forked from OSchip/llvm-project
32635 lines
819 KiB
Plaintext
32635 lines
819 KiB
Plaintext
saved_model_schema_version: 1
|
|
meta_graphs {
|
|
meta_info_def {
|
|
stripped_op_list {
|
|
op {
|
|
name: "Const"
|
|
output_arg {
|
|
name: "output"
|
|
type_attr: "dtype"
|
|
}
|
|
attr {
|
|
name: "value"
|
|
type: "tensor"
|
|
}
|
|
attr {
|
|
name: "dtype"
|
|
type: "type"
|
|
}
|
|
}
|
|
op {
|
|
name: "NoOp"
|
|
}
|
|
op {
|
|
name: "PartitionedCall"
|
|
input_arg {
|
|
name: "args"
|
|
type_list_attr: "Tin"
|
|
}
|
|
output_arg {
|
|
name: "output"
|
|
type_list_attr: "Tout"
|
|
}
|
|
attr {
|
|
name: "Tin"
|
|
type: "list(type)"
|
|
has_minimum: true
|
|
}
|
|
attr {
|
|
name: "Tout"
|
|
type: "list(type)"
|
|
has_minimum: true
|
|
}
|
|
attr {
|
|
name: "f"
|
|
type: "func"
|
|
}
|
|
attr {
|
|
name: "config"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
attr {
|
|
name: "config_proto"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
attr {
|
|
name: "executor_type"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
}
|
|
op {
|
|
name: "Placeholder"
|
|
output_arg {
|
|
name: "output"
|
|
type_attr: "dtype"
|
|
}
|
|
attr {
|
|
name: "dtype"
|
|
type: "type"
|
|
}
|
|
attr {
|
|
name: "shape"
|
|
type: "shape"
|
|
default_value {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
op {
|
|
name: "ReadVariableOp"
|
|
input_arg {
|
|
name: "resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "value"
|
|
type_attr: "dtype"
|
|
}
|
|
attr {
|
|
name: "dtype"
|
|
type: "type"
|
|
}
|
|
is_stateful: true
|
|
}
|
|
op {
|
|
name: "StatefulPartitionedCall"
|
|
input_arg {
|
|
name: "args"
|
|
type_list_attr: "Tin"
|
|
}
|
|
output_arg {
|
|
name: "output"
|
|
type_list_attr: "Tout"
|
|
}
|
|
attr {
|
|
name: "Tin"
|
|
type: "list(type)"
|
|
has_minimum: true
|
|
}
|
|
attr {
|
|
name: "Tout"
|
|
type: "list(type)"
|
|
has_minimum: true
|
|
}
|
|
attr {
|
|
name: "f"
|
|
type: "func"
|
|
}
|
|
attr {
|
|
name: "config"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
attr {
|
|
name: "config_proto"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
attr {
|
|
name: "executor_type"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
is_stateful: true
|
|
}
|
|
op {
|
|
name: "VarHandleOp"
|
|
output_arg {
|
|
name: "resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
attr {
|
|
name: "container"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
attr {
|
|
name: "shared_name"
|
|
type: "string"
|
|
default_value {
|
|
s: ""
|
|
}
|
|
}
|
|
attr {
|
|
name: "dtype"
|
|
type: "type"
|
|
}
|
|
attr {
|
|
name: "shape"
|
|
type: "shape"
|
|
}
|
|
attr {
|
|
name: "allowed_devices"
|
|
type: "list(string)"
|
|
default_value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
is_stateful: true
|
|
}
|
|
}
|
|
tags: "serve"
|
|
tensorflow_version: "1.15.0"
|
|
tensorflow_git_version: "unknown"
|
|
stripped_default_attrs: true
|
|
}
|
|
graph_def {
|
|
node {
|
|
name: "train_step"
|
|
op: "VarHandleOp"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "shared_name"
|
|
value {
|
|
s: "train_step"
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "train_step/Read/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "train_step"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense/kernel"
|
|
op: "VarHandleOp"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 34
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "shared_name"
|
|
value {
|
|
s: "QNetwork/EncodingNetwork/dense/kernel"
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense/kernel/Read/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense/kernel"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 34
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense/bias"
|
|
op: "VarHandleOp"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "shared_name"
|
|
value {
|
|
s: "QNetwork/EncodingNetwork/dense/bias"
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense/bias/Read/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense/bias"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense_1/kernel"
|
|
op: "VarHandleOp"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "shared_name"
|
|
value {
|
|
s: "QNetwork/EncodingNetwork/dense_1/kernel"
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense_1/kernel/Read/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense_1/kernel"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense_1/bias"
|
|
op: "VarHandleOp"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "shared_name"
|
|
value {
|
|
s: "QNetwork/EncodingNetwork/dense_1/bias"
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/EncodingNetwork/dense_1/bias/Read/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense_1/bias"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/dense_2/kernel"
|
|
op: "VarHandleOp"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "shared_name"
|
|
value {
|
|
s: "QNetwork/dense_2/kernel"
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/dense_2/kernel/Read/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "QNetwork/dense_2/kernel"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/dense_2/bias"
|
|
op: "VarHandleOp"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "shared_name"
|
|
value {
|
|
s: "QNetwork/dense_2/bias"
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "QNetwork/dense_2/bias/Read/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "QNetwork/dense_2/bias"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "NoOp"
|
|
op: "NoOp"
|
|
}
|
|
node {
|
|
name: "Const"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
}
|
|
string_val: "\nu\n\023\010\001\022\017_time_step_spec\n\024\010\002\022\020_trajectory_spec\n\023\010\003\022\017_wrapped_policy\n\016\010\004\022\ntrain_step\n\023\010\005\022\017model_variables\n\016\010\006\022\nsignatures\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0013\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0011\n;\n\016\010\010\022\n_q_network\n\023\010\001\022\017_time_step_spec\n\024\010\t\022\020_trajectory_spec\nE\022C\n\016VARIABLE_VALUE\022\ntrain_step\032%train_step/.ATTRIBUTES/VARIABLE_VALUE\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\000\n\000\n\214\001\n\026\010\020\022\022_input_tensor_spec\n\014\010\021\022\010_encoder\n\022\010\022\022\016_q_value_layer\n\r\010\023\022\tvariables\n\031\010\024\022\025regularization_losses\n\027\010\025\022\023trainable_variables\n\r\010\026\022\tkeras_api\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0011\ng\022e\n\016VARIABLE_VALUE\022%QNetwork/EncodingNetwork/dense/kernel\032,model_variables/0/.ATTRIBUTES/VARIABLE_VALUE\ne\022c\n\016VARIABLE_VALUE\022#QNetwork/EncodingNetwork/dense/bias\032,model_variables/1/.ATTRIBUTES/VARIABLE_VALUE\ni\022g\n\016VARIABLE_VALUE\022\'QNetwork/EncodingNetwork/dense_1/kernel\032,model_variables/2/.ATTRIBUTES/VARIABLE_VALUE\ng\022e\n\016VARIABLE_VALUE\022%QNetwork/EncodingNetwork/dense_1/bias\032,model_variables/3/.ATTRIBUTES/VARIABLE_VALUE\nY\022W\n\016VARIABLE_VALUE\022\027QNetwork/dense_2/kernel\032,model_variables/4/.ATTRIBUTES/VARIABLE_VALUE\nW\022U\n\016VARIABLE_VALUE\022\025QNetwork/dense_2/bias\032,model_variables/5/.ATTRIBUTES/VARIABLE_VALUE\n\000\n\334\001\n\026\010\027\022\022_input_tensor_spec\n\027\010\030\022\023_preprocessing_nest\n\036\010\031\022\032_flat_preprocessing_layers\n\033\010\032\022\027_preprocessing_combiner\n\032\010\033\022\026_postprocessing_layers\n\r\010\034\022\tvariables\n\031\010\035\022\025regularization_losses\n\027\010\036\022\023trainable_variables\n\r\010\037\022\tkeras_api\nh\n\n\010\016\022\006kernel\n\010\010\017\022\004bias\n\r\010 \022\tvariables\n\031\010!\022\025regularization_losses\n\027\010\"\022\023trainable_variables\n\r\010#\022\tkeras_api\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\000\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\255\001\n\021\010$\022\rlayer_metrics\n\r\010\023\022\tvariables\n\037\010%\022\033layer_regularization_losses\n\013\010&\022\007metrics\n\n\010\'\022\006layers\n\031\010\024\022\025regularization_losses\n\033\010(\022\027non_trainable_variables\n\027\010\025\022\023trainable_variables\n\000\n\000\nV\n\005\010)\022\0010\n\005\010*\022\0011\n\005\010+\022\0012\n\005\010,\022\0013\n\005\010-\022\0014\n\005\010.\022\0015\n\005\010/\022\0016\n\005\0100\022\0017\n\005\0101\022\0018\n\005\0102\022\0019\n\006\0103\022\00210\n\006\0104\022\00211\nR\n\r\0105\022\tvariables\n\031\0106\022\025regularization_losses\n\027\0107\022\023trainable_variables\n\r\0108\022\tkeras_api\n\025\n\005\0109\022\0010\n\005\010:\022\0011\n\005\010;\022\0012\n\034\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\000\n\034\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\255\001\n\021\010<\022\rlayer_metrics\n\r\010\034\022\tvariables\n\037\010=\022\033layer_regularization_losses\n\013\010>\022\007metrics\n\n\010?\022\006layers\n\031\010\035\022\025regularization_losses\n\033\010@\022\027non_trainable_variables\n\027\010\036\022\023trainable_variables\n\016\n\005\010\016\022\0010\n\005\010\017\022\0011\n\000\n\016\n\005\010\016\022\0010\n\005\010\017\022\0011\n\255\001\n\021\010A\022\rlayer_metrics\n\r\010 \022\tvariables\n\037\010B\022\033layer_regularization_losses\n\013\010C\022\007metrics\n\n\010D\022\006layers\n\031\010!\022\025regularization_losses\n\033\010E\022\027non_trainable_variables\n\027\010\"\022\023trainable_variables\n\000\n\000\n\000\n\016\n\005\010\021\022\0010\n\005\010\022\022\0011\n\000\nR\n\r\010F\022\tvariables\n\031\010G\022\025regularization_losses\n\027\010H\022\023trainable_variables\n\r\010I\022\tkeras_api\nR\n\r\010J\022\tvariables\n\031\010K\022\025regularization_losses\n\027\010L\022\023trainable_variables\n\r\010M\022\tkeras_api\nR\n\r\010N\022\tvariables\n\031\010O\022\025regularization_losses\n\027\010P\022\023trainable_variables\n\r\010Q\022\tkeras_api\nR\n\r\010R\022\tvariables\n\031\010S\022\025regularization_losses\n\027\010T\022\023trainable_variables\n\r\010U\022\tkeras_api\nR\n\r\010V\022\tvariables\n\031\010W\022\025regularization_losses\n\027\010X\022\023trainable_variables\n\r\010Y\022\tkeras_api\nR\n\r\010Z\022\tvariables\n\031\010[\022\025regularization_losses\n\027\010\\\022\023trainable_variables\n\r\010]\022\tkeras_api\nR\n\r\010^\022\tvariables\n\031\010_\022\025regularization_losses\n\027\010`\022\023trainable_variables\n\r\010a\022\tkeras_api\nR\n\r\010b\022\tvariables\n\031\010c\022\025regularization_losses\n\027\010d\022\023trainable_variables\n\r\010e\022\tkeras_api\nR\n\r\010f\022\tvariables\n\031\010g\022\025regularization_losses\n\027\010h\022\023trainable_variables\n\r\010i\022\tkeras_api\nR\n\r\010j\022\tvariables\n\031\010k\022\025regularization_losses\n\027\010l\022\023trainable_variables\n\r\010m\022\tkeras_api\nR\n\r\010n\022\tvariables\n\031\010o\022\025regularization_losses\n\027\010p\022\023trainable_variables\n\r\010q\022\tkeras_api\nR\n\r\010r\022\tvariables\n\031\010s\022\025regularization_losses\n\027\010t\022\023trainable_variables\n\r\010u\022\tkeras_api\n\000\n\000\n\000\n\255\001\n\021\010v\022\rlayer_metrics\n\r\0105\022\tvariables\n\037\010w\022\033layer_regularization_losses\n\013\010x\022\007metrics\n\n\010y\022\006layers\n\031\0106\022\025regularization_losses\n\033\010z\022\027non_trainable_variables\n\027\0107\022\023trainable_variables\nR\n\r\010{\022\tvariables\n\031\010|\022\025regularization_losses\n\027\010}\022\023trainable_variables\n\r\010~\022\tkeras_api\nk\n\n\010\n\022\006kernel\n\010\010\013\022\004bias\n\r\010\177\022\tvariables\n\032\010\200\001\022\025regularization_losses\n\030\010\201\001\022\023trainable_variables\n\016\010\202\001\022\tkeras_api\nl\n\n\010\014\022\006kernel\n\010\010\r\022\004bias\n\016\010\203\001\022\tvariables\n\032\010\204\001\022\025regularization_losses\n\030\010\205\001\022\023trainable_variables\n\016\010\206\001\022\tkeras_api\n\000\n\000\n\000\nv\n\005\010)\022\0010\n\005\010*\022\0011\n\005\010+\022\0012\n\005\010,\022\0013\n\005\010-\022\0014\n\005\010.\022\0015\n\005\010/\022\0016\n\005\0100\022\0017\n\005\0101\022\0018\n\005\0102\022\0019\n\006\0103\022\00210\n\006\0104\022\00211\n\006\010\032\022\00212\n\006\0109\022\00213\n\006\010:\022\00214\n\006\010;\022\00215\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\262\001\n\022\010\207\001\022\rlayer_metrics\n\r\010F\022\tvariables\n \010\210\001\022\033layer_regularization_losses\n\014\010\211\001\022\007metrics\n\013\010\212\001\022\006layers\n\031\010G\022\025regularization_losses\n\034\010\213\001\022\027non_trainable_variables\n\027\010H\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\214\001\022\rlayer_metrics\n\r\010J\022\tvariables\n \010\215\001\022\033layer_regularization_losses\n\014\010\216\001\022\007metrics\n\013\010\217\001\022\006layers\n\031\010K\022\025regularization_losses\n\034\010\220\001\022\027non_trainable_variables\n\027\010L\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\221\001\022\rlayer_metrics\n\r\010N\022\tvariables\n \010\222\001\022\033layer_regularization_losses\n\014\010\223\001\022\007metrics\n\013\010\224\001\022\006layers\n\031\010O\022\025regularization_losses\n\034\010\225\001\022\027non_trainable_variables\n\027\010P\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\226\001\022\rlayer_metrics\n\r\010R\022\tvariables\n \010\227\001\022\033layer_regularization_losses\n\014\010\230\001\022\007metrics\n\013\010\231\001\022\006layers\n\031\010S\022\025regularization_losses\n\034\010\232\001\022\027non_trainable_variables\n\027\010T\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\233\001\022\rlayer_metrics\n\r\010V\022\tvariables\n \010\234\001\022\033layer_regularization_losses\n\014\010\235\001\022\007metrics\n\013\010\236\001\022\006layers\n\031\010W\022\025regularization_losses\n\034\010\237\001\022\027non_trainable_variables\n\027\010X\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\240\001\022\rlayer_metrics\n\r\010Z\022\tvariables\n \010\241\001\022\033layer_regularization_losses\n\014\010\242\001\022\007metrics\n\013\010\243\001\022\006layers\n\031\010[\022\025regularization_losses\n\034\010\244\001\022\027non_trainable_variables\n\027\010\\\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\245\001\022\rlayer_metrics\n\r\010^\022\tvariables\n \010\246\001\022\033layer_regularization_losses\n\014\010\247\001\022\007metrics\n\013\010\250\001\022\006layers\n\031\010_\022\025regularization_losses\n\034\010\251\001\022\027non_trainable_variables\n\027\010`\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\252\001\022\rlayer_metrics\n\r\010b\022\tvariables\n \010\253\001\022\033layer_regularization_losses\n\014\010\254\001\022\007metrics\n\013\010\255\001\022\006layers\n\031\010c\022\025regularization_losses\n\034\010\256\001\022\027non_trainable_variables\n\027\010d\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\257\001\022\rlayer_metrics\n\r\010f\022\tvariables\n \010\260\001\022\033layer_regularization_losses\n\014\010\261\001\022\007metrics\n\013\010\262\001\022\006layers\n\031\010g\022\025regularization_losses\n\034\010\263\001\022\027non_trainable_variables\n\027\010h\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\264\001\022\rlayer_metrics\n\r\010j\022\tvariables\n \010\265\001\022\033layer_regularization_losses\n\014\010\266\001\022\007metrics\n\013\010\267\001\022\006layers\n\031\010k\022\025regularization_losses\n\034\010\270\001\022\027non_trainable_variables\n\027\010l\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\271\001\022\rlayer_metrics\n\r\010n\022\tvariables\n \010\272\001\022\033layer_regularization_losses\n\014\010\273\001\022\007metrics\n\013\010\274\001\022\006layers\n\031\010o\022\025regularization_losses\n\034\010\275\001\022\027non_trainable_variables\n\027\010p\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\276\001\022\rlayer_metrics\n\r\010r\022\tvariables\n \010\277\001\022\033layer_regularization_losses\n\014\010\300\001\022\007metrics\n\013\010\301\001\022\006layers\n\031\010s\022\025regularization_losses\n\034\010\302\001\022\027non_trainable_variables\n\027\010t\022\023trainable_variables\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\262\001\n\022\010\303\001\022\rlayer_metrics\n\r\010{\022\tvariables\n \010\304\001\022\033layer_regularization_losses\n\014\010\305\001\022\007metrics\n\013\010\306\001\022\006layers\n\031\010|\022\025regularization_losses\n\034\010\307\001\022\027non_trainable_variables\n\027\010}\022\023trainable_variables\n\016\n\005\010\n\022\0010\n\005\010\013\022\0011\n\000\n\016\n\005\010\n\022\0010\n\005\010\013\022\0011\n\264\001\n\022\010\310\001\022\rlayer_metrics\n\r\010\177\022\tvariables\n \010\311\001\022\033layer_regularization_losses\n\014\010\312\001\022\007metrics\n\013\010\313\001\022\006layers\n\032\010\200\001\022\025regularization_losses\n\034\010\314\001\022\027non_trainable_variables\n\030\010\201\001\022\023trainable_variables\n\016\n\005\010\014\022\0010\n\005\010\r\022\0011\n\000\n\016\n\005\010\014\022\0010\n\005\010\r\022\0011\n\265\001\n\022\010\315\001\022\rlayer_metrics\n\016\010\203\001\022\tvariables\n \010\316\001\022\033layer_regularization_losses\n\014\010\317\001\022\007metrics\n\013\010\320\001\022\006layers\n\032\010\204\001\022\025regularization_losses\n\034\010\321\001\022\027non_trainable_variables\n\030\010\205\001\022\023trainable_variables\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_callee_basic_block_count"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_callee_conditionally_executed_blocks"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_callee_users"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_caller_basic_block_count"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_caller_conditionally_executed_blocks"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_caller_users"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_callsite_height"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_cost_estimate"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_discount"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_edge_count"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_inlining_default"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_node_count"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_nr_ctant_params"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_reward"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "action_step_type"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "action_callee_basic_block_count"
|
|
input: "action_callee_conditionally_executed_blocks"
|
|
input: "action_callee_users"
|
|
input: "action_caller_basic_block_count"
|
|
input: "action_caller_conditionally_executed_blocks"
|
|
input: "action_caller_users"
|
|
input: "action_callsite_height"
|
|
input: "action_cost_estimate"
|
|
input: "action_discount"
|
|
input: "action_edge_count"
|
|
input: "action_inlining_default"
|
|
input: "action_node_count"
|
|
input: "action_nr_ctant_params"
|
|
input: "action_reward"
|
|
input: "action_step_type"
|
|
input: "QNetwork/EncodingNetwork/dense/kernel"
|
|
input: "QNetwork/EncodingNetwork/dense/bias"
|
|
input: "QNetwork/EncodingNetwork/dense_1/kernel"
|
|
input: "QNetwork/EncodingNetwork/dense_1/bias"
|
|
input: "QNetwork/dense_2/kernel"
|
|
input: "QNetwork/dense_2/bias"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_FLOAT
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_FLOAT
|
|
type: DT_INT32
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 15
|
|
i: 16
|
|
i: 17
|
|
i: 18
|
|
i: 19
|
|
i: 20
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_signature_wrapper_4619026"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "PartitionedCall"
|
|
op: "PartitionedCall"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_signature_wrapper_4619033"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "StatefulPartitionedCall_1"
|
|
op: "StatefulPartitionedCall"
|
|
input: "train_step"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 0
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_signature_wrapper_4619048"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "saver_filename"
|
|
op: "Placeholder"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "shape"
|
|
value {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "StatefulPartitionedCall_2"
|
|
op: "StatefulPartitionedCall"
|
|
input: "saver_filename"
|
|
input: "train_step/Read/ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense/kernel/Read/ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense/bias/Read/ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense_1/kernel/Read/ReadVariableOp"
|
|
input: "QNetwork/EncodingNetwork/dense_1/bias/Read/ReadVariableOp"
|
|
input: "QNetwork/dense_2/kernel/Read/ReadVariableOp"
|
|
input: "QNetwork/dense_2/bias/Read/ReadVariableOp"
|
|
input: "Const"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_STRING
|
|
type: DT_INT64
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference__traced_save_4619143"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
node {
|
|
name: "StatefulPartitionedCall_3"
|
|
op: "StatefulPartitionedCall"
|
|
input: "saver_filename"
|
|
input: "train_step"
|
|
input: "QNetwork/EncodingNetwork/dense/kernel"
|
|
input: "QNetwork/EncodingNetwork/dense/bias"
|
|
input: "QNetwork/EncodingNetwork/dense_1/kernel"
|
|
input: "QNetwork/EncodingNetwork/dense_1/bias"
|
|
input: "QNetwork/dense_2/kernel"
|
|
input: "QNetwork/dense_2/bias"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_STRING
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference__traced_restore_4619176"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
library {
|
|
function {
|
|
signature {
|
|
name: "__inference_signature_wrapper_4619048"
|
|
input_arg {
|
|
name: "unknown"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
control_output: "StatefulPartitionedCall"
|
|
}
|
|
node_def {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "unknown"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 0
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_function_with_signature_4619040"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StatefulPartitionedCall"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "StatefulPartitionedCall:output:0"
|
|
input: "^StatefulPartitionedCall"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "StatefulPartitionedCall"
|
|
value: "StatefulPartitionedCall"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_function_with_signature_4619029"
|
|
}
|
|
node_def {
|
|
name: "PartitionedCall"
|
|
op: "PartitionedCall"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_function_722"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "PartitionedCall"
|
|
}
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_action_931"
|
|
input_arg {
|
|
name: "time_step"
|
|
type: DT_INT32
|
|
}
|
|
input_arg {
|
|
