Go to file
Reid Kleckner a9fdfe63ce Fix LLVM tool --version build mode printing for MSVC
LLVM tools such as llc print "DEBUG build" or "Optimized build" when
passed --version. Before this change, this was implemented by checking
for the __OPTIMIZE__ GCC macro. MSVC does not define this macro. For
MSVC, control this behavior with _DEBUG instead. It doesn't have
precisely the same meaning, but in most configurations, it will do the
right thing.

Fixes PR17752

Reviewed by: MaskRay

Differential Revision: https://reviews.llvm.org/D71817
2019-12-23 10:02:01 -08:00
clang [OPENMP50]Codegen for nontemporal clause. 2019-12-23 10:04:46 -05:00
clang-tools-extra Move from a long list of checkers to tables 2019-12-23 18:44:31 +01:00
compiler-rt Revert "[msan] Check qsort input." and "[msan] Intercept qsort, qsort_r." 2019-12-20 21:34:35 -08:00
debuginfo-tests
libc
libclc
libcxx [libc++] Fix typo in std::midpoint 2019-12-21 01:26:24 -08:00
libcxxabi
libunwind [libunwind] Fix evaluating DWARF operation DW_OP_pick 2019-12-18 12:22:21 -08:00
lld [ELF] Don't suggest an alternative spelling for a symbol in a discarded section 2019-12-23 09:10:29 -08:00
lldb [lldb/Test] Disable TestSynchronous.test on Windows. 2019-12-23 09:49:22 -08:00
llgo
llvm Fix LLVM tool --version build mode printing for MSVC 2019-12-23 10:02:01 -08:00
openmp [libomptarget][nfc] Provide target_impl malloc/free 2019-12-19 16:54:28 +00:00
parallel-libs
polly [IR] Include more target specific intrinsic headers 2019-12-14 19:19:35 -08:00
pstl
.arcconfig
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
CONTRIBUTING.md
README.md

README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.