|
|
platformInfos.emplace_back(std::move(info));
|
|
}
|
|
for (auto *cmd : findCommands<version_min_command>(
|
|
hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
|
|
LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
|
|
PlatformInfo info;
|
|
switch (cmd->cmd) {
|
|
case LC_VERSION_MIN_MACOSX:
|
|
info.target.Platform = PLATFORM_MACOS;
|
|
break;
|
|
case LC_VERSION_MIN_IPHONEOS:
|
|
info.target.Platform = PLATFORM_IOS;
|
|
break;
|
|
case LC_VERSION_MIN_TVOS:
|
|
info.target.Platform = PLATFORM_TVOS;
|
|
break;
|
|
case LC_VERSION_MIN_WATCHOS:
|
|
info.target.Platform = PLATFORM_WATCHOS;
|
|
break;
|
|
}
|
|
info.minimum = decodeVersion(cmd->version);
|
|
platformInfos.emplace_back(std::move(info));
|
|
}
|
|
|
|
return platformInfos;
|
|
}
|
|
|
|
static bool checkCompatibility(const InputFile *input) {
|
|
std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
|
|
if (platformInfos.empty())
|
|
return true;
|
|
|
|
auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
|
|
return removeSimulator(info.target.Platform) ==
|
|
removeSimulator(config->platform());
|
|
});
|
|
if (it == platformInfos.end()) {
|
|
std::string platformNames;
|
|
raw_string_ostream os(platformNames);
|
|
interleave(
|
|
platformInfos, os,
|
|
[&](const PlatformInfo &info) {
|
|
os << getPlatformName(info.target.Platform);
|
|
},
|
|
"/");
|
|
error(toString(input) + " has platform " + platformNames +
|
|
Twine(", which is different from target platform ") +
|
|
getPlatformName(config->platform()));
|
|
return false;
|
|
}
|
|
|
|
if (it->minimum > config->platformInfo.minimum)
|
|
warn(toString(input) + " has version " + it->minimum.getAsString() +
|
|
", which is newer than target minimum of " +
|
|
config->platformInfo.minimum.getAsString());
|
|
|
|
return true;
|
|
}
|
|
|
|
// This cache mostly exists to store system libraries (and .tbds) as they're
|
|
// loaded, rather than the input archives, which are already cached at a higher
|
|
// level, and other files like the filelist that are only read once.
|
|
// Theoretically this caching could be more efficient by hoisting it, but that
|
|
// would require altering many callers to track the state.
|
|
DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
|
|
// Open a given file path and return it as a memory-mapped file.
|
|
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
|
|
CachedHashStringRef key(path);
|
|
auto entry = cachedReads.find(key);
|
|
if (entry != cachedReads.end())
|
|
return entry->second;
|
|
|
|
ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
|
|
if (std::error_code ec = mbOrErr.getError()) {
|
|
error("cannot open " + path + ": " + ec.message());
|
|
return None;
|
|
}
|
|
|
|
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
|
|
MemoryBufferRef mbref = mb->getMemBufferRef();
|
|
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
|
|
|
|
// If this is a regular non-fat file, return it.
|
|
const char *buf = mbref.getBufferStart();
|
|
const auto *hdr = reinterpret_cast<const fat_header *>(buf);
|
|
if (mbref.getBufferSize() < sizeof(uint32_t) ||
|
|
read32be(&hdr->magic) != FAT_MAGIC) {
|
|
if (tar)
|
|
tar->append(relativeToRoot(path), mbref.getBuffer());
|
|
return cachedReads[key] = mbref;
|
|
}
|
|
|
|
llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
|
|
|
|
// Object files and archive files may be fat files, which contain multiple
|
|
// real files for different CPU ISAs. Here, we search for a file that matches
|
|
// with the current link target and returns it as a MemoryBufferRef.
|
|
const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
|
|
|
|
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
|
|
if (reinterpret_cast<const char *>(arch + i + 1) >
|
|
buf + mbref.getBufferSize()) {
|
|
error(path + ": fat_arch struct extends beyond end of file");
|
|
return None;
|
|
}
|
|
|
|
if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
|
|
read32be(&arch[i].cpusubtype) != target->cpuSubtype)
|
|
continue;
|
|
|
|
uint32_t offset = read32be(&arch[i].offset);
|
|
uint32_t size = read32be(&arch[i].size);
|
|
if (offset + size > mbref.getBufferSize())
|
|
error(path + ": slice extends beyond end of file");
|
|
if (tar)
|
|
tar->append(relativeToRoot(path), mbref.getBuffer());
|
|
return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
|
|
path.copy(bAlloc));
|
|
}
|
|
|
|
error("unable to find matching architecture in " + path);
|
|
return None;
|
|
}
|
|
|
|
InputFile::InputFile(Kind kind, const InterfaceFile &interface)
|
|
: id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
|
|
|
|
// Some sections comprise of fixed-size records, so instead of splitting them at
|
|
// symbol boundaries, we split them based on size. Records are distinct from
|
|
// literals in that they may contain references to other sections, instead of
|
|
// being leaf nodes in the InputSection graph.
|
|
//
|
|
// Note that "record" is a term I came up with. In contrast, "literal" is a term
|
|
// used by the Mach-O format.
|
|
static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
|
|
if (name == section_names::compactUnwind) {
|
|
if (segname == segment_names::ld)
|
|
return target->wordSize == 8 ? 32 : 20;
|
|
}
|
|
if (!config->dedupLiterals)
|
|
return {};
|
|
|
|
if (name == section_names::cfString && segname == segment_names::data)
|
|
return target->wordSize == 8 ? 32 : 16;
|
|
|
|
if (config->icfLevel == ICFLevel::none)
|
|
return {};
|
|
|
|
if (name == section_names::objcClassRefs && segname == segment_names::data)
|
|
return target->wordSize;
|
|
|
|
if (name == section_names::objcSelrefs && segname == segment_names::data)
|
|
return target->wordSize;
|
|
return {};
|
|
}
|
|
|
|
static Error parseCallGraph(ArrayRef<uint8_t> data,
|
|
std::vector<CallGraphEntry> &callGraph) {
|
|
TimeTraceScope timeScope("Parsing call graph section");
|
|
BinaryStreamReader reader(data, support::little);
|
|
while (!reader.empty()) {
|
|
uint32_t fromIndex, toIndex;
|
|
uint64_t count;
|
|
if (Error err = reader.readInteger(fromIndex))
|
|
return err;
|
|
if (Error err = reader.readInteger(toIndex))
|
|
return err;
|
|
if (Error err = reader.readInteger(count))
|
|
return err;
|
|
callGraph.emplace_back(fromIndex, toIndex, count);
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
// Parse the sequence of sections within a single LC_SEGMENT(_64).
|
|
// Split each section into subsections.
|
|
template <class SectionHeader>
|
|
void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
|
|
sections.reserve(sectionHeaders.size());
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
|
|
for (const SectionHeader &sec : sectionHeaders) {
|
|
StringRef name =
|
|
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
|
|
StringRef segname =
|
|
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
|
|
sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
|
|
if (sec.align >= 32) {
|
|
error("alignment " + std::to_string(sec.align) + " of section " + name +
|
|
" is too large");
|
|
continue;
|
|
}
|
|
Section §ion = *sections.back();
|
|
uint32_t align = 1 << sec.align;
|
|
ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
|
|
: buf + sec.offset,
|
|
static_cast<size_t>(sec.size)};
|
|
|
|
auto splitRecords = [&](int recordSize) -> void {
|
|
if (data.empty())
|
|
return;
|
|
Subsections &subsections = section.subsections;
|
|
subsections.reserve(data.size() / recordSize);
|
|
for (uint64_t off = 0; off < data.size(); off += recordSize) {
|
|
auto *isec = make<ConcatInputSection>(
|
|
section, data.slice(off, recordSize), align);
|
|
subsections.push_back({off, isec});
|
|
}
|
|
section.doneSplitting = true;
|
|
};
|
|
|
|
if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
|
|
(config->dedupLiterals && isWordLiteralSection(sec.flags))) {
|
|
if (sec.nreloc && config->dedupLiterals)
|
|
fatal(toString(this) + " contains relocations in " + sec.segname + "," +
|
|
sec.sectname +
|
|
", so LLD cannot deduplicate literals. Try re-running without "
|
|
"--deduplicate-literals.");
|
|
|
|
InputSection *isec;
|
|
if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
|
|
isec = make<CStringInputSection>(section, data, align,
|
|
/*dedupLiterals=*/name ==
|
|
section_names::objcMethname ||
|
|
config->dedupLiterals);
|
|
// FIXME: parallelize this?
|
|
cast<CStringInputSection>(isec)->splitIntoPieces();
|
|
} else {
|
|
isec = make<WordLiteralInputSection>(section, data, align);
|
|
}
|
|
section.subsections.push_back({0, isec});
|
|
} else if (auto recordSize = getRecordSize(segname, name)) {
|
|
splitRecords(*recordSize);
|
|
} else if (name == section_names::ehFrame &&
|
|
segname == segment_names::text) {
|
|
splitEhFrames(data, *sections.back());
|
|
} else if (segname == segment_names::llvm) {
|
|
if (config->callGraphProfileSort && name == section_names::cgProfile)
|
|
checkError(parseCallGraph(data, callGraph));
|
|
// ld64 does not appear to emit contents from sections within the __LLVM
|
|
// segment. Symbols within those sections point to bitcode metadata
|
|
// instead of actual symbols. Global symbols within those sections could
|
|
// have the same name without causing duplicate symbol errors. To avoid
|
|
// spurious duplicate symbol errors, we do not parse these sections.
|
|
// TODO: Evaluate whether the bitcode metadata is needed.
|
|
} else if (name == section_names::objCImageInfo &&
|
|
segname == segment_names::data) {
|
|
objCImageInfo = data;
|
|
} else {
|
|
if (name == section_names::addrSig)
|
|
addrSigSection = sections.back();
|
|
|
|
auto *isec = make<ConcatInputSection>(section, data, align);
|
|
if (isDebugSection(isec->getFlags()) &&
|
|
isec->getSegName() == segment_names::dwarf) {
|
|
// Instead of emitting DWARF sections, we emit STABS symbols to the
|
|
// object files that contain them. We filter them out early to avoid
|
|
// parsing their relocations unnecessarily.