name: "time_step_1"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "time_step_2"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "time_step_3"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_4"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_5"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_6"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_7"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_8"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_9"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_10"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_11"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_12"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_13"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_14"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "qnetwork_encodingnetwork_dense_matmul_readvariableop_resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "qnetwork_encodingnetwork_dense_biasadd_readvariableop_resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "qnetwork_encodingnetwork_dense_1_matmul_readvariableop_resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "qnetwork_encodingnetwork_dense_1_biasadd_readvariableop_resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "qnetwork_dense_2_matmul_readvariableop_resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "qnetwork_dense_2_biasadd_readvariableop_resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_3"
|
|
input: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 10
|
|
f: 10
|
|
f: 11
|
|
f: 12
|
|
f: 13
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 16
|
|
f: 17
|
|
f: 19
|
|
f: 23
|
|
f: 27
|
|
f: 39
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_4"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 3
|
|
f: 3
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 7
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 9
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 14
|
|
f: 14
|
|
f: 18
|
|
f: 20
|
|
f: 23
|
|
f: 30
|
|
f: 41
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_1/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_1/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_5"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 23
|
|
f: 23
|
|
f: 23
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 27
|
|
f: 27
|
|
f: 27
|
|
f: 27
|
|
f: 28
|
|
f: 28
|
|
f: 29
|
|
f: 29
|
|
f: 29
|
|
f: 29
|
|
f: 30
|
|
f: 30
|
|
f: 31
|
|
f: 31
|
|
f: 31
|
|
f: 31
|
|
f: 32
|
|
f: 32
|
|
f: 33
|
|
f: 33
|
|
f: 33
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 35
|
|
f: 35
|
|
f: 36
|
|
f: 36
|
|
f: 37
|
|
f: 37
|
|
f: 37
|
|
f: 38
|
|
f: 38
|
|
f: 39
|
|
f: 39
|
|
f: 40
|
|
f: 40
|
|
f: 41
|
|
f: 41
|
|
f: 41
|
|
f: 42
|
|
f: 43
|
|
f: 43
|
|
f: 44
|
|
f: 44
|
|
f: 45
|
|
f: 45
|
|
f: 46
|
|
f: 46
|
|
f: 46
|
|
f: 47
|
|
f: 47
|
|
f: 48
|
|
f: 49
|
|
f: 49
|
|
f: 50
|
|
f: 50
|
|
f: 51
|
|
f: 52
|
|
f: 53
|
|
f: 53
|
|
f: 54
|
|
f: 55
|
|
f: 56
|
|
f: 57
|
|
f: 57
|
|
f: 58
|
|
f: 59
|
|
f: 60
|
|
f: 61
|
|
f: 61
|
|
f: 63
|
|
f: 63
|
|
f: 64
|
|
f: 65
|
|
f: 66
|
|
f: 67
|
|
f: 67
|
|
f: 69
|
|
f: 70
|
|
f: 71
|
|
f: 72
|
|
f: 73
|
|
f: 74
|
|
f: 75
|
|
f: 77
|
|
f: 78
|
|
f: 79
|
|
f: 80
|
|
f: 81
|
|
f: 82
|
|
f: 83
|
|
f: 85
|
|
f: 86
|
|
f: 88
|
|
f: 89
|
|
f: 91
|
|
f: 92
|
|
f: 94
|
|
f: 96
|
|
f: 97
|
|
f: 99
|
|
f: 100
|
|
f: 101
|
|
f: 103
|
|
f: 105
|
|
f: 107
|
|
f: 109
|
|
f: 111
|
|
f: 113
|
|
f: 115
|
|
f: 118
|
|
f: 121
|
|
f: 123
|
|
f: 126
|
|
f: 128
|
|
f: 130
|
|
f: 133
|
|
f: 135
|
|
f: 137
|
|
f: 140
|
|
f: 143
|
|
f: 146
|
|
f: 148
|
|
f: 151
|
|
f: 154
|
|
f: 157
|
|
f: 161
|
|
f: 163
|
|
f: 166
|
|
f: 169
|
|
f: 173
|
|
f: 178
|
|
f: 183
|
|
f: 189
|
|
f: 193
|
|
f: 197
|
|
f: 202
|
|
f: 208
|
|
f: 213
|
|
f: 218
|
|
f: 223
|
|
f: 228
|
|
f: 233
|
|
f: 239
|
|
f: 245
|
|
f: 250
|
|
f: 257
|
|
f: 262
|
|
f: 269
|
|
f: 277
|
|
f: 284
|
|
f: 292
|
|
f: 300
|
|
f: 308
|
|
f: 319
|
|
f: 329
|
|
f: 340
|
|
f: 349
|
|
f: 359
|
|
f: 371
|
|
f: 382
|
|
f: 394
|
|
f: 410
|
|
f: 423
|
|
f: 435
|
|
f: 445
|
|
f: 462
|
|
f: 480
|
|
f: 492
|
|
f: 506
|
|
f: 519
|
|
f: 536
|
|
f: 557
|
|
f: 577
|
|
f: 598
|
|
f: 622
|
|
f: 655
|
|
f: 679
|
|
f: 707
|
|
f: 733
|
|
f: 751
|
|
f: 787
|
|
f: 814
|
|
f: 847
|
|
f: 897
|
|
f: 934
|
|
f: 997
|
|
f: 1062
|
|
f: 1111
|
|
f: 1181
|
|
f: 1275
|
|
f: 1385
|
|
f: 1465
|
|
f: 1603
|
|
f: 1769
|
|
f: 2057
|
|
f: 2257
|
|
f: 2803
|
|
f: 3468
|
|
f: 4417
|
|
f: 6538
|
|
f: 16126
|
|
f: 23446
|
|
f: 33536
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_2/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_2/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_6"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 23
|
|
f: 23
|
|
f: 23
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 27
|
|
f: 27
|
|
f: 27
|
|
f: 27
|
|
f: 27
|
|
f: 28
|
|
f: 28
|
|
f: 28
|
|
f: 29
|
|
f: 29
|
|
f: 29
|
|
f: 29
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 31
|
|
f: 31
|
|
f: 31
|
|
f: 32
|
|
f: 32
|
|
f: 32
|
|
f: 33
|
|
f: 33
|
|
f: 33
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 36
|
|
f: 36
|
|
f: 36
|
|
f: 37
|
|
f: 37
|
|
f: 37
|
|
f: 38
|
|
f: 38
|
|
f: 38
|
|
f: 38
|
|
f: 39
|
|
f: 39
|
|
f: 40
|
|
f: 40
|
|
f: 41
|
|
f: 41
|
|
f: 42
|
|
f: 43
|
|
f: 43
|
|
f: 44
|
|
f: 45
|
|
f: 45
|
|
f: 46
|
|
f: 47
|
|
f: 47
|
|
f: 48
|
|
f: 49
|
|
f: 49
|
|
f: 50
|
|
f: 50
|
|
f: 52
|
|
f: 52
|
|
f: 53
|
|
f: 54
|
|
f: 55
|
|
f: 55
|
|
f: 57
|
|
f: 58
|
|
f: 59
|
|
f: 60
|
|
f: 62
|
|
f: 64
|
|
f: 65
|
|
f: 66
|
|
f: 68
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 71
|
|
f: 73
|
|
f: 75
|
|
f: 76
|
|
f: 78
|
|
f: 81
|
|
f: 84
|
|
f: 86
|
|
f: 90
|
|
f: 94
|
|
f: 98
|
|
f: 101
|
|
f: 106
|
|
f: 111
|
|
f: 117
|
|
f: 123
|
|
f: 130
|
|
f: 138
|
|
f: 146
|
|
f: 157
|
|
f: 163
|
|
f: 176
|
|
f: 187
|
|
f: 198
|
|
f: 214
|
|
f: 227
|
|
f: 252
|
|
f: 280
|
|
f: 327
|
|
f: 395
|
|
f: 506
|
|
f: 671
|
|
f: 1025
|
|
f: 1971
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_3/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_3/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_7"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 5
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 7
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 13
|
|
f: 13
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 19
|
|
f: 19
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 21
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 25
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 27
|
|
f: 28
|
|
f: 28
|
|
f: 28
|
|
f: 28
|
|
f: 28
|
|
f: 29
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 31
|
|
f: 32
|
|
f: 32
|
|
f: 32
|
|
f: 32
|
|
f: 32
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 34
|
|
f: 35
|
|
f: 36
|
|
f: 36
|
|
f: 36
|
|
f: 37
|
|
f: 38
|
|
f: 38
|
|
f: 38
|
|
f: 39
|
|
f: 40
|
|
f: 40
|
|
f: 41
|
|
f: 42
|
|
f: 42
|
|
f: 43
|
|
f: 44
|
|
f: 44
|
|
f: 46
|
|
f: 46
|
|
f: 47
|
|
f: 48
|
|
f: 48
|
|
f: 50
|
|
f: 50
|
|
f: 52
|
|
f: 52
|
|
f: 54
|
|
f: 55
|
|
f: 55
|
|
f: 56
|
|
f: 57
|
|
f: 58
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 62
|
|
f: 62
|
|
f: 64
|
|
f: 65
|
|
f: 66
|
|
f: 68
|
|
f: 70
|
|
f: 72
|
|
f: 74
|
|
f: 77
|
|
f: 80
|
|
f: 82
|
|
f: 86
|
|
f: 89
|
|
f: 92
|
|
f: 96
|
|
f: 99
|
|
f: 104
|
|
f: 108
|
|
f: 114
|
|
f: 119
|
|
f: 125
|
|
f: 131
|
|
f: 139
|
|
f: 146
|
|
f: 157
|
|
f: 167
|
|
f: 176
|
|
f: 188
|
|
f: 198
|
|
f: 215
|
|
f: 236
|
|
f: 262
|
|
f: 306
|
|
f: 376
|
|
f: 462
|
|
f: 596
|
|
f: 942
|
|
f: 1428
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_4/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_4/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_8"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 10
|
|
f: 10
|
|
f: 11
|
|
f: 11
|
|
f: 12
|
|
f: 13
|
|
f: 14
|
|
f: 15
|
|
f: 16
|
|
f: 18
|
|
f: 20
|
|
f: 23
|
|
f: 29
|
|
f: 38
|
|
f: 60
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_5/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_5/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_9"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 3
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 4
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 6
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 7
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 8
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 9
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 11
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 12
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 13
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 14
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 16
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 17
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 18
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 19
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 21
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 22
|
|
f: 23
|
|
f: 23
|
|
f: 23
|
|
f: 23
|
|
f: 23
|
|
f: 23
|
|
f: 23
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 24
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 26
|
|
f: 27
|
|
f: 27
|
|
f: 27
|
|
f: 28
|
|
f: 28
|
|
f: 28
|
|
f: 29
|
|
f: 29
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 31
|
|
f: 31
|
|
f: 32
|
|
f: 32
|
|
f: 33
|
|
f: 33
|
|
f: 34
|
|
f: 35
|
|
f: 37
|
|
f: 38
|
|
f: 40
|
|
f: 46
|
|
f: 51
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_6/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_6/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_10"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: -15035
|
|
f: -15030
|
|
f: -15025
|
|
f: -15000
|
|
f: -14985
|
|
f: -14945
|
|
f: -14745
|
|
f: -70
|
|
f: -55
|
|
f: -55
|
|
f: -50
|
|
f: -50
|
|
f: -50
|
|
f: -45
|
|
f: -45
|
|
f: -45
|
|
f: -45
|
|
f: -45
|
|
f: -45
|
|
f: -45
|
|
f: -45
|
|
f: -45
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -40
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -35
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -30
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -25
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -20
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -15
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -10
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: -5
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 5
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 10
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 15
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 20
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 25
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 30
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 35
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 40
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 45
|
|
f: 50
|
|
f: 50
|
|
f: 50
|
|
f: 50
|
|
f: 50
|
|
f: 50
|
|
f: 50
|
|
f: 50
|
|
f: 50
|
|
f: 55
|
|
f: 55
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 60
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 65
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 70
|
|
f: 75
|
|
f: 75
|
|
f: 80
|
|
f: 80
|
|
f: 80
|
|
f: 85
|
|
f: 85
|
|
f: 85
|
|
f: 90
|
|
f: 90
|
|
f: 90
|
|
f: 90
|
|
f: 95
|
|
f: 95
|
|
f: 100
|
|
f: 100
|
|
f: 105
|
|
f: 110
|
|
f: 115
|
|
f: 120
|
|
f: 125
|
|
f: 125
|
|
f: 130
|
|
f: 140
|
|
f: 140
|
|
f: 145
|
|
f: 150
|
|
f: 155
|
|
f: 160
|
|
f: 160
|
|
f: 165
|
|
f: 170
|
|
f: 175
|
|
f: 180
|
|
f: 190
|
|
f: 200
|
|
f: 210
|
|
f: 215
|
|
f: 220
|
|
f: 220
|
|
f: 230
|
|
f: 235
|
|
f: 245
|
|
f: 250
|
|
f: 260
|
|
f: 275
|
|
f: 290
|
|
f: 305
|
|
f: 325
|
|
f: 350
|
|
f: 370
|
|
f: 390
|
|
f: 425
|
|
f: 460
|
|
f: 500
|
|
f: 560
|
|
f: 650
|
|
f: 790
|
|
f: 1025
|
|
f: 1600
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_7/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_7/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_11"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 18
|
|
f: 29
|
|
f: 39
|
|
f: 48
|
|
f: 57
|
|
f: 64
|
|
f: 70
|
|
f: 76
|
|
f: 82
|
|
f: 87
|
|
f: 92
|
|
f: 97
|
|
f: 101
|
|
f: 105
|
|
f: 109
|
|
f: 113
|
|
f: 116
|
|
f: 120
|
|
f: 123
|
|
f: 127
|
|
f: 130
|
|
f: 134
|
|
f: 137
|
|
f: 140
|
|
f: 143
|
|
f: 146
|
|
f: 149
|
|
f: 152
|
|
f: 156
|
|
f: 159
|
|
f: 162
|
|
f: 165
|
|
f: 168
|
|
f: 171
|
|
f: 174
|
|
f: 177
|
|
f: 180
|
|
f: 183
|
|
f: 186
|
|
f: 188
|
|
f: 191
|
|
f: 194
|
|
f: 197
|
|
f: 200
|
|
f: 203
|
|
f: 205
|
|
f: 208
|
|
f: 211
|
|
f: 214
|
|
f: 217
|
|
f: 219
|
|
f: 222
|
|
f: 225
|
|
f: 228
|
|
f: 231
|
|
f: 233
|
|
f: 236
|
|
f: 239
|
|
f: 242
|
|
f: 244
|
|
f: 247
|
|
f: 250
|
|
f: 253
|
|
f: 255
|
|
f: 258
|
|
f: 261
|
|
f: 264
|
|
f: 266
|
|
f: 269
|
|
f: 272
|
|
f: 275
|
|
f: 278
|
|
f: 280
|
|
f: 283
|
|
f: 286
|
|
f: 289
|
|
f: 292
|
|
f: 294
|
|
f: 297
|
|
f: 300
|
|
f: 303
|
|
f: 305
|
|
f: 308
|
|
f: 311
|
|
f: 314
|
|
f: 317
|
|
f: 319
|
|
f: 322
|
|
f: 325
|
|
f: 327
|
|
f: 330
|
|
f: 333
|
|
f: 336
|
|
f: 339
|
|
f: 341
|
|
f: 344
|
|
f: 347
|
|
f: 350
|
|
f: 353
|
|
f: 355
|
|
f: 358
|
|
f: 361
|
|
f: 364
|
|
f: 367
|
|
f: 370
|
|
f: 373
|
|
f: 375
|
|
f: 378
|
|
f: 381
|
|
f: 384
|
|
f: 387
|
|
f: 390
|
|
f: 393
|
|
f: 396
|
|
f: 399
|
|
f: 401
|
|
f: 404
|
|
f: 407
|
|
f: 410
|
|
f: 413
|
|
f: 416
|
|
f: 419
|
|
f: 422
|
|
f: 425
|
|
f: 428
|
|
f: 431
|
|
f: 434
|
|
f: 437
|
|
f: 440
|
|
f: 443
|
|
f: 446
|
|
f: 449
|
|
f: 452
|
|
f: 455
|
|
f: 458
|
|
f: 461
|
|
f: 464
|
|
f: 467
|
|
f: 470
|
|
f: 473
|
|
f: 476
|
|
f: 479
|
|
f: 483
|
|
f: 486
|
|
f: 489
|
|
f: 492
|
|
f: 495
|
|
f: 498
|
|
f: 501
|
|
f: 504
|
|
f: 507
|
|
f: 511
|
|
f: 514
|
|
f: 517
|
|
f: 520
|
|
f: 523
|
|
f: 526
|
|
f: 530
|
|
f: 533
|
|
f: 536
|
|
f: 539
|
|
f: 542
|
|
f: 545
|
|
f: 549
|
|
f: 552
|
|
f: 555
|
|
f: 558
|
|
f: 562
|
|
f: 565
|
|
f: 569
|
|
f: 572
|
|
f: 575
|
|
f: 579
|
|
f: 582
|
|
f: 585
|
|
f: 589
|
|
f: 592
|
|
f: 595
|
|
f: 599
|
|
f: 602
|
|
f: 605
|
|
f: 609
|
|
f: 612
|
|
f: 616
|
|
f: 620
|
|
f: 623
|
|
f: 626
|
|
f: 630
|
|
f: 634
|
|
f: 637
|
|
f: 641
|
|
f: 644
|
|
f: 648
|
|
f: 651
|
|
f: 655
|
|
f: 658
|
|
f: 662
|
|
f: 665
|
|
f: 669
|
|
f: 672
|
|
f: 676
|
|
f: 680
|
|
f: 683
|
|
f: 687
|
|
f: 691
|
|
f: 694
|
|
f: 698
|
|
f: 702
|
|
f: 705
|
|
f: 709
|
|
f: 712
|
|
f: 716
|
|
f: 720
|
|
f: 724
|
|
f: 727
|
|
f: 731
|
|
f: 735
|
|
f: 739
|
|
f: 742
|
|
f: 746
|
|
f: 750
|
|
f: 754
|
|
f: 758
|
|
f: 761
|
|
f: 765
|
|
f: 769
|
|
f: 773
|
|
f: 777
|
|
f: 780
|
|
f: 784
|
|
f: 788
|
|
f: 792
|
|
f: 796
|
|
f: 800
|
|
f: 804
|
|
f: 808
|
|
f: 812
|
|
f: 816
|
|
f: 820
|
|
f: 823
|
|
f: 828
|
|
f: 832
|
|
f: 836
|
|
f: 840
|
|
f: 844
|
|
f: 848
|
|
f: 852
|
|
f: 856
|
|
f: 860
|
|
f: 864
|
|
f: 868
|
|
f: 873
|
|
f: 877
|
|
f: 881
|
|
f: 885
|
|
f: 889
|
|
f: 893
|
|
f: 897
|
|
f: 902
|
|
f: 906
|
|
f: 910
|
|
f: 914
|
|
f: 919
|
|
f: 923
|
|
f: 927
|
|
f: 931
|
|
f: 935
|
|
f: 940
|
|
f: 944
|
|
f: 948
|
|
f: 953
|
|
f: 957
|
|
f: 962
|
|
f: 966
|
|
f: 970
|
|
f: 975
|
|
f: 979
|
|
f: 984
|
|
f: 988
|
|
f: 993
|
|
f: 997
|
|
f: 1002
|
|
f: 1006
|
|
f: 1011
|
|
f: 1015
|
|
f: 1020
|
|
f: 1024
|
|
f: 1029
|
|
f: 1034
|
|
f: 1038
|
|
f: 1043
|
|
f: 1047
|
|
f: 1052
|
|
f: 1057
|
|
f: 1062
|
|
f: 1066
|
|
f: 1071
|
|
f: 1076
|
|
f: 1081
|
|
f: 1086
|
|
f: 1090
|
|
f: 1095
|
|
f: 1100
|
|
f: 1105
|
|
f: 1110
|
|
f: 1114
|
|
f: 1119
|
|
f: 1124
|
|
f: 1129
|
|
f: 1134
|
|
f: 1139
|
|
f: 1144
|
|
f: 1149
|
|
f: 1154
|
|
f: 1159
|
|
f: 1164
|
|
f: 1169
|
|
f: 1174
|
|
f: 1179
|
|
f: 1184
|
|
f: 1189
|
|
f: 1194
|
|
f: 1199
|
|
f: 1204
|
|
f: 1209
|
|
f: 1215
|
|
f: 1220
|
|
f: 1225
|
|
f: 1230
|
|
f: 1235
|
|
f: 1241
|
|
f: 1246
|
|
f: 1251
|
|
f: 1257
|
|
f: 1262
|
|
f: 1267
|
|
f: 1273
|
|
f: 1278
|
|
f: 1284
|
|
f: 1289
|
|
f: 1294
|
|
f: 1300
|
|
f: 1305
|
|
f: 1311
|
|
f: 1316
|
|
f: 1322
|
|
f: 1327
|
|
f: 1333
|
|
f: 1338
|
|
f: 1344
|
|
f: 1350
|
|
f: 1355
|
|
f: 1361
|
|
f: 1367
|
|
f: 1372
|
|
f: 1378
|
|
f: 1383
|
|
f: 1389
|
|
f: 1395
|
|
f: 1401
|
|
f: 1407
|
|
f: 1413
|
|
f: 1418
|
|
f: 1424
|
|
f: 1430
|
|
f: 1436
|
|
f: 1442
|
|
f: 1448
|
|
f: 1454
|
|
f: 1459
|
|
f: 1465
|
|
f: 1472
|
|
f: 1477
|
|
f: 1483
|
|
f: 1489
|
|
f: 1495
|
|
f: 1501
|
|
f: 1507
|
|
f: 1514
|
|
f: 1520
|
|
f: 1526
|
|
f: 1532
|
|
f: 1538
|
|
f: 1545
|
|
f: 1551
|
|
f: 1557
|
|
f: 1564
|
|
f: 1570
|
|
f: 1576
|
|
f: 1583
|
|
f: 1589
|
|
f: 1596
|
|
f: 1602
|
|
f: 1608
|
|
f: 1615
|
|
f: 1621
|
|
f: 1628
|
|
f: 1634
|
|
f: 1641
|
|
f: 1647
|
|
f: 1654
|
|
f: 1661
|
|
f: 1667
|
|
f: 1674
|
|
f: 1681
|
|
f: 1687
|
|
f: 1694
|
|
f: 1701
|
|
f: 1708
|
|
f: 1715
|
|
f: 1722
|
|
f: 1729
|
|
f: 1735
|
|
f: 1742
|
|
f: 1749
|
|
f: 1756
|
|
f: 1763
|
|
f: 1770
|
|
f: 1777
|
|
f: 1784
|
|
f: 1791
|
|
f: 1798
|
|
f: 1806
|
|
f: 1812
|
|
f: 1820
|
|
f: 1827
|
|
f: 1835
|
|
f: 1841
|
|
f: 1849
|
|
f: 1856
|
|
f: 1863
|
|
f: 1871
|
|
f: 1878
|
|
f: 1885
|
|
f: 1893
|
|
f: 1901
|
|
f: 1908
|
|
f: 1915
|
|
f: 1923
|
|
f: 1930
|
|
f: 1938
|
|
f: 1946
|
|
f: 1953
|
|
f: 1961
|
|
f: 1969
|
|
f: 1976
|
|
f: 1984
|
|
f: 1992
|
|
f: 2000
|
|
f: 2007
|
|
f: 2015
|
|
f: 2023
|
|
f: 2031
|
|
f: 2039
|
|
f: 2047
|
|
f: 2055
|
|
f: 2063
|
|
f: 2071
|
|
f: 2079
|
|
f: 2087
|
|
f: 2095
|
|
f: 2104
|
|
f: 2112
|
|
f: 2120
|
|
f: 2128
|
|
f: 2137
|
|
f: 2146
|
|
f: 2154
|
|
f: 2162
|
|
f: 2171
|
|
f: 2179
|
|
f: 2188
|
|
f: 2197
|
|
f: 2205
|
|
f: 2214
|
|
f: 2223
|
|
f: 2232
|
|
f: 2241
|
|
f: 2250
|
|
f: 2258
|
|
f: 2268
|
|
f: 2277
|
|
f: 2285
|
|
f: 2294
|
|
f: 2304
|
|
f: 2313
|
|
f: 2322
|
|
f: 2331
|
|
f: 2340
|
|
f: 2350
|
|
f: 2359
|
|
f: 2368
|
|
f: 2378
|
|
f: 2388
|
|
f: 2397
|
|
f: 2407
|
|
f: 2416
|
|
f: 2426
|
|
f: 2436
|
|
f: 2446
|
|
f: 2455
|
|
f: 2465
|
|
f: 2475
|
|
f: 2485
|
|
f: 2495
|
|
f: 2505
|
|
f: 2515
|
|
f: 2525
|
|
f: 2535
|
|
f: 2545
|
|
f: 2556
|
|
f: 2566
|
|
f: 2577
|
|
f: 2587
|
|
f: 2598
|
|
f: 2609
|
|
f: 2620
|
|
f: 2631
|
|
f: 2641
|
|
f: 2652
|
|
f: 2663
|
|
f: 2674
|
|
f: 2685
|
|
f: 2696
|
|
f: 2708
|
|
f: 2719
|
|
f: 2730
|
|
f: 2742
|
|
f: 2753
|
|
f: 2764
|
|
f: 2776
|
|
f: 2788
|
|
f: 2799
|
|
f: 2811
|
|
f: 2823
|
|
f: 2835
|
|
f: 2847
|
|
f: 2858
|
|
f: 2870
|
|
f: 2882
|
|
f: 2894
|
|
f: 2906
|
|
f: 2919
|
|
f: 2931
|
|
f: 2943
|
|
f: 2956
|
|
f: 2968
|
|
f: 2981
|
|
f: 2994
|
|
f: 3006
|
|
f: 3019
|
|
f: 3032
|
|
f: 3045
|
|
f: 3058
|
|
f: 3070
|
|
f: 3083
|
|
f: 3096
|
|
f: 3109
|
|
f: 3121
|
|
f: 3134
|
|
f: 3148
|
|
f: 3161
|
|
f: 3174
|
|
f: 3187
|
|
f: 3200
|
|
f: 3214
|
|
f: 3228
|
|
f: 3242
|
|
f: 3255
|
|
f: 3268
|
|
f: 3283
|
|
f: 3297
|
|
f: 3310
|
|
f: 3325
|
|
f: 3340
|
|
f: 3353
|
|
f: 3368
|
|
f: 3383
|
|
f: 3398
|
|
f: 3412
|
|
f: 3427
|
|
f: 3442
|
|
f: 3457
|
|
f: 3471
|
|
f: 3487
|
|
f: 3502
|
|
f: 3516
|
|
f: 3531
|
|
f: 3546
|
|
f: 3561
|
|
f: 3577
|
|
f: 3593
|
|
f: 3608
|
|
f: 3625
|
|
f: 3641
|
|
f: 3657
|
|
f: 3673
|
|
f: 3690
|
|
f: 3706
|
|
f: 3722
|
|
f: 3738
|
|
f: 3755
|
|
f: 3772
|
|
f: 3789
|
|
f: 3805
|
|
f: 3823
|
|
f: 3839
|
|
f: 3856
|
|
f: 3873
|
|
f: 3891
|
|
f: 3908
|
|
f: 3926
|
|
f: 3944
|
|
f: 3960
|
|
f: 3977
|
|
f: 3995
|
|
f: 4013
|
|
f: 4031
|
|
f: 4048
|
|
f: 4067
|
|
f: 4085
|
|
f: 4104
|
|
f: 4122
|
|
f: 4140
|
|
f: 4159
|
|
f: 4177
|
|
f: 4196
|
|
f: 4215
|
|
f: 4234
|
|
f: 4253
|
|
f: 4272
|
|
f: 4291
|
|
f: 4311
|
|
f: 4332
|
|
f: 4351
|
|
f: 4371
|
|
f: 4391
|
|
f: 4412
|
|
f: 4433
|
|
f: 4454
|
|
f: 4474
|
|
f: 4496
|
|
f: 4518
|
|
f: 4538
|
|
f: 4558
|
|
f: 4579
|
|
f: 4601
|
|
f: 4619
|
|
f: 4640
|
|
f: 4662
|
|
f: 4684
|
|
f: 4706
|
|
f: 4728
|
|
f: 4751
|
|
f: 4771
|
|
f: 4794
|
|
f: 4818
|
|
f: 4840
|
|
f: 4863
|
|
f: 4887
|
|
f: 4910
|
|
f: 4933
|
|
f: 4956
|
|
f: 4980
|
|
f: 5004
|
|
f: 5028
|
|
f: 5052
|
|
f: 5076
|
|
f: 5100
|
|
f: 5125
|
|
f: 5152
|
|
f: 5175
|
|
f: 5200
|
|
f: 5226
|
|
f: 5251
|
|
f: 5278
|
|
f: 5304
|
|
f: 5329
|
|
f: 5354
|
|
f: 5381
|
|
f: 5407
|
|
f: 5433
|
|
f: 5460
|
|
f: 5488
|
|
f: 5516
|
|
f: 5544
|
|
f: 5573
|
|
f: 5600
|
|
f: 5628
|
|
f: 5656
|
|
f: 5684
|
|
f: 5713
|
|
f: 5741
|
|
f: 5771
|
|
f: 5799
|
|
f: 5830
|
|
f: 5860
|
|
f: 5891
|
|
f: 5921
|
|
f: 5951
|
|
f: 5980
|
|
f: 6010
|
|
f: 6041
|
|
f: 6073
|
|
f: 6105
|
|
f: 6133
|
|
f: 6163
|
|
f: 6195
|
|
f: 6227
|
|
f: 6258
|
|
f: 6291
|
|
f: 6322
|
|
f: 6356
|
|
f: 6390
|
|
f: 6424
|
|
f: 6457
|
|
f: 6491
|
|
f: 6527
|
|
f: 6561
|
|
f: 6596
|
|
f: 6631
|
|
f: 6665
|
|
f: 6701
|
|
f: 6736
|
|
f: 6771
|
|
f: 6805
|
|
f: 6840
|
|
f: 6877
|
|
f: 6911
|
|
f: 6947
|
|
f: 6985
|
|
f: 7022
|
|
f: 7059
|
|
f: 7097
|
|
f: 7135
|
|
f: 7174
|
|
f: 7212
|
|
f: 7251
|
|
f: 7289
|
|
f: 7327
|
|
f: 7366
|
|
f: 7406
|
|
f: 7447
|
|
f: 7486
|
|
f: 7525
|
|
f: 7566
|
|
f: 7606
|
|
f: 7646
|
|
f: 7688
|
|
f: 7728
|
|
f: 7771
|
|
f: 7814
|
|
f: 7859
|
|
f: 7901
|
|
f: 7949
|
|
f: 7992
|
|
f: 8036
|
|
f: 8082
|
|
f: 8127
|
|
f: 8173
|
|
f: 8218
|
|
f: 8262
|
|
f: 8309
|
|
f: 8353
|
|
f: 8397
|
|
f: 8444
|
|
f: 8489
|
|
f: 8539
|
|
f: 8585
|
|
f: 8632
|
|
f: 8682
|
|
f: 8727
|
|
f: 8777
|
|
f: 8828
|
|
f: 8879
|
|
f: 8929
|
|
f: 8982
|
|
f: 9037
|
|
f: 9087
|
|
f: 9140
|
|
f: 9193
|
|
f: 9250
|
|
f: 9305
|
|
f: 9361
|
|
f: 9418
|
|
f: 9475
|
|
f: 9532
|
|
f: 9589
|
|
f: 9644
|
|
f: 9699
|
|
f: 9758
|
|
f: 9818
|
|
f: 9875
|
|
f: 9935
|
|
f: 9997
|
|
f: 10057
|
|
f: 10117
|
|
f: 10174
|
|
f: 10232
|
|
f: 10296
|
|
f: 10356
|
|
f: 10419
|
|
f: 10482
|
|
f: 10546
|
|
f: 10608
|
|
f: 10670
|
|
f: 10729
|
|
f: 10790
|
|
f: 10855
|
|
f: 10920
|
|
f: 10990
|
|
f: 11054
|
|
f: 11118
|
|
f: 11181
|
|
f: 11248
|
|
f: 11316
|
|
f: 11385
|
|
f: 11454
|
|
f: 11526
|
|
f: 11597
|
|
f: 11667
|
|
f: 11740
|
|
f: 11820
|
|
f: 11897
|
|
f: 11973
|
|
f: 12046
|
|
f: 12126
|
|
f: 12204
|
|
f: 12287
|
|
f: 12370
|
|
f: 12456
|
|
f: 12538
|
|
f: 12627
|
|
f: 12714
|
|
f: 12799
|
|
f: 12883
|
|
f: 12971
|
|
f: 13062
|
|
f: 13154
|
|
f: 13233
|
|
f: 13328
|
|
f: 13418
|
|
f: 13511
|
|
f: 13607
|
|
f: 13709
|
|
f: 13806
|
|
f: 13903
|
|
f: 14002
|
|
f: 14104
|
|
f: 14200
|
|
f: 14288
|
|
f: 14391
|
|
f: 14488
|
|
f: 14590
|
|
f: 14698
|
|
f: 14808
|
|
f: 14910
|
|
f: 15020
|
|
f: 15126
|
|
f: 15238
|
|
f: 15347
|
|
f: 15456
|
|
f: 15574
|
|
f: 15692
|
|
f: 15786
|
|
f: 15896
|
|
f: 16016
|
|
f: 16136
|
|
f: 16250
|
|
f: 16352
|
|
f: 16474
|
|
f: 16575
|
|
f: 16702
|
|
f: 16835
|
|
f: 16965
|
|
f: 17096
|
|
f: 17232
|
|
f: 17370
|
|
f: 17443
|
|
f: 17581
|
|
f: 17719
|
|
f: 17864
|
|
f: 17976
|
|
f: 18116
|
|
f: 18250
|
|
f: 18396
|
|
f: 18540
|
|
f: 18690
|
|
f: 18840
|
|
f: 18989
|
|
f: 19136
|
|
f: 19294
|
|
f: 19445
|
|
f: 19589
|
|
f: 19750
|
|
f: 19905
|
|
f: 20064
|
|
f: 20191
|
|
f: 20325
|
|
f: 20497
|
|
f: 20662
|
|
f: 20833
|
|
f: 20981
|
|
f: 21152
|
|
f: 21334
|
|
f: 21510
|
|
f: 21642
|
|
f: 21821
|
|
f: 22001
|
|
f: 22186
|
|
f: 22379
|
|
f: 22568
|
|
f: 22770
|
|
f: 22958
|
|
f: 23162
|
|
f: 23360
|
|
f: 23524
|
|
f: 23737
|
|
f: 23960
|
|
f: 24175
|
|
f: 24395
|
|
f: 24631
|
|
f: 24865
|
|
f: 25091
|
|
f: 25327
|
|
f: 25580
|
|
f: 25833
|
|
f: 26089
|
|
f: 26361
|
|
f: 26636
|
|
f: 26889
|
|
f: 27155
|
|
f: 27436
|
|
f: 27715
|
|
f: 28003
|
|
f: 28303
|
|
f: 28600
|
|
f: 28916
|
