forked from OSchip/llvm-project
595 lines
22 KiB
C++
595 lines
22 KiB
C++
//===--- ParseInit.cpp - Initializer Parsing ------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements initializer parsing as specified by C99 6.7.8.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/TokenKinds.h"
|
|
#include "clang/Parse/ParseDiagnostic.h"
|
|
#include "clang/Parse/Parser.h"
|
|
#include "clang/Parse/RAIIObjectsForParser.h"
|
|
#include "clang/Sema/Designator.h"
|
|
#include "clang/Sema/Ownership.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
using namespace clang;
|
|
|
|
|
|
/// MayBeDesignationStart - Return true if the current token might be the start
|
|
/// of a designator. If we can tell it is impossible that it is a designator,
|
|
/// return false.
|
|
bool Parser::MayBeDesignationStart() {
|
|
switch (Tok.getKind()) {
|
|
default:
|
|
return false;
|
|
|
|
case tok::period: // designator: '.' identifier
|
|
return true;
|
|
|
|
case tok::l_square: { // designator: array-designator
|
|
if (!PP.getLangOpts().CPlusPlus11)
|
|
return true;
|
|
|
|
// C++11 lambda expressions and C99 designators can be ambiguous all the
|
|
// way through the closing ']' and to the next character. Handle the easy
|
|
// cases here, and fall back to tentative parsing if those fail.
|
|
switch (PP.LookAhead(0).getKind()) {
|
|
case tok::equal:
|
|
case tok::ellipsis:
|
|
case tok::r_square:
|
|
// Definitely starts a lambda expression.
|
|
return false;
|
|
|
|
case tok::amp:
|
|
case tok::kw_this:
|
|
case tok::star:
|
|
case tok::identifier:
|
|
// We have to do additional analysis, because these could be the
|
|
// start of a constant expression or a lambda capture list.
|
|
break;
|
|
|
|
default:
|
|
// Anything not mentioned above cannot occur following a '[' in a
|
|
// lambda expression.
|
|
return true;
|
|
}
|
|
|
|
// Handle the complicated case below.
|
|
break;
|
|
}
|
|
case tok::identifier: // designation: identifier ':'
|
|
return PP.LookAhead(0).is(tok::colon);
|
|
}
|
|
|
|
// Parse up to (at most) the token after the closing ']' to determine
|
|
// whether this is a C99 designator or a lambda.
|
|
RevertingTentativeParsingAction Tentative(*this);
|
|
|
|
LambdaIntroducer Intro;
|
|
LambdaIntroducerTentativeParse ParseResult;
|
|
if (ParseLambdaIntroducer(Intro, &ParseResult)) {
|
|
// Hit and diagnosed an error in a lambda.
|
|
// FIXME: Tell the caller this happened so they can recover.
|
|
return true;
|
|
}
|
|
|
|
switch (ParseResult) {
|
|
case LambdaIntroducerTentativeParse::Success:
|
|
case LambdaIntroducerTentativeParse::Incomplete:
|
|
// Might be a lambda-expression. Keep looking.
|
|
// FIXME: If our tentative parse was not incomplete, parse the lambda from
|
|
// here rather than throwing away then reparsing the LambdaIntroducer.
|
|
break;
|
|
|
|
case LambdaIntroducerTentativeParse::MessageSend:
|
|
case LambdaIntroducerTentativeParse::Invalid:
|
|
// Can't be a lambda-expression. Treat it as a designator.
|
|
// FIXME: Should we disambiguate against a message-send?
|
|
return true;
|
|
}
|
|
|
|
// Once we hit the closing square bracket, we look at the next
|
|
// token. If it's an '=', this is a designator. Otherwise, it's a
|
|
// lambda expression. This decision favors lambdas over the older
|
|
// GNU designator syntax, which allows one to omit the '=', but is
|
|
// consistent with GCC.
|
|
return Tok.is(tok::equal);
|
|
}
|
|
|
|
static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc,
|
|
Designation &Desig) {
|
|
// If we have exactly one array designator, this used the GNU
|
|
// 'designation: array-designator' extension, otherwise there should be no
|
|
// designators at all!
|
|
if (Desig.getNumDesignators() == 1 &&
|
|
(Desig.getDesignator(0).isArrayDesignator() ||
|
|
Desig.getDesignator(0).isArrayRangeDesignator()))
|
|
P.Diag(Loc, diag::ext_gnu_missing_equal_designator);
|
|
else if (Desig.getNumDesignators() > 0)
|
|
P.Diag(Loc, diag::err_expected_equal_designator);
|
|
}
|
|
|
|
/// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production
|
|
/// checking to see if the token stream starts with a designator.
