llvm-project/llvm/lib/Transforms/Scalar/PlaceSafepoints.cpp

994 lines
38 KiB
C++

//===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Place garbage collection safepoints at appropriate locations in the IR. This
// does not make relocation semantics or variable liveness explicit. That's
// done by RewriteStatepointsForGC.
//
// Terminology:
// - A call is said to be "parseable" if there is a stack map generated for the
// return PC of the call. A runtime can determine where values listed in the
// deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
// on the stack when the code is suspended inside such a call. Every parse
// point is represented by a call wrapped in an gc.statepoint intrinsic.
// - A "poll" is an explicit check in the generated code to determine if the
// runtime needs the generated code to cooperate by calling a helper routine
// and thus suspending its execution at a known state. The call to the helper
// routine will be parseable. The (gc & runtime specific) logic of a poll is
// assumed to be provided in a function of the name "gc.safepoint_poll".
//
// We aim to insert polls such that running code can quickly be brought to a
// well defined state for inspection by the collector. In the current
// implementation, this is done via the insertion of poll sites at method entry
// and the backedge of most loops. We try to avoid inserting more polls than
// are neccessary to ensure a finite period between poll sites. This is not
// because the poll itself is expensive in the generated code; it's not. Polls
// do tend to impact the optimizer itself in negative ways; we'd like to avoid
// perturbing the optimization of the method as much as we can.
//
// We also need to make most call sites parseable. The callee might execute a
// poll (or otherwise be inspected by the GC). If so, the entire stack
// (including the suspended frame of the current method) must be parseable.
//
// This pass will insert:
// - Call parse points ("call safepoints") for any call which may need to
// reach a safepoint during the execution of the callee function.
// - Backedge safepoint polls and entry safepoint polls to ensure that
// executing code reaches a safepoint poll in a finite amount of time.
//
// We do not currently support return statepoints, but adding them would not
// be hard. They are not required for correctness - entry safepoints are an
// alternative - but some GCs may prefer them. Patches welcome.
//
//===----------------------------------------------------------------------===//
#include "llvm/Pass.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "safepoint-placement"
STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
STATISTIC(NumCallSafepoints, "Number of call safepoints inserted");
STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
STATISTIC(CallInLoop, "Number of loops w/o safepoints due to calls in loop");
STATISTIC(FiniteExecution, "Number of loops w/o safepoints finite execution");
using namespace llvm;
// Ignore oppurtunities to avoid placing safepoints on backedges, useful for
// validation
static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
cl::init(false));
/// If true, do not place backedge safepoints in counted loops.
static cl::opt<bool> SkipCounted("spp-counted", cl::Hidden, cl::init(true));
// If true, split the backedge of a loop when placing the safepoint, otherwise
// split the latch block itself. Both are useful to support for
// experimentation, but in practice, it looks like splitting the backedge
// optimizes better.
static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
cl::init(false));
// Print tracing output
static cl::opt<bool> TraceLSP("spp-trace", cl::Hidden, cl::init(false));
namespace {
/// An analysis pass whose purpose is to identify each of the backedges in
/// the function which require a safepoint poll to be inserted.
struct PlaceBackedgeSafepointsImpl : public FunctionPass {
static char ID;
/// The output of the pass - gives a list of each backedge (described by
/// pointing at the branch) which need a poll inserted.
std::vector<TerminatorInst *> PollLocations;
/// True unless we're running spp-no-calls in which case we need to disable
/// the call dependend placement opts.
bool CallSafepointsEnabled;
ScalarEvolution *SE = nullptr;
DominatorTree *DT = nullptr;
LoopInfo *LI = nullptr;
PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
: FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *);
void runOnLoopAndSubLoops(Loop *L) {
// Visit all the subloops
for (auto I = L->begin(), E = L->end(); I != E; I++)
runOnLoopAndSubLoops(*I);
runOnLoop(L);
}
bool runOnFunction(Function &F) override {
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
for (auto I = LI->begin(), E = LI->end(); I != E; I++) {
runOnLoopAndSubLoops(*I);
}
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<LoopInfoWrapperPass>();
// We no longer modify the IR at all in this pass. Thus all
// analysis are preserved.