|
|
debugSections.push_back(isec);
|
|
} else {
|
|
section.subsections.push_back({0, isec});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
|
|
EhReader reader(this, data, /*dataOff=*/0);
|
|
size_t off = 0;
|
|
while (off < reader.size()) {
|
|
uint64_t frameOff = off;
|
|
uint64_t length = reader.readLength(&off);
|
|
if (length == 0)
|
|
break;
|
|
uint64_t fullLength = length + (off - frameOff);
|
|
off += length;
|
|
// We hard-code an alignment of 1 here because we don't actually want our
|
|
// EH frames to be aligned to the section alignment. EH frame decoders don't
|
|
// expect this alignment. Moreover, each EH frame must start where the
|
|
// previous one ends, and where it ends is indicated by the length field.
|
|
// Unless we update the length field (troublesome), we should keep the
|
|
// alignment to 1.
|
|
// Note that we still want to preserve the alignment of the overall section,
|
|
// just not of the individual EH frames.
|
|
ehFrameSection.subsections.push_back(
|
|
{frameOff, make<ConcatInputSection>(ehFrameSection,
|
|
data.slice(frameOff, fullLength),
|
|
/*align=*/1)});
|
|
}
|
|
ehFrameSection.doneSplitting = true;
|
|
}
|
|
|
|
template <class T>
|
|
static Section *findContainingSection(const std::vector<Section *> §ions,
|
|
T *offset) {
|
|
static_assert(std::is_same<uint64_t, T>::value ||
|
|
std::is_same<uint32_t, T>::value,
|
|
"unexpected type for offset");
|
|
auto it = std::prev(llvm::upper_bound(
|
|
sections, *offset,
|
|
[](uint64_t value, const Section *sec) { return value < sec->addr; }));
|
|
*offset -= (*it)->addr;
|
|
return *it;
|
|
}
|
|
|
|
// Find the subsection corresponding to the greatest section offset that is <=
|
|
// that of the given offset.
|
|
//
|
|
// offset: an offset relative to the start of the original InputSection (before
|
|
// any subsection splitting has occurred). It will be updated to represent the
|
|
// same location as an offset relative to the start of the containing
|
|
// subsection.
|
|
template <class T>
|
|
static InputSection *findContainingSubsection(const Section §ion,
|
|
T *offset) {
|
|
static_assert(std::is_same<uint64_t, T>::value ||
|
|
std::is_same<uint32_t, T>::value,
|
|
"unexpected type for offset");
|
|
auto it = std::prev(llvm::upper_bound(
|
|
section.subsections, *offset,
|
|
[](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
|
|
*offset -= it->offset;
|
|
return it->isec;
|
|
}
|
|
|
|
// Find a symbol at offset `off` within `isec`.
|
|
static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
|
|
uint64_t off) {
|
|
auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
|
|
return d->value < off;
|
|
});
|
|
// The offset should point at the exact address of a symbol (with no addend.)
|
|
if (it == isec->symbols.end() || (*it)->value != off) {
|
|
assert(isec->wasCoalesced);
|
|
return nullptr;
|
|
}
|
|
return *it;
|
|
}
|
|
|
|
template <class SectionHeader>
|
|
static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
|
|
relocation_info rel) {
|
|
const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
|
|
bool valid = true;
|
|
auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
|
|
valid = false;
|
|
return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
|
|
std::to_string(rel.r_address) + " of " + sec.segname + "," +
|
|
sec.sectname + " in " + toString(file))
|
|
.str();
|
|
};
|
|
|
|
if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
|
|
error(message("must be extern"));
|
|
if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
|
|
error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
|
|
"be PC-relative"));
|
|
if (isThreadLocalVariables(sec.flags) &&
|
|
!relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
|
|
error(message("not allowed in thread-local section, must be UNSIGNED"));
|
|
if (rel.r_length < 2 || rel.r_length > 3 ||
|
|
!relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
|
|
static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
|
|
error(message("has width " + std::to_string(1 << rel.r_length) +
|
|
" bytes, but must be " +
|
|
widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
|
|
" bytes"));
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
template <class SectionHeader>
|
|
void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
|
|
const SectionHeader &sec, Section §ion) {
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
ArrayRef<relocation_info> relInfos(
|
|
reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
|
|
|
|
Subsections &subsections = section.subsections;
|
|
auto subsecIt = subsections.rbegin();
|
|
for (size_t i = 0; i < relInfos.size(); i++) {
|
|
// Paired relocations serve as Mach-O's method for attaching a
|
|
// supplemental datum to a primary relocation record. ELF does not
|
|
// need them because the *_RELOC_RELA records contain the extra
|
|
// addend field, vs. *_RELOC_REL which omit the addend.
|
|
//
|
|
// The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
|
|
// and the paired *_RELOC_UNSIGNED record holds the minuend. The
|
|
// datum for each is a symbolic address. The result is the offset
|
|
// between two addresses.
|
|
//
|
|
// The ARM64_RELOC_ADDEND record holds the addend, and the paired
|
|
// ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
|
|
// base symbolic address.
|
|
//
|
|
// Note: X86 does not use *_RELOC_ADDEND because it can embed an
|
|
// addend into the instruction stream. On X86, a relocatable address
|
|
// field always occupies an entire contiguous sequence of byte(s),
|
|
// so there is no need to merge opcode bits with address
|
|
// bits. Therefore, it's easy and convenient to store addends in the
|
|
// instruction-stream bytes that would otherwise contain zeroes. By
|
|
// contrast, RISC ISAs such as ARM64 mix opcode bits with with
|
|
// address bits so that bitwise arithmetic is necessary to extract
|
|
// and insert them. Storing addends in the instruction stream is
|
|
// possible, but inconvenient and more costly at link time.
|
|
|
|
relocation_info relInfo = relInfos[i];
|
|
bool isSubtrahend =
|
|
target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
|
|
int64_t pairedAddend = 0;
|
|
if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
|
|
pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
|
|
relInfo = relInfos[++i];
|
|
}
|
|
assert(i < relInfos.size());
|
|
if (!validateRelocationInfo(this, sec, relInfo))
|
|
continue;
|
|
if (relInfo.r_address & R_SCATTERED)
|
|
fatal("TODO: Scattered relocations not supported");
|
|
|
|
int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
|
|
assert(!(embeddedAddend && pairedAddend));
|
|
int64_t totalAddend = pairedAddend + embeddedAddend;
|
|
Reloc r;
|
|
r.type = relInfo.r_type;
|
|
r.pcrel = relInfo.r_pcrel;
|
|
r.length = relInfo.r_length;
|
|
r.offset = relInfo.r_address;
|
|
if (relInfo.r_extern) {
|
|
r.referent = symbols[relInfo.r_symbolnum];
|
|
r.addend = isSubtrahend ? 0 : totalAddend;
|
|
} else {
|
|
assert(!isSubtrahend);
|
|
const SectionHeader &referentSecHead =
|
|
sectionHeaders[relInfo.r_symbolnum - 1];
|
|
uint64_t referentOffset;
|
|
if (relInfo.r_pcrel) {
|
|
// The implicit addend for pcrel section relocations is the pcrel offset
|
|
// in terms of the addresses in the input file. Here we adjust it so
|
|
// that it describes the offset from the start of the referent section.
|
|
// FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
|
|
// have pcrel section relocations. We may want to factor this out into
|
|
// the arch-specific .cpp file.
|
|
assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
|
|
referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
|
|
referentSecHead.addr;
|
|
} else {
|
|
// The addend for a non-pcrel relocation is its absolute address.
|
|
referentOffset = totalAddend - referentSecHead.addr;
|
|
}
|
|
r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
|
|
&referentOffset);
|
|
r.addend = referentOffset;
|
|
}
|
|
|
|
// Find the subsection that this relocation belongs to.
|
|
// Though not required by the Mach-O format, clang and gcc seem to emit
|
|
// relocations in order, so let's take advantage of it. However, ld64 emits
|
|
// unsorted relocations (in `-r` mode), so we have a fallback for that
|
|
// uncommon case.
|
|
InputSection *subsec;
|
|
while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
|
|
++subsecIt;
|
|
if (subsecIt == subsections.rend() ||
|
|
subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
|
|
subsec = findContainingSubsection(section, &r.offset);
|
|
// Now that we know the relocs are unsorted, avoid trying the 'fast path'
|
|
// for the other relocations.
|
|
subsecIt = subsections.rend();
|
|
} else {
|
|
subsec = subsecIt->isec;
|
|
r.offset -= subsecIt->offset;
|
|
}
|
|
subsec->relocs.push_back(r);
|
|
|
|
if (isSubtrahend) {
|
|
relocation_info minuendInfo = relInfos[++i];
|
|
// SUBTRACTOR relocations should always be followed by an UNSIGNED one
|
|
// attached to the same address.
|
|
assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
|
|
relInfo.r_address == minuendInfo.r_address);
|
|
Reloc p;
|
|
p.type = minuendInfo.r_type;
|
|
if (minuendInfo.r_extern) {
|
|
p.referent = symbols[minuendInfo.r_symbolnum];
|
|
p.addend = totalAddend;
|
|
} else {
|
|
uint64_t referentOffset =
|
|
totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
|
|
p.referent = findContainingSubsection(
|
|
*sections[minuendInfo.r_symbolnum - 1], &referentOffset);
|
|
p.addend = referentOffset;
|
|
}
|
|
subsec->relocs.push_back(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class NList>
|
|
static macho::Symbol *createDefined(const NList &sym, StringRef name,
|
|
InputSection *isec, uint64_t value,
|
|
uint64_t size, bool forceHidden) {
|
|
// Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
|
|
// N_EXT: Global symbols. These go in the symbol table during the link,
|
|
// and also in the export table of the output so that the dynamic
|
|
// linker sees them.
|
|
// N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
|
|
// symbol table during the link so that duplicates are
|
|
// either reported (for non-weak symbols) or merged
|
|
// (for weak symbols), but they do not go in the export
|
|
// table of the output.