|
|
///
|
|
/// C99:
|
|
///
|
|
/// designation:
|
|
/// designator-list '='
|
|
/// [GNU] array-designator
|
|
/// [GNU] identifier ':'
|
|
///
|
|
/// designator-list:
|
|
/// designator
|
|
/// designator-list designator
|
|
///
|
|
/// designator:
|
|
/// array-designator
|
|
/// '.' identifier
|
|
///
|
|
/// array-designator:
|
|
/// '[' constant-expression ']'
|
|
/// [GNU] '[' constant-expression '...' constant-expression ']'
|
|
///
|
|
/// C++20:
|
|
///
|
|
/// designated-initializer-list:
|
|
/// designated-initializer-clause
|
|
/// designated-initializer-list ',' designated-initializer-clause
|
|
///
|
|
/// designated-initializer-clause:
|
|
/// designator brace-or-equal-initializer
|
|
///
|
|
/// designator:
|
|
/// '.' identifier
|
|
///
|
|
/// We allow the C99 syntax extensions in C++20, but do not allow the C++20
|
|
/// extension (a braced-init-list after the designator with no '=') in C99.
|
|
///
|
|
/// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an
|
|
/// initializer (because it is an expression). We need to consider this case
|
|
/// when parsing array designators.
|
|
///
|
|
/// \p CodeCompleteCB is called with Designation parsed so far.
|
|
ExprResult Parser::ParseInitializerWithPotentialDesignator(
|
|
llvm::function_ref<void(const Designation &)> CodeCompleteCB) {
|
|
|
|
// If this is the old-style GNU extension:
|
|
// designation ::= identifier ':'
|
|
// Handle it as a field designator. Otherwise, this must be the start of a
|
|
// normal expression.
|
|
if (Tok.is(tok::identifier)) {
|
|
const IdentifierInfo *FieldName = Tok.getIdentifierInfo();
|
|
|
|
SmallString<256> NewSyntax;
|
|
llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName()
|
|
<< " = ";
|
|
|
|
SourceLocation NameLoc = ConsumeToken(); // Eat the identifier.
|
|
|
|
assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!");
|
|
SourceLocation ColonLoc = ConsumeToken();
|
|
|
|
Diag(NameLoc, diag::ext_gnu_old_style_field_designator)
|
|
<< FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc),
|
|
NewSyntax);
|
|
|
|
Designation D;
|
|
D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc));
|
|
return Actions.ActOnDesignatedInitializer(D, ColonLoc, true,
|
|
ParseInitializer());
|
|
}
|
|
|
|
// Desig - This is initialized when we see our first designator. We may have
|
|
// an objc message send with no designator, so we don't want to create this
|
|
// eagerly.
|
|
Designation Desig;
|
|
|
|
// Parse each designator in the designator list until we find an initializer.
|
|
while (Tok.is(tok::period) || Tok.is(tok::l_square)) {
|
|
if (Tok.is(tok::period)) {
|
|
// designator: '.' identifier
|
|
SourceLocation DotLoc = ConsumeToken();
|
|
|
|
if (Tok.is(tok::code_completion)) {
|
|
CodeCompleteCB(Desig);
|
|
cutOffParsing();
|
|
return ExprError();
|
|
}
|
|
if (Tok.isNot(tok::identifier)) {
|
|
Diag(Tok.getLocation(), diag::err_expected_field_designator);
|
|
return ExprError();
|
|
}
|
|
|
|
Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc,
|
|
Tok.getLocation()));
|
|
ConsumeToken(); // Eat the identifier.
|
|
continue;
|
|
}
|
|
|
|
// We must have either an array designator now or an objc message send.
|
|
assert(Tok.is(tok::l_square) && "Unexpected token!");
|
|
|
|
// Handle the two forms of array designator:
|
|
// array-designator: '[' constant-expression ']'
|
|
// array-designator: '[' constant-expression '...' constant-expression ']'
|
|
//
|
|
// Also, we have to handle the case where the expression after the
|
|
// designator an an objc message send: '[' objc-message-expr ']'.
|
|
// Interesting cases are:
|
|
// [foo bar] -> objc message send
|
|
// [foo] -> array designator
|
|
// [foo ... bar] -> array designator
|
|
// [4][foo bar] -> obsolete GNU designation with objc message send.
|
|
//
|
|
// We do not need to check for an expression starting with [[ here. If it
|
|
// contains an Objective-C message send, then it is not an ill-formed
|
|
// attribute. If it is a lambda-expression within an array-designator, then
|
|
// it will be rejected because a constant-expression cannot begin with a
|
|
// lambda-expression.
