forked from OSchip/llvm-project
2196 lines
65 KiB
C++
2196 lines
65 KiB
C++
//===-- asan_test.cc ------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of AddressSanitizer, an address sanity checker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include <stdio.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <pthread.h>
|
|
#include <stdint.h>
|
|
#include <setjmp.h>
|
|
#include <assert.h>
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
#include "asan_test_utils.h"
|
|
|
|
#ifndef __APPLE__
|
|
#include <malloc.h>
|
|
#else
|
|
#include <malloc/malloc.h>
|
|
#include <AvailabilityMacros.h> // For MAC_OS_X_VERSION_*
|
|
#include <CoreFoundation/CFString.h>
|
|
#endif // __APPLE__
|
|
|
|
#if ASAN_HAS_EXCEPTIONS
|
|
# define ASAN_THROW(x) throw (x)
|
|
#else
|
|
# define ASAN_THROW(x)
|
|
#endif
|
|
|
|
#include <sys/mman.h>
|
|
|
|
typedef uint8_t U1;
|
|
typedef uint16_t U2;
|
|
typedef uint32_t U4;
|
|
typedef uint64_t U8;
|
|
|
|
static const int kPageSize = 4096;
|
|
|
|
// Simple stand-alone pseudorandom number generator.
|
|
// Current algorithm is ANSI C linear congruential PRNG.
|
|
static inline uint32_t my_rand(uint32_t* state) {
|
|
return (*state = *state * 1103515245 + 12345) >> 16;
|
|
}
|
|
|
|
static uint32_t global_seed = 0;
|
|
|
|
const size_t kLargeMalloc = 1 << 24;
|
|
|
|
template<typename T>
|
|
NOINLINE void asan_write(T *a) {
|
|
*a = 0;
|
|
}
|
|
|
|
NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
|
|
EXPECT_EQ(0U, ((uintptr_t)p % size));
|
|
if (size == 1) asan_write((uint8_t*)p);
|
|
else if (size == 2) asan_write((uint16_t*)p);
|
|
else if (size == 4) asan_write((uint32_t*)p);
|
|
else if (size == 8) asan_write((uint64_t*)p);
|
|
}
|
|
|
|
NOINLINE void *malloc_fff(size_t size) {
|
|
void *res = malloc/**/(size); break_optimization(0); return res;}
|
|
NOINLINE void *malloc_eee(size_t size) {
|
|
void *res = malloc_fff(size); break_optimization(0); return res;}
|
|
NOINLINE void *malloc_ddd(size_t size) {
|
|
void *res = malloc_eee(size); break_optimization(0); return res;}
|
|
NOINLINE void *malloc_ccc(size_t size) {
|
|
void *res = malloc_ddd(size); break_optimization(0); return res;}
|
|
NOINLINE void *malloc_bbb(size_t size) {
|
|
void *res = malloc_ccc(size); break_optimization(0); return res;}
|
|
NOINLINE void *malloc_aaa(size_t size) {
|
|
void *res = malloc_bbb(size); break_optimization(0); return res;}
|
|
|
|
#ifndef __APPLE__
|
|
NOINLINE void *memalign_fff(size_t alignment, size_t size) {
|
|
void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
|
|
NOINLINE void *memalign_eee(size_t alignment, size_t size) {
|
|
void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
|
|
NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
|
|
void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
|
|
NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
|
|
void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
|
|
NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
|
|
void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
|
|
NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
|
|
void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
|
|
#endif // __APPLE__
|
|
|
|
|
|
NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
|
|
NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
|
|
NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
|
|
|
|
template<typename T>
|
|
NOINLINE void oob_test(int size, int off) {
|
|
char *p = (char*)malloc_aaa(size