|
|
// N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
|
|
// object files) may produce them. LLD does not yet support -r.
|
|
// These are translation-unit scoped, identical to the `0` case.
|
|
// 0: Translation-unit scoped. These are not in the symbol table during
|
|
// link, and not in the export table of the output either.
|
|
bool isWeakDefCanBeHidden =
|
|
(sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
|
|
|
|
if (sym.n_type & N_EXT) {
|
|
// -load_hidden makes us treat global symbols as linkage unit scoped.
|
|
// Duplicates are reported but the symbol does not go in the export trie.
|
|
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
|
|
|
|
// lld's behavior for merging symbols is slightly different from ld64:
|
|
// ld64 picks the winning symbol based on several criteria (see
|
|
// pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
|
|
// just merges metadata and keeps the contents of the first symbol
|
|
// with that name (see SymbolTable::addDefined). For:
|
|
// * inline function F in a TU built with -fvisibility-inlines-hidden
|
|
// * and inline function F in another TU built without that flag
|
|
// ld64 will pick the one from the file built without
|
|
// -fvisibility-inlines-hidden.
|
|
// lld will instead pick the one listed first on the link command line and
|
|
// give it visibility as if the function was built without
|
|
// -fvisibility-inlines-hidden.
|
|
// If both functions have the same contents, this will have the same
|
|
// behavior. If not, it won't, but the input had an ODR violation in
|
|
// that case.
|
|
//
|
|
// Similarly, merging a symbol
|
|
// that's isPrivateExtern and not isWeakDefCanBeHidden with one
|
|
// that's not isPrivateExtern but isWeakDefCanBeHidden technically
|
|
// should produce one
|
|
// that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
|
|
// with ld64's semantics, because it means the non-private-extern
|
|
// definition will continue to take priority if more private extern
|
|
// definitions are encountered. With lld's semantics there's no observable
|
|
// difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
|
|
// that's privateExtern -- neither makes it into the dynamic symbol table,
|
|
// unless the autohide symbol is explicitly exported.
|
|
// But if a symbol is both privateExtern and autohide then it can't
|
|
// be exported.
|
|
// So we nullify the autohide flag when privateExtern is present
|
|
// and promote the symbol to privateExtern when it is not already.
|
|
if (isWeakDefCanBeHidden && isPrivateExtern)
|
|
isWeakDefCanBeHidden = false;
|
|
else if (isWeakDefCanBeHidden)
|
|
isPrivateExtern = true;
|
|
return symtab->addDefined(
|
|
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
|
|
isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
|
|
sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
|
|
isWeakDefCanBeHidden);
|
|
}
|
|
assert(!isWeakDefCanBeHidden &&
|
|
"weak_def_can_be_hidden on already-hidden symbol?");
|
|
bool includeInSymtab =
|
|
!name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec);
|
|
return make<Defined>(
|
|
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
|
|
/*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
|
|
sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
|
|
sym.n_desc & N_NO_DEAD_STRIP);
|
|
}
|
|
|
|
// Absolute symbols are defined symbols that do not have an associated
|
|
// InputSection. They cannot be weak.
|
|
template <class NList>
|
|
static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
|
|
StringRef name, bool forceHidden) {
|
|
if (sym.n_type & N_EXT) {
|
|
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
|
|
return symtab->addDefined(
|
|
name, file, nullptr, sym.n_value, /*size=*/0,
|
|
/*isWeakDef=*/false, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
|
|
/*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
|
|
/*isWeakDefCanBeHidden=*/false);
|
|
}
|
|
return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
|
|
/*isWeakDef=*/false,
|
|
/*isExternal=*/false, /*isPrivateExtern=*/false,
|
|
/*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
|
|
/*isReferencedDynamically=*/false,
|
|
sym.n_desc & N_NO_DEAD_STRIP);
|
|
}
|
|
|
|
template <class NList>
|
|
macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
|
|
const char *strtab) {
|
|
StringRef name = StringRef(strtab + sym.n_strx);
|
|
uint8_t type = sym.n_type & N_TYPE;
|
|
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
|
|
switch (type) {
|
|
case N_UNDF:
|
|
return sym.n_value == 0
|
|
? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
|
|
: symtab->addCommon(name, this, sym.n_value,
|
|
1 << GET_COMM_ALIGN(sym.n_desc),
|
|
isPrivateExtern);
|
|
case N_ABS:
|
|
return createAbsolute(sym, this, name, forceHidden);
|
|
case N_INDR: {
|
|
// Not much point in making local aliases -- relocs in the current file can
|
|
// just refer to the actual symbol itself. ld64 ignores these symbols too.
|
|
if (!(sym.n_type & N_EXT))
|
|
return nullptr;
|
|
StringRef aliasedName = StringRef(strtab + sym.n_value);
|
|
// isPrivateExtern is the only symbol flag that has an impact on the final
|
|
// aliased symbol.
|
|
auto alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
|
|
aliases.push_back(alias);
|
|
return alias;
|
|
}
|
|
case N_PBUD:
|
|
error("TODO: support symbols of type N_PBUD");
|
|
return nullptr;
|
|
case N_SECT:
|
|
llvm_unreachable(
|
|
"N_SECT symbols should not be passed to parseNonSectionSymbol");
|
|
default:
|
|
llvm_unreachable("invalid symbol type");
|
|
}
|
|
}
|
|
|
|
template <class NList> static bool isUndef(const NList &sym) {
|
|
return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
|
|
}
|
|
|
|
template <class LP>
|
|
void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
|
|
ArrayRef<typename LP::nlist> nList,
|
|
const char *strtab, bool subsectionsViaSymbols) {
|
|
using NList = typename LP::nlist;
|
|
|
|
// Groups indices of the symbols by the sections that contain them.
|
|
std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
|
|
symbols.resize(nList.size());
|
|
SmallVector<unsigned, 32> undefineds;
|
|
for (uint32_t i = 0; i < nList.size(); ++i) {
|
|
const NList &sym = nList[i];
|
|
|
|
// Ignore debug symbols for now.
|
|
// FIXME: may need special handling.
|
|
if (sym.n_type & N_STAB)
|
|
continue;
|
|
|
|
if ((sym.n_type & N_TYPE) == N_SECT) {
|
|
Subsections &subsections = sections[sym.n_sect - 1]->subsections;
|
|
// parseSections() may have chosen not to parse this section.
|
|
if (subsections.empty())
|
|
continue;
|
|
symbolsBySection[sym.n_sect - 1].push_back(i);
|
|
} else if (isUndef(sym)) {
|
|
undefineds.push_back(i);
|
|
} else {
|
|
symbols[i] = parseNonSectionSymbol(sym, strtab);
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < sections.size(); ++i) {
|
|
Subsections &subsections = sections[i]->subsections;
|
|
if (subsections.empty())
|
|
continue;
|
|
std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
|
|
uint64_t sectionAddr = sectionHeaders[i].addr;
|
|
uint32_t sectionAlign = 1u << sectionHeaders[i].align;
|
|
|
|
// Some sections have already been split into subsections during
|
|
// parseSections(), so we simply need to match Symbols to the corresponding
|
|
// subsection here.
|
|
if (sections[i]->doneSplitting) {
|
|
for (size_t j = 0; j < symbolIndices.size(); ++j) {
|
|
uint32_t symIndex = symbolIndices[j];
|
|
const NList &sym = nList[symIndex];
|
|
StringRef name = strtab + sym.n_strx;
|
|
uint64_t symbolOffset = sym.n_value - sectionAddr;
|
|
InputSection *isec =
|
|
findContainingSubsection(*sections[i], &symbolOffset);
|
|
if (symbolOffset != 0) {
|
|
error(toString(*sections[i]) + ": symbol " + name +
|
|
" at misaligned offset");
|
|
continue;
|
|
}
|
|
symbols[symIndex] =
|
|
createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
|
|
}
|
|
continue;
|
|
}
|
|
sections[i]->doneSplitting = true;
|
|
|
|
// Calculate symbol sizes and create subsections by splitting the sections
|
|
// along symbol boundaries.
|
|
// We populate subsections by repeatedly splitting the last (highest
|
|
// address) subsection.
|
|
llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
|
|
return nList[lhs].n_value < nList[rhs].n_value;
|
|
});
|
|
for (size_t j = 0; j < symbolIndices.size(); ++j) {
|
|
uint32_t symIndex = symbolIndices[j];
|
|
const NList &sym = nList[symIndex];
|
|
StringRef name = strtab + sym.n_strx;
|
|
Subsection &subsec = subsections.back();
|
|
InputSection *isec = subsec.isec;
|
|
|
|
uint64_t subsecAddr = sectionAddr + subsec.offset;
|
|
size_t symbolOffset = sym.n_value - subsecAddr;
|
|
uint64_t symbolSize =
|
|
j + 1 < symbolIndices.size()
|
|
? nList[symbolIndices[j + 1]].n_value - sym.n_value
|
|
: isec->data.size() - symbolOffset;
|
|
// There are 4 cases where we do not need to create a new subsection:
|
|
// 1. If the input file does not use subsections-via-symbols.
|
|
// 2. Multiple symbols at the same address only induce one subsection.
|
|
// (The symbolOffset == 0 check covers both this case as well as
|
|
// the first loop iteration.)
|
|
// 3. Alternative entry points do not induce new subsections.
|
|
// 4. If we have a literal section (e.g. __cstring and __literal4).
|
|
if (!subsectionsViaSymbols || symbolOffset == 0 ||
|
|
sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
|
|
symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
|
|
symbolSize, forceHidden);
|
|
continue;
|
|
}
|
|
auto *concatIsec = cast<ConcatInputSection>(isec);
|
|
|
|
auto *nextIsec = make<ConcatInputSection>(*concatIsec);
|
|
nextIsec->wasCoalesced = false;
|
|
if (isZeroFill(isec->getFlags())) {
|
|
// Zero-fill sections have NULL data.data() non-zero data.size()
|
|
nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
|
|
isec->data = {nullptr, symbolOffset};
|
|
} else {
|
|
nextIsec->data = isec->data.slice(symbolOffset);
|
|
isec->data = isec->data.slice(0, symbolOffset);
|
|
}
|
|
|
|
// By construction, the symbol will be at offset zero in the new
|
|
// subsection.