|
|
InMessageExpressionRAIIObject InMessage(*this, true);
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
SourceLocation StartLoc = T.getOpenLocation();
|
|
|
|
ExprResult Idx;
|
|
|
|
// If Objective-C is enabled and this is a typename (class message
|
|
// send) or send to 'super', parse this as a message send
|
|
// expression. We handle C++ and C separately, since C++ requires
|
|
// much more complicated parsing.
|
|
if (getLangOpts().ObjC && getLangOpts().CPlusPlus) {
|
|
// Send to 'super'.
|
|
if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super &&
|
|
NextToken().isNot(tok::period) &&
|
|
getCurScope()->isInObjcMethodScope()) {
|
|
CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
|
|
return ParseAssignmentExprWithObjCMessageExprStart(
|
|
StartLoc, ConsumeToken(), nullptr, nullptr);
|
|
}
|
|
|
|
// Parse the receiver, which is either a type or an expression.
|
|
bool IsExpr;
|
|
void *TypeOrExpr;
|
|
if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) {
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
// If the receiver was a type, we have a class message; parse
|
|
// the rest of it.
|
|
if (!IsExpr) {
|
|
CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
|
|
return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
|
|
SourceLocation(),
|
|
ParsedType::getFromOpaquePtr(TypeOrExpr),
|
|
nullptr);
|
|
}
|
|
|
|
// If the receiver was an expression, we still don't know
|
|
// whether we have a message send or an array designator; just
|
|
// adopt the expression for further analysis below.
|
|
// FIXME: potentially-potentially evaluated expression above?
|
|
Idx = ExprResult(static_cast<Expr*>(TypeOrExpr));
|
|
} else if (getLangOpts().ObjC && Tok.is(tok::identifier)) {
|
|
IdentifierInfo *II = Tok.getIdentifierInfo();
|
|
SourceLocation IILoc = Tok.getLocation();
|
|
ParsedType ReceiverType;
|
|
// Three cases. This is a message send to a type: [type foo]
|
|
// This is a message send to super: [super foo]
|
|
// This is a message sent to an expr: [super.bar foo]
|
|
switch (Actions.getObjCMessageKind(
|
|
getCurScope(), II, IILoc, II == Ident_super,
|
|
NextToken().is(tok::period), ReceiverType)) {
|
|
case Sema::ObjCSuperMessage:
|
|
CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
|
|
return ParseAssignmentExprWithObjCMessageExprStart(
|
|
StartLoc, ConsumeToken(), nullptr, nullptr);
|
|
|
|
case Sema::ObjCClassMessage:
|
|
CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
|
|
ConsumeToken(); // the identifier
|
|
if (!ReceiverType) {
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
// Parse type arguments and protocol qualifiers.
|
|
if (Tok.is(tok::less)) {
|
|
SourceLocation NewEndLoc;
|
|
TypeResult NewReceiverType
|
|
= parseObjCTypeArgsAndProtocolQualifiers(IILoc, ReceiverType,
|
|
/*consumeLastToken=*/true,
|
|
NewEndLoc);
|
|
if (!NewReceiverType.isUsable()) {
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
ReceiverType = NewReceiverType.get();
|
|
}
|
|
|
|
return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
|
|
SourceLocation(),
|
|
ReceiverType,
|
|
nullptr);
|
|
|
|
case Sema::ObjCInstanceMessage:
|
|
// Fall through; we'll just parse the expression and
|
|
// (possibly) treat this like an Objective-C message send
|
|
// later.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Parse the index expression, if we haven't already gotten one
|
|
// above (which can only happen in Objective-C++).
|
|
// Note that we parse this as an assignment expression, not a constant
|
|
// expression (allowing *=, =, etc) to handle the objc case. Sema needs
|
|
// to validate that the expression is a constant.
|
|
// FIXME: We also need to tell Sema that we're in a
|
|
// potentially-potentially evaluated context.
|
|
if (!Idx.get()) {
|
|
Idx = ParseAssignmentExpression();
|
|
if (Idx.isInvalid()) {
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
return Idx;
|
|
}
|
|
}
|
|
|
|
// Given an expression, we could either have a designator (if the next
|
|
// tokens are '...' or ']' or an objc message send. If this is an objc
|
|
// message send, handle it now. An objc-message send is the start of
|
|
// an assignment-expression production.
|
|
if (getLangOpts().ObjC && Tok.isNot(tok::ellipsis) &&
|
|
Tok.isNot(tok::r_square)) {
|
|
CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig);
|
|
return ParseAssignmentExprWithObjCMessageExprStart(
|
|
StartLoc, SourceLocation(), nullptr, Idx.get());
|
|
}
|
|
|
|
// If this is a normal array designator, remember it.