AU.setPreservesAll();
}
};
}
static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
namespace {
struct PlaceSafepoints : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
PlaceSafepoints() : FunctionPass(ID) {
initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
// We modify the graph wholesale (inlining, block insertion, etc). We
// preserve nothing at the moment. We could potentially preserve dom tree
// if that was worth doing
}
};
}
// Insert a safepoint poll immediately before the given instruction. Does
// not handle the parsability of state at the runtime call, that's the
// callers job.
static void
InsertSafepointPoll(Instruction *InsertBefore,
std::vector<CallSite> &ParsePointsNeeded /*rval*/);
static bool isGCLeafFunction(const CallSite &CS);
static bool needsStatepoint(const CallSite &CS) {
if (isGCLeafFunction(CS))
return false;
if (CS.isCall()) {
CallInst *call = cast<CallInst>(CS.getInstruction());
if (call->isInlineAsm())
return false;
}
if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) {
return false;
}
return true;
}
static Value *ReplaceWithStatepoint(const CallSite &CS, Pass *P);
/// Returns true if this loop is known to contain a call safepoint which
/// must unconditionally execute on any iteration of the loop which returns
/// to the loop header via an edge from Pred. Returns a conservative correct
/// answer; i.e. false is always valid.
static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
BasicBlock *Pred,
DominatorTree &DT) {
// In general, we're looking for any cut of the graph which ensures
// there's a call safepoint along every edge between Header and Pred.
// For the moment, we look only for the 'cuts' that consist of a single call
// instruction in a block which is dominated by the Header and dominates the
// loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
// of such dominating blocks gets substaintially more occurences than just
// checking the Pred and Header blocks themselves. This may be due to the
// density of loop exit conditions caused by range and null checks.
// TODO: structure this as an analysis pass, cache the result for subloops,
// avoid dom tree recalculations
assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
BasicBlock *Current = Pred;
while (true) {
for (Instruction &I : *Current) {
if (auto CS = CallSite(&I))
// Note: Technically, needing a safepoint isn't quite the right
// condition here. We should instead be checking if the target method
// has an
// unconditional poll. In practice, this is only a theoretical concern
// since we don't have any methods with conditional-only safepoint
// polls.
if (needsStatepoint(CS))
return true;
}
if (Current == Header)
break;
Current = DT.getNode(Current)->getIDom()->getBlock();
}
return false;
}
/// Returns true if this loop is known to terminate in a finite number of
/// iterations. Note that this function may return false for a loop which
/// does actual terminate in a finite constant number of iterations due to
/// conservatism in the analysis.
static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
BasicBlock *Pred) {
// Only used when SkipCounted is off
const unsigned upperTripBound = 8192;
// A conservative bound on the loop as a whole.
const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
if (MaxTrips != SE->getCouldNotCompute()) {
if (SE->getUnsignedRange(MaxTrips).getUnsignedMax().ult(upperTripBound))
return true;
if (SkipCounted &&
SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(32))
return true;
}
// If this is a conditional branch to the header with the alternate path
// being outside the loop, we can ask questions about the execution frequency
// of the exit block.
if (L->isLoopExiting(Pred)) {
// This returns an exact expression only. TODO: We really only need an
// upper bound here, but SE doesn't expose that.
const SCEV *MaxExec = SE->getExitCount(L, Pred);
if (MaxExec != SE->getCouldNotCompute()) {
if (SE->getUnsignedRange(MaxExec).getUnsignedMax().ult(upperTripBound))
return true;
if (SkipCounted &&
SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(32))
return true;
}
}
return /* not finite */ false;
}
static void scanOneBB(Instruction *start, Instruction *end,
std::vector<CallInst *> &calls,
std::set<BasicBlock *> &seen,
std::vector<BasicBlock *> &worklist) {
for (BasicBlock::iterator itr(start);
itr != start->getParent()->end() && itr != BasicBlock::iterator(end);
itr++) {
if (CallInst *CI = dyn_cast<CallInst>(&*itr)) {
calls.push_back(CI);
}
// FIXME: This code does not handle invokes
assert(!dyn_cast<InvokeInst>(&*itr) &&
"support for invokes in poll code needed");
// Only add the successor blocks if we reach the terminator instruction
// without encountering end first
if (itr->isTerminator()) {
BasicBlock *BB = itr->getParent();
for (BasicBlock *Succ : successors(BB)) {
if (seen.count(Succ) == 0) {
worklist.push_back(Succ);
seen.insert(Succ);
}
}
}
}
}
static void scanInlinedCode(Instruction *start, Instruction *end,
std::vector<CallInst *> &calls,
std::set<BasicBlock *> &seen) {
calls.clear();
std::vector<BasicBlock *> worklist;
seen.insert(start->getParent());
scanOneBB(start, end, calls, seen, worklist);
while (!worklist.empty()) {
BasicBlock *BB = worklist.back();
worklist.pop_back();
scanOneBB(&*BB->begin(), end, calls, seen, worklist);
}
}
bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
// Loop through all loop latches (branches controlling backedges). We need
// to place a safepoint on every backedge (potentially).