|
f: 29223
|
|
f: 29553
|
|
f: 29884
|
|
f: 30200
|
|
f: 30538
|
|
f: 30868
|
|
f: 31211
|
|
f: 31548
|
|
f: 31881
|
|
f: 32253
|
|
f: 32605
|
|
f: 32980
|
|
f: 33385
|
|
f: 33805
|
|
f: 34254
|
|
f: 34723
|
|
f: 35167
|
|
f: 35666
|
|
f: 36125
|
|
f: 36652
|
|
f: 37177
|
|
f: 37739
|
|
f: 38321
|
|
f: 38932
|
|
f: 39640
|
|
f: 40337
|
|
f: 41000
|
|
f: 41626
|
|
f: 42385
|
|
f: 43122
|
|
f: 43890
|
|
f: 44687
|
|
f: 45609
|
|
f: 46520
|
|
f: 47489
|
|
f: 48432
|
|
f: 49458
|
|
f: 50511
|
|
f: 51561
|
|
f: 52568
|
|
f: 53676
|
|
f: 54936
|
|
f: 56071
|
|
f: 57302
|
|
f: 58513
|
|
f: 59800
|
|
f: 61192
|
|
f: 62702
|
|
f: 64205
|
|
f: 65868
|
|
f: 67780
|
|
f: 69960
|
|
f: 72330
|
|
f: 74918
|
|
f: 77540
|
|
f: 80344
|
|
f: 83727
|
|
f: 87662
|
|
f: 93589
|
|
f: 101441
|
|
f: 110544
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_8/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_8/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_12"
|
|
input: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_9/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_9/zeros_like"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
float_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_9/zeros_like"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_13"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 13
|
|
f: 38
|
|
f: 56
|
|
f: 70
|
|
f: 82
|
|
f: 94
|
|
f: 104
|
|
f: 114
|
|
f: 123
|
|
f: 131
|
|
f: 139
|
|
f: 148
|
|
f: 152
|
|
f: 153
|
|
f: 158
|
|
f: 163
|
|
f: 170
|
|
f: 174
|
|
f: 178
|
|
f: 180
|
|
f: 183
|
|
f: 186
|
|
f: 188
|
|
f: 190
|
|
f: 192
|
|
f: 196
|
|
f: 198
|
|
f: 201
|
|
f: 205
|
|
f: 208
|
|
f: 212
|
|
f: 215
|
|
f: 219
|
|
f: 221
|
|
f: 225
|
|
f: 227
|
|
f: 229
|
|
f: 232
|
|
f: 233
|
|
f: 236
|
|
f: 239
|
|
f: 242
|
|
f: 245
|
|
f: 248
|
|
f: 250
|
|
f: 252
|
|
f: 254
|
|
f: 256
|
|
f: 259
|
|
f: 261
|
|
f: 264
|
|
f: 267
|
|
f: 270
|
|
f: 272
|
|
f: 275
|
|
f: 278
|
|
f: 280
|
|
f: 283
|
|
f: 285
|
|
f: 287
|
|
f: 290
|
|
f: 293
|
|
f: 295
|
|
f: 297
|
|
f: 300
|
|
f: 303
|
|
f: 305
|
|
f: 308
|
|
f: 311
|
|
f: 313
|
|
f: 316
|
|
f: 319
|
|
f: 322
|
|
f: 325
|
|
f: 329
|
|
f: 331
|
|
f: 333
|
|
f: 336
|
|
f: 338
|
|
f: 340
|
|
f: 343
|
|
f: 345
|
|
f: 347
|
|
f: 347
|
|
f: 349
|
|
f: 351
|
|
f: 353
|
|
f: 355
|
|
f: 357
|
|
f: 359
|
|
f: 361
|
|
f: 363
|
|
f: 365
|
|
f: 368
|
|
f: 369
|
|
f: 371
|
|
f: 373
|
|
f: 375
|
|
f: 377
|
|
f: 380
|
|
f: 382
|
|
f: 385
|
|
f: 387
|
|
f: 389
|
|
f: 391
|
|
f: 394
|
|
f: 396
|
|
f: 398
|
|
f: 400
|
|
f: 403
|
|
f: 405
|
|
f: 408
|
|
f: 410
|
|
f: 412
|
|
f: 415
|
|
f: 417
|
|
f: 420
|
|
f: 422
|
|
f: 425
|
|
f: 427
|
|
f: 429
|
|
f: 432
|
|
f: 434
|
|
f: 437
|
|
f: 439
|
|
f: 442
|
|
f: 444
|
|
f: 446
|
|
f: 449
|
|
f: 451
|
|
f: 454
|
|
f: 456
|
|
f: 458
|
|
f: 461
|
|
f: 463
|
|
f: 466
|
|
f: 469
|
|
f: 472
|
|
f: 474
|
|
f: 476
|
|
f: 479
|
|
f: 482
|
|
f: 483
|
|
f: 486
|
|
f: 489
|
|
f: 492
|
|
f: 495
|
|
f: 498
|
|
f: 500
|
|
f: 503
|
|
f: 505
|
|
f: 508
|
|
f: 510
|
|
f: 513
|
|
f: 516
|
|
f: 519
|
|
f: 522
|
|
f: 524
|
|
f: 528
|
|
f: 530
|
|
f: 533
|
|
f: 536
|
|
f: 539
|
|
f: 541
|
|
f: 544
|
|
f: 547
|
|
f: 550
|
|
f: 553
|
|
f: 556
|
|
f: 559
|
|
f: 561
|
|
f: 563
|
|
f: 567
|
|
f: 570
|
|
f: 572
|
|
f: 575
|
|
f: 577
|
|
f: 580
|
|
f: 584
|
|
f: 586
|
|
f: 589
|
|
f: 592
|
|
f: 595
|
|
f: 598
|
|
f: 601
|
|
f: 605
|
|
f: 607
|
|
f: 611
|
|
f: 613
|
|
f: 617
|
|
f: 620
|
|
f: 623
|
|
f: 626
|
|
f: 629
|
|
f: 632
|
|
f: 635
|
|
f: 639
|
|
f: 642
|
|
f: 645
|
|
f: 648
|
|
f: 651
|
|
f: 654
|
|
f: 657
|
|
f: 660
|
|
f: 662
|
|
f: 666
|
|
f: 669
|
|
f: 672
|
|
f: 676
|
|
f: 679
|
|
f: 682
|
|
f: 685
|
|
f: 688
|
|
f: 690
|
|
f: 693
|
|
f: 696
|
|
f: 699
|
|
f: 702
|
|
f: 705
|
|
f: 709
|
|
f: 712
|
|
f: 714
|
|
f: 718
|
|
f: 721
|
|
f: 724
|
|
f: 726
|
|
f: 728
|
|
f: 729
|
|
f: 731
|
|
f: 734
|
|
f: 737
|
|
f: 741
|
|
f: 745
|
|
f: 748
|
|
f: 750
|
|
f: 753
|
|
f: 756
|
|
f: 760
|
|
f: 763
|
|
f: 766
|
|
f: 770
|
|
f: 773
|
|
f: 776
|
|
f: 779
|
|
f: 782
|
|
f: 786
|
|
f: 788
|
|
f: 793
|
|
f: 796
|
|
f: 798
|
|
f: 802
|
|
f: 805
|
|
f: 808
|
|
f: 811
|
|
f: 815
|
|
f: 818
|
|
f: 820
|
|
f: 824
|
|
f: 827
|
|
f: 829
|
|
f: 832
|
|
f: 835
|
|
f: 838
|
|
f: 842
|
|
f: 846
|
|
f: 849
|
|
f: 854
|
|
f: 857
|
|
f: 860
|
|
f: 864
|
|
f: 867
|
|
f: 871
|
|
f: 875
|
|
f: 879
|
|
f: 882
|
|
f: 887
|
|
f: 890
|
|
f: 893
|
|
f: 897
|
|
f: 901
|
|
f: 905
|
|
f: 908
|
|
f: 911
|
|
f: 915
|
|
f: 918
|
|
f: 921
|
|
f: 925
|
|
f: 929
|
|
f: 932
|
|
f: 934
|
|
f: 937
|
|
f: 940
|
|
f: 943
|
|
f: 946
|
|
f: 950
|
|
f: 953
|
|
f: 956
|
|
f: 961
|
|
f: 965
|
|
f: 969
|
|
f: 973
|
|
f: 976
|
|
f: 980
|
|
f: 982
|
|
f: 985
|
|
f: 990
|
|
f: 994
|
|
f: 997
|
|
f: 1001
|
|
f: 1005
|
|
f: 1007
|
|
f: 1010
|
|
f: 1014
|
|
f: 1018
|
|
f: 1022
|
|
f: 1025
|
|
f: 1028
|
|
f: 1033
|
|
f: 1035
|
|
f: 1038
|
|
f: 1042
|
|
f: 1047
|
|
f: 1052
|
|
f: 1056
|
|
f: 1060
|
|
f: 1063
|
|
f: 1067
|
|
f: 1071
|
|
f: 1075
|
|
f: 1079
|
|
f: 1083
|
|
f: 1086
|
|
f: 1088
|
|
f: 1092
|
|
f: 1097
|
|
f: 1102
|
|
f: 1106
|
|
f: 1109
|
|
f: 1113
|
|
f: 1117
|
|
f: 1120
|
|
f: 1125
|
|
f: 1129
|
|
f: 1134
|
|
f: 1137
|
|
f: 1142
|
|
f: 1146
|
|
f: 1150
|
|
f: 1151
|
|
f: 1155
|
|
f: 1159
|
|
f: 1162
|
|
f: 1166
|
|
f: 1170
|
|
f: 1174
|
|
f: 1177
|
|
f: 1181
|
|
f: 1185
|
|
f: 1188
|
|
f: 1193
|
|
f: 1196
|
|
f: 1203
|
|
f: 1207
|
|
f: 1212
|
|
f: 1214
|
|
f: 1217
|
|
f: 1220
|
|
f: 1222
|
|
f: 1222
|
|
f: 1226
|
|
f: 1229
|
|
f: 1233
|
|
f: 1237
|
|
f: 1241
|
|
f: 1246
|
|
f: 1250
|
|
f: 1253
|
|
f: 1257
|
|
f: 1262
|
|
f: 1267
|
|
f: 1272
|
|
f: 1278
|
|
f: 1283
|
|
f: 1287
|
|
f: 1293
|
|
f: 1297
|
|
f: 1301
|
|
f: 1304
|
|
f: 1309
|
|
f: 1315
|
|
f: 1320
|
|
f: 1325
|
|
f: 1329
|
|
f: 1333
|
|
f: 1336
|
|
f: 1341
|
|
f: 1344
|
|
f: 1348
|
|
f: 1351
|
|
f: 1357
|
|
f: 1363
|
|
f: 1368
|
|
f: 1374
|
|
f: 1379
|
|
f: 1383
|
|
f: 1386
|
|
f: 1391
|
|
f: 1395
|
|
f: 1399
|
|
f: 1403
|
|
f: 1407
|
|
f: 1410
|
|
f: 1415
|
|
f: 1418
|
|
f: 1423
|
|
f: 1428
|
|
f: 1432
|
|
f: 1436
|
|
f: 1438
|
|
f: 1442
|
|
f: 1446
|
|
f: 1450
|
|
f: 1454
|
|
f: 1462
|
|
f: 1467
|
|
f: 1472
|
|
f: 1477
|
|
f: 1483
|
|
f: 1488
|
|
f: 1492
|
|
f: 1496
|
|
f: 1503
|
|
f: 1508
|
|
f: 1513
|
|
f: 1518
|
|
f: 1520
|
|
f: 1526
|
|
f: 1531
|
|
f: 1534
|
|
f: 1538
|
|
f: 1542
|
|
f: 1546
|
|
f: 1552
|
|
f: 1558
|
|
f: 1564
|
|
f: 1568
|
|
f: 1573
|
|
f: 1578
|
|
f: 1581
|
|
f: 1590
|
|
f: 1596
|
|
f: 1601
|
|
f: 1606
|
|
f: 1611
|
|
f: 1616
|
|
f: 1622
|
|
f: 1629
|
|
f: 1634
|
|
f: 1640
|
|
f: 1647
|
|
f: 1651
|
|
f: 1657
|
|
f: 1660
|
|
f: 1665
|
|
f: 1672
|
|
f: 1678
|
|
f: 1686
|
|
f: 1692
|
|
f: 1698
|
|
f: 1704
|
|
f: 1709
|
|
f: 1714
|
|
f: 1719
|
|
f: 1724
|
|
f: 1730
|
|
f: 1737
|
|
f: 1744
|
|
f: 1751
|
|
f: 1755
|
|
f: 1761
|
|
f: 1764
|
|
f: 1772
|
|
f: 1778
|
|
f: 1784
|
|
f: 1789
|
|
f: 1799
|
|
f: 1804
|
|
f: 1811
|
|
f: 1819
|
|
f: 1825
|
|
f: 1830
|
|
f: 1838
|
|
f: 1849
|
|
f: 1858
|
|
f: 1862
|
|
f: 1868
|
|
f: 1872
|
|
f: 1878
|
|
f: 1885
|
|
f: 1888
|
|
f: 1892
|
|
f: 1897
|
|
f: 1902
|
|
f: 1907
|
|
f: 1919
|
|
f: 1926
|
|
f: 1932
|
|
f: 1936
|
|
f: 1941
|
|
f: 1946
|
|
f: 1952
|
|
f: 1960
|
|
f: 1968
|
|
f: 1977
|
|
f: 1985
|
|
f: 1992
|
|
f: 1997
|
|
f: 2006
|
|
f: 2012
|
|
f: 2018
|
|
f: 2026
|
|
f: 2034
|
|
f: 2044
|
|
f: 2050
|
|
f: 2057
|
|
f: 2064
|
|
f: 2069
|
|
f: 2075
|
|
f: 2082
|
|
f: 2091
|
|
f: 2098
|
|
f: 2107
|
|
f: 2122
|
|
f: 2126
|
|
f: 2135
|
|
f: 2146
|
|
f: 2149
|
|
f: 2157
|
|
f: 2163
|
|
f: 2172
|
|
f: 2178
|
|
f: 2184
|
|
f: 2191
|
|
f: 2198
|
|
f: 2208
|
|
f: 2216
|
|
f: 2223
|
|
f: 2235
|
|
f: 2242
|
|
f: 2252
|
|
f: 2263
|
|
f: 2272
|
|
f: 2277
|
|
f: 2288
|
|
f: 2296
|
|
f: 2306
|
|
f: 2311
|
|
f: 2318
|
|
f: 2323
|
|
f: 2334
|
|
f: 2341
|
|
f: 2356
|
|
f: 2366
|
|
f: 2373
|
|
f: 2379
|
|
f: 2386
|
|
f: 2407
|
|
f: 2416
|
|
f: 2423
|
|
f: 2432
|
|
f: 2438
|
|
f: 2448
|
|
f: 2453
|
|
f: 2464
|
|
f: 2473
|
|
f: 2473
|
|
f: 2481
|
|
f: 2492
|
|
f: 2504
|
|
f: 2511
|
|
f: 2523
|
|
f: 2529
|
|
f: 2537
|
|
f: 2545
|
|
f: 2556
|
|
f: 2566
|
|
f: 2575
|
|
f: 2584
|
|
f: 2592
|
|
f: 2602
|
|
f: 2613
|
|
f: 2624
|
|
f: 2636
|
|
f: 2643
|
|
f: 2647
|
|
f: 2652
|
|
f: 2664
|
|
f: 2675
|
|
f: 2688
|
|
f: 2693
|
|
f: 2702
|
|
f: 2709
|
|
f: 2722
|
|
f: 2739
|
|
f: 2754
|
|
f: 2766
|
|
f: 2776
|
|
f: 2786
|
|
f: 2799
|
|
f: 2810
|
|
f: 2832
|
|
f: 2840
|
|
f: 2849
|
|
f: 2860
|
|
f: 2873
|
|
f: 2889
|
|
f: 2908
|
|
f: 2914
|
|
f: 2926
|
|
f: 2939
|
|
f: 2950
|
|
f: 2961
|
|
f: 2969
|
|
f: 2978
|
|
f: 2990
|
|
f: 2999
|
|
f: 3023
|
|
f: 3032
|
|
f: 3049
|
|
f: 3066
|
|
f: 3085
|
|
f: 3101
|
|
f: 3107
|
|
f: 3117
|
|
f: 3129
|
|
f: 3144
|
|
f: 3167
|
|
f: 3190
|
|
f: 3212
|
|
f: 3229
|
|
f: 3238
|
|
f: 3264
|
|
f: 3293
|
|
f: 3302
|
|
f: 3309
|
|
f: 3314
|
|
f: 3323
|
|
f: 3344
|
|
f: 3352
|
|
f: 3362
|
|
f: 3390
|
|
f: 3400
|
|
f: 3411
|
|
f: 3435
|
|
f: 3456
|
|
f: 3470
|
|
f: 3485
|
|
f: 3498
|
|
f: 3505
|
|
f: 3519
|
|
f: 3539
|
|
f: 3545
|
|
f: 3545
|
|
f: 3560
|
|
f: 3576
|
|
f: 3597
|
|
f: 3607
|
|
f: 3621
|
|
f: 3641
|
|
f: 3665
|
|
f: 3679
|
|
f: 3701
|
|
f: 3714
|
|
f: 3733
|
|
f: 3741
|
|
f: 3745
|
|
f: 3757
|
|
f: 3773
|
|
f: 3787
|
|
f: 3795
|
|
f: 3805
|
|
f: 3822
|
|
f: 3835
|
|
f: 3844
|
|
f: 3861
|
|
f: 3872
|
|
f: 3878
|
|
f: 3897
|
|
f: 3919
|
|
f: 3941
|
|
f: 3971
|
|
f: 4004
|
|
f: 4014
|
|
f: 4019
|
|
f: 4061
|
|
f: 4068
|
|
f: 4089
|
|
f: 4108
|
|
f: 4117
|
|
f: 4125
|
|
f: 4146
|
|
f: 4165
|
|
f: 4194
|
|
f: 4204
|
|
f: 4224
|
|
f: 4236
|
|
f: 4263
|
|
f: 4290
|
|
f: 4301
|
|
f: 4319
|
|
f: 4326
|
|
f: 4347
|
|
f: 4369
|
|
f: 4386
|
|
f: 4413
|
|
f: 4435
|
|
f: 4451
|
|
f: 4451
|
|
f: 4451
|
|
f: 4476
|
|
f: 4500
|
|
f: 4539
|
|
f: 4579
|
|
f: 4592
|
|
f: 4600
|
|
f: 4622
|
|
f: 4650
|
|
f: 4683
|
|
f: 4714
|
|
f: 4742
|
|
f: 4755
|
|
f: 4771
|
|
f: 4788
|
|
f: 4816
|
|
f: 4828
|
|
f: 4831
|
|
f: 4831
|
|
f: 4831
|
|
f: 4843
|
|
f: 4852
|
|
f: 4865
|
|
f: 4896
|
|
f: 4915
|
|
f: 4931
|
|
f: 4952
|
|
f: 4965
|
|
f: 4983
|
|
f: 5007
|
|
f: 5043
|
|
f: 5061
|
|
f: 5081
|
|
f: 5095
|
|
f: 5122
|
|
f: 5143
|
|
f: 5171
|
|
f: 5204
|
|
f: 5226
|
|
f: 5233
|
|
f: 5250
|
|
f: 5281
|
|
f: 5320
|
|
f: 5323
|
|
f: 5328
|
|
f: 5345
|
|
f: 5374
|
|
f: 5413
|
|
f: 5466
|
|
f: 5492
|
|
f: 5524
|
|
f: 5555
|
|
f: 5567
|
|
f: 5610
|
|
f: 5676
|
|
f: 5701
|
|
f: 5716
|
|
f: 5744
|
|
f: 5768
|
|
f: 5795
|
|
f: 5818
|
|
f: 5854
|
|
f: 5906
|
|
f: 5934
|
|
f: 5960
|
|
f: 5975
|
|
f: 5993
|
|
f: 6025
|
|
f: 6034
|
|
f: 6051
|
|
f: 6082
|
|
f: 6106
|
|
f: 6125
|
|
f: 6159
|
|
f: 6187
|
|
f: 6242
|
|
f: 6287
|
|
f: 6311
|
|
f: 6332
|
|
f: 6348
|
|
f: 6358
|
|
f: 6368
|
|
f: 6377
|
|
f: 6402
|
|
f: 6407
|
|
f: 6428
|
|
f: 6450
|
|
f: 6475
|
|
f: 6498
|
|
f: 6505
|
|
f: 6533
|
|
f: 6565
|
|
f: 6580
|
|
f: 6595
|
|
f: 6611
|
|
f: 6654
|
|
f: 6658
|
|
f: 6705
|
|
f: 6751
|
|
f: 6786
|
|
f: 6828
|
|
f: 6876
|
|
f: 6896
|
|
f: 6948
|
|
f: 6964
|
|
f: 7065
|
|
f: 7082
|
|
f: 7118
|
|
f: 7184
|
|
f: 7214
|
|
f: 7271
|
|
f: 7310
|
|
f: 7357
|
|
f: 7405
|
|
f: 7506
|
|
f: 7613
|
|
f: 7641
|
|
f: 7675
|
|
f: 7720
|
|
f: 7781
|
|
f: 7833
|
|
f: 7860
|
|
f: 7898
|
|
f: 7929
|
|
f: 8044
|
|
f: 8104
|
|
f: 8148
|
|
f: 8236
|
|
f: 8273
|
|
f: 8313
|
|
f: 8349
|
|
f: 8381
|
|
f: 8409
|
|
f: 8498
|
|
f: 8507
|
|
f: 8524
|
|
f: 8570
|
|
f: 8607
|
|
f: 8630
|
|
f: 8637
|
|
f: 8675
|
|
f: 8700
|
|
f: 8714
|
|
f: 8734
|
|
f: 8776
|
|
f: 8836
|
|
f: 8854
|
|
f: 8867
|
|
f: 8868
|
|
f: 9065
|
|
f: 9113
|
|
f: 9121
|
|
f: 9241
|
|
f: 9357
|
|
f: 9360
|
|
f: 9585
|
|
f: 9613
|
|
f: 9684
|
|
f: 9727
|
|
f: 9751
|
|
f: 9777
|
|
f: 9802
|
|
f: 9889
|
|
f: 9903
|
|
f: 9914
|
|
f: 9978
|
|
f: 10061
|
|
f: 10192
|
|
f: 10213
|
|
f: 10345
|
|
f: 10369
|
|
f: 10404
|
|
f: 10430
|
|
f: 10471
|
|
f: 10481
|
|
f: 10489
|
|
f: 10492
|
|
f: 10494
|
|
f: 10524
|
|
f: 10554
|
|
f: 10557
|
|
f: 10560
|
|
f: 10562
|
|
f: 10641
|
|
f: 10716
|
|
f: 10842
|
|
f: 10897
|
|
f: 10967
|
|
f: 11053
|
|
f: 11128
|
|
f: 11137
|
|
f: 11328
|
|
f: 11336
|
|
f: 11401
|
|
f: 11532
|
|
f: 11573
|
|
f: 11860
|
|
f: 11880
|
|
f: 12013
|
|
f: 12305
|
|
f: 12358
|
|
f: 12386
|
|
f: 12404
|
|
f: 12456
|
|
f: 12456
|
|
f: 12476
|
|
f: 12615
|
|
f: 12677
|
|
f: 12981
|
|
f: 13094
|
|
f: 13197
|
|
f: 13708
|
|
f: 13717
|
|
f: 13788
|
|
f: 14049
|
|
f: 14112
|
|
f: 14224
|
|
f: 14257
|
|
f: 14681
|
|
f: 14901
|
|
f: 15006
|
|
f: 15071
|
|
f: 15100
|
|
f: 15248
|
|
f: 15669
|
|
f: 15877
|
|
f: 15953
|
|
f: 15953
|
|
f: 16066
|
|
f: 16072
|
|
f: 16271
|
|
f: 16292
|
|
f: 16386
|
|
f: 16490
|
|
f: 16633
|
|
f: 16670
|
|
f: 16834
|
|
f: 16896
|
|
f: 17543
|
|
f: 17693
|
|
f: 17800
|
|
f: 17859
|
|
f: 18397
|
|
f: 18811
|
|
f: 18826
|
|
f: 18971
|
|
f: 19304
|
|
f: 19319
|
|
f: 19695
|
|
f: 20378
|
|
f: 20865
|
|
f: 21313
|
|
f: 21330
|
|
f: 22321
|
|
f: 22760
|
|
f: 22770
|
|
f: 23783
|
|
f: 23785
|
|
f: 24525
|
|
f: 24844
|
|
f: 24848
|
|
f: 24964
|
|
f: 24966
|
|
f: 27468
|
|
f: 27478
|
|
f: 27555
|
|
f: 27555
|
|
f: 28215
|
|
f: 28219
|
|
f: 28336
|
|
f: 28490
|
|
f: 30213
|
|
f: 30228
|
|
f: 30242
|
|
f: 34116
|
|
f: 43518
|
|
f: 43518
|
|
f: 43518
|
|
f: 43852
|
|
f: 43852
|
|
f: 43852
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_10/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_10/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims/dim"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims/dim"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims"
|
|
op: "ExpandDims"
|
|
input: "time_step_14"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims/dim:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/Bucketize"
|
|
op: "Bucketize"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/expand_dims/ExpandDims:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "boundaries"
|
|
value {
|
|
list {
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 0
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 1
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 2
|
|
f: 3
|
|
f: 4
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/Bucketize"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/Cast"
|
|
op: "Cast"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/Bucketize:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/Cast"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/truediv/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
}
|
|
float_val: 999
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/truediv/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/truediv"
|
|
op: "RealDiv"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/Cast:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/truediv/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/truediv"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/Sqrt"
|
|
op: "Sqrt"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/Sqrt"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/mul"
|
|
op: "Mul"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/mul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/lambda_11/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/truediv:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/Sqrt:y:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/mul:z:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/lambda_11/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/concatenate/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: 1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/concatenate/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/concatenate/concat"
|
|
op: "ConcatV2"
|
|
input: "QNetwork/EncodingNetwork/lambda/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_1/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_2/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_3/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_4/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_5/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_6/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_7/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_8/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_9/zeros_like:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_10/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/lambda_11/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/concatenate/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 12
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 34
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/concatenate/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/flatten/Const"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
tensor_content: "\377\377\377\377\"\000\000\000"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/flatten/Const"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/flatten/Reshape"
|
|
op: "Reshape"
|
|
input: "QNetwork/EncodingNetwork/concatenate/concat:output:0"
|
|
input: "QNetwork/EncodingNetwork/flatten/Const:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 34
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/flatten/Reshape"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense/MatMul/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "qnetwork_encodingnetwork_dense_matmul_readvariableop_resource"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 34
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense/MatMul/ReadVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense/MatMul"
|
|
op: "MatMul"
|
|
input: "QNetwork/EncodingNetwork/flatten/Reshape:output:0"
|
|
input: "QNetwork/EncodingNetwork/dense/MatMul/ReadVariableOp:value:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense/MatMul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense/BiasAdd/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "qnetwork_encodingnetwork_dense_biasadd_readvariableop_resource"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense/BiasAdd/ReadVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense/BiasAdd"
|
|
op: "BiasAdd"
|
|
input: "QNetwork/EncodingNetwork/dense/MatMul:product:0"
|
|
input: "QNetwork/EncodingNetwork/dense/BiasAdd/ReadVariableOp:value:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense/BiasAdd"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense/Relu"
|
|
op: "Relu"
|
|
input: "QNetwork/EncodingNetwork/dense/BiasAdd:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense/Relu"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense_1/MatMul/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "qnetwork_encodingnetwork_dense_1_matmul_readvariableop_resource"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense_1/MatMul/ReadVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense_1/MatMul"
|
|
op: "MatMul"
|
|
input: "QNetwork/EncodingNetwork/dense/Relu:activations:0"
|
|
input: "QNetwork/EncodingNetwork/dense_1/MatMul/ReadVariableOp:value:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense_1/MatMul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense_1/BiasAdd/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "qnetwork_encodingnetwork_dense_1_biasadd_readvariableop_resource"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense_1/BiasAdd/ReadVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense_1/BiasAdd"
|
|
op: "BiasAdd"
|
|
input: "QNetwork/EncodingNetwork/dense_1/MatMul:product:0"
|
|
input: "QNetwork/EncodingNetwork/dense_1/BiasAdd/ReadVariableOp:value:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense_1/BiasAdd"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/EncodingNetwork/dense_1/Relu"
|
|
op: "Relu"
|
|
input: "QNetwork/EncodingNetwork/dense_1/BiasAdd:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/EncodingNetwork/dense_1/Relu"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/dense_2/MatMul/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "qnetwork_dense_2_matmul_readvariableop_resource"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/dense_2/MatMul/ReadVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/dense_2/MatMul"
|
|
op: "MatMul"
|
|
input: "QNetwork/EncodingNetwork/dense_1/Relu:activations:0"
|
|
input: "QNetwork/dense_2/MatMul/ReadVariableOp:value:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/dense_2/MatMul"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/dense_2/BiasAdd/ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "qnetwork_dense_2_biasadd_readvariableop_resource"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/dense_2/BiasAdd/ReadVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "QNetwork/dense_2/BiasAdd"
|
|
op: "BiasAdd"
|
|
input: "QNetwork/dense_2/MatMul:product:0"
|
|
input: "QNetwork/dense_2/BiasAdd/ReadVariableOp:value:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "QNetwork/dense_2/BiasAdd"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "ShiftedCategorical_1/mode/ArgMax/dimension"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: -1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "ShiftedCategorical_1/mode/ArgMax/dimension"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "ShiftedCategorical_1/mode/ArgMax"
|
|
op: "ArgMax"
|
|
input: "QNetwork/dense_2/BiasAdd:output:0"
|
|
input: "ShiftedCategorical_1/mode/ArgMax/dimension:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "ShiftedCategorical_1/mode/ArgMax"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "add/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
}
|
|
int64_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "add/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "add"
|
|
op: "AddV2"
|
|
input: "ShiftedCategorical_1/mode/ArgMax:output:0"
|
|
input: "add/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "add"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic/atol"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
}
|
|
int64_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic/atol"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic/rtol"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
}
|
|
int64_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic/rtol"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/sample_shape/x"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/sample_shape/x"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/sample_shape"
|
|
op: "Cast"
|
|
input: "Deterministic_1/sample/sample_shape/x:output:0"
|
|
attr {
|
|
key: "DstT"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "SrcT"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/sample_shape"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/Shape"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
int_val: 1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/Shape"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/Shape_1"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/Shape_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/Shape_2"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/Shape_2"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/BroadcastArgs"
|
|
op: "BroadcastArgs"
|
|