|
|
symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
|
|
symbolSize, forceHidden);
|
|
// TODO: ld64 appears to preserve the original alignment as well as each
|
|
// subsection's offset from the last aligned address. We should consider
|
|
// emulating that behavior.
|
|
nextIsec->align = MinAlign(sectionAlign, sym.n_value);
|
|
subsections.push_back({sym.n_value - sectionAddr, nextIsec});
|
|
}
|
|
}
|
|
|
|
// Undefined symbols can trigger recursive fetch from Archives due to
|
|
// LazySymbols. Process defined symbols first so that the relative order
|
|
// between a defined symbol and an undefined symbol does not change the
|
|
// symbol resolution behavior. In addition, a set of interconnected symbols
|
|
// will all be resolved to the same file, instead of being resolved to
|
|
// different files.
|
|
for (unsigned i : undefineds)
|
|
symbols[i] = parseNonSectionSymbol(nList[i], strtab);
|
|
}
|
|
|
|
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
|
|
StringRef sectName)
|
|
: InputFile(OpaqueKind, mb) {
|
|
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
|
|
sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
|
|
sectName.take_front(16),
|
|
/*flags=*/0, /*addr=*/0));
|
|
Section §ion = *sections.back();
|
|
ConcatInputSection *isec = make<ConcatInputSection>(section, data);
|
|
isec->live = true;
|
|
section.subsections.push_back({0, isec});
|
|
}
|
|
|
|
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
|
|
bool lazy, bool forceHidden)
|
|
: InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) {
|
|
this->archiveName = std::string(archiveName);
|
|
if (lazy) {
|
|
if (target->wordSize == 8)
|
|
parseLazy<LP64>();
|
|
else
|
|
parseLazy<ILP32>();
|
|
} else {
|
|
if (target->wordSize == 8)
|
|
parse<LP64>();
|
|
else
|
|
parse<ILP32>();
|
|
}
|
|
}
|
|
|
|
template <class LP> void ObjFile::parse() {
|
|
using Header = typename LP::mach_header;
|
|
using SegmentCommand = typename LP::segment_command;
|
|
using SectionHeader = typename LP::section;
|
|
using NList = typename LP::nlist;
|
|
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
|
|
|
|
uint32_t cpuType;
|
|
std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
|
|
if (hdr->cputype != cpuType) {
|
|
Architecture arch =
|
|
getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
|
|
auto msg = config->errorForArchMismatch
|
|
? static_cast<void (*)(const Twine &)>(error)
|
|
: warn;
|
|
msg(toString(this) + " has architecture " + getArchitectureName(arch) +
|
|
" which is incompatible with target architecture " +
|
|
getArchitectureName(config->arch()));
|
|
return;
|
|
}
|
|
|
|
if (!checkCompatibility(this))
|
|
return;
|
|
|
|
for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
|
|
StringRef data{reinterpret_cast<const char *>(cmd + 1),
|
|
cmd->cmdsize - sizeof(linker_option_command)};
|
|
parseLCLinkerOption(this, cmd->count, data);
|
|
}
|
|
|
|
ArrayRef<SectionHeader> sectionHeaders;
|
|
if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
|
|
auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
|
|
sectionHeaders = ArrayRef<SectionHeader>{
|
|
reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
|
|
parseSections(sectionHeaders);
|
|
}
|
|
|
|
// TODO: Error on missing LC_SYMTAB?
|
|
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
|
|
auto *c = reinterpret_cast<const symtab_command *>(cmd);
|
|
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
|
|
c->nsyms);
|
|
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
|
|
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
|
|
parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
|
|
}
|
|
|
|
// The relocations may refer to the symbols, so we parse them after we have
|
|
// parsed all the symbols.
|
|
for (size_t i = 0, n = sections.size(); i < n; ++i)
|
|
if (!sections[i]->subsections.empty())
|
|
parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
|
|
|
|
parseDebugInfo();
|
|
|
|
Section *ehFrameSection = nullptr;
|
|
Section *compactUnwindSection = nullptr;
|
|
for (Section *sec : sections) {
|
|
Section **s = StringSwitch<Section **>(sec->name)
|
|
.Case(section_names::compactUnwind, &compactUnwindSection)
|
|
.Case(section_names::ehFrame, &ehFrameSection)
|
|
.Default(nullptr);
|
|
if (s)
|
|
*s = sec;
|
|
}
|
|
if (compactUnwindSection)
|
|
registerCompactUnwind(*compactUnwindSection);
|
|
if (ehFrameSection)
|
|
registerEhFrames(*ehFrameSection);
|
|
}
|
|
|
|
template <class LP> void ObjFile::parseLazy() {
|
|
using Header = typename LP::mach_header;
|
|
using NList = typename LP::nlist;
|
|
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
|
|
const load_command *cmd = findCommand(hdr, LC_SYMTAB);
|
|
if (!cmd)
|
|
return;
|
|
auto *c = reinterpret_cast<const symtab_command *>(cmd);
|
|
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
|
|
c->nsyms);
|
|
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
|
|
symbols.resize(nList.size());
|
|
for (auto it : llvm::enumerate(nList)) {
|
|
const NList &sym = it.value();
|
|
if ((sym.n_type & N_EXT) && !isUndef(sym)) {
|
|
// TODO: Bound checking
|
|
StringRef name = strtab + sym.n_strx;
|
|
symbols[it.index()] = symtab->addLazyObject(name, *this);
|
|
if (!lazy)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ObjFile::parseDebugInfo() {
|
|
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
|
|
if (!dObj)
|
|
return;
|
|
|
|
// We do not re-use the context from getDwarf() here as that function
|
|
// constructs an expensive DWARFCache object.
|
|
auto *ctx = make<DWARFContext>(
|
|
std::move(dObj), "",
|
|
[&](Error err) {
|
|
warn(toString(this) + ": " + toString(std::move(err)));
|
|
},
|
|
[&](Error warning) {
|
|
warn(toString(this) + ": " + toString(std::move(warning)));
|
|
});
|
|
|
|
// TODO: Since object files can contain a lot of DWARF info, we should verify
|
|
// that we are parsing just the info we need
|
|
const DWARFContext::compile_unit_range &units = ctx->compile_units();
|
|
// FIXME: There can be more than one compile unit per object file. See
|
|
// PR48637.
|
|
auto it = units.begin();
|
|
compileUnit = it != units.end() ? it->get() : nullptr;
|
|
}
|
|
|
|
ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
|
|
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
|
|
if (!cmd)
|
|
return {};
|
|
const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
|
|
return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
|
|
c->datasize / sizeof(data_in_code_entry)};
|
|
}
|
|
|
|
ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
|
|
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
if (auto *cmd =
|
|
findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
|
|
return {buf + cmd->dataoff, cmd->datasize};
|
|
return {};
|
|
}
|
|
|
|
// Create pointers from symbols to their associated compact unwind entries.
|
|
void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
|
|
for (const Subsection &subsection : compactUnwindSection.subsections) {
|
|
ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
|
|
// Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
|
|
// their addends in its data. Thus if ICF operated naively and compared the
|
|
// entire contents of each CUE, entries with identical unwind info but e.g.
|
|
// belonging to different functions would never be considered equivalent. To
|
|
// work around this problem, we remove some parts of the data containing the
|
|
// embedded addends. In particular, we remove the function address and LSDA
|
|
// pointers. Since these locations are at the start and end of the entry,
|
|
// we can do this using a simple, efficient slice rather than performing a
|
|
// copy. We are not losing any information here because the embedded
|
|
// addends have already been parsed in the corresponding Reloc structs.
|
|
//
|
|
// Removing these pointers would not be safe if they were pointers to
|
|
// absolute symbols. In that case, there would be no corresponding
|
|
// relocation. However, (AFAIK) MC cannot emit references to absolute
|
|
// symbols for either the function address or the LSDA. However, it *can* do
|
|
// so for the personality pointer, so we are not slicing that field away.
|
|
//
|
|
// Note that we do not adjust the offsets of the corresponding relocations;
|
|
// instead, we rely on `relocateCompactUnwind()` to correctly handle these
|
|
// truncated input sections.
|
|
isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
|
|
uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
|
|
// llvm-mc omits CU entries for functions that need DWARF encoding, but
|
|
// `ld -r` doesn't. We can ignore them because we will re-synthesize these
|
|
// CU entries from the DWARF info during the output phase.
|
|
if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding)
|
|
continue;
|
|
|
|
ConcatInputSection *referentIsec;
|
|
for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
|
|
Reloc &r = *it;
|
|
// CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
|
|
if (r.offset != 0) {
|
|
++it;
|
|
continue;
|
|
}
|
|
uint64_t add = r.addend;
|
|
if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
|
|
// Check whether the symbol defined in this file is the prevailing one.
|
|
// Skip if it is e.g. a weak def that didn't prevail.
|
|
if (sym->getFile() != this) {
|
|
++it;
|
|
continue;
|
|
}
|
|
add += sym->value;
|
|
referentIsec = cast<ConcatInputSection>(sym->isec);
|
|
} else {
|
|
referentIsec =
|
|
cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
|
|
}
|
|
// Unwind info lives in __DATA, and finalization of __TEXT will occur
|
|
// before finalization of __DATA. Moreover, the finalization of unwind
|
|
// info depends on the exact addresses that it references. So it is safe
|
|
// for compact unwind to reference addresses in __TEXT, but not addresses
|
|
// in any other segment.
|
|
if (referentIsec->getSegName() != segment_names::text)
|
|
error(isec->getLocation(r.offset) + " references section " +
|
|
referentIsec->getName() + " which is not in segment __TEXT");
|
|
// The functionAddress relocations are typically section relocations.
|
|
// However, unwind info operates on a per-symbol basis, so we search for
|
|
// the function symbol here.
|
|
Defined *d = findSymbolAtOffset(referentIsec, add);
|
|
if (!d) {
|
|
++it;
|
|
continue;
|
|
}
|
|
d->unwindEntry = isec;
|
|
// Now that the symbol points to the unwind entry, we can remove the reloc
|
|
// that points from the unwind entry back to the symbol.