// Note: In common usage, there will be only one edge due to LoopSimplify
// having run sometime earlier in the pipeline, but this code must be correct
// w.r.t. loops with multiple backedges.
BasicBlock *header = L->getHeader();
SmallVector<BasicBlock*, 16> LoopLatches;
L->getLoopLatches(LoopLatches);
for (BasicBlock *pred : LoopLatches) {
assert(L->contains(pred));
// Make a policy decision about whether this loop needs a safepoint or
// not. Note that this is about unburdening the optimizer in loops, not
// avoiding the runtime cost of the actual safepoint.
if (!AllBackedges) {
if (mustBeFiniteCountedLoop(L, SE, pred)) {
if (TraceLSP)
errs() << "skipping safepoint placement in finite loop\n";
FiniteExecution++;
continue;
}
if (CallSafepointsEnabled &&
containsUnconditionalCallSafepoint(L, header, pred, *DT)) {
// Note: This is only semantically legal since we won't do any further
// IPO or inlining before the actual call insertion.. If we hadn't, we
// might latter loose this call safepoint.
if (TraceLSP)
errs() << "skipping safepoint placement due to unconditional call\n";
CallInLoop++;
continue;
}
}
// TODO: We can create an inner loop which runs a finite number of
// iterations with an outer loop which contains a safepoint. This would
// not help runtime performance that much, but it might help our ability to
// optimize the inner loop.
// Safepoint insertion would involve creating a new basic block (as the
// target of the current backedge) which does the safepoint (of all live
// variables) and branches to the true header
TerminatorInst *term = pred->getTerminator();
if (TraceLSP) {
errs() << "[LSP] terminator instruction: ";
term->dump();
}
PollLocations.push_back(term);
}
return false;
}
/// Returns true if an entry safepoint is not required before this callsite in
/// the caller function.
static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) {
Instruction *Inst = CS.getInstruction();
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::experimental_gc_statepoint:
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
// The can wrap an actual call which may grow the stack by an unbounded
// amount or run forever.
return false;
default:
// Most LLVM intrinsics are things which do not expand to actual calls, or
// at least if they do, are leaf functions that cause only finite stack
// growth. In particular, the optimizer likes to form things like memsets
// out of stores in the original IR. Another important example is
// llvm.frameescape which must occur in the entry block. Inserting a
// safepoint before it is not legal since it could push the frameescape
// out of the entry block.
return true;
}
}
return false;
}
static Instruction *findLocationForEntrySafepoint(Function &F,
DominatorTree &DT) {
// Conceptually, this poll needs to be on method entry, but in
// practice, we place it as late in the entry block as possible. We
// can place it as late as we want as long as it dominates all calls
// that can grow the stack. This, combined with backedge polls,
// give us all the progress guarantees we need.
// hasNextInstruction and nextInstruction are used to iterate
// through a "straight line" execution sequence.
auto hasNextInstruction = [](Instruction *I) {
if (!I->isTerminator()) {
return true;
}
BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
return nextBB && (nextBB->getUniquePredecessor() != nullptr);
};
auto nextInstruction = [&hasNextInstruction](Instruction *I) {
assert(hasNextInstruction(I) &&
"first check if there is a next instruction!");
if (I->isTerminator()) {
return I->getParent()->getUniqueSuccessor()->begin();
} else {
return std::next(BasicBlock::iterator(I));
}
};
Instruction *cursor = nullptr;
for (cursor = F.getEntryBlock().begin(); hasNextInstruction(cursor);
cursor = nextInstruction(cursor)) {
// We need to ensure a safepoint poll occurs before any 'real' call. The
// easiest way to ensure finite execution between safepoints in the face of
// recursive and mutually recursive functions is to enforce that each take
// a safepoint. Additionally, we need to ensure a poll before any call
// which can grow the stack by an unbounded amount. This isn't required
// for GC semantics per se, but is a common requirement for languages
// which detect stack overflow via guard pages and then throw exceptions.