input: "Deterministic_1/sample/Shape_1:output:0"
|
|
input: "Deterministic_1/sample/Shape_2:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/BroadcastArgs"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/BroadcastArgs_1"
|
|
op: "BroadcastArgs"
|
|
input: "Deterministic_1/sample/Shape:output:0"
|
|
input: "Deterministic_1/sample/BroadcastArgs:r0:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/BroadcastArgs_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/Const"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/Const"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/concat/values_0"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
int_val: 1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/concat/values_0"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/concat/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/concat/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/concat"
|
|
op: "ConcatV2"
|
|
input: "Deterministic_1/sample/concat/values_0:output:0"
|
|
input: "Deterministic_1/sample/BroadcastArgs_1:r0:0"
|
|
input: "Deterministic_1/sample/Const:output:0"
|
|
input: "Deterministic_1/sample/concat/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 3
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/concat"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/BroadcastTo"
|
|
op: "BroadcastTo"
|
|
input: "add:z:0"
|
|
input: "Deterministic_1/sample/concat:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/BroadcastTo"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/Shape_3"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
tensor_content: "\001\000\000\000\001\000\000\000"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/Shape_3"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/strided_slice/stack"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
int_val: 1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/strided_slice/stack"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/strided_slice/stack_1"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
int_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/strided_slice/stack_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/strided_slice/stack_2"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
int_val: 1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/strided_slice/stack_2"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/strided_slice"
|
|
op: "StridedSlice"
|
|
input: "Deterministic_1/sample/Shape_3:output:0"
|
|
input: "Deterministic_1/sample/strided_slice/stack:output:0"
|
|
input: "Deterministic_1/sample/strided_slice/stack_1:output:0"
|
|
input: "Deterministic_1/sample/strided_slice/stack_2:output:0"
|
|
attr {
|
|
key: "Index"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "end_mask"
|
|
value {
|
|
i: 1
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/strided_slice"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/concat_1/axis"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/concat_1/axis"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/concat_1"
|
|
op: "ConcatV2"
|
|
input: "Deterministic_1/sample/sample_shape:y:0"
|
|
input: "Deterministic_1/sample/strided_slice:output:0"
|
|
input: "Deterministic_1/sample/concat_1/axis:output:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 2
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/concat_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Deterministic_1/sample/Reshape"
|
|
op: "Reshape"
|
|
input: "Deterministic_1/sample/BroadcastTo:output:0"
|
|
input: "Deterministic_1/sample/concat_1:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Deterministic_1/sample/Reshape"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "clip_by_value/Minimum/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
}
|
|
int64_val: 1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "clip_by_value/Minimum/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "clip_by_value/Minimum"
|
|
op: "Minimum"
|
|
input: "Deterministic_1/sample/Reshape:output:0"
|
|
input: "clip_by_value/Minimum/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "clip_by_value/Minimum"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "clip_by_value/y"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
}
|
|
int64_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "clip_by_value/y"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "clip_by_value"
|
|
op: "Maximum"
|
|
input: "clip_by_value/Minimum:z:0"
|
|
input: "clip_by_value/y:output:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "clip_by_value"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "clip_by_value:z:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 8
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 9
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 10
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 11
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 12
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 13
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 14
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 15
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 16
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 17
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 18
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 19
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 20
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_signature_wrapper_4619033"
|
|
}
|
|
node_def {
|
|
name: "PartitionedCall"
|
|
op: "PartitionedCall"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_function_with_signature_4619029"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "PartitionedCall"
|
|
}
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference__traced_save_4619143"
|
|
input_arg {
|
|
name: "file_prefix"
|
|
type: DT_STRING
|
|
}
|
|
input_arg {
|
|
name: "savev2_train_step_read_readvariableop"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "savev2_qnetwork_encodingnetwork_dense_kernel_read_readvariableop"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "savev2_qnetwork_encodingnetwork_dense_bias_read_readvariableop"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "savev2_qnetwork_encodingnetwork_dense_1_kernel_read_readvariableop"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "savev2_qnetwork_encodingnetwork_dense_1_bias_read_readvariableop"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "savev2_qnetwork_dense_2_kernel_read_readvariableop"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "savev2_qnetwork_dense_2_bias_read_readvariableop"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "savev2_1_const"
|
|
type: DT_STRING
|
|
}
|
|
output_arg {
|
|
name: "identity_1"
|
|
type: DT_STRING
|
|
}
|
|
is_stateful: true
|
|
control_output: "MergeV2Checkpoints"
|
|
control_output: "SaveV2"
|
|
control_output: "SaveV2_1"
|
|
}
|
|
node_def {
|
|
name: "StaticRegexFullMatch"
|
|
op: "StaticRegexFullMatch"
|
|
input: "file_prefix"
|
|
device: "/device:CPU:*"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "pattern"
|
|
value {
|
|
s: "^s3://.*"
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StaticRegexFullMatch"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Const"
|
|
op: "Const"
|
|
device: "/device:CPU:*"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
}
|
|
string_val: ".part"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Const"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Const_1"
|
|
op: "Const"
|
|
device: "/device:CPU:*"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
}
|
|
string_val: "_temp_f4c8d2e64931472295be68a11e57e937/part"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Const_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Select"
|
|
op: "Select"
|
|
input: "StaticRegexFullMatch:output:0"
|
|
input: "Const:output:0"
|
|
input: "Const_1:output:0"
|
|
device: "/device:CPU:*"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Select"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "StringJoin"
|
|
op: "StringJoin"
|
|
input: "file_prefix"
|
|
input: "Select:output:0"
|
|
device: "/device:CPU:*"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 2
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StringJoin"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "num_shards"
|
|
op: "Const"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: 2
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "num_shards"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "ShardedFilename/shard"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: 0
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "ShardedFilename/shard"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "ShardedFilename"
|
|
op: "ShardedFilename"
|
|
input: "StringJoin:output:0"
|
|
input: "ShardedFilename/shard:output:0"
|
|
input: "num_shards:output:0"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "ShardedFilename"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "SaveV2/tensor_names"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
string_val: "train_step/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/0/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/1/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/2/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/3/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/4/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/5/.ATTRIBUTES/VARIABLE_VALUE"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "SaveV2/tensor_names"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "SaveV2/shape_and_slices"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "SaveV2/shape_and_slices"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "SaveV2"
|
|
op: "SaveV2"
|
|
input: "ShardedFilename:filename:0"
|
|
input: "SaveV2/tensor_names:output:0"
|
|
input: "SaveV2/shape_and_slices:output:0"
|
|
input: "savev2_train_step_read_readvariableop"
|
|
input: "savev2_qnetwork_encodingnetwork_dense_kernel_read_readvariableop"
|
|
input: "savev2_qnetwork_encodingnetwork_dense_bias_read_readvariableop"
|
|
input: "savev2_qnetwork_encodingnetwork_dense_1_kernel_read_readvariableop"
|
|
input: "savev2_qnetwork_encodingnetwork_dense_1_bias_read_readvariableop"
|
|
input: "savev2_qnetwork_dense_2_kernel_read_readvariableop"
|
|
input: "savev2_qnetwork_dense_2_bias_read_readvariableop"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtypes"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "SaveV2"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "ShardedFilename_1/shard"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
}
|
|
int_val: 1
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "ShardedFilename_1/shard"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "ShardedFilename_1"
|
|
op: "ShardedFilename"
|
|
input: "StringJoin:output:0"
|
|
input: "ShardedFilename_1/shard:output:0"
|
|
input: "num_shards:output:0"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "ShardedFilename_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "SaveV2_1/tensor_names"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
string_val: "_CHECKPOINTABLE_OBJECT_GRAPH"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "SaveV2_1/tensor_names"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "SaveV2_1/shape_and_slices"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
string_val: ""
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "SaveV2_1/shape_and_slices"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "SaveV2_1"
|
|
op: "SaveV2"
|
|
input: "ShardedFilename_1:filename:0"
|
|
input: "SaveV2_1/tensor_names:output:0"
|
|
input: "SaveV2_1/shape_and_slices:output:0"
|
|
input: "savev2_1_const"
|
|
input: "^SaveV2"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtypes"
|
|
value {
|
|
list {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "SaveV2_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "MergeV2Checkpoints/checkpoint_prefixes"
|
|
op: "Pack"
|
|
input: "ShardedFilename:filename:0"
|
|
input: "ShardedFilename_1:filename:0"
|
|
input: "^SaveV2"
|
|
input: "^SaveV2_1"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "N"
|
|
value {
|
|
i: 2
|
|
}
|
|
}
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "MergeV2Checkpoints/checkpoint_prefixes"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "MergeV2Checkpoints"
|
|
op: "MergeV2Checkpoints"
|
|
input: "MergeV2Checkpoints/checkpoint_prefixes:output:0"
|
|
input: "file_prefix"
|
|
input: "^SaveV2_1"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "MergeV2Checkpoints"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "file_prefix"
|
|
input: "^MergeV2Checkpoints"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_1"
|
|
op: "Identity"
|
|
input: "Identity:output:0"
|
|
input: "^MergeV2Checkpoints"
|
|
input: "^SaveV2"
|
|
input: "^SaveV2_1"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_1"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity_1"
|
|
value: "Identity_1:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
shape {
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 34
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "MergeV2Checkpoints"
|
|
value: "MergeV2Checkpoints"
|
|
}
|
|
control_ret {
|
|
key: "SaveV2"
|
|
value: "SaveV2"
|
|
}
|
|
control_ret {
|
|
key: "SaveV2_1"
|
|
value: "SaveV2_1"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "file_prefix"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 34
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 8
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_function_722"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_signature_wrapper_4619026"
|
|
input_arg {
|
|
name: "callee_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callee_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callee_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callsite_height"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "cost_estimate"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "discount"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "edge_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "inlining_default"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "node_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "nr_ctant_params"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "reward"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "step_type"
|
|
type: DT_INT32
|
|
}
|
|
input_arg {
|
|
name: "unknown"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_0"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_1"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_2"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_3"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_4"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
control_output: "StatefulPartitionedCall"
|
|
}
|
|
node_def {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "step_type"
|
|
input: "reward"
|
|
input: "discount"
|
|
input: "callee_basic_block_count"
|
|
input: "callee_conditionally_executed_blocks"
|
|
input: "callee_users"
|
|
input: "caller_basic_block_count"
|
|
input: "caller_conditionally_executed_blocks"
|
|
input: "caller_users"
|
|
input: "callsite_height"
|
|
input: "cost_estimate"
|
|
input: "edge_count"
|
|
input: "inlining_default"
|
|
input: "node_count"
|
|
input: "nr_ctant_params"
|
|
input: "unknown"
|
|
input: "unknown_0"
|
|
input: "unknown_1"
|
|
input: "unknown_2"
|
|
input: "unknown_3"
|
|
input: "unknown_4"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_INT32
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 15
|
|
i: 16
|
|
i: 17
|
|
i: 18
|
|
i: 19
|
|
i: 20
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_function_with_signature_4618993"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StatefulPartitionedCall"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "StatefulPartitionedCall:output:0"
|
|
input: "^StatefulPartitionedCall"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "StatefulPartitionedCall"
|
|
value: "StatefulPartitionedCall"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callsite_height"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "cost_estimate"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 8
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "discount"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 9
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "edge_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 10
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "inlining_default"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 11
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "node_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 12
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "nr_ctant_params"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 13
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "reward"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 14
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "step_type"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 15
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 16
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 17
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 18
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 19
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 20
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_function_with_signature_4618993"
|
|
input_arg {
|
|
name: "step_type"
|
|
type: DT_INT32
|
|
}
|
|
input_arg {
|
|
name: "reward"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "discount"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "callee_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callee_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callee_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callsite_height"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "cost_estimate"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "edge_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "inlining_default"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "node_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "nr_ctant_params"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "unknown"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_0"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_1"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_2"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_3"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_4"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
control_output: "StatefulPartitionedCall"
|
|
}
|
|
node_def {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "step_type"
|
|
input: "reward"
|
|
input: "discount"
|
|
input: "callee_basic_block_count"
|
|
input: "callee_conditionally_executed_blocks"
|
|
input: "callee_users"
|
|
input: "caller_basic_block_count"
|
|
input: "caller_conditionally_executed_blocks"
|
|
input: "caller_users"
|
|
input: "callsite_height"
|
|
input: "cost_estimate"
|
|
input: "edge_count"
|
|
input: "inlining_default"
|
|
input: "node_count"
|
|
input: "nr_ctant_params"
|
|
input: "unknown"
|
|
input: "unknown_0"
|
|
input: "unknown_1"
|
|
input: "unknown_2"
|
|
input: "unknown_3"
|
|
input: "unknown_4"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_INT32
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 15
|
|
i: 16
|
|
i: 17
|
|
i: 18
|
|
i: 19
|
|
i: 20
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_polymorphic_action_fn_4618978"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StatefulPartitionedCall"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "StatefulPartitionedCall:output:0"
|
|
input: "^StatefulPartitionedCall"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "StatefulPartitionedCall"
|
|
value: "StatefulPartitionedCall"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "step_type"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "reward"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "discount"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 8
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 9
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callsite_height"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 10
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "cost_estimate"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 11
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "edge_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 12
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "inlining_default"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 13
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "node_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 14
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "nr_ctant_params"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 15
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 16
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 17
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 18
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 19
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 20
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_polymorphic_action_fn_4619080"
|
|
input_arg {
|
|
name: "time_step_step_type"
|
|
type: DT_INT32
|
|
}
|
|
input_arg {
|
|
name: "time_step_reward"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "time_step_discount"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_callee_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_callee_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_callee_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_caller_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_caller_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_caller_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_callsite_height"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_cost_estimate"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_edge_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_inlining_default"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_node_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_observation_nr_ctant_params"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "unknown"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_0"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_1"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_2"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_3"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_4"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
control_output: "StatefulPartitionedCall"
|
|
}
|
|
node_def {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "time_step_step_type"
|
|
input: "time_step_reward"
|
|
input: "time_step_discount"
|
|
input: "time_step_observation_callee_basic_block_count"
|
|
input: "time_step_observation_callee_conditionally_executed_blocks"
|
|