|
|
//
|
|
// First, the symbol keeps the unwind entry alive (and not vice versa), so
|
|
// this keeps dead-stripping simple.
|
|
//
|
|
// Moreover, it reduces the work that ICF needs to do to figure out if
|
|
// functions with unwind info are foldable.
|
|
//
|
|
// However, this does make it possible for ICF to fold CUEs that point to
|
|
// distinct functions (if the CUEs are otherwise identical).
|
|
// UnwindInfoSection takes care of this by re-duplicating the CUEs so that
|
|
// each one can hold a distinct functionAddress value.
|
|
//
|
|
// Given that clang emits relocations in reverse order of address, this
|
|
// relocation should be at the end of the vector for most of our input
|
|
// object files, so this erase() is typically an O(1) operation.
|
|
it = isec->relocs.erase(it);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct CIE {
|
|
macho::Symbol *personalitySymbol = nullptr;
|
|
bool fdesHaveAug = false;
|
|
uint8_t lsdaPtrSize = 0; // 0 => no LSDA
|
|
uint8_t funcPtrSize = 0;
|
|
};
|
|
|
|
static uint8_t pointerEncodingToSize(uint8_t enc) {
|
|
switch (enc & 0xf) {
|
|
case dwarf::DW_EH_PE_absptr:
|
|
return target->wordSize;
|
|
case dwarf::DW_EH_PE_sdata4:
|
|
return 4;
|
|
case dwarf::DW_EH_PE_sdata8:
|
|
// ld64 doesn't actually support sdata8, but this seems simple enough...
|
|
return 8;
|
|
default:
|
|
return 0;
|
|
};
|
|
}
|
|
|
|
static CIE parseCIE(const InputSection *isec, const EhReader &reader,
|
|
size_t off) {
|
|
// Handling the full generality of possible DWARF encodings would be a major
|
|
// pain. We instead take advantage of our knowledge of how llvm-mc encodes
|
|
// DWARF and handle just that.
|
|
constexpr uint8_t expectedPersonalityEnc =
|
|
dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
|
|
|
|
CIE cie;
|
|
uint8_t version = reader.readByte(&off);
|
|
if (version != 1 && version != 3)
|
|
fatal("Expected CIE version of 1 or 3, got " + Twine(version));
|
|
StringRef aug = reader.readString(&off);
|
|
reader.skipLeb128(&off); // skip code alignment
|
|
reader.skipLeb128(&off); // skip data alignment
|
|
reader.skipLeb128(&off); // skip return address register
|
|
reader.skipLeb128(&off); // skip aug data length
|
|
uint64_t personalityAddrOff = 0;
|
|
for (char c : aug) {
|
|
switch (c) {
|
|
case 'z':
|
|
cie.fdesHaveAug = true;
|
|
break;
|
|
case 'P': {
|
|
uint8_t personalityEnc = reader.readByte(&off);
|
|
if (personalityEnc != expectedPersonalityEnc)
|
|
reader.failOn(off, "unexpected personality encoding 0x" +
|
|
Twine::utohexstr(personalityEnc));
|
|
personalityAddrOff = off;
|
|
off += 4;
|
|
break;
|
|
}
|
|
case 'L': {
|
|
uint8_t lsdaEnc = reader.readByte(&off);
|
|
cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
|
|
if (cie.lsdaPtrSize == 0)
|
|
reader.failOn(off, "unexpected LSDA encoding 0x" +
|
|
Twine::utohexstr(lsdaEnc));
|
|
break;
|
|
}
|
|
case 'R': {
|
|
uint8_t pointerEnc = reader.readByte(&off);
|
|
cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
|
|
if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
|
|
reader.failOn(off, "unexpected pointer encoding 0x" +
|
|
Twine::utohexstr(pointerEnc));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if (personalityAddrOff != 0) {
|
|
auto personalityRelocIt =
|
|
llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
|
|
return r.offset == personalityAddrOff;
|
|
});
|
|
if (personalityRelocIt == isec->relocs.end())
|
|
reader.failOn(off, "Failed to locate relocation for personality symbol");
|
|
cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
|
|
}
|
|
return cie;
|
|
}
|
|
|
|
// EH frame target addresses may be encoded as pcrel offsets. However, instead
|
|
// of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
|
|
// This function recovers the target address from the subtractors, essentially
|
|
// performing the inverse operation of EhRelocator.
|
|
//
|
|
// Concretely, we expect our relocations to write the value of `PC -
|
|
// target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
|
|
// points to a symbol plus an addend.
|
|
//
|
|
// It is important that the minuend relocation point to a symbol within the
|
|
// same section as the fixup value, since sections may get moved around.
|
|
//
|
|
// For example, for arm64, llvm-mc emits relocations for the target function
|
|
// address like so:
|
|
//
|
|
// ltmp:
|
|
// <CIE start>
|
|
// ...
|
|
// <CIE end>
|
|
// ... multiple FDEs ...
|
|
// <FDE start>
|
|
// <target function address - (ltmp + pcrel offset)>
|
|
// ...
|
|
//
|
|
// If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
|
|
// will move to an earlier address, and `ltmp + pcrel offset` will no longer
|
|
// reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
|
|
// our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
|
|
// the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
|
|
//
|
|
// If `Invert` is set, then we instead expect `target_addr - PC` to be written
|
|
// to `PC`.
|
|
template <bool Invert = false>
|
|
Defined *
|
|
targetSymFromCanonicalSubtractor(const InputSection *isec,
|
|
std::vector<macho::Reloc>::iterator relocIt) {
|
|
macho::Reloc &subtrahend = *relocIt;
|
|
macho::Reloc &minuend = *std::next(relocIt);
|
|
assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
|
|
assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
|
|
// Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
|
|
// addend.
|
|
auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
|
|
Defined *target =
|
|
cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
|
|
if (!pcSym) {
|
|
auto *targetIsec =
|
|
cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
|
|
target = findSymbolAtOffset(targetIsec, minuend.addend);
|
|
}
|
|
if (Invert)
|
|
std::swap(pcSym, target);
|
|
if (pcSym->isec == isec) {
|
|
if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
|
|
fatal("invalid FDE relocation in __eh_frame");
|
|
} else {
|
|
// Ensure the pcReloc points to a symbol within the current EH frame.
|
|
// HACK: we should really verify that the original relocation's semantics
|
|
// are preserved. In particular, we should have
|
|
// `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
|
|
// have an easy way to access the offsets from this point in the code; some
|
|
// refactoring is needed for that.
|
|
macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
|
|
pcReloc.referent = isec->symbols[0];
|
|
assert(isec->symbols[0]->value == 0);
|
|
minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
|
|
}
|
|
return target;
|
|
}
|
|
|
|
Defined *findSymbolAtAddress(const std::vector<Section *> §ions,
|
|
uint64_t addr) {
|
|
Section *sec = findContainingSection(sections, &addr);
|
|
auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
|
|
return findSymbolAtOffset(isec, addr);
|
|
}
|
|
|
|
// For symbols that don't have compact unwind info, associate them with the more
|
|
// general-purpose (and verbose) DWARF unwind info found in __eh_frame.
|
|
//
|
|
// This requires us to parse the contents of __eh_frame. See EhFrame.h for a
|
|
// description of its format.
|
|
//
|
|
// While parsing, we also look for what MC calls "abs-ified" relocations -- they
|
|
// are relocations which are implicitly encoded as offsets in the section data.
|
|
// We convert them into explicit Reloc structs so that the EH frames can be
|
|
// handled just like a regular ConcatInputSection later in our output phase.
|
|
//
|
|
// We also need to handle the case where our input object file has explicit
|
|
// relocations. This is the case when e.g. it's the output of `ld -r`. We only
|
|
// look for the "abs-ified" relocation if an explicit relocation is absent.
|
|
void ObjFile::registerEhFrames(Section &ehFrameSection) {
|
|
DenseMap<const InputSection *, CIE> cieMap;
|
|
for (const Subsection &subsec : ehFrameSection.subsections) {
|
|
auto *isec = cast<ConcatInputSection>(subsec.isec);
|
|
uint64_t isecOff = subsec.offset;
|
|
|
|
// Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
|
|
// that all EH frames have an associated symbol so that we can generate
|
|
// subtractor relocs that reference them.
|
|
if (isec->symbols.size() == 0)
|
|
isec->symbols.push_back(make<Defined>(
|
|
"EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0,
|
|
/*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false,
|
|
/*includeInSymtab=*/false, /*isThumb=*/false,
|
|
/*isReferencedDynamically=*/false, /*noDeadStrip=*/false));
|
|
else if (isec->symbols[0]->value != 0)
|
|
fatal("found symbol at unexpected offset in __eh_frame");
|
|
|
|
EhReader reader(this, isec->data, subsec.offset);
|
|
size_t dataOff = 0; // Offset from the start of the EH frame.
|
|
reader.skipValidLength(&dataOff); // readLength() already validated this.
|
|
// cieOffOff is the offset from the start of the EH frame to the cieOff
|
|
// value, which is itself an offset from the current PC to a CIE.
|
|
const size_t cieOffOff = dataOff;
|
|
|
|
EhRelocator ehRelocator(isec);
|
|
auto cieOffRelocIt = llvm::find_if(
|
|
isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
|
|
InputSection *cieIsec = nullptr;
|
|
if (cieOffRelocIt != isec->relocs.end()) {
|
|
// We already have an explicit relocation for the CIE offset.
|
|
cieIsec =
|
|
targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
|
|
->isec;
|
|
dataOff += sizeof(uint32_t);
|
|
} else {
|
|
// If we haven't found a relocation, then the CIE offset is most likely
|
|
// embedded in the section data (AKA an "abs-ified" reloc.). Parse that
|
|
// and generate a Reloc struct.
|
|
uint32_t cieMinuend = reader.readU32(&dataOff);
|
|
if (cieMinuend == 0) {
|
|
cieIsec = isec;
|
|
} else {
|
|
uint32_t cieOff = isecOff + dataOff - cieMinuend;
|
|
cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
|
|
if (cieIsec == nullptr)
|
|
fatal("failed to find CIE");
|
|
}
|
|
if (cieIsec != isec)
|
|
ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
|
|
/*length=*/2);
|
|
}
|
|
if (cieIsec == isec) {
|
|
cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
|
|
continue;
|
|
}
|
|
|
|
assert(cieMap.count(cieIsec));
|
|
const CIE &cie = cieMap[cieIsec];
|
|
// Offset of the function address within the EH frame.