if (auto CS = CallSite(cursor)) {
if (doesNotRequireEntrySafepointBefore(CS))
continue;
break;
}
}
assert((hasNextInstruction(cursor) || cursor->isTerminator()) &&
"either we stopped because of a call, or because of terminator");
return cursor;
}
/// Identify the list of call sites which need to be have parseable state
static void findCallSafepoints(Function &F,
std::vector<CallSite> &Found /*rval*/) {
assert(Found.empty() && "must be empty!");
for (Instruction &I : inst_range(F)) {
Instruction *inst = &I;
if (isa<CallInst>(inst) || isa<InvokeInst>(inst)) {
CallSite CS(inst);
// No safepoint needed or wanted
if (!needsStatepoint(CS)) {
continue;
}
Found.push_back(CS);
}
}
}
/// Implement a unique function which doesn't require we sort the input
/// vector. Doing so has the effect of changing the output of a couple of
/// tests in ways which make them less useful in testing fused safepoints.
template <typename T> static void unique_unsorted(std::vector<T> &vec) {
std::set<T> seen;
std::vector<T> tmp;
vec.reserve(vec.size());
std::swap(tmp, vec);
for (auto V : tmp) {
if (seen.insert(V).second) {
vec.push_back(V);
}
}
}
static const char *const GCSafepointPollName = "gc.safepoint_poll";
static bool isGCSafepointPoll(Function &F) {
return F.getName().equals(GCSafepointPollName);
}
/// Returns true if this function should be rewritten to include safepoint
/// polls and parseable call sites. The main point of this function is to be
/// an extension point for custom logic.
static bool shouldRewriteFunction(Function &F) {
// TODO: This should check the GCStrategy
if (F.hasGC()) {
const char *FunctionGCName = F.getGC();
const StringRef StatepointExampleName("statepoint-example");
const StringRef CoreCLRName("coreclr");
return (StatepointExampleName == FunctionGCName) ||
(CoreCLRName == FunctionGCName);
} else
return false;
}
// TODO: These should become properties of the GCStrategy, possibly with
// command line overrides.
static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
static bool enableCallSafepoints(Function &F) { return !NoCall; }
// Normalize basic block to make it ready to be target of invoke statepoint.
// Ensure that 'BB' does not have phi nodes. It may require spliting it.
static BasicBlock *normalizeForInvokeSafepoint(BasicBlock *BB,
BasicBlock *InvokeParent) {
BasicBlock *ret = BB;
if (!BB->getUniquePredecessor()) {
ret = SplitBlockPredecessors(BB, InvokeParent, "");
}
// Now that 'ret' has unique predecessor we can safely remove all phi nodes
// from it
FoldSingleEntryPHINodes(ret);
assert(!isa<PHINode>(ret->begin()));
return ret;
}
bool PlaceSafepoints::runOnFunction(Function &F) {
if (F.isDeclaration() || F.empty()) {
// This is a declaration, nothing to do. Must exit early to avoid crash in
// dom tree calculation
return false;
}
if (isGCSafepointPoll(F)) {
// Given we're inlining this inside of safepoint poll insertion, this
// doesn't make any sense. Note that we do make any contained calls
// parseable after we inline a poll.
return false;
}
if (!shouldRewriteFunction(F))
return false;
bool modified = false;
// In various bits below, we rely on the fact that uses are reachable from
// defs. When there are basic blocks unreachable from the entry, dominance
// and reachablity queries return non-sensical results. Thus, we preprocess
// the function to ensure these properties hold.
modified |= removeUnreachableBlocks(F);
// STEP 1 - Insert the safepoint polling locations. We do not need to
// actually insert parse points yet. That will be done for all polls and
// calls in a single pass.
DominatorTree DT;
DT.recalculate(F);
SmallVector<Instruction *, 16> PollsNeeded;
std::vector<CallSite> ParsePointNeeded;
if (enableBackedgeSafepoints(F)) {
// Construct a pass manager to run the LoopPass backedge logic. We
// need the pass manager to handle scheduling all the loop passes
// appropriately. Doing this by hand is painful and just not worth messing
// with for the moment.
legacy::FunctionPassManager FPM(F.getParent());
bool CanAssumeCallSafepoints = enableCallSafepoints(F);
PlaceBackedgeSafepointsImpl *PBS =
new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
FPM.add(PBS);
FPM.run(F);
// We preserve dominance information when inserting the poll, otherwise
// we'd have to recalculate this on every insert
DT.recalculate(F);
auto &PollLocations = PBS->PollLocations;
auto OrderByBBName = [](Instruction *a, Instruction *b) {
return a->getParent()->getName() < b->getParent()->getName();
};
// We need the order of list to be stable so that naming ends up stable
// when we split edges. This makes test cases much easier to write.
std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName);
// We can sometimes end up with duplicate poll locations. This happens if
// a single loop is visited more than once. The fact this happens seems
// wrong, but it does happen for the split-backedge.ll test case.