input: "time_step_observation_callee_users"
|
|
input: "time_step_observation_caller_basic_block_count"
|
|
input: "time_step_observation_caller_conditionally_executed_blocks"
|
|
input: "time_step_observation_caller_users"
|
|
input: "time_step_observation_callsite_height"
|
|
input: "time_step_observation_cost_estimate"
|
|
input: "time_step_observation_edge_count"
|
|
input: "time_step_observation_inlining_default"
|
|
input: "time_step_observation_node_count"
|
|
input: "time_step_observation_nr_ctant_params"
|
|
input: "unknown"
|
|
input: "unknown_0"
|
|
input: "unknown_1"
|
|
input: "unknown_2"
|
|
input: "unknown_3"
|
|
input: "unknown_4"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_INT32
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 15
|
|
i: 16
|
|
i: 17
|
|
i: 18
|
|
i: 19
|
|
i: 20
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_action_931"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StatefulPartitionedCall"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "StatefulPartitionedCall:output:0"
|
|
input: "^StatefulPartitionedCall"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "StatefulPartitionedCall"
|
|
value: "StatefulPartitionedCall"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/step_type"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/reward"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/discount"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/callee_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/callee_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/callee_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/caller_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/caller_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 8
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/caller_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 9
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/callsite_height"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 10
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/cost_estimate"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 11
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/edge_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 12
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/inlining_default"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 13
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/node_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 14
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step/observation/nr_ctant_params"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 15
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 16
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 17
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 18
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 19
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 20
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_function_with_signature_4619040"
|
|
input_arg {
|
|
name: "unknown"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
control_output: "StatefulPartitionedCall"
|
|
}
|
|
node_def {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "unknown"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 0
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_<lambda>_728"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StatefulPartitionedCall"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "StatefulPartitionedCall:output:0"
|
|
input: "^StatefulPartitionedCall"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "StatefulPartitionedCall"
|
|
value: "StatefulPartitionedCall"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_polymorphic_action_fn_4618978"
|
|
input_arg {
|
|
name: "time_step"
|
|
type: DT_INT32
|
|
}
|
|
input_arg {
|
|
name: "time_step_1"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "time_step_2"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "time_step_3"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_4"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_5"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_6"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_7"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_8"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_9"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_10"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_11"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_12"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_13"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "time_step_14"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "unknown"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_0"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_1"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_2"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_3"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_4"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
control_output: "StatefulPartitionedCall"
|
|
}
|
|
node_def {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "time_step"
|
|
input: "time_step_1"
|
|
input: "time_step_2"
|
|
input: "time_step_3"
|
|
input: "time_step_4"
|
|
input: "time_step_5"
|
|
input: "time_step_6"
|
|
input: "time_step_7"
|
|
input: "time_step_8"
|
|
input: "time_step_9"
|
|
input: "time_step_10"
|
|
input: "time_step_11"
|
|
input: "time_step_12"
|
|
input: "time_step_13"
|
|
input: "time_step_14"
|
|
input: "unknown"
|
|
input: "unknown_0"
|
|
input: "unknown_1"
|
|
input: "unknown_2"
|
|
input: "unknown_3"
|
|
input: "unknown_4"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_INT32
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 15
|
|
i: 16
|
|
i: 17
|
|
i: 18
|
|
i: 19
|
|
i: 20
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_action_931"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StatefulPartitionedCall"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "StatefulPartitionedCall:output:0"
|
|
input: "^StatefulPartitionedCall"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "StatefulPartitionedCall"
|
|
value: "StatefulPartitionedCall"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 8
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 9
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 10
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 11
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 12
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 13
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 14
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "time_step"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 15
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 16
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 17
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 18
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 19
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 20
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_polymorphic_action_fn_946"
|
|
input_arg {
|
|
name: "step_type"
|
|
type: DT_INT32
|
|
}
|
|
input_arg {
|
|
name: "reward"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "discount"
|
|
type: DT_FLOAT
|
|
}
|
|
input_arg {
|
|
name: "callee_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callee_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callee_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_basic_block_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_conditionally_executed_blocks"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "caller_users"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "callsite_height"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "cost_estimate"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "edge_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "inlining_default"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "node_count"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "nr_ctant_params"
|
|
type: DT_INT64
|
|
}
|
|
input_arg {
|
|
name: "unknown"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_0"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_1"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_2"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_3"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "unknown_4"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
control_output: "StatefulPartitionedCall"
|
|
}
|
|
node_def {
|
|
name: "StatefulPartitionedCall"
|
|
op: "StatefulPartitionedCall"
|
|
input: "step_type"
|
|
input: "reward"
|
|
input: "discount"
|
|
input: "callee_basic_block_count"
|
|
input: "callee_conditionally_executed_blocks"
|
|
input: "callee_users"
|
|
input: "caller_basic_block_count"
|
|
input: "caller_conditionally_executed_blocks"
|
|
input: "caller_users"
|
|
input: "callsite_height"
|
|
input: "cost_estimate"
|
|
input: "edge_count"
|
|
input: "inlining_default"
|
|
input: "node_count"
|
|
input: "nr_ctant_params"
|
|
input: "unknown"
|
|
input: "unknown_0"
|
|
input: "unknown_1"
|
|
input: "unknown_2"
|
|
input: "unknown_3"
|
|
input: "unknown_4"
|
|
attr {
|
|
key: "Tin"
|
|
value {
|
|
list {
|
|
type: DT_INT32
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_INT64
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
type: DT_RESOURCE
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "Tout"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_collective_manager_ids"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_read_only_resource_inputs"
|
|
value {
|
|
list {
|
|
i: 15
|
|
i: 16
|
|
i: 17
|
|
i: 18
|
|
i: 19
|
|
i: 20
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "config_proto"
|
|
value {
|
|
s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001"
|
|
}
|
|
}
|
|
attr {
|
|
key: "f"
|
|
value {
|
|
func {
|
|
name: "__inference_action_931"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "StatefulPartitionedCall"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "StatefulPartitionedCall:output:0"
|
|
input: "^StatefulPartitionedCall"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "StatefulPartitionedCall"
|
|
value: "StatefulPartitionedCall"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "step_type"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "reward"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "discount"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callee_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_basic_block_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_conditionally_executed_blocks"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 8
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "caller_users"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 9
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "callsite_height"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 10
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "cost_estimate"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 11
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "edge_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 12
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "inlining_default"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 13
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "node_count"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 14
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "nr_ctant_params"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 15
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 16
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 17
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 18
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 19
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 20
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference__traced_restore_4619176"
|
|
input_arg {
|
|
name: "file_prefix"
|
|
type: DT_STRING
|
|
}
|
|
input_arg {
|
|
name: "assignvariableop_train_step"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "assignvariableop_1_qnetwork_encodingnetwork_dense_kernel"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "assignvariableop_2_qnetwork_encodingnetwork_dense_bias"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "assignvariableop_3_qnetwork_encodingnetwork_dense_1_kernel"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "assignvariableop_4_qnetwork_encodingnetwork_dense_1_bias"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "assignvariableop_5_qnetwork_dense_2_kernel"
|
|
type: DT_RESOURCE
|
|
}
|
|
input_arg {
|
|
name: "assignvariableop_6_qnetwork_dense_2_bias"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity_8"
|
|
type: DT_STRING
|
|
}
|
|
is_stateful: true
|
|
control_output: "AssignVariableOp"
|
|
control_output: "AssignVariableOp_1"
|
|
control_output: "AssignVariableOp_2"
|
|
control_output: "AssignVariableOp_3"
|
|
control_output: "AssignVariableOp_4"
|
|
control_output: "AssignVariableOp_5"
|
|
control_output: "AssignVariableOp_6"
|
|
control_output: "RestoreV2"
|
|
control_output: "RestoreV2_1"
|
|
}
|
|
node_def {
|
|
name: "RestoreV2/tensor_names"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
string_val: "train_step/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/0/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/1/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/2/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/3/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/4/.ATTRIBUTES/VARIABLE_VALUE"
|
|
string_val: "model_variables/5/.ATTRIBUTES/VARIABLE_VALUE"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "RestoreV2/tensor_names"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "RestoreV2/shape_and_slices"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 7
|
|
}
|
|
}
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
string_val: ""
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "RestoreV2/shape_and_slices"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "RestoreV2"
|
|
op: "RestoreV2"
|
|
input: "file_prefix"
|
|
input: "RestoreV2/tensor_names:output:0"
|
|
input: "RestoreV2/shape_and_slices:output:0"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtypes"
|
|
value {
|
|
list {
|
|
type: DT_INT64
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "RestoreV2"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "RestoreV2:tensors:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "AssignVariableOp"
|
|
op: "AssignVariableOp"
|
|
input: "assignvariableop_train_step"
|
|
input: "Identity:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "AssignVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_1"
|
|
op: "Identity"
|
|
input: "RestoreV2:tensors:1"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "AssignVariableOp_1"
|
|
op: "AssignVariableOp"
|
|
input: "assignvariableop_1_qnetwork_encodingnetwork_dense_kernel"
|
|
input: "Identity_1:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "AssignVariableOp_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_2"
|
|
op: "Identity"
|
|
input: "RestoreV2:tensors:2"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_2"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "AssignVariableOp_2"
|
|
op: "AssignVariableOp"
|
|
input: "assignvariableop_2_qnetwork_encodingnetwork_dense_bias"
|
|
input: "Identity_2:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "AssignVariableOp_2"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_3"
|
|
op: "Identity"
|
|
input: "RestoreV2:tensors:3"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_3"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "AssignVariableOp_3"
|
|
op: "AssignVariableOp"
|
|
input: "assignvariableop_3_qnetwork_encodingnetwork_dense_1_kernel"
|
|
input: "Identity_3:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "AssignVariableOp_3"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_4"
|
|
op: "Identity"
|
|
input: "RestoreV2:tensors:4"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_4"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "AssignVariableOp_4"
|
|
op: "AssignVariableOp"
|
|
input: "assignvariableop_4_qnetwork_encodingnetwork_dense_1_bias"
|
|
input: "Identity_4:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "AssignVariableOp_4"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_5"
|
|
op: "Identity"
|
|
input: "RestoreV2:tensors:5"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_5"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "AssignVariableOp_5"
|
|
op: "AssignVariableOp"
|
|
input: "assignvariableop_5_qnetwork_dense_2_kernel"
|
|
input: "Identity_5:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "AssignVariableOp_5"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_6"
|
|
op: "Identity"
|
|
input: "RestoreV2:tensors:6"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_6"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "AssignVariableOp_6"
|
|
op: "AssignVariableOp"
|
|
input: "assignvariableop_6_qnetwork_dense_2_bias"
|
|
input: "Identity_6:output:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_FLOAT
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "AssignVariableOp_6"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "RestoreV2_1/tensor_names"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
string_val: "_CHECKPOINTABLE_OBJECT_GRAPH"
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "RestoreV2_1/tensor_names"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "RestoreV2_1/shape_and_slices"
|
|
op: "Const"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "value"
|
|
value {
|
|
tensor {
|
|
dtype: DT_STRING
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
string_val: ""
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "RestoreV2_1/shape_and_slices"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "RestoreV2_1"
|
|
op: "RestoreV2"
|
|
input: "file_prefix"
|
|
input: "RestoreV2_1/tensor_names:output:0"
|
|
input: "RestoreV2_1/shape_and_slices:output:0"
|
|
input: "^RestoreV2"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtypes"
|
|
value {
|
|
list {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "RestoreV2_1"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "NoOp"
|
|
op: "NoOp"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "NoOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_7"
|
|
op: "Identity"
|
|
input: "file_prefix"
|
|
input: "^AssignVariableOp"
|
|
input: "^AssignVariableOp_1"
|
|
input: "^AssignVariableOp_2"
|
|
input: "^AssignVariableOp_3"
|
|
input: "^AssignVariableOp_4"
|
|
input: "^AssignVariableOp_5"
|
|
input: "^AssignVariableOp_6"
|
|
input: "^NoOp"
|
|
device: "/device:CPU:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_7"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity_8"
|
|
op: "Identity"
|
|
input: "Identity_7:output:0"
|
|
input: "^AssignVariableOp"
|
|
input: "^AssignVariableOp_1"
|
|
input: "^AssignVariableOp_2"
|
|
input: "^AssignVariableOp_3"
|
|
input: "^AssignVariableOp_4"
|
|
input: "^AssignVariableOp_5"
|
|
input: "^AssignVariableOp_6"
|
|
input: "^RestoreV2"
|
|
input: "^RestoreV2_1"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_STRING
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity_8"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity_8"
|
|
value: "Identity_8:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
control_ret {
|
|
key: "AssignVariableOp"
|
|
value: "AssignVariableOp"
|
|
}
|
|
control_ret {
|
|
key: "AssignVariableOp_1"
|
|
value: "AssignVariableOp_1"
|
|
}
|
|
control_ret {
|
|
key: "AssignVariableOp_2"
|
|
value: "AssignVariableOp_2"
|
|
}
|
|
control_ret {
|
|
key: "AssignVariableOp_3"
|
|
value: "AssignVariableOp_3"
|
|
}
|
|
control_ret {
|
|
key: "AssignVariableOp_4"
|
|
value: "AssignVariableOp_4"
|
|
}
|
|
control_ret {
|
|
key: "AssignVariableOp_5"
|
|
value: "AssignVariableOp_5"
|
|
}
|
|
control_ret {
|
|
key: "AssignVariableOp_6"
|
|
value: "AssignVariableOp_6"
|
|
}
|
|
control_ret {
|
|
key: "RestoreV2"
|
|
value: "RestoreV2"
|
|
}
|
|
control_ret {
|
|
key: "RestoreV2_1"
|
|
value: "RestoreV2_1"
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "_user_specified_name"
|
|
value {
|
|
s: "file_prefix"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 1
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 2
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 3
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 4
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 5
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 6
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 7
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function {
|
|
signature {
|
|
name: "__inference_<lambda>_728"
|
|
input_arg {
|
|
name: "readvariableop_resource"
|
|
type: DT_RESOURCE
|
|
}
|
|
output_arg {
|
|
name: "identity"
|
|
type: DT_INT64
|
|
}
|
|
is_stateful: true
|
|
}
|
|
node_def {
|
|
name: "ReadVariableOp"
|
|
op: "ReadVariableOp"
|
|
input: "readvariableop_resource"
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
attr {
|
|
key: "dtype"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "ReadVariableOp"
|
|
}
|
|
}
|
|
node_def {
|
|
name: "Identity"
|
|
op: "Identity"
|
|
input: "ReadVariableOp:value:0"
|
|
attr {
|
|
key: "T"
|
|
value {
|
|
type: DT_INT64
|
|
}
|
|
}
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
experimental_debug_info {
|
|
original_node_names: "Identity"
|
|
}
|
|
}
|
|
ret {
|
|
key: "identity"
|
|
value: "Identity:output:0"
|
|
}
|
|
attr {
|
|
key: "_input_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
arg_attr {
|
|
key: 0
|
|
value {
|
|
attr {
|
|
key: "_output_shapes"
|
|
value {
|
|
list {
|
|
shape {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
versions {
|
|
producer: 357
|
|
min_consumer: 12
|
|
}
|
|
}
|
|
saver_def {
|
|
filename_tensor_name: "saver_filename:0"
|
|
save_tensor_name: "StatefulPartitionedCall_2:0"
|
|
restore_op_name: "StatefulPartitionedCall_3"
|
|
version: V2
|
|
}
|
|
collection_def {
|
|
key: "saved_model_main_op"
|
|
value {
|
|
node_list {
|
|
value: "NoOp"
|
|
}
|
|
}
|
|
}
|
|
signature_def {
|
|
key: "__saved_model_init_op"
|
|
value {
|
|
outputs {
|
|
key: "__saved_model_init_op"
|
|
value {
|
|
name: "NoOp"
|
|
tensor_shape {
|
|
unknown_rank: true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
signature_def {
|
|
key: "action"
|
|
value {
|
|
inputs {
|
|
key: "callee_basic_block_count"
|
|
value {
|
|
name: "action_callee_basic_block_count:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "callee_conditionally_executed_blocks"
|
|
value {
|
|
name: "action_callee_conditionally_executed_blocks:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "callee_users"
|
|
value {
|
|
name: "action_callee_users:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "caller_basic_block_count"
|
|
value {
|
|
name: "action_caller_basic_block_count:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "caller_conditionally_executed_blocks"
|
|