|
|
if (Tok.isNot(tok::ellipsis)) {
|
|
Desig.AddDesignator(Designator::getArray(Idx.get(), StartLoc));
|
|
} else {
|
|
// Handle the gnu array range extension.
|
|
Diag(Tok, diag::ext_gnu_array_range);
|
|
SourceLocation EllipsisLoc = ConsumeToken();
|
|
|
|
ExprResult RHS(ParseConstantExpression());
|
|
if (RHS.isInvalid()) {
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
return RHS;
|
|
}
|
|
Desig.AddDesignator(Designator::getArrayRange(Idx.get(),
|
|
RHS.get(),
|
|
StartLoc, EllipsisLoc));
|
|
}
|
|
|
|
T.consumeClose();
|
|
Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc(
|
|
T.getCloseLocation());
|
|
}
|
|
|
|
// Okay, we're done with the designator sequence. We know that there must be
|
|
// at least one designator, because the only case we can get into this method
|
|
// without a designator is when we have an objc message send. That case is
|
|
// handled and returned from above.
|
|
assert(!Desig.empty() && "Designator is empty?");
|
|
|
|
// Handle a normal designator sequence end, which is an equal.
|
|
if (Tok.is(tok::equal)) {
|
|
SourceLocation EqualLoc = ConsumeToken();
|
|
return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false,
|
|
ParseInitializer());
|
|
}
|
|
|
|
// Handle a C++20 braced designated initialization, which results in
|
|
// direct-list-initialization of the aggregate element. We allow this as an
|
|
// extension from C++11 onwards (when direct-list-initialization was added).
|
|
if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
|
|
return Actions.ActOnDesignatedInitializer(Desig, SourceLocation(), false,
|
|
ParseBraceInitializer());
|
|
}
|
|
|
|
// We read some number of designators and found something that isn't an = or
|
|
// an initializer. If we have exactly one array designator, this
|
|
// is the GNU 'designation: array-designator' extension. Otherwise, it is a
|
|
// parse error.
|
|
if (Desig.getNumDesignators() == 1 &&
|
|
(Desig.getDesignator(0).isArrayDesignator() ||
|
|
Desig.getDesignator(0).isArrayRangeDesignator())) {
|
|
Diag(Tok, diag::ext_gnu_missing_equal_designator)
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "= ");
|
|
return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(),
|
|
true, ParseInitializer());
|
|
}
|
|
|
|
Diag(Tok, diag::err_expected_equal_designator);
|
|
return ExprError();
|
|
}
|
|
|
|
/// ParseBraceInitializer - Called when parsing an initializer that has a
|
|
/// leading open brace.
|
|
///
|
|
/// initializer: [C99 6.7.8]
|
|
/// '{' initializer-list '}'
|
|
/// '{' initializer-list ',' '}'
|
|
/// [GNU] '{' '}'
|
|
///
|
|
/// initializer-list:
|
|
/// designation[opt] initializer ...[opt]
|
|
/// initializer-list ',' designation[opt] initializer ...[opt]
|
|
///
|
|
ExprResult Parser::ParseBraceInitializer() {
|
|
InMessageExpressionRAIIObject InMessage(*this, false);
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_brace);
|
|
T.consumeOpen();
|
|
SourceLocation LBraceLoc = T.getOpenLocation();
|
|
|
|
/// InitExprs - This is the actual list of expressions contained in the
|
|
/// initializer.
|
|
ExprVector InitExprs;
|
|
|
|
if (Tok.is(tok::r_brace)) {
|
|
// Empty initializers are a C++ feature and a GNU extension to C.
|
|
if (!getLangOpts().CPlusPlus)
|
|
Diag(LBraceLoc, diag::ext_gnu_empty_initializer);
|
|
// Match the '}'.
|
|
return Actions.ActOnInitList(LBraceLoc, None, ConsumeBrace());
|
|
}
|
|
|
|
// Enter an appropriate expression evaluation context for an initializer list.
|
|
EnterExpressionEvaluationContext EnterContext(
|
|
Actions, EnterExpressionEvaluationContext::InitList);
|
|
|
|
bool InitExprsOk = true;
|
|
auto CodeCompleteDesignation = [&](const Designation &D) {
|
|
Actions.CodeCompleteDesignator(PreferredType.get(T.getOpenLocation()),
|
|
InitExprs, D);
|
|
};
|
|
|
|
while (1) {
|
|
// Handle Microsoft __if_exists/if_not_exists if necessary.