PollLocations.erase(std::unique(PollLocations.begin(),
PollLocations.end()),
PollLocations.end());
// Insert a poll at each point the analysis pass identified
// The poll location must be the terminator of a loop latch block.
for (TerminatorInst *Term : PollLocations) {
// We are inserting a poll, the function is modified
modified = true;
if (SplitBackedge) {
// Split the backedge of the loop and insert the poll within that new
// basic block. This creates a loop with two latches per original
// latch (which is non-ideal), but this appears to be easier to
// optimize in practice than inserting the poll immediately before the
// latch test.
// Since this is a latch, at least one of the successors must dominate
// it. Its possible that we have a) duplicate edges to the same header
// and b) edges to distinct loop headers. We need to insert pools on
// each.
SetVector<BasicBlock *> Headers;
for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
BasicBlock *Succ = Term->getSuccessor(i);
if (DT.dominates(Succ, Term->getParent())) {
Headers.insert(Succ);
}
}
assert(!Headers.empty() && "poll location is not a loop latch?");
// The split loop structure here is so that we only need to recalculate
// the dominator tree once. Alternatively, we could just keep it up to
// date and use a more natural merged loop.
SetVector<BasicBlock *> SplitBackedges;
for (BasicBlock *Header : Headers) {
BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
PollsNeeded.push_back(NewBB->getTerminator());
NumBackedgeSafepoints++;
}
} else {
// Split the latch block itself, right before the terminator.
PollsNeeded.push_back(Term);
NumBackedgeSafepoints++;
}
}
}
if (enableEntrySafepoints(F)) {
Instruction *Location = findLocationForEntrySafepoint(F, DT);
if (!Location) {
// policy choice not to insert?
} else {
PollsNeeded.push_back(Location);
modified = true;
NumEntrySafepoints++;
}
}
// Now that we've identified all the needed safepoint poll locations, insert
// safepoint polls themselves.
for (Instruction *PollLocation : PollsNeeded) {
std::vector<CallSite> RuntimeCalls;
InsertSafepointPoll(PollLocation, RuntimeCalls);
ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
RuntimeCalls.end());
}
PollsNeeded.clear(); // make sure we don't accidentally use
// The dominator tree has been invalidated by the inlining performed in the
// above loop. TODO: Teach the inliner how to update the dom tree?
DT.recalculate(F);
if (enableCallSafepoints(F)) {
std::vector<CallSite> Calls;
findCallSafepoints(F, Calls);
NumCallSafepoints += Calls.size();
ParsePointNeeded.insert(ParsePointNeeded.end(), Calls.begin(), Calls.end());
}
// Unique the vectors since we can end up with duplicates if we scan the call
// site for call safepoints after we add it for entry or backedge. The
// only reason we need tracking at all is that some functions might have
// polls but not call safepoints and thus we might miss marking the runtime
// calls for the polls. (This is useful in test cases!)
unique_unsorted(ParsePointNeeded);
// Any parse point (no matter what source) will be handled here
// We're about to start modifying the function
if (!ParsePointNeeded.empty())
modified = true;
// Now run through and insert the safepoints, but do _NOT_ update or remove
// any existing uses. We have references to live variables that need to
// survive to the last iteration of this loop.
std::vector<Value *> Results;
Results.reserve(ParsePointNeeded.size());
for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
CallSite &CS = ParsePointNeeded[i];
// For invoke statepoints we need to remove all phi nodes at the normal
// destination block.
// Reason for this is that we can place gc_result only after last phi node
// in basic block. We will get malformed code after RAUW for the
// gc_result if one of this phi nodes uses result from the invoke.