value {
|
|
name: "action_caller_conditionally_executed_blocks:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "caller_users"
|
|
value {
|
|
name: "action_caller_users:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "callsite_height"
|
|
value {
|
|
name: "action_callsite_height:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "cost_estimate"
|
|
value {
|
|
name: "action_cost_estimate:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "discount"
|
|
value {
|
|
name: "action_discount:0"
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "edge_count"
|
|
value {
|
|
name: "action_edge_count:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "inlining_default"
|
|
value {
|
|
name: "action_inlining_default:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "node_count"
|
|
value {
|
|
name: "action_node_count:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "nr_ctant_params"
|
|
value {
|
|
name: "action_nr_ctant_params:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "reward"
|
|
value {
|
|
name: "action_reward:0"
|
|
dtype: DT_FLOAT
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inputs {
|
|
key: "step_type"
|
|
value {
|
|
name: "action_step_type:0"
|
|
dtype: DT_INT32
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
outputs {
|
|
key: "inlining_decision"
|
|
value {
|
|
name: "StatefulPartitionedCall:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
method_name: "tensorflow/serving/predict"
|
|
}
|
|
}
|
|
signature_def {
|
|
key: "get_initial_state"
|
|
value {
|
|
method_name: "tensorflow/serving/predict"
|
|
}
|
|
}
|
|
signature_def {
|
|
key: "get_train_step"
|
|
value {
|
|
outputs {
|
|
key: "int64"
|
|
value {
|
|
name: "StatefulPartitionedCall_1:0"
|
|
dtype: DT_INT64
|
|
tensor_shape {
|
|
}
|
|
}
|
|
}
|
|
method_name: "tensorflow/serving/predict"
|
|
}
|
|
}
|
|
object_graph_def {
|
|
nodes {
|
|
children {
|
|
node_id: 1
|
|
local_name: "_time_step_spec"
|
|
}
|
|
children {
|
|
node_id: 2
|
|
local_name: "_trajectory_spec"
|
|
}
|
|
children {
|
|
node_id: 3
|
|
local_name: "_wrapped_policy"
|
|
}
|
|
children {
|
|
node_id: 4
|
|
local_name: "train_step"
|
|
}
|
|
children {
|
|
node_id: 5
|
|
local_name: "model_variables"
|
|
}
|
|
children {
|
|
node_id: 6
|
|
local_name: "signatures"
|
|
}
|
|
children {
|
|
node_id: 210
|
|
local_name: "action"
|
|
}
|
|
children {
|
|
node_id: 211
|
|
local_name: "get_initial_state"
|
|
}
|
|
children {
|
|
node_id: 212
|
|
local_name: "get_train_step"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 7
|
|
local_name: "observation"
|
|
}
|
|
children {
|
|
node_id: 7
|
|
local_name: "3"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_tuple_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 7
|
|
local_name: "observation"
|
|
}
|
|
children {
|
|
node_id: 7
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_tuple_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 8
|
|
local_name: "_q_network"
|
|
}
|
|
children {
|
|
node_id: 1
|
|
local_name: "_time_step_spec"
|
|
}
|
|
children {
|
|
node_id: 9
|
|
local_name: "_trajectory_spec"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
variable {
|
|
dtype: DT_INT64
|
|
shape {
|
|
}
|
|
name: "train_step"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 12
|
|
local_name: "2"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "3"
|
|
}
|
|
children {
|
|
node_id: 14
|
|
local_name: "4"
|
|
}
|
|
children {
|
|
node_id: 15
|
|
local_name: "5"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 213
|
|
local_name: "action"
|
|
}
|
|
children {
|
|
node_id: 214
|
|
local_name: "get_initial_state"
|
|
}
|
|
children {
|
|
node_id: 215
|
|
local_name: "get_train_step"
|
|
}
|
|
user_object {
|
|
identifier: "signature_map"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 16
|
|
local_name: "_input_tensor_spec"
|
|
}
|
|
children {
|
|
node_id: 17
|
|
local_name: "_encoder"
|
|
}
|
|
children {
|
|
node_id: 18
|
|
local_name: "_q_value_layer"
|
|
}
|
|
children {
|
|
node_id: 19
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 20
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 21
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 22
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 216
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 217
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_network"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"QNetwork\", \"name\": \"QNetwork\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"config\": {\"layer was saved without config\": true}, \"is_graph_network\": false}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 7
|
|
local_name: "observation"
|
|
}
|
|
children {
|
|
node_id: 7
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_tuple_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
variable {
|
|
dtype: DT_FLOAT
|
|
shape {
|
|
dim {
|
|
size: 34
|
|
}
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
trainable: true
|
|
name: "QNetwork/EncodingNetwork/dense/kernel"
|
|
}
|
|
}
|
|
nodes {
|
|
variable {
|
|
dtype: DT_FLOAT
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
}
|
|
trainable: true
|
|
name: "QNetwork/EncodingNetwork/dense/bias"
|
|
}
|
|
}
|
|
nodes {
|
|
variable {
|
|
dtype: DT_FLOAT
|
|
shape {
|
|
dim {
|
|
size: 100
|
|
}
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
trainable: true
|
|
name: "QNetwork/EncodingNetwork/dense_1/kernel"
|
|
}
|
|
}
|
|
nodes {
|
|
variable {
|
|
dtype: DT_FLOAT
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
}
|
|
trainable: true
|
|
name: "QNetwork/EncodingNetwork/dense_1/bias"
|
|
}
|
|
}
|
|
nodes {
|
|
variable {
|
|
dtype: DT_FLOAT
|
|
shape {
|
|
dim {
|
|
size: 40
|
|
}
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
trainable: true
|
|
name: "QNetwork/dense_2/kernel"
|
|
}
|
|
}
|
|
nodes {
|
|
variable {
|
|
dtype: DT_FLOAT
|
|
shape {
|
|
dim {
|
|
size: 2
|
|
}
|
|
}
|
|
trainable: true
|
|
name: "QNetwork/dense_2/bias"
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 23
|
|
local_name: "_input_tensor_spec"
|
|
}
|
|
children {
|
|
node_id: 24
|
|
local_name: "_preprocessing_nest"
|
|
}
|
|
children {
|
|
node_id: 25
|
|
local_name: "_flat_preprocessing_layers"
|
|
}
|
|
children {
|
|
node_id: 26
|
|
local_name: "_preprocessing_combiner"
|
|
}
|
|
children {
|
|
node_id: 27
|
|
local_name: "_postprocessing_layers"
|
|
}
|
|
children {
|
|
node_id: 28
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 29
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 30
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 31
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 218
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 219
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_network"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"EncodingNetwork\", \"name\": \"EncodingNetwork\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"config\": {\"layer was saved without config\": true}, \"is_graph_network\": false}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 14
|
|
local_name: "kernel"
|
|
}
|
|
children {
|
|
node_id: 15
|
|
local_name: "bias"
|
|
}
|
|
children {
|
|
node_id: 32
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 33
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 34
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 35
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 220
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 221
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Dense\", \"name\": \"dense_2\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense_2\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 2, \"activation\": \"linear\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"RandomUniform\", \"config\": {\"minval\": -0.03, \"maxval\": 0.03, \"seed\": null, \"dtype\": \"float32\"}}, \"bias_initializer\": {\"class_name\": \"Constant\", \"config\": {\"value\": -0.2, \"dtype\": \"float32\"}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 40}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [0, 40]}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 12
|
|
local_name: "2"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "3"
|
|
}
|
|
children {
|
|
node_id: 14
|
|
local_name: "4"
|
|
}
|
|
children {
|
|
node_id: 15
|
|
local_name: "5"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 12
|
|
local_name: "2"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "3"
|
|
}
|
|
children {
|
|
node_id: 14
|
|
local_name: "4"
|
|
}
|
|
children {
|
|
node_id: 15
|
|
local_name: "5"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 36
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 19
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 37
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 38
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 39
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 20
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 40
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 21
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 216
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 217
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 217
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 41
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 42
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 43
|
|
local_name: "2"
|
|
}
|
|
children {
|
|
node_id: 44
|
|
local_name: "3"
|
|
}
|
|
children {
|
|
node_id: 45
|
|
local_name: "4"
|
|
}
|
|
children {
|
|
node_id: 46
|
|
local_name: "5"
|
|
}
|
|
children {
|
|
node_id: 47
|
|
local_name: "6"
|
|
}
|
|
children {
|
|
node_id: 48
|
|
local_name: "7"
|
|
}
|
|
children {
|
|
node_id: 49
|
|
local_name: "8"
|
|
}
|
|
children {
|
|
node_id: 50
|
|
local_name: "9"
|
|
}
|
|
children {
|
|
node_id: 51
|
|
local_name: "10"
|
|
}
|
|
children {
|
|
node_id: 52
|
|
local_name: "11"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 53
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 54
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 55
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 56
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 222
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 223
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Concatenate\", \"name\": \"concatenate\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"concatenate\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}, \"build_input_shape\": [{\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 1]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}, {\"class_name\": \"TensorShape\", \"items\": [0, 3]}]}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 57
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 58
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 59
|
|
local_name: "2"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 12
|
|
local_name: "2"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "3"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 12
|
|
local_name: "2"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "3"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 60
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 28
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 61
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 62
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 63
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 29
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 64
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 30
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 218
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 219
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 219
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 14
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 15
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 14
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 15
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 65
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 32
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 66
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 67
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 68
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 33
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 69
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 34
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 220
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 221
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 221
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 17
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 18
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 70
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 71
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 72
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 73
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 224
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 225
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 11.0, 12.0, 13.0, 14.0, 14.0, 14.0, 16.0, 17.0, 19.0, 23.0, 27.0, 39.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 74
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 75
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 76
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 77
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 226
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 227
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_1\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_1\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 8.0, 8.0, 8.0, 8.0, 9.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, 14.0, 14.0, 18.0, 20.0, 23.0, 30.0, 41.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 78
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 79
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 80
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 81
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 228
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 229
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_2\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_2\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 22.0, 22.0, 22.0, 22.0, 23.0, 23.0, 23.0, 24.0, 24.0, 24.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 26.0, 26.0, 26.0, 27.0, 27.0, 27.0, 27.0, 28.0, 28.0, 29.0, 29.0, 29.0, 29.0, 30.0, 30.0, 31.0, 31.0, 31.0, 31.0, 32.0, 32.0, 33.0, 33.0, 33.0, 34.0, 34.0, 34.0, 34.0, 35.0, 35.0, 36.0, 36.0, 37.0, 37.0, 37.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 44.0, 44.0, 45.0, 45.0, 46.0, 46.0, 46.0, 47.0, 47.0, 48.0, 49.0, 49.0, 50.0, 50.0, 51.0, 52.0, 53.0, 53.0, 54.0, 55.0, 56.0, 57.0, 57.0, 58.0, 59.0, 60.0, 61.0, 61.0, 63.0, 63.0, 64.0, 65.0, 66.0, 67.0, 67.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 85.0, 86.0, 88.0, 89.0, 91.0, 92.0, 94.0, 96.0, 97.0, 99.0, 100.0, 101.0, 103.0, 105.0, 107.0, 109.0, 111.0, 113.0, 115.0, 118.0, 121.0, 123.0, 126.0, 128.0, 130.0, 133.0, 135.0, 137.0, 140.0, 143.0, 146.0, 148.0, 151.0, 154.0, 157.0, 161.0, 163.0, 166.0, 169.0, 173.0, 178.0, 183.0, 189.0, 193.0, 197.0, 202.0, 208.0, 213.0, 218.0, 223.0, 228.0, 233.0, 239.0, 245.0, 250.0, 257.0, 262.0, 269.0, 277.0, 284.0, 292.0, 300.0, 308.0, 319.0, 329.0, 340.0, 349.0, 359.0, 371.0, 382.0, 394.0, 410.0, 423.0, 435.0, 445.0, 462.0, 480.0, 492.0, 506.0, 519.0, 536.0, 557.0, 577.0, 598.0, 622.0, 655.0, 679.0, 707.0, 733.0, 751.0, 787.0, 814.0, 847.0, 897.0, 934.0, 997.0, 1062.0, 1111.0, 1181.0, 1275.0, 1385.0, 1465.0, 1603.0, 1769.0, 2057.0, 2257.0, 2803.0, 3468.0, 4417.0, 6538.0, 16126.0, 23446.0, 33536.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 82
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 83
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 84
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 85
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 230
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 231
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_3\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_3\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 23.0, 23.0, 23.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 25.0, 25.0, 25.0, 25.0, 25.0, 26.0, 26.0, 26.0, 26.0, 27.0, 27.0, 27.0, 27.0, 27.0, 28.0, 28.0, 28.0, 29.0, 29.0, 29.0, 29.0, 30.0, 30.0, 30.0, 31.0, 31.0, 31.0, 32.0, 32.0, 32.0, 33.0, 33.0, 33.0, 34.0, 34.0, 34.0, 34.0, 35.0, 35.0, 35.0, 36.0, 36.0, 36.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 41.0, 41.0, 42.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 47.0, 47.0, 48.0, 49.0, 49.0, 50.0, 50.0, 52.0, 52.0, 53.0, 54.0, 55.0, 55.0, 57.0, 58.0, 59.0, 60.0, 62.0, 64.0, 65.0, 66.0, 68.0, 70.0, 70.0, 70.0, 70.0, 70.0, 71.0, 73.0, 75.0, 76.0, 78.0, 81.0, 84.0, 86.0, 90.0, 94.0, 98.0, 101.0, 106.0, 111.0, 117.0, 123.0, 130.0, 138.0, 146.0, 157.0, 163.0, 176.0, 187.0, 198.0, 214.0, 227.0, 252.0, 280.0, 327.0, 395.0, 506.0, 671.0, 1025.0, 1971.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 86
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 87
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 88
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 89
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 232
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 233
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_4\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_4\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 25.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 27.0, 28.0, 28.0, 28.0, 28.0, 28.0, 29.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 31.0, 32.0, 32.0, 32.0, 32.0, 32.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 35.0, 36.0, 36.0, 36.0, 37.0, 38.0, 38.0, 38.0, 39.0, 40.0, 40.0, 41.0, 42.0, 42.0, 43.0, 44.0, 44.0, 46.0, 46.0, 47.0, 48.0, 48.0, 50.0, 50.0, 52.0, 52.0, 54.0, 55.0, 55.0, 56.0, 57.0, 58.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 62.0, 62.0, 64.0, 65.0, 66.0, 68.0, 70.0, 72.0, 74.0, 77.0, 80.0, 82.0, 86.0, 89.0, 92.0, 96.0, 99.0, 104.0, 108.0, 114.0, 119.0, 125.0, 131.0, 139.0, 146.0, 157.0, 167.0, 176.0, 188.0, 198.0, 215.0, 236.0, 262.0, 306.0, 376.0, 462.0, 596.0, 942.0, 1428.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 90
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 91
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 92
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 93
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 234
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 235
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_5\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_5\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 11.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 20.0, 23.0, 29.0, 38.0, 60.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 94
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 95
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 96
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 97
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 236
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 237
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_6\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_6\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 24.0, 24.0, 24.0, 24.0, 24.0, 25.0, 25.0, 25.0, 25.0, 25.0, 26.0, 26.0, 26.0, 26.0, 27.0, 27.0, 27.0, 28.0, 28.0, 28.0, 29.0, 29.0, 30.0, 30.0, 30.0, 31.0, 31.0, 32.0, 32.0, 33.0, 33.0, 34.0, 35.0, 37.0, 38.0, 40.0, 46.0, 51.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 98
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 99
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 100
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 101
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 238
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 239
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_7\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_7\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [-15035.0, -15030.0, -15025.0, -15000.0, -14985.0, -14945.0, -14745.0, -70.0, -55.0, -55.0, -50.0, -50.0, -50.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -45.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -40.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -35.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -30.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -25.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -20.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 45.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 55.0, 55.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 65.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 75.0, 75.0, 80.0, 80.0, 80.0, 85.0, 85.0, 85.0, 90.0, 90.0, 90.0, 90.0, 95.0, 95.0, 100.0, 100.0, 105.0, 110.0, 115.0, 120.0, 125.0, 125.0, 130.0, 140.0, 140.0, 145.0, 150.0, 155.0, 160.0, 160.0, 165.0, 170.0, 175.0, 180.0, 190.0, 200.0, 210.0, 215.0, 220.0, 220.0, 230.0, 235.0, 245.0, 250.0, 260.0, 275.0, 290.0, 305.0, 325.0, 350.0, 370.0, 390.0, 425.0, 460.0, 500.0, 560.0, 650.0, 790.0, 1025.0, 1600.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 102
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 103
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 104
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 105
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 240
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 241