|
|
if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
|
|
Tok.is(tok::kw___if_not_exists))) {
|
|
if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) {
|
|
if (Tok.isNot(tok::comma)) break;
|
|
ConsumeToken();
|
|
}
|
|
if (Tok.is(tok::r_brace)) break;
|
|
continue;
|
|
}
|
|
|
|
// Parse: designation[opt] initializer
|
|
|
|
// If we know that this cannot be a designation, just parse the nested
|
|
// initializer directly.
|
|
ExprResult SubElt;
|
|
if (MayBeDesignationStart())
|
|
SubElt = ParseInitializerWithPotentialDesignator(CodeCompleteDesignation);
|
|
else
|
|
SubElt = ParseInitializer();
|
|
|
|
if (Tok.is(tok::ellipsis))
|
|
SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
|
|
|
|
SubElt = Actions.CorrectDelayedTyposInExpr(SubElt.get());
|
|
|
|
// If we couldn't parse the subelement, bail out.
|
|
if (SubElt.isUsable()) {
|
|
InitExprs.push_back(SubElt.get());
|
|
} else {
|
|
InitExprsOk = false;
|
|
|
|
// We have two ways to try to recover from this error: if the code looks
|
|
// grammatically ok (i.e. we have a comma coming up) try to continue
|
|
// parsing the rest of the initializer. This allows us to emit
|
|
// diagnostics for later elements that we find. If we don't see a comma,
|
|
// assume there is a parse error, and just skip to recover.
|
|
// FIXME: This comment doesn't sound right. If there is a r_brace
|
|
// immediately, it can't be an error, since there is no other way of
|
|
// leaving this loop except through this if.
|
|
if (Tok.isNot(tok::comma)) {
|
|
SkipUntil(tok::r_brace, StopBeforeMatch);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we don't have a comma continued list, we're done.
|
|
if (Tok.isNot(tok::comma)) break;
|
|
|
|
// TODO: save comma locations if some client cares.
|
|
ConsumeToken();
|
|
|
|
// Handle trailing comma.
|
|
if (Tok.is(tok::r_brace)) break;
|
|
}
|
|
|
|
bool closed = !T.consumeClose();
|
|
|
|
if (InitExprsOk && closed)
|
|
return Actions.ActOnInitList(LBraceLoc, InitExprs,
|
|
T.getCloseLocation());
|
|
|
|
return ExprError(); // an error occurred.
|
|
}
|
|
|
|
|
|
// Return true if a comma (or closing brace) is necessary after the
|
|
// __if_exists/if_not_exists statement.
|
|
bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs,
|
|
bool &InitExprsOk) {
|
|
bool trailingComma = false;
|
|
IfExistsCondition Result;
|
|
if (ParseMicrosoftIfExistsCondition(Result))
|
|
return false;
|
|
|
|
BalancedDelimiterTracker Braces(*this, tok::l_brace);
|
|
if (Braces.consumeOpen()) {
|
|
Diag(Tok, diag::err_expected) << tok::l_brace;
|
|
return false;
|
|
}
|
|
|
|
switch (Result.Behavior) {
|
|
case IEB_Parse:
|
|
// Parse the declarations below.
|
|
break;
|
|
|
|
case IEB_Dependent:
|
|
Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
|
|
<< Result.IsIfExists;
|
|
// Fall through to skip.
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case IEB_Skip:
|
|
Braces.skipToEnd();
|
|
return false;
|
|
}
|
|
|
|
auto CodeCompleteDesignation = [&](const Designation &D) {
|
|
Actions.CodeCompleteDesignator(PreferredType.get(Braces.getOpenLocation()),
|
|
InitExprs, D);
|
|
};
|
|
while (!isEofOrEom()) {
|
|
trailingComma = false;
|
|
// If we know that this cannot be a designation, just parse the nested
|
|
// initializer directly.
|
|
ExprResult SubElt;
|
|
if (MayBeDesignationStart())
|
|
SubElt = ParseInitializerWithPotentialDesignator(CodeCompleteDesignation);
|
|
else
|
|
SubElt = ParseInitializer();
|
|
|
|
if (Tok.is(tok::ellipsis))
|
|
SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
|
|
|
|
// If we couldn't parse the subelement, bail out.
|
|
if (!SubElt.isInvalid())
|
|
InitExprs.push_back(SubElt.get());
|
|
else
|
|
InitExprsOk = false;
|
|
|
|
if (Tok.is(tok::comma)) {
|
|
ConsumeToken();
|
|
trailingComma = true;
|
|
}
|
|
|
|
if (Tok.is(tok::r_brace))
|
|
break;
|
|
}
|
|
|
|
Braces.consumeClose();
|
|
|
|
return !trailingComma;
|
|
}
|