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(CS.getInstruction())) {
normalizeForInvokeSafepoint(Invoke->getNormalDest(),
Invoke->getParent());
}
Value *GCResult = ReplaceWithStatepoint(CS, nullptr);
Results.push_back(GCResult);
}
assert(Results.size() == ParsePointNeeded.size());
// Adjust all users of the old call sites to use the new ones instead
for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
CallSite &CS = ParsePointNeeded[i];
Value *GCResult = Results[i];
if (GCResult) {
// Can not RAUW for the invoke gc result in case of phi nodes preset.
assert(CS.isCall() || !isa<PHINode>(cast<Instruction>(GCResult)->getParent()->begin()));
// Replace all uses with the new call
CS.getInstruction()->replaceAllUsesWith(GCResult);
}
// Now that we've handled all uses, remove the original call itself
// Note: The insert point can't be the deleted instruction!
CS.getInstruction()->eraseFromParent();
}
return modified;
}
char PlaceBackedgeSafepointsImpl::ID = 0;
char PlaceSafepoints::ID = 0;
FunctionPass *llvm::createPlaceSafepointsPass() {
return new PlaceSafepoints();
}
INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
"place-backedge-safepoints-impl",
"Place Backedge Safepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
"place-backedge-safepoints-impl",
"Place Backedge Safepoints", false, false)
INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
false, false)
INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
false, false)
static bool isGCLeafFunction(const CallSite &CS) {
Instruction *inst = CS.getInstruction();
if (isa<IntrinsicInst>(inst)) {
// Most LLVM intrinsics are things which can never take a safepoint.
// As a result, we don't need to have the stack parsable at the
// callsite. This is a highly useful optimization since intrinsic
// calls are fairly prevelent, particularly in debug builds.
return true;
}
// If this function is marked explicitly as a leaf call, we don't need to
// place a safepoint of it. In fact, for correctness we *can't* in many
// cases. Note: Indirect calls return Null for the called function,
// these obviously aren't runtime functions with attributes
// TODO: Support attributes on the call site as well.
const Function *F = CS.getCalledFunction();
bool isLeaf =
F &&
F->getFnAttribute("gc-leaf-function").getValueAsString().equals("true");
if (isLeaf) {
return true;
}
return false;
}
static void
InsertSafepointPoll(Instruction *InsertBefore,
std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
BasicBlock *OrigBB = InsertBefore->getParent();
Module *M = InsertBefore->getModule();
assert(M && "must be part of a module");
// Inline the safepoint poll implementation - this will get all the branch,
// control flow, etc.. Most importantly, it will introduce the actual slow
// path call - where we need to insert a safepoint (parsepoint).
auto *F = M->getFunction(GCSafepointPollName);
assert(F->getType()->getElementType() ==
FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
"gc.safepoint_poll declared with wrong type");
assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
// Record some information about the call site we're replacing
BasicBlock::iterator before(PollCall), after(PollCall);
bool isBegin(false);
if (before == OrigBB->begin()) {
isBegin = true;
} else {
before--;
}
after++;
assert(after != OrigBB->end() && "must have successor");
// do the actual inlining
InlineFunctionInfo IFI;
bool InlineStatus = InlineFunction(PollCall, IFI);
assert(InlineStatus && "inline must succeed");
(void)InlineStatus; // suppress warning in release-asserts
// Check post conditions
assert(IFI.StaticAllocas.empty() && "can't have allocs");
std::vector<CallInst *> calls; // new calls
std::set<BasicBlock *> BBs; // new BBs + insertee
// Include only the newly inserted instructions, Note: begin may not be valid
// if we inserted to the beginning of the basic block
BasicBlock::iterator start;
if (isBegin) {
start = OrigBB->begin();
} else {
start = before;
start++;
}
// If your poll function includes an unreachable at the end, that's not
// valid. Bugpoint likes to create this, so check for it.
assert(isPotentiallyReachable(&*start, &*after, nullptr, nullptr) &&
"malformed poll function");
scanInlinedCode(&*(start), &*(after), calls, BBs);
assert(!calls.empty() && "slow path not found for safepoint poll");
// Record the fact we need a parsable state at the runtime call contained in
// the poll function. This is required so that the runtime knows how to
// parse the last frame when we actually take the safepoint (i.e. execute
// the slow path)
assert(ParsePointsNeeded.empty());
for (size_t i = 0; i < calls.size(); i++) {
// No safepoint needed or wanted
if (!needsStatepoint(calls[i])) {
continue;
}
// These are likely runtime calls. Should we assert that via calling
// convention or something?