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_8\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_8\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [18.0, 29.0, 39.0, 48.0, 57.0, 64.0, 70.0, 76.0, 82.0, 87.0, 92.0, 97.0, 101.0, 105.0, 109.0, 113.0, 116.0, 120.0, 123.0, 127.0, 130.0, 134.0, 137.0, 140.0, 143.0, 146.0, 149.0, 152.0, 156.0, 159.0, 162.0, 165.0, 168.0, 171.0, 174.0, 177.0, 180.0, 183.0, 186.0, 188.0, 191.0, 194.0, 197.0, 200.0, 203.0, 205.0, 208.0, 211.0, 214.0, 217.0, 219.0, 222.0, 225.0, 228.0, 231.0, 233.0, 236.0, 239.0, 242.0, 244.0, 247.0, 250.0, 253.0, 255.0, 258.0, 261.0, 264.0, 266.0, 269.0, 272.0, 275.0, 278.0, 280.0, 283.0, 286.0, 289.0, 292.0, 294.0, 297.0, 300.0, 303.0, 305.0, 308.0, 311.0, 314.0, 317.0, 319.0, 322.0, 325.0, 327.0, 330.0, 333.0, 336.0, 339.0, 341.0, 344.0, 347.0, 350.0, 353.0, 355.0, 358.0, 361.0, 364.0, 367.0, 370.0, 373.0, 375.0, 378.0, 381.0, 384.0, 387.0, 390.0, 393.0, 396.0, 399.0, 401.0, 404.0, 407.0, 410.0, 413.0, 416.0, 419.0, 422.0, 425.0, 428.0, 431.0, 434.0, 437.0, 440.0, 443.0, 446.0, 449.0, 452.0, 455.0, 458.0, 461.0, 464.0, 467.0, 470.0, 473.0, 476.0, 479.0, 483.0, 486.0, 489.0, 492.0, 495.0, 498.0, 501.0, 504.0, 507.0, 511.0, 514.0, 517.0, 520.0, 523.0, 526.0, 530.0, 533.0, 536.0, 539.0, 542.0, 545.0, 549.0, 552.0, 555.0, 558.0, 562.0, 565.0, 569.0, 572.0, 575.0, 579.0, 582.0, 585.0, 589.0, 592.0, 595.0, 599.0, 602.0, 605.0, 609.0, 612.0, 616.0, 620.0, 623.0, 626.0, 630.0, 634.0, 637.0, 641.0, 644.0, 648.0, 651.0, 655.0, 658.0, 662.0, 665.0, 669.0, 672.0, 676.0, 680.0, 683.0, 687.0, 691.0, 694.0, 698.0, 702.0, 705.0, 709.0, 712.0, 716.0, 720.0, 724.0, 727.0, 731.0, 735.0, 739.0, 742.0, 746.0, 750.0, 754.0, 758.0, 761.0, 765.0, 769.0, 773.0, 777.0, 780.0, 784.0, 788.0, 792.0, 796.0, 800.0, 804.0, 808.0, 812.0, 816.0, 820.0, 823.0, 828.0, 832.0, 836.0, 840.0, 844.0, 848.0, 852.0, 856.0, 860.0, 864.0, 868.0, 873.0, 877.0, 881.0, 885.0, 889.0, 893.0, 897.0, 902.0, 906.0, 910.0, 914.0, 919.0, 923.0, 927.0, 931.0, 935.0, 940.0, 944.0, 948.0, 953.0, 957.0, 962.0, 966.0, 970.0, 975.0, 979.0, 984.0, 988.0, 993.0, 997.0, 1002.0, 1006.0, 1011.0, 1015.0, 1020.0, 1024.0, 1029.0, 1034.0, 1038.0, 1043.0, 1047.0, 1052.0, 1057.0, 1062.0, 1066.0, 1071.0, 1076.0, 1081.0, 1086.0, 1090.0, 1095.0, 1100.0, 1105.0, 1110.0, 1114.0, 1119.0, 1124.0, 1129.0, 1134.0, 1139.0, 1144.0, 1149.0, 1154.0, 1159.0, 1164.0, 1169.0, 1174.0, 1179.0, 1184.0, 1189.0, 1194.0, 1199.0, 1204.0, 1209.0, 1215.0, 1220.0, 1225.0, 1230.0, 1235.0, 1241.0, 1246.0, 1251.0, 1257.0, 1262.0, 1267.0, 1273.0, 1278.0, 1284.0, 1289.0, 1294.0, 1300.0, 1305.0, 1311.0, 1316.0, 1322.0, 1327.0, 1333.0, 1338.0, 1344.0, 1350.0, 1355.0, 1361.0, 1367.0, 1372.0, 1378.0, 1383.0, 1389.0, 1395.0, 1401.0, 1407.0, 1413.0, 1418.0, 1424.0, 1430.0, 1436.0, 1442.0, 1448.0, 1454.0, 1459.0, 1465.0, 1472.0, 1477.0, 1483.0, 1489.0, 1495.0, 1501.0, 1507.0, 1514.0, 1520.0, 1526.0, 1532.0, 1538.0, 1545.0, 1551.0, 1557.0, 1564.0, 1570.0, 1576.0, 1583.0, 1589.0, 1596.0, 1602.0, 1608.0, 1615.0, 1621.0, 1628.0, 1634.0, 1641.0, 1647.0, 1654.0, 1661.0, 1667.0, 1674.0, 1681.0, 1687.0, 1694.0, 1701.0, 1708.0, 1715.0, 1722.0, 1729.0, 1735.0, 1742.0, 1749.0, 1756.0, 1763.0, 1770.0, 1777.0, 1784.0, 1791.0, 1798.0, 1806.0, 1812.0, 1820.0, 1827.0, 1835.0, 1841.0, 1849.0, 1856.0, 1863.0, 1871.0, 1878.0, 1885.0, 1893.0, 1901.0, 1908.0, 1915.0, 1923.0, 1930.0, 1938.0, 1946.0, 1953.0, 1961.0, 1969.0, 1976.0, 1984.0, 1992.0, 2000.0, 2007.0, 2015.0, 2023.0, 2031.0, 2039.0, 2047.0, 2055.0, 2063.0, 2071.0, 2079.0, 2087.0, 2095.0, 2104.0, 2112.0, 2120.0, 2128.0, 2137.0, 2146.0, 2154.0, 2162.0, 2171.0, 2179.0, 2188.0, 2197.0, 2205.0, 2214.0, 2223.0, 2232.0, 2241.0, 2250.0, 2258.0, 2268.0, 2277.0, 2285.0, 2294.0, 2304.0, 2313.0, 2322.0, 2331.0, 2340.0, 2350.0, 2359.0, 2368.0, 2378.0, 2388.0, 2397.0, 2407.0, 2416.0, 2426.0, 2436.0, 2446.0, 2455.0, 2465.0, 2475.0, 2485.0, 2495.0, 2505.0, 2515.0, 2525.0, 2535.0, 2545.0, 2556.0, 2566.0, 2577.0, 2587.0, 2598.0, 2609.0, 2620.0, 2631.0, 2641.0, 2652.0, 2663.0, 2674.0, 2685.0, 2696.0, 2708.0, 2719.0, 2730.0, 2742.0, 2753.0, 2764.0, 2776.0, 2788.0, 2799.0, 2811.0, 2823.0, 2835.0, 2847.0, 2858.0, 2870.0, 2882.0, 2894.0, 2906.0, 2919.0, 2931.0, 2943.0, 2956.0, 2968.0, 2981.0, 2994.0, 3006.0, 3019.0, 3032.0, 3045.0, 3058.0, 3070.0, 3083.0, 3096.0, 3109.0, 3121.0, 3134.0, 3148.0, 3161.0, 3174.0, 3187.0, 3200.0, 3214.0, 3228.0, 3242.0, 3255.0, 3268.0, 3283.0, 3297.0, 3310.0, 3325.0, 3340.0, 3353.0, 3368.0, 3383.0, 3398.0, 3412.0, 3427.0, 3442.0, 3457.0, 3471.0, 3487.0, 3502.0, 3516.0, 3531.0, 3546.0, 3561.0, 3577.0, 3593.0, 3608.0, 3625.0, 3641.0, 3657.0, 3673.0, 3690.0, 3706.0, 3722.0, 3738.0, 3755.0, 3772.0, 3789.0, 3805.0, 3823.0, 3839.0, 3856.0, 3873.0, 3891.0, 3908.0, 3926.0, 3944.0, 3960.0, 3977.0, 3995.0, 4013.0, 4031.0, 4048.0, 4067.0, 4085.0, 4104.0, 4122.0, 4140.0, 4159.0, 4177.0, 4196.0, 4215.0, 4234.0, 4253.0, 4272.0, 4291.0, 4311.0, 4332.0, 4351.0, 4371.0, 4391.0, 4412.0, 4433.0, 4454.0, 4474.0, 4496.0, 4518.0, 4538.0, 4558.0, 4579.0, 4601.0, 4619.0, 4640.0, 4662.0, 4684.0, 4706.0, 4728.0, 4751.0, 4771.0, 4794.0, 4818.0, 4840.0, 4863.0, 4887.0, 4910.0, 4933.0, 4956.0, 4980.0, 5004.0, 5028.0, 5052.0, 5076.0, 5100.0, 5125.0, 5152.0, 5175.0, 5200.0, 5226.0, 5251.0, 5278.0, 5304.0, 5329.0, 5354.0, 5381.0, 5407.0, 5433.0, 5460.0, 5488.0, 5516.0, 5544.0, 5573.0, 5600.0, 5628.0, 5656.0, 5684.0, 5713.0, 5741.0, 5771.0, 5799.0, 5830.0, 5860.0, 5891.0, 5921.0, 5951.0, 5980.0, 6010.0, 6041.0, 6073.0, 6105.0, 6133.0, 6163.0, 6195.0, 6227.0, 6258.0, 6291.0, 6322.0, 6356.0, 6390.0, 6424.0, 6457.0, 6491.0, 6527.0, 6561.0, 6596.0, 6631.0, 6665.0, 6701.0, 6736.0, 6771.0, 6805.0, 6840.0, 6877.0, 6911.0, 6947.0, 6985.0, 7022.0, 7059.0, 7097.0, 7135.0, 7174.0, 7212.0, 7251.0, 7289.0, 7327.0, 7366.0, 7406.0, 7447.0, 7486.0, 7525.0, 7566.0, 7606.0, 7646.0, 7688.0, 7728.0, 7771.0, 7814.0, 7859.0, 7901.0, 7949.0, 7992.0, 8036.0, 8082.0, 8127.0, 8173.0, 8218.0, 8262.0, 8309.0, 8353.0, 8397.0, 8444.0, 8489.0, 8539.0, 8585.0, 8632.0, 8682.0, 8727.0, 8777.0, 8828.0, 8879.0, 8929.0, 8982.0, 9037.0, 9087.0, 9140.0, 9193.0, 9250.0, 9305.0, 9361.0, 9418.0, 9475.0, 9532.0, 9589.0, 9644.0, 9699.0, 9758.0, 9818.0, 9875.0, 9935.0, 9997.0, 10057.0, 10117.0, 10174.0, 10232.0, 10296.0, 10356.0, 10419.0, 10482.0, 10546.0, 10608.0, 10670.0, 10729.0, 10790.0, 10855.0, 10920.0, 10990.0, 11054.0, 11118.0, 11181.0, 11248.0, 11316.0, 11385.0, 11454.0, 11526.0, 11597.0, 11667.0, 11740.0, 11820.0, 11897.0, 11973.0, 12046.0, 12126.0, 12204.0, 12287.0, 12370.0, 12456.0, 12538.0, 12627.0, 12714.0, 12799.0, 12883.0, 12971.0, 13062.0, 13154.0, 13233.0, 13328.0, 13418.0, 13511.0, 13607.0, 13709.0, 13806.0, 13903.0, 14002.0, 14104.0, 14200.0, 14288.0, 14391.0, 14488.0, 14590.0, 14698.0, 14808.0, 14910.0, 15020.0, 15126.0, 15238.0, 15347.0, 15456.0, 15574.0, 15692.0, 15786.0, 15896.0, 16016.0, 16136.0, 16250.0, 16352.0, 16474.0, 16575.0, 16702.0, 16835.0, 16965.0, 17096.0, 17232.0, 17370.0, 17443.0, 17581.0, 17719.0, 17864.0, 17976.0, 18116.0, 18250.0, 18396.0, 18540.0, 18690.0, 18840.0, 18989.0, 19136.0, 19294.0, 19445.0, 19589.0, 19750.0, 19905.0, 20064.0, 20191.0, 20325.0, 20497.0, 20662.0, 20833.0, 20981.0, 21152.0, 21334.0, 21510.0, 21642.0, 21821.0, 22001.0, 22186.0, 22379.0, 22568.0, 22770.0, 22958.0, 23162.0, 23360.0, 23524.0, 23737.0, 23960.0, 24175.0, 24395.0, 24631.0, 24865.0, 25091.0, 25327.0, 25580.0, 25833.0, 26089.0, 26361.0, 26636.0, 26889.0, 27155.0, 27436.0, 27715.0, 28003.0, 28303.0, 28600.0, 28916.0, 29223.0, 29553.0, 29884.0, 30200.0, 30538.0, 30868.0, 31211.0, 31548.0, 31881.0, 32253.0, 32605.0, 32980.0, 33385.0, 33805.0, 34254.0, 34723.0, 35167.0, 35666.0, 36125.0, 36652.0, 37177.0, 37739.0, 38321.0, 38932.0, 39640.0, 40337.0, 41000.0, 41626.0, 42385.0, 43122.0, 43890.0, 44687.0, 45609.0, 46520.0, 47489.0, 48432.0, 49458.0, 50511.0, 51561.0, 52568.0, 53676.0, 54936.0, 56071.0, 57302.0, 58513.0, 59800.0, 61192.0, 62702.0, 64205.0, 65868.0, 67780.0, 69960.0, 72330.0, 74918.0, 77540.0, 80344.0, 83727.0, 87662.0, 93589.0, 101441.0, 110544.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 106
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 107
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 108
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 109
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 242
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 243
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_9\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_9\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAgAAAAQAAAATAAAAcxgAAACIAHwAgwF9AXQAagF8AXQAagJkAY0CUwApAk4pAdoF\\nZHR5cGUpA9oCdGbaCnplcm9zX2xpa2XaB2Zsb2F0MzIpAtoDb2Jz2gxleHBhbmRlZF9vYnMpAdoO\\nZXhwYW5kX2RpbXNfb3CpAPr0L2V4cG9ydC9oZGEzL2JvcmdsZXQvbG9jYWxfcmFtX2ZzX2RpcnMv\\nMC55dW5kaV9tdXBwZXRfMF8xMjI3MDgzMy4xMy55dW5kaS4xOTQ3MzE0MTc5NjEuOGY0ZjlmOThj\\nYjdhMzA1NS9idWlsZF90YXJnZXRfdHJhaW5fcGFyX2Q5NzU3NTM3MDE2YTJlYjgvdHJhaW4ucGFy\\nL2dvb2dsZTMvbGVhcm5pbmcvc21hcnRjaG9pY2VzL3Jlc2VhcmNoL2NsaWVudHMvY29tcGlsZXJf\\nb3B0L3BvbGljeV90cmFpbmluZy9mZWF0dXJlX29wcy5wedoPZGlzY2FyZF9mZWF0dXJlJwAAAHME\\nAAAAAAEIAQ==\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 110
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 111
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 112
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 113
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 244
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 245
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_10\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_10\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [13.0, 38.0, 56.0, 70.0, 82.0, 94.0, 104.0, 114.0, 123.0, 131.0, 139.0, 148.0, 152.0, 153.0, 158.0, 163.0, 170.0, 174.0, 178.0, 180.0, 183.0, 186.0, 188.0, 190.0, 192.0, 196.0, 198.0, 201.0, 205.0, 208.0, 212.0, 215.0, 219.0, 221.0, 225.0, 227.0, 229.0, 232.0, 233.0, 236.0, 239.0, 242.0, 245.0, 248.0, 250.0, 252.0, 254.0, 256.0, 259.0, 261.0, 264.0, 267.0, 270.0, 272.0, 275.0, 278.0, 280.0, 283.0, 285.0, 287.0, 290.0, 293.0, 295.0, 297.0, 300.0, 303.0, 305.0, 308.0, 311.0, 313.0, 316.0, 319.0, 322.0, 325.0, 329.0, 331.0, 333.0, 336.0, 338.0, 340.0, 343.0, 345.0, 347.0, 347.0, 349.0, 351.0, 353.0, 355.0, 357.0, 359.0, 361.0, 363.0, 365.0, 368.0, 369.0, 371.0, 373.0, 375.0, 377.0, 380.0, 382.0, 385.0, 387.0, 389.0, 391.0, 394.0, 396.0, 398.0, 400.0, 403.0, 405.0, 408.0, 410.0, 412.0, 415.0, 417.0, 420.0, 422.0, 425.0, 427.0, 429.0, 432.0, 434.0, 437.0, 439.0, 442.0, 444.0, 446.0, 449.0, 451.0, 454.0, 456.0, 458.0, 461.0, 463.0, 466.0, 469.0, 472.0, 474.0, 476.0, 479.0, 482.0, 483.0, 486.0, 489.0, 492.0, 495.0, 498.0, 500.0, 503.0, 505.0, 508.0, 510.0, 513.0, 516.0, 519.0, 522.0, 524.0, 528.0, 530.0, 533.0, 536.0, 539.0, 541.0, 544.0, 547.0, 550.0, 553.0, 556.0, 559.0, 561.0, 563.0, 567.0, 570.0, 572.0, 575.0, 577.0, 580.0, 584.0, 586.0, 589.0, 592.0, 595.0, 598.0, 601.0, 605.0, 607.0, 611.0, 613.0, 617.0, 620.0, 623.0, 626.0, 629.0, 632.0, 635.0, 639.0, 642.0, 645.0, 648.0, 651.0, 654.0, 657.0, 660.0, 662.0, 666.0, 669.0, 672.0, 676.0, 679.0, 682.0, 685.0, 688.0, 690.0, 693.0, 696.0, 699.0, 702.0, 705.0, 709.0, 712.0, 714.0, 718.0, 721.0, 724.0, 726.0, 728.0, 729.0, 731.0, 734.0, 737.0, 741.0, 745.0, 748.0, 750.0, 753.0, 756.0, 760.0, 763.0, 766.0, 770.0, 773.0, 776.0, 779.0, 782.0, 786.0, 788.0, 793.0, 796.0, 798.0, 802.0, 805.0, 808.0, 811.0, 815.0, 818.0, 820.0, 824.0, 827.0, 829.0, 832.0, 835.0, 838.0, 842.0, 846.0, 849.0, 854.0, 857.0, 860.0, 864.0, 867.0, 871.0, 875.0, 879.0, 882.0, 887.0, 890.0, 893.0, 897.0, 901.0, 905.0, 908.0, 911.0, 915.0, 918.0, 921.0, 925.0, 929.0, 932.0, 934.0, 937.0, 940.0, 943.0, 946.0, 950.0, 953.0, 956.0, 961.0, 965.0, 969.0, 973.0, 976.0, 980.0, 982.0, 985.0, 990.0, 994.0, 997.0, 1001.0, 1005.0, 1007.0, 1010.0, 1014.0, 1018.0, 1022.0, 1025.0, 1028.0, 1033.0, 1035.0, 1038.0, 1042.0, 1047.0, 1052.0, 1056.0, 1060.0, 1063.0, 1067.0, 1071.0, 1075.0, 1079.0, 1083.0, 1086.0, 1088.0, 1092.0, 1097.0, 1102.0, 1106.0, 1109.0, 1113.0, 1117.0, 1120.0, 1125.0, 1129.0, 1134.0, 1137.0, 1142.0, 1146.0, 1150.0, 1151.0, 1155.0, 1159.0, 1162.0, 1166.0, 1170.0, 1174.0, 1177.0, 1181.0, 1185.0, 1188.0, 1193.0, 1196.0, 1203.0, 1207.0, 1212.0, 1214.0, 1217.0, 1220.0, 1222.0, 1222.0, 1226.0, 1229.0, 1233.0, 1237.0, 1241.0, 1246.0, 1250.0, 1253.0, 1257.0, 1262.0, 1267.0, 1272.0, 1278.0, 1283.0, 1287.0, 1293.0, 1297.0, 1301.0, 1304.0, 1309.0, 1315.0, 1320.0, 1325.0, 1329.0, 1333.0, 1336.0, 1341.0, 1344.0, 1348.0, 1351.0, 1357.0, 1363.0, 1368.0, 1374.0, 1379.0, 1383.0, 1386.0, 1391.0, 1395.0, 1399.0, 1403.0, 1407.0, 1410.0, 1415.0, 1418.0, 1423.0, 1428.0, 1432.0, 1436.0, 1438.0, 1442.0, 1446.0, 1450.0, 1454.0, 1462.0, 1467.0, 1472.0, 1477.0, 1483.0, 1488.0, 1492.0, 1496.0, 1503.0, 1508.0, 1513.0, 1518.0, 1520.0, 1526.0, 1531.0, 1534.0, 1538.0, 1542.0, 1546.0, 1552.0, 1558.0, 1564.0, 1568.0, 1573.0, 1578.0, 1581.0, 1590.0, 1596.0, 1601.0, 1606.0, 1611.0, 1616.0, 1622.0, 1629.0, 1634.0, 1640.0, 1647.0, 1651.0, 1657.0, 1660.0, 1665.0, 1672.0, 1678.0, 1686.0, 1692.0, 1698.0, 1704.0, 1709.0, 1714.0, 1719.0, 1724.0, 1730.0, 1737.0, 1744.0, 1751.0, 1755.0, 1761.0, 1764.0, 1772.0, 1778.0, 1784.0, 1789.0, 1799.0, 1804.0, 1811.0, 1819.0, 1825.0, 1830.0, 1838.0, 1849.0, 1858.0, 1862.0, 1868.0, 1872.0, 1878.0, 1885.0, 1888.0, 1892.0, 1897.0, 1902.0, 1907.0, 1919.0, 1926.0, 1932.0, 1936.0, 1941.0, 1946.0, 1952.0, 1960.0, 1968.0, 1977.0, 1985.0, 1992.0, 1997.0, 2006.0, 2012.0, 2018.0, 2026.0, 2034.0, 2044.0, 2050.0, 2057.0, 2064.0, 2069.0, 2075.0, 2082.0, 2091.0, 2098.0, 2107.0, 2122.0, 2126.0, 2135.0, 2146.0, 2149.0, 2157.0, 2163.0, 2172.0, 2178.0, 2184.0, 2191.0, 2198.0, 2208.0, 2216.0, 2223.0, 2235.0, 2242.0, 2252.0, 2263.0, 2272.0, 2277.0, 2288.0, 2296.0, 2306.0, 2311.0, 2318.0, 2323.0, 2334.0, 2341.0, 2356.0, 2366.0, 2373.0, 2379.0, 2386.0, 2407.0, 2416.0, 2423.0, 2432.0, 2438.0, 2448.0, 2453.0, 2464.0, 2473.0, 2473.0, 2481.0, 2492.0, 2504.0, 2511.0, 2523.0, 2529.0, 2537.0, 2545.0, 2556.0, 2566.0, 2575.0, 2584.0, 2592.0, 2602.0, 2613.0, 2624.0, 2636.0, 2643.0, 2647.0, 2652.0, 2664.0, 2675.0, 2688.0, 2693.0, 2702.0, 2709.0, 2722.0, 2739.0, 2754.0, 2766.0, 2776.0, 2786.0, 2799.0, 2810.0, 2832.0, 2840.0, 2849.0, 2860.0, 2873.0, 2889.0, 2908.0, 2914.0, 2926.0, 2939.0, 2950.0, 2961.0, 2969.0, 2978.0, 2990.0, 2999.0, 3023.0, 3032.0, 3049.0, 3066.0, 3085.0, 3101.0, 3107.0, 3117.0, 3129.0, 3144.0, 3167.0, 3190.0, 3212.0, 3229.0, 3238.0, 3264.0, 3293.0, 3302.0, 3309.0, 3314.0, 3323.0, 3344.0, 3352.0, 3362.0, 3390.0, 3400.0, 3411.0, 3435.0, 3456.0, 3470.0, 3485.0, 3498.0, 3505.0, 3519.0, 3539.0, 3545.0, 3545.0, 3560.0, 3576.0, 3597.0, 3607.0, 3621.0, 3641.0, 3665.0, 3679.0, 3701.0, 3714.0, 3733.0, 3741.0, 3745.0, 3757.0, 3773.0, 3787.0, 3795.0, 3805.0, 3822.0, 3835.0, 3844.0, 3861.0, 3872.0, 3878.0, 3897.0, 3919.0, 3941.0, 3971.0, 4004.0, 4014.0, 4019.0, 4061.0, 4068.0, 4089.0, 4108.0, 4117.0, 4125.0, 4146.0, 4165.0, 4194.0, 4204.0, 4224.0, 4236.0, 4263.0, 4290.0, 4301.0, 4319.0, 4326.0, 4347.0, 4369.0, 4386.0, 4413.0, 4435.0, 4451.0, 4451.0, 4451.0, 4476.0, 4500.0, 4539.0, 4579.0, 4592.0, 4600.0, 4622.0, 4650.0, 4683.0, 4714.0, 4742.0, 4755.0, 4771.0, 4788.0, 4816.0, 4828.0, 4831.0, 4831.0, 4831.0, 4843.0, 4852.0, 4865.0, 4896.0, 4915.0, 4931.0, 4952.0, 4965.0, 4983.0, 5007.0, 5043.0, 5061.0, 5081.0, 5095.0, 5122.0, 5143.0, 5171.0, 5204.0, 5226.0, 5233.0, 5250.0, 5281.0, 5320.0, 5323.0, 5328.0, 5345.0, 5374.0, 5413.0, 5466.0, 5492.0, 5524.0, 5555.0, 5567.0, 5610.0, 5676.0, 5701.0, 5716.0, 5744.0, 5768.0, 5795.0, 5818.0, 5854.0, 5906.0, 5934.0, 5960.0, 5975.0, 5993.0, 6025.0, 6034.0, 6051.0, 6082.0, 6106.0, 6125.0, 6159.0, 6187.0, 6242.0, 6287.0, 6311.0, 6332.0, 6348.0, 6358.0, 6368.0, 6377.0, 6402.0, 6407.0, 6428.0, 6450.0, 6475.0, 6498.0, 6505.0, 6533.0, 6565.0, 6580.0, 6595.0, 6611.0, 6654.0, 6658.0, 6705.0, 6751.0, 6786.0, 6828.0, 6876.0, 6896.0, 6948.0, 6964.0, 7065.0, 7082.0, 7118.0, 7184.0, 7214.0, 7271.0, 7310.0, 7357.0, 7405.0, 7506.0, 7613.0, 7641.0, 7675.0, 7720.0, 7781.0, 7833.0, 7860.0, 7898.0, 7929.0, 8044.0, 8104.0, 8148.0, 8236.0, 8273.0, 8313.0, 8349.0, 8381.0, 8409.0, 8498.0, 8507.0, 8524.0, 8570.0, 8607.0, 8630.0, 8637.0, 8675.0, 8700.0, 8714.0, 8734.0, 8776.0, 8836.0, 8854.0, 8867.0, 8868.0, 9065.0, 9113.0, 9121.0, 9241.0, 9357.0, 9360.0, 9585.0, 9613.0, 9684.0, 9727.0, 9751.0, 9777.0, 9802.0, 9889.0, 9903.0, 9914.0, 9978.0, 10061.0, 10192.0, 10213.0, 10345.0, 10369.0, 10404.0, 10430.0, 10471.0, 10481.0, 10489.0, 10492.0, 10494.0, 10524.0, 10554.0, 10557.0, 10560.0, 10562.0, 10641.0, 10716.0, 10842.0, 10897.0, 10967.0, 11053.0, 11128.0, 11137.0, 11328.0, 11336.0, 11401.0, 11532.0, 11573.0, 11860.0, 11880.0, 12013.0, 12305.0, 12358.0, 12386.0, 12404.0, 12456.0, 12456.0, 12476.0, 12615.0, 12677.0, 12981.0, 13094.0, 13197.0, 13708.0, 13717.0, 13788.0, 14049.0, 14112.0, 14224.0, 14257.0, 14681.0, 14901.0, 15006.0, 15071.0, 15100.0, 15248.0, 15669.0, 15877.0, 15953.0, 15953.0, 16066.0, 16072.0, 16271.0, 16292.0, 16386.0, 16490.0, 16633.0, 16670.0, 16834.0, 16896.0, 17543.0, 17693.0, 17800.0, 17859.0, 18397.0, 18811.0, 18826.0, 18971.0, 19304.0, 19319.0, 19695.0, 20378.0, 20865.0, 21313.0, 21330.0, 22321.0, 22760.0, 22770.0, 23783.0, 23785.0, 24525.0, 24844.0, 24848.0, 24964.0, 24966.0, 27468.0, 27478.0, 27555.0, 27555.0, 28215.0, 28219.0, 28336.0, 28490.0, 30213.0, 30228.0, 30242.0, 34116.0, 43518.0, 43518.0, 43518.0, 43852.0, 43852.0, 43852.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 114
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 115
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 116
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 117
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 246
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 247
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Lambda\", \"name\": \"lambda_11\", \"trainable\": true, \"expects_training_arg\": true, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"lambda_11\", \"trainable\": true, \"dtype\": \"float32\", \"function\": {\"class_name\": \"__tuple__\", \"items\": [\"4wEAAAAAAAAAAwAAAAUAAAATAAAAc0QAAACIAHwAgwF9AXQAagF0AmoDfAGIAYMCdABqBIMCdAWI\\nAYMBGwB9AnQAagZ8AnQAagd8AoMBfAJ8AhQAZwNkA2QCjQJTACkETukBAAAAKQHaBGF4aXPp////\\n/ykI2gJ0ZtoEY2FzdNoOY29udHJpYl9sYXllcnPaCWJ1Y2tldGl6ZdoHZmxvYXQzMtoDbGVu2gZj\\nb25jYXTaBHNxcnQpA9oDb2Jz2gxleHBhbmRlZF9vYnPaAXgpAtoOZXhwYW5kX2RpbXNfb3DaCHF1\\nYW50aWxlqQD69C9leHBvcnQvaGRhMy9ib3JnbGV0L2xvY2FsX3JhbV9mc19kaXJzLzAueXVuZGlf\\nbXVwcGV0XzBfMTIyNzA4MzMuMTMueXVuZGkuMTk0NzMxNDE3OTYxLjhmNGY5Zjk4Y2I3YTMwNTUv\\nYnVpbGRfdGFyZ2V0X3RyYWluX3Bhcl9kOTc1NzUzNzAxNmEyZWI4L3RyYWluLnBhci9nb29nbGUz\\nL2xlYXJuaW5nL3NtYXJ0Y2hvaWNlcy9yZXNlYXJjaC9jbGllbnRzL2NvbXBpbGVyX29wdC9wb2xp\\nY3lfdHJhaW5pbmcvZmVhdHVyZV9vcHMucHnaDW5vcm1hbGl6YXRpb24wAAAAcwoAAAAAAQgBBAEK\\nARAB\\n\", null, {\"class_name\": \"__tuple__\", \"items\": [{\"class_name\": \"ExpandDims\", \"config\": {\"name\": \"expand_dims\", \"trainable\": true, \"dtype\": \"float32\", \"axis\": -1}}, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 4.0]]}]}, \"function_type\": \"lambda\", \"module\": \"google3.learning.smartchoices.research.clients.compiler_opt.policy_training.feature_ops\", \"output_shape\": null, \"output_shape_type\": \"raw\", \"output_shape_module\": null, \"arguments\": {}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 118
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 53
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 119
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 120
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 121
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 54
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 122
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 55
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 222
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 223
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 223
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 123
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 124
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 125
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 126
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 248
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 249
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Flatten\", \"name\": \"flatten\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"flatten\", \"trainable\": true, \"dtype\": \"float32\", \"data_format\": \"channels_last\"}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 1, \"axes\": {}}}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "kernel"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "bias"
|
|
}
|
|
children {
|
|
node_id: 127
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 128
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 129
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 130
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 250
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 251
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Dense\", \"name\": \"dense\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 100, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"VarianceScaling\", \"config\": {\"scale\": 2.0, \"mode\": \"fan_in\", \"distribution\": \"truncated_normal\", \"seed\": null, \"dtype\": \"float32\"}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 34}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [0, 34]}}"
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 12
|
|
local_name: "kernel"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "bias"
|
|
}
|
|
children {
|
|
node_id: 131
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 132
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 133
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 134
|
|
local_name: "keras_api"
|
|
}
|
|
children {
|
|
node_id: 252
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 253
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_tf_keras_layer"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
metadata: "{\"class_name\": \"Dense\", \"name\": \"dense_1\", \"trainable\": true, \"expects_training_arg\": false, \"dtype\": \"float32\", \"batch_input_shape\": null, \"stateful\": false, \"config\": {\"name\": \"dense_1\", \"trainable\": true, \"dtype\": \"float32\", \"units\": 40, \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"VarianceScaling\", \"config\": {\"scale\": 2.0, \"mode\": \"fan_in\", \"distribution\": \"truncated_normal\", \"seed\": null, \"dtype\": \"float32\"}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"input_spec\": {\"class_name\": \"InputSpec\", \"config\": {\"dtype\": null, \"shape\": null, \"ndim\": null, \"max_ndim\": null, \"min_ndim\": 2, \"axes\": {\"-1\": 100}}}, \"build_input_shape\": {\"class_name\": \"TensorShape\", \"items\": [0, 100]}}"
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 41
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 42
|
|
local_name: "1"
|
|
}
|
|
children {
|
|
node_id: 43
|
|
local_name: "2"
|
|
}
|
|
children {
|
|
node_id: 44
|
|
local_name: "3"
|
|
}
|
|
children {
|
|
node_id: 45
|
|
local_name: "4"
|
|
}
|
|
children {
|
|
node_id: 46
|
|
local_name: "5"
|
|
}
|
|
children {
|
|
node_id: 47
|
|
local_name: "6"
|
|
}
|
|
children {
|
|
node_id: 48
|
|
local_name: "7"
|
|
}
|
|
children {
|
|
node_id: 49
|
|
local_name: "8"
|
|
}
|
|
children {
|
|
node_id: 50
|
|
local_name: "9"
|
|
}
|
|
children {
|
|
node_id: 51
|
|
local_name: "10"
|
|
}
|
|
children {
|
|
node_id: 52
|
|
local_name: "11"
|
|
}
|
|
children {
|
|
node_id: 26
|
|
local_name: "12"
|
|
}
|
|
children {
|
|
node_id: 57
|
|
local_name: "13"
|
|
}
|
|
children {
|
|
node_id: 58
|
|
local_name: "14"
|
|
}
|
|
children {
|
|
node_id: 59
|
|
local_name: "15"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 135
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 70
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 136
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 137
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 138
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 71
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 139
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 72
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 224
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 225