|
|
const size_t funcAddrOff = dataOff;
|
|
uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
|
|
ehFrameSection.addr + isecOff + funcAddrOff;
|
|
uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
|
|
size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
|
|
Optional<uint64_t> lsdaAddrOpt;
|
|
if (cie.fdesHaveAug) {
|
|
reader.skipLeb128(&dataOff);
|
|
lsdaAddrOff = dataOff;
|
|
if (cie.lsdaPtrSize != 0) {
|
|
uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
|
|
if (lsdaOff != 0) // FIXME possible to test this?
|
|
lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
|
|
}
|
|
}
|
|
|
|
auto funcAddrRelocIt = isec->relocs.end();
|
|
auto lsdaAddrRelocIt = isec->relocs.end();
|
|
for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
|
|
if (it->offset == funcAddrOff)
|
|
funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
|
|
else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
|
|
lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
|
|
}
|
|
|
|
Defined *funcSym;
|
|
if (funcAddrRelocIt != isec->relocs.end()) {
|
|
funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
|
|
// Canonicalize the symbol. If there are multiple symbols at the same
|
|
// address, we want both `registerEhFrame` and `registerCompactUnwind`
|
|
// to register the unwind entry under same symbol.
|
|
// This is not particularly efficient, but we should run into this case
|
|
// infrequently (only when handling the output of `ld -r`).
|
|
if (funcSym->isec)
|
|
funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec),
|
|
funcSym->value);
|
|
} else {
|
|
funcSym = findSymbolAtAddress(sections, funcAddr);
|
|
ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
|
|
}
|
|
// The symbol has been coalesced, or already has a compact unwind entry.
|
|
if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
|
|
// We must prune unused FDEs for correctness, so we cannot rely on
|
|
// -dead_strip being enabled.
|
|
isec->live = false;
|
|
continue;
|
|
}
|
|
|
|
InputSection *lsdaIsec = nullptr;
|
|
if (lsdaAddrRelocIt != isec->relocs.end()) {
|
|
lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
|
|
} else if (lsdaAddrOpt) {
|
|
uint64_t lsdaAddr = *lsdaAddrOpt;
|
|
Section *sec = findContainingSection(sections, &lsdaAddr);
|
|
lsdaIsec =
|
|
cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
|
|
ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
|
|
}
|
|
|
|
fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
|
|
funcSym->unwindEntry = isec;
|
|
ehRelocator.commit();
|
|
}
|
|
|
|
// __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
|
|
// are normally required to be kept alive if they reference a live symbol.
|
|
// However, we've explicitly created a dependency from a symbol to its FDE, so
|
|
// dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
|
|
// serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
|
|
// live symbol (e.g. if there were multiple weak copies). Remove this flag to
|
|
// let dead-stripping proceed correctly.
|
|
ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
|
|
}
|
|
|
|
std::string ObjFile::sourceFile() const {
|
|
SmallString<261> dir(compileUnit->getCompilationDir());
|
|
StringRef sep = sys::path::get_separator();
|
|
// We don't use `path::append` here because we want an empty `dir` to result
|
|
// in an absolute path. `append` would give us a relative path for that case.
|
|
if (!dir.endswith(sep))
|
|
dir += sep;
|
|
return (dir + compileUnit->getUnitDIE().getShortName()).str();
|
|
}
|
|
|
|
lld::DWARFCache *ObjFile::getDwarf() {
|
|
llvm::call_once(initDwarf, [this]() {
|
|
auto dwObj = DwarfObject::create(this);
|
|
if (!dwObj)
|
|
return;
|
|
dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
|
|
std::move(dwObj), "",
|
|
[&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
|
|
[&](Error warning) {
|
|
warn(getName() + ": " + toString(std::move(warning)));
|
|
}));
|
|
});
|
|
|
|
return dwarfCache.get();
|
|
}
|
|
// The path can point to either a dylib or a .tbd file.
|
|
static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
|
|
Optional<MemoryBufferRef> mbref = readFile(path);
|
|
if (!mbref) {
|
|
error("could not read dylib file at " + path);
|
|
return nullptr;
|
|
}
|
|
return loadDylib(*mbref, umbrella);
|
|
}
|
|
|
|
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
|
|
// the first document storing child pointers to the rest of them. When we are
|
|
// processing a given TBD file, we store that top-level document in
|
|
// currentTopLevelTapi. When processing re-exports, we search its children for
|
|
// potentially matching documents in the same TBD file. Note that the children
|
|
// themselves don't point to further documents, i.e. this is a two-level tree.
|
|
//
|
|
// Re-exports can either refer to on-disk files, or to documents within .tbd
|
|
// files.
|
|
static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
|
|
const InterfaceFile *currentTopLevelTapi) {
|
|
// Search order:
|
|
// 1. Install name basename in -F / -L directories.
|
|
{
|
|
StringRef stem = path::stem(path);
|
|
SmallString<128> frameworkName;
|
|
path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
|
|
bool isFramework = path.endswith(frameworkName);
|
|
if (isFramework) {
|
|
for (StringRef dir : config->frameworkSearchPaths) {
|
|
SmallString<128> candidate = dir;
|
|
path::append(candidate, frameworkName);
|
|
if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
|
|
return loadDylib(*dylibPath, umbrella);
|
|
}
|
|
} else if (Optional<StringRef> dylibPath = findPathCombination(
|
|
stem, config->librarySearchPaths, {".tbd", ".dylib"}))
|
|
return loadDylib(*dylibPath, umbrella);
|
|
}
|
|
|
|
// 2. As absolute path.
|
|
if (path::is_absolute(path, path::Style::posix))
|
|
for (StringRef root : config->systemLibraryRoots)
|
|
if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
|
|
return loadDylib(*dylibPath, umbrella);
|
|
|
|
// 3. As relative path.
|
|
|
|
// TODO: Handle -dylib_file
|
|
|
|
// Replace @executable_path, @loader_path, @rpath prefixes in install name.
|
|
SmallString<128> newPath;
|
|
if (config->outputType == MH_EXECUTE &&
|
|
path.consume_front("@executable_path/")) {
|
|
// ld64 allows overriding this with the undocumented flag -executable_path.
|
|
// lld doesn't currently implement that flag.
|
|
// FIXME: Consider using finalOutput instead of outputFile.
|
|
path::append(newPath, path::parent_path(config->outputFile), path);
|
|
path = newPath;
|
|
} else if (path.consume_front("@loader_path/")) {
|
|
fs::real_path(umbrella->getName(), newPath);
|
|
path::remove_filename(newPath);
|
|
path::append(newPath, path);
|
|
path = newPath;
|
|
} else if (path.startswith("@rpath/")) {
|
|
for (StringRef rpath : umbrella->rpaths) {
|
|
newPath.clear();
|
|
if (rpath.consume_front("@loader_path/")) {
|
|
fs::real_path(umbrella->getName(), newPath);
|
|
path::remove_filename(newPath);
|
|
}
|
|
path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
|
|
if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
|
|
return loadDylib(*dylibPath, umbrella);
|
|
}
|
|
}
|
|
|
|
// FIXME: Should this be further up?
|
|
if (currentTopLevelTapi) {
|
|
for (InterfaceFile &child :
|
|
make_pointee_range(currentTopLevelTapi->documents())) {
|
|
assert(child.documents().empty());
|
|
if (path == child.getInstallName()) {
|
|
auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
|
|
/*explicitlyLinked=*/false);
|
|
file->parseReexports(child);
|
|
return file;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Optional<StringRef> dylibPath = resolveDylibPath(path))
|
|
return loadDylib(*dylibPath, umbrella);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// If a re-exported dylib is public (lives in /usr/lib or
|
|
// /System/Library/Frameworks), then it is considered implicitly linked: we
|
|
// should bind to its symbols directly instead of via the re-exporting umbrella
|
|
// library.
|
|
static bool isImplicitlyLinked(StringRef path) {
|
|
if (!config->implicitDylibs)
|
|
return false;
|
|
|
|
if (path::parent_path(path) == "/usr/lib")
|
|
return true;
|
|
|
|
// Match /System/Library/Frameworks/$FOO.framework/**/$FOO
|
|
if (path.consume_front("/System/Library/Frameworks/")) {
|
|
StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
|
|
return path::filename(path) == frameworkName;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void loadReexport(StringRef path, DylibFile *umbrella,
|
|
const InterfaceFile *currentTopLevelTapi) {
|
|
DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
|
|
if (!reexport)
|
|
error("unable to locate re-export with install name " + path);
|
|
}
|
|
|
|
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
|
|
bool isBundleLoader, bool explicitlyLinked)
|
|
: InputFile(DylibKind, mb), refState(RefState::Unreferenced),
|
|
explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
|
|
assert(!isBundleLoader || !umbrella);
|
|
if (umbrella == nullptr)
|
|
umbrella = this;
|
|
this->umbrella = umbrella;
|
|
|
|
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
|
|
|
|
// Initialize installName.
|
|
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
|
|
auto *c = reinterpret_cast<const dylib_command *>(cmd);
|
|
currentVersion = read32le(&c->dylib.current_version);
|
|
compatibilityVersion = read32le(&c->dylib.compatibility_version);
|
|
installName =
|
|
reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
|
|
} else if (!isBundleLoader) {
|
|
// macho_executable and macho_bundle don't have LC_ID_DYLIB,
|
|
// so it's OK.
|
|
error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
|
|
return;
|
|
}
|
|
|
|
if (config->printEachFile)
|
|
message(toString(this));
|
|
inputFiles.insert(this);
|
|
|
|
deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
|
|
|
|
if (!checkCompatibility(this))
|
|
return;
|
|
|
|
checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
|
|
|
|
for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
|
|
StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
|
|
rpaths.push_back(rpath);
|
|
}
|
|
|
|
// Initialize symbols.