ParsePointsNeeded.push_back(CallSite(calls[i]));
}
assert(ParsePointsNeeded.size() <= calls.size());
}
/// Replaces the given call site (Call or Invoke) with a gc.statepoint
/// intrinsic with an empty deoptimization arguments list. This does
/// NOT do explicit relocation for GC support.
static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */
Pass *P) {
assert(CS.getInstruction()->getParent()->getParent()->getParent() &&
"must be set");
// TODO: technically, a pass is not allowed to get functions from within a
// function pass since it might trigger a new function addition. Refactor
// this logic out to the initialization of the pass. Doesn't appear to
// matter in practice.
// Then go ahead and use the builder do actually do the inserts. We insert
// immediately before the previous instruction under the assumption that all
// arguments will be available here. We can't insert afterwards since we may
// be replacing a terminator.
IRBuilder<> Builder(CS.getInstruction());
// Note: The gc args are not filled in at this time, that's handled by
// RewriteStatepointsForGC (which is currently under review).
// Create the statepoint given all the arguments
Instruction *Token = nullptr;
uint64_t ID;
uint32_t NumPatchBytes;
AttributeSet OriginalAttrs = CS.getAttributes();
Attribute AttrID =
OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, "statepoint-id");
Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
AttrBuilder AttrsToRemove;
bool HasID = AttrID.isStringAttribute() &&
!AttrID.getValueAsString().getAsInteger(10, ID);
if (HasID)
AttrsToRemove.addAttribute("statepoint-id");
else
ID = 0xABCDEF00;
bool HasNumPatchBytes =
AttrNumPatchBytes.isStringAttribute() &&
!AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
if (HasNumPatchBytes)
AttrsToRemove.addAttribute("statepoint-num-patch-bytes");
else
NumPatchBytes = 0;
OriginalAttrs = OriginalAttrs.removeAttributes(
CS.getInstruction()->getContext(), AttributeSet::FunctionIndex,
AttrsToRemove);
Value *StatepointTarget = NumPatchBytes == 0
? CS.getCalledValue()
: ConstantPointerNull::get(cast<PointerType>(
CS.getCalledValue()->getType()));
if (CS.isCall()) {
CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
CallInst *Call = Builder.CreateGCStatepointCall(
ID, NumPatchBytes, StatepointTarget,
makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None,
"safepoint_token");
Call->setTailCall(ToReplace->isTailCall());
Call->setCallingConv(ToReplace->getCallingConv());
// In case if we can handle this set of attributes - set up function
// attributes directly on statepoint and return attributes later for
// gc_result intrinsic.
Call->setAttributes(OriginalAttrs.getFnAttributes());
Token = Call;
// Put the following gc_result and gc_relocate calls immediately after the
// the old call (which we're about to delete).
assert(ToReplace->getNextNode() && "not a terminator, must have next");
Builder.SetInsertPoint(ToReplace->getNextNode());
Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
} else if (CS.isInvoke()) {
InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
// Insert the new invoke into the old block. We'll remove the old one in a
// moment at which point this will become the new terminator for the
// original block.
Builder.SetInsertPoint(ToReplace->getParent());
InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
ID, NumPatchBytes, StatepointTarget, ToReplace->getNormalDest(),
ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()),
None, None, "safepoint_token");
Invoke->setCallingConv(ToReplace->getCallingConv());
// In case if we can handle this set of attributes - set up function
// attributes directly on statepoint and return attributes later for
// gc_result intrinsic.
Invoke->setAttributes(OriginalAttrs.getFnAttributes());
Token = Invoke;
// We'll insert the gc.result into the normal block
BasicBlock *NormalDest = ToReplace->getNormalDest();
// Can not insert gc.result in case of phi nodes preset.
// Should have removed this cases prior to runnning this function
assert(!isa<PHINode>(NormalDest->begin()));
Instruction *IP = &*(NormalDest->getFirstInsertionPt());
Builder.SetInsertPoint(IP);
} else {
llvm_unreachable("unexpect type of CallSite");
}
assert(Token);
// Handle the return value of the original call - update all uses to use a
// gc_result hanging off the statepoint node we just inserted
// Only add the gc_result iff there is actually a used result
if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
std::string TakenName =
CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName);
GCResult->setAttributes(OriginalAttrs.getRetAttributes());
return GCResult;
} else {
// No return value for the call.
return nullptr;
}
}