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 225
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 140
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 74
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 141
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 142
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 143
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 75
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 144
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 76
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 226
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 227
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 227
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 145
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 78
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 146
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 147
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 148
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 79
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 149
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 80
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 228
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 229
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 229
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 150
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 82
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 151
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 152
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 153
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 83
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 154
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 84
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 230
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 231
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 231
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 155
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 86
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 156
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 157
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 158
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 87
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 159
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 88
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 232
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 233
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 233
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 160
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 90
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 161
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 162
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 163
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 91
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 164
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 92
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 234
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 235
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 235
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 165
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 94
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 166
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 167
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 168
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 95
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 169
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 96
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 236
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 237
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 237
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 170
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 98
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 171
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 172
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 173
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 99
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 174
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 100
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 238
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 239
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 239
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 175
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 102
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 176
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 177
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 178
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 103
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 179
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 104
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 240
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 241
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 241
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 180
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 106
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 181
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 182
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 183
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 107
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 184
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 108
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 242
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 243
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 243
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 185
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 110
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 186
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 187
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 188
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 111
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 189
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 112
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 244
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 245
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 245
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 190
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 114
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 191
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 192
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 193
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 115
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 194
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 116
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 246
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 247
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 247
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 195
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 123
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 196
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 197
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 198
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 124
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 199
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 125
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 248
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 249
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 249
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 10
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 11
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 200
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 127
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 201
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 202
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 203
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 128
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 204
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 129
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 250
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 251
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 251
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 12
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 12
|
|
local_name: "0"
|
|
}
|
|
children {
|
|
node_id: 13
|
|
local_name: "1"
|
|
}
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
children {
|
|
node_id: 205
|
|
local_name: "layer_metrics"
|
|
}
|
|
children {
|
|
node_id: 131
|
|
local_name: "variables"
|
|
}
|
|
children {
|
|
node_id: 206
|
|
local_name: "layer_regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 207
|
|
local_name: "metrics"
|
|
}
|
|
children {
|
|
node_id: 208
|
|
local_name: "layers"
|
|
}
|
|
children {
|
|
node_id: 132
|
|
local_name: "regularization_losses"
|
|
}
|
|
children {
|
|
node_id: 209
|
|
local_name: "non_trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 133
|
|
local_name: "trainable_variables"
|
|
}
|
|
children {
|
|
node_id: 252
|
|
local_name: "__call__"
|
|
}
|
|
children {
|
|
node_id: 253
|
|
local_name: "call_and_return_all_conditional_losses"
|
|
}
|
|
children {
|
|
node_id: 253
|
|
local_name: "call_and_return_conditional_losses"
|
|
}
|
|
user_object {
|
|
identifier: "_generic_user_object"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_dict_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
user_object {
|
|
identifier: "trackable_list_wrapper"
|
|
version {
|
|
producer: 1
|
|
min_consumer: 1
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
concrete_functions: "__inference_polymorphic_action_fn_4619080"
|
|
concrete_functions: "__inference_polymorphic_action_fn_946"
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "time_step"
|
|
}
|
|
values {
|
|
string_value: "policy_state"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
concrete_functions: "__inference_function_722"
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
bare_concrete_function {
|
|
concrete_function_name: "__inference_<lambda>_728"
|
|
}
|
|
}
|
|
nodes {
|
|
bare_concrete_function {
|
|
concrete_function_name: "__inference_signature_wrapper_4619026"
|
|
argument_keywords: "callee_basic_block_count"
|
|
argument_keywords: "callee_conditionally_executed_blocks"
|
|
argument_keywords: "callee_users"
|
|
argument_keywords: "caller_basic_block_count"
|
|
argument_keywords: "caller_conditionally_executed_blocks"
|
|
argument_keywords: "caller_users"
|
|
argument_keywords: "callsite_height"
|
|
argument_keywords: "cost_estimate"
|
|
argument_keywords: "discount"
|
|
argument_keywords: "edge_count"
|
|
argument_keywords: "inlining_default"
|
|
argument_keywords: "node_count"
|
|
argument_keywords: "nr_ctant_params"
|
|
argument_keywords: "reward"
|
|
argument_keywords: "step_type"
|
|
}
|
|
}
|
|
nodes {
|
|
bare_concrete_function {
|
|
concrete_function_name: "__inference_signature_wrapper_4619033"
|
|
}
|
|
}
|
|
nodes {
|
|
bare_concrete_function {
|
|
concrete_function_name: "__inference_signature_wrapper_4619048"
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "observation"
|
|
}
|
|
values {
|
|
string_value: "step_type"
|
|
}
|
|
values {
|
|
string_value: "network_state"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "observation"
|
|
}
|
|
values {
|
|
string_value: "step_type"
|
|
}
|
|
values {
|
|
string_value: "network_state"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "observation"
|
|
}
|
|
values {
|
|
string_value: "step_type"
|
|
}
|
|
values {
|
|
string_value: "network_state"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "observation"
|
|
}
|
|
values {
|
|
string_value: "step_type"
|
|
}
|
|
values {
|
|
string_value: "network_state"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
values {
|
|
string_value: "mask"
|
|
}
|
|
values {
|
|
string_value: "training"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
list_value {
|
|
values {
|
|
none_value {
|
|
}
|
|
}
|
|
values {
|
|
bool_value: false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
nodes {
|
|
function {
|
|
function_spec {
|
|
fullargspec {
|
|
named_tuple_value {
|
|
name: "FullArgSpec"
|
|
values {
|
|
key: "args"
|
|
value {
|
|
list_value {
|
|
values {
|
|
string_value: "self"
|
|
}
|
|
values {
|
|
string_value: "inputs"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varargs"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "varkw"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "defaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlyargs"
|
|
value {
|
|
list_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "kwonlydefaults"
|
|
value {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "annotations"
|
|
value {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
is_method: true
|
|
input_signature {
|
|
none_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
concrete_functions {
|
|
key: "__inference_<lambda>_728"
|
|
value {
|
|
bound_inputs: 4
|
|
canonicalized_input_signature {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_signature {
|
|
tensor_spec_value {
|
|
shape {
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
}
|
|
concrete_functions {
|
|
key: "__inference_function_722"
|
|
value {
|
|
canonicalized_input_signature {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_signature {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
concrete_functions {
|
|
key: "__inference_polymorphic_action_fn_4619080"
|
|
value {
|
|
bound_inputs: 10
|
|
bound_inputs: 11
|
|
bound_inputs: 12
|
|
bound_inputs: 13
|
|
bound_inputs: 14
|
|
bound_inputs: 15
|
|
canonicalized_input_signature {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
values {
|
|
named_tuple_value {
|
|
name: "TimeStep"
|
|
values {
|
|
key: "step_type"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/step_type"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT32
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "reward"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/reward"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "discount"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/discount"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "observation"
|
|
value {
|
|
dict_value {
|
|
fields {
|
|
key: "callee_basic_block_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/callee_basic_block_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callee_conditionally_executed_blocks"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/callee_conditionally_executed_blocks"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callee_users"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/callee_users"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_basic_block_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/caller_basic_block_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_conditionally_executed_blocks"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/caller_conditionally_executed_blocks"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_users"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/caller_users"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callsite_height"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/callsite_height"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "cost_estimate"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/cost_estimate"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "edge_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/edge_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "inlining_default"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/inlining_default"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "node_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/node_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "nr_ctant_params"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "time_step/observation/nr_ctant_params"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_signature {
|
|
named_tuple_value {
|
|
name: "PolicyStep"
|
|
values {
|
|
key: "action"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "action"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "state"
|
|
value {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "info"
|
|
value {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
concrete_functions {
|
|
key: "__inference_polymorphic_action_fn_946"
|
|
value {
|
|
bound_inputs: 10
|
|
bound_inputs: 11
|
|
bound_inputs: 12
|
|
bound_inputs: 13
|
|
bound_inputs: 14
|
|
bound_inputs: 15
|
|
canonicalized_input_signature {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
values {
|
|
named_tuple_value {
|
|
name: "TimeStep"
|
|
values {
|
|
key: "step_type"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "step_type"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT32
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "reward"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "reward"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "discount"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "discount"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "observation"
|
|
value {
|
|
dict_value {
|
|
fields {
|
|
key: "callee_basic_block_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callee_basic_block_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callee_conditionally_executed_blocks"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callee_conditionally_executed_blocks"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callee_users"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callee_users"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_basic_block_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "caller_basic_block_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_conditionally_executed_blocks"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "caller_conditionally_executed_blocks"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_users"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "caller_users"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callsite_height"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callsite_height"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "cost_estimate"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "cost_estimate"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "edge_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "edge_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "inlining_default"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "inlining_default"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "node_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "node_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "nr_ctant_params"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "nr_ctant_params"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_signature {
|
|
named_tuple_value {
|
|
name: "PolicyStep"
|
|
values {
|
|
key: "action"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "action"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "state"
|
|
value {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
values {
|
|
key: "info"
|
|
value {
|
|
tuple_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
concrete_functions {
|
|
key: "__inference_signature_wrapper_4619026"
|
|
value {
|
|
bound_inputs: 10
|
|
bound_inputs: 11
|
|
bound_inputs: 12
|
|
bound_inputs: 13
|
|
bound_inputs: 14
|
|
bound_inputs: 15
|
|
canonicalized_input_signature {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
dict_value {
|
|
fields {
|
|
key: "callee_basic_block_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callee_basic_block_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callee_conditionally_executed_blocks"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callee_conditionally_executed_blocks"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callee_users"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callee_users"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_basic_block_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "caller_basic_block_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_conditionally_executed_blocks"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "caller_conditionally_executed_blocks"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "caller_users"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "caller_users"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "callsite_height"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "callsite_height"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "cost_estimate"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "cost_estimate"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "discount"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "discount"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "edge_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "edge_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "inlining_default"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "inlining_default"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "node_count"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "node_count"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "nr_ctant_params"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "nr_ctant_params"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "reward"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "reward"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_FLOAT
|
|
}
|
|
}
|
|
}
|
|
fields {
|
|
key: "step_type"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "step_type"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT32
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_signature {
|
|
dict_value {
|
|
fields {
|
|
key: "inlining_decision"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "inlining_decision"
|
|
shape {
|
|
dim {
|
|
size: 1
|
|
}
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
concrete_functions {
|
|
key: "__inference_signature_wrapper_4619033"
|
|
value {
|
|
canonicalized_input_signature {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_signature {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
concrete_functions {
|
|
key: "__inference_signature_wrapper_4619048"
|
|
value {
|
|
bound_inputs: 4
|
|
canonicalized_input_signature {
|
|
tuple_value {
|
|
values {
|
|
tuple_value {
|
|
}
|
|
}
|
|
values {
|
|
dict_value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_signature {
|
|
dict_value {
|
|
fields {
|
|
key: "int64"
|
|
value {
|
|
tensor_spec_value {
|
|
name: "int64"
|
|
shape {
|
|
}
|
|
dtype: DT_INT64
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|