|
|
exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
|
|
|
|
const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
|
|
const auto *exportsTrie =
|
|
findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
|
|
if (dyldInfo && exportsTrie) {
|
|
// It's unclear what should happen in this case. Maybe we should only error
|
|
// out if the two load commands refer to different data?
|
|
error("dylib " + toString(this) +
|
|
" has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
|
|
return;
|
|
} else if (dyldInfo) {
|
|
parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
|
|
} else if (exportsTrie) {
|
|
parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
|
|
} else {
|
|
error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
|
|
toString(this));
|
|
return;
|
|
}
|
|
}
|
|
|
|
void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
|
|
struct TrieEntry {
|
|
StringRef name;
|
|
uint64_t flags;
|
|
};
|
|
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
std::vector<TrieEntry> entries;
|
|
// Find all the $ld$* symbols to process first.
|
|
parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
|
|
StringRef savedName = saver().save(name);
|
|
if (handleLDSymbol(savedName))
|
|
return;
|
|
entries.push_back({savedName, flags});
|
|
});
|
|
|
|
// Process the "normal" symbols.
|
|
for (TrieEntry &entry : entries) {
|
|
if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
|
|
continue;
|
|
|
|
bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
|
|
bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
|
|
|
|
symbols.push_back(
|
|
symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
|
|
}
|
|
}
|
|
|
|
void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
|
|
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
|
|
const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
|
|
target->headerSize;
|
|
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
|
|
auto *cmd = reinterpret_cast<const load_command *>(p);
|
|
p += cmd->cmdsize;
|
|
|
|
if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
|
|
cmd->cmd == LC_REEXPORT_DYLIB) {
|
|
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
|
|
StringRef reexportPath =
|
|
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
|
|
loadReexport(reexportPath, exportingFile, nullptr);
|
|
}
|
|
|
|
// FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
|
|
// LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
|
|
// MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
|
|
if (config->namespaceKind == NamespaceKind::flat &&
|
|
cmd->cmd == LC_LOAD_DYLIB) {
|
|
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
|
|
StringRef dylibPath =
|
|
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
|
|
DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
|
|
if (!dylib)
|
|
error(Twine("unable to locate library '") + dylibPath +
|
|
"' loaded from '" + toString(this) + "' for -flat_namespace");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some versions of Xcode ship with .tbd files that don't have the right
|
|
// platform settings.
|
|
constexpr std::array<StringRef, 3> skipPlatformChecks{
|
|
"/usr/lib/system/libsystem_kernel.dylib",
|
|
"/usr/lib/system/libsystem_platform.dylib",
|
|
"/usr/lib/system/libsystem_pthread.dylib"};
|
|
|
|
static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
|
|
bool explicitlyLinked) {
|
|
// Catalyst outputs can link against implicitly linked macOS-only libraries.
|
|
if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
|
|
return false;
|
|
return is_contained(interface.targets(),
|
|
MachO::Target(config->arch(), PLATFORM_MACOS));
|
|
}
|
|
|
|
static bool isArchABICompatible(ArchitectureSet archSet,
|
|
Architecture targetArch) {
|
|
uint32_t cpuType;
|
|
uint32_t targetCpuType;
|
|
std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
|
|
|
|
return llvm::any_of(archSet, [&](const auto &p) {
|
|
std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
|
|
return cpuType == targetCpuType;
|
|
});
|
|
}
|
|
|
|
static bool isTargetPlatformArchCompatible(
|
|
InterfaceFile::const_target_range interfaceTargets, Target target) {
|
|
if (is_contained(interfaceTargets, target))
|
|
return true;
|
|
|
|
if (config->forceExactCpuSubtypeMatch)
|
|
return false;
|
|
|
|
ArchitectureSet archSet;
|
|
for (const auto &p : interfaceTargets)
|
|
if (p.Platform == target.Platform)
|
|
archSet.set(p.Arch);
|
|
if (archSet.empty())
|
|
return false;
|
|
|
|
return isArchABICompatible(archSet, target.Arch);
|
|
}
|
|
|
|
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
|
|
bool isBundleLoader, bool explicitlyLinked)
|
|
: InputFile(DylibKind, interface), refState(RefState::Unreferenced),
|
|
explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
|
|
// FIXME: Add test for the missing TBD code path.
|
|
|
|
if (umbrella == nullptr)
|
|
umbrella = this;
|
|
this->umbrella = umbrella;
|
|
|
|
installName = saver().save(interface.getInstallName());
|
|
compatibilityVersion = interface.getCompatibilityVersion().rawValue();
|
|
currentVersion = interface.getCurrentVersion().rawValue();
|
|
|
|
if (config->printEachFile)
|
|
message(toString(this));
|
|
inputFiles.insert(this);
|
|
|
|
if (!is_contained(skipPlatformChecks, installName) &&
|
|
!isTargetPlatformArchCompatible(interface.targets(),
|
|
config->platformInfo.target) &&
|
|
!skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
|
|
error(toString(this) + " is incompatible with " +
|
|
std::string(config->platformInfo.target));
|
|
return;
|
|
}
|
|
|
|
checkAppExtensionSafety(interface.isApplicationExtensionSafe());
|
|
|
|
exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
|
|
auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
|
|
const Twine &name) -> void {
|
|
StringRef savedName = saver().save(name);
|
|
if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
|
|
return;
|
|
|
|
symbols.push_back(symtab->addDylib(savedName, exportingFile,
|
|
symbol.isWeakDefined(),
|
|
symbol.isThreadLocalValue()));
|
|
};
|
|
|
|
std::vector<const llvm::MachO::Symbol *> normalSymbols;
|
|
normalSymbols.reserve(interface.symbolsCount());
|
|
for (const auto *symbol : interface.symbols()) {
|
|
if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
|
|
continue;
|
|
if (handleLDSymbol(symbol->getName()))
|
|
continue;
|
|
|
|
switch (symbol->getKind()) {
|
|
case SymbolKind::GlobalSymbol:
|
|
case SymbolKind::ObjectiveCClass:
|
|
case SymbolKind::ObjectiveCClassEHType:
|
|
case SymbolKind::ObjectiveCInstanceVariable:
|
|
normalSymbols.push_back(symbol);
|
|
}
|
|
}
|
|
|
|
// TODO(compnerd) filter out symbols based on the target platform
|
|
for (const auto *symbol : normalSymbols) {
|
|
switch (symbol->getKind()) {
|
|
case SymbolKind::GlobalSymbol:
|
|
addSymbol(*symbol, symbol->getName());
|
|
break;
|
|
case SymbolKind::ObjectiveCClass:
|
|
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
|
|
// want to emulate that.
|
|
addSymbol(*symbol, objc::klass + symbol->getName());
|
|
addSymbol(*symbol, objc::metaclass + symbol->getName());
|
|
break;
|
|
case SymbolKind::ObjectiveCClassEHType:
|
|
addSymbol(*symbol, objc::ehtype + symbol->getName());
|
|
break;
|
|
case SymbolKind::ObjectiveCInstanceVariable:
|
|
addSymbol(*symbol, objc::ivar + symbol->getName());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
DylibFile::DylibFile(DylibFile *umbrella)
|
|
: InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
|
|
explicitlyLinked(false), isBundleLoader(false) {
|
|
if (umbrella == nullptr)
|
|
umbrella = this;
|
|
this->umbrella = umbrella;
|
|
}
|
|
|
|
void DylibFile::parseReexports(const InterfaceFile &interface) {
|
|
const InterfaceFile *topLevel =
|
|
interface.getParent() == nullptr ? &interface : interface.getParent();
|
|
for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
|
|
InterfaceFile::const_target_range targets = intfRef.targets();
|
|
if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
|
|
isTargetPlatformArchCompatible(targets, config->platformInfo.target))
|
|
loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
|
|
}
|
|
}
|
|
|
|
bool DylibFile::isExplicitlyLinked() const {
|
|
if (!explicitlyLinked)
|
|
return false;
|
|
|
|
// If this dylib was explicitly linked, but at least one of the symbols
|
|
// of the synthetic dylibs it created via $ld$previous symbols is
|
|
// referenced, then that synthetic dylib fulfils the explicit linkedness
|
|
// and we can deadstrip this dylib if it's unreferenced.
|
|
for (const auto *dylib : extraDylibs)
|
|
if (dylib->isReferenced())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
|
|
uint32_t currentVersion,
|
|
uint32_t compatVersion) {
|
|
for (DylibFile *dylib : extraDylibs)
|
|
if (dylib->installName == installName) {
|
|
// FIXME: Check what to do if different $ld$previous symbols
|
|
// request the same dylib, but with different versions.
|
|
return dylib;
|
|
}
|
|
|
|
auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
|
|
dylib->installName = saver().save(installName);
|
|
dylib->currentVersion = currentVersion;
|
|
dylib->compatibilityVersion = compatVersion;
|
|
extraDylibs.push_back(dylib);
|
|
return dylib;
|
|
}
|
|
|
|
// $ld$ symbols modify the properties/behavior of the library (e.g. its install
|
|
// name, compatibility version or hide/add symbols) for specific target
|
|
// versions.
|
|
bool DylibFile::handleLDSymbol(StringRef originalName) {
|
|
if (!originalName.startswith("$ld$"))
|
|
return false;
|
|
|
|
StringRef action;
|
|
StringRef name;
|
|
std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
|
|
if (action == "previous")
|
|
handleLDPreviousSymbol(name, originalName);
|
|
else if (action == "install_name")
|
|
handleLDInstallNameSymbol(name, originalName);
|
|
else if (action == "hide")
|
|
handleLDHideSymbol(name, originalName);
|
|
return true;
|
|
}
|
|
|
|
void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
|
|
// originalName: $ld$ previous $ <installname> $ <compatversion> $
|
|
// <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
|
|
StringRef installName;
|
|
StringRef compatVersion;
|
|
StringRef platformStr;
|
|
StringRef startVersion;
|
|
StringRef endVersion;
|
|
StringRef symbolName;
|
|
StringRef rest;
|
|
|
|
std::tie(installName, name) = name.split('$');
|
|
std::tie(compatVersion, name) = name.split('$');
|
|
std::tie(platformStr, name) = name.split('$');
|
|
std::tie(startVersion, name) = name.split('$');
|
|
std::tie(endVersion, name) = name.split('$');
|
|
std::tie(symbolName, rest) = name.rsplit('$');
|
|
|
|
// FIXME: Does this do the right thing for zippered files?
|
|
unsigned platform;
|
|
if (platformStr.getAsInteger(10, platform) ||
|
|
platform != static_cast<unsigned>(config->platform()))
|
|
return;
|
|
|
|
VersionTuple start;
|
|
if (start.tryParse(startVersion)) {
|
|
warn("failed to parse start version, symbol '" + originalName +
|
|
"' ignored");
|
|
return;
|
|
}
|
|
VersionTuple end;
|
|
if (end.tryParse(endVersion)) {
|
|
warn("failed to parse end version, symbol '" + originalName + "' ignored");
|
|
return;
|
|
}
|
|
if (config->platformInfo.minimum < start ||
|
|
config->platformInfo.minimum >= end)
|
|
return;
|
|
|
|
// Initialized to compatibilityVersion for the symbolName branch below.
|
|
uint32_t newCompatibilityVersion = compatibilityVersion;
|
|
uint32_t newCurrentVersionForSymbol = currentVersion;
|
|
if (!compatVersion.empty()) {
|
|
VersionTuple cVersion;
|
|
if (cVersion.tryParse(compatVersion)) {
|
|
warn("failed to parse compatibility version, symbol '" + originalName +
|
|
"' ignored");
|
|
return;
|
|
}
|
|
newCompatibilityVersion = encodeVersion(cVersion);
|
|
newCurrentVersionForSymbol = newCompatibilityVersion;
|
|
}
|
|
|
|
if (!symbolName.empty()) {
|
|
// A $ld$previous$ symbol with symbol name adds a symbol with that name to
|
|
// a dylib with given name and version.
|
|
auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
|
|
newCompatibilityVersion);
|
|
|
|
// The tbd file usually contains the $ld$previous symbol for an old version,
|
|
// and then the symbol itself later, for newer deployment targets, like so:
|
|
// symbols: [
|
|
// '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
|
|
// _zzz,
|
|
// ]
|
|
// Since the symbols are sorted, adding them to the symtab in the given
|
|
// order means the $ld$previous version of _zzz will prevail, as desired.
|
|
dylib->symbols.push_back(symtab->addDylib(
|
|
saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
|
|
return;
|
|
}
|
|
|
|
// A $ld$previous$ symbol without symbol name modifies the dylib it's in.
|
|
this->installName = saver().save(installName);
|
|
this->compatibilityVersion = newCompatibilityVersion;
|
|
}
|
|
|
|
void DylibFile::handleLDInstallNameSymbol(StringRef name,
|
|
StringRef originalName) {
|
|
// originalName: $ld$ install_name $ os<version> $ install_name
|
|
StringRef condition, installName;
|
|
std::tie(condition, installName) = name.split('$');
|
|
VersionTuple version;
|
|
if (!condition.consume_front("os") || version.tryParse(condition))
|
|
warn("failed to parse os version, symbol '" + originalName + "' ignored");
|
|
else if (version == config->platformInfo.minimum)
|
|
this->installName = saver().save(installName);
|
|
}
|
|
|
|
void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
|
|
StringRef symbolName;
|
|
bool shouldHide = true;
|
|
if (name.startswith("os")) {
|
|
// If it's hidden based on versions.
|
|
name = name.drop_front(2);
|
|
StringRef minVersion;
|
|
std::tie(minVersion, symbolName) = name.split('$');
|
|
VersionTuple versionTup;
|
|
if (versionTup.tryParse(minVersion)) {
|
|
warn("Failed to parse hidden version, symbol `" + originalName +
|
|
"` ignored.");
|
|
return;
|
|
}
|
|
shouldHide = versionTup == config->platformInfo.minimum;
|
|
} else {
|
|
symbolName = name;
|
|
}
|
|
|
|
if (shouldHide)
|
|
exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
|
|
}
|
|
|
|
void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
|
|
if (config->applicationExtension && !dylibIsAppExtensionSafe)
|
|
warn("using '-application_extension' with unsafe dylib: " + toString(this));
|
|
}
|
|
|
|
ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
|
|
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
|
|
forceHidden(forceHidden) {}
|
|
|
|
void ArchiveFile::addLazySymbols() {
|
|
for (const object::Archive::Symbol &sym : file->symbols())
|
|
symtab->addLazyArchive(sym.getName(), this, sym);
|
|
}
|
|
|
|
static Expected<InputFile *>
|
|
loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
|
|
uint64_t offsetInArchive, bool forceHidden) {
|
|
if (config->zeroModTime)
|
|
modTime = 0;
|
|
|
|
switch (identify_magic(mb.getBuffer())) {
|
|
case file_magic::macho_object:
|
|
return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden);
|
|
case file_magic::bitcode:
|
|
return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
|
|
forceHidden);
|
|
default:
|
|
return createStringError(inconvertibleErrorCode(),
|
|
mb.getBufferIdentifier() +
|
|
" has unhandled file type");
|
|
}
|
|
}
|
|
|
|
Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
|
|
if (!seen.insert(c.getChildOffset()).second)
|
|
return Error::success();
|
|
|
|
Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
|
|
if (!mb)
|
|
return mb.takeError();
|
|
|
|
// Thin archives refer to .o files, so --reproduce needs the .o files too.
|
|
if (tar && c.getParent()->isThin())
|
|
tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
|
|
|
|
Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
|
|
if (!modTime)
|
|
return modTime.takeError();
|
|
|
|
Expected<InputFile *> file = loadArchiveMember(
|
|
*mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden);
|
|
|
|
if (!file)
|
|
return file.takeError();
|
|
|
|
inputFiles.insert(*file);
|
|
printArchiveMemberLoad(reason, *file);
|
|
return Error::success();
|
|
}
|
|
|
|
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
|
|
object::Archive::Child c =
|
|
CHECK(sym.getMember(), toString(this) +
|
|
": could not get the member defining symbol " +
|
|
toMachOString(sym));
|
|
|
|
// `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
|
|
// and become invalid after that call. Copy it to the stack so we can refer
|
|
// to it later.
|
|
const object::Archive::Symbol symCopy = sym;
|
|
|
|
// ld64 doesn't demangle sym here even with -demangle.
|
|
// Match that: intentionally don't call toMachOString().
|
|
if (Error e = fetch(c, symCopy.getName()))
|
|
error(toString(this) + ": could not get the member defining symbol " +
|
|
toMachOString(symCopy) + ": " + toString(std::move(e)));
|
|
}
|
|
|
|
static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
|
|
BitcodeFile &file) {
|
|
StringRef name = saver().save(objSym.getName());
|
|
|
|
if (objSym.isUndefined())
|
|
return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
|
|
|
|
// TODO: Write a test demonstrating why computing isPrivateExtern before
|
|
// LTO compilation is important.
|
|
bool isPrivateExtern = false;
|
|
switch (objSym.getVisibility()) {
|
|
case GlobalValue::HiddenVisibility:
|
|
isPrivateExtern = true;
|
|
break;
|
|
case GlobalValue::ProtectedVisibility:
|
|
error(name + " has protected visibility, which is not supported by Mach-O");
|
|
break;
|
|
case GlobalValue::DefaultVisibility:
|
|
break;
|
|
}
|
|
isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
|
|
file.forceHidden;
|
|
|
|
if (objSym.isCommon())
|
|
return symtab->addCommon(name, &file, objSym.getCommonSize(),
|
|
objSym.getCommonAlignment(), isPrivateExtern);
|
|
|
|
return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
|
|
/*size=*/0, objSym.isWeak(), isPrivateExtern,
|
|
/*isThumb=*/false,
|
|
/*isReferencedDynamically=*/false,
|
|
/*noDeadStrip=*/false,
|
|
/*isWeakDefCanBeHidden=*/false);
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
|
|
uint64_t offsetInArchive, bool lazy, bool forceHidden)
|
|
: InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
|
|
this->archiveName = std::string(archiveName);
|
|
std::string path = mb.getBufferIdentifier().str();
|
|
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
|
|
// name. If two members with the same name are provided, this causes a
|
|
// collision and ThinLTO can't proceed.
|
|
// So, we append the archive name to disambiguate two members with the same
|
|
// name from multiple different archives, and offset within the archive to
|
|
// disambiguate two members of the same name from a single archive.
|
|
MemoryBufferRef mbref(mb.getBuffer(),
|
|
saver().save(archiveName.empty()
|
|
? path
|
|
: archiveName +
|
|
sys::path::filename(path) +
|
|
utostr(offsetInArchive)));
|
|
|
|
obj = check(lto::InputFile::create(mbref));
|
|
if (lazy)
|
|
parseLazy();
|
|
else
|
|
parse();
|
|
}
|
|
|
|
void BitcodeFile::parse() {
|
|
// Convert LTO Symbols to LLD Symbols in order to perform resolution. The
|
|
// "winning" symbol will then be marked as Prevailing at LTO compilation
|
|
// time.
|
|
symbols.clear();
|
|
for (const lto::InputFile::Symbol &objSym : obj->symbols())
|
|
symbols.push_back(createBitcodeSymbol(objSym, *this));
|
|
}
|
|
|
|
void BitcodeFile::parseLazy() {
|
|
symbols.resize(obj->symbols().size());
|
|
for (auto it : llvm::enumerate(obj->symbols())) {
|
|
const lto::InputFile::Symbol &objSym = it.value();
|
|
if (!objSym.isUndefined()) {
|
|
symbols[it.index()] =
|
|
symtab->addLazyObject(saver().save(objSym.getName()), *this);
|
|
if (!lazy)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void macho::extract(InputFile &file, StringRef reason) {
|
|
assert(file.lazy);
|
|
file.lazy = false;
|
|
printArchiveMemberLoad(reason, &file);
|
|
if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
|
|
bitcode->parse();
|
|
} else {
|
|
auto &f = cast<ObjFile>(file);
|
|
if (target->wordSize == 8)
|
|
f.parse<LP64>();
|
|
else
|
|
f.parse<ILP32>();
|
|
}
|
|
}
|
|
|
|
template void ObjFile::parse<LP64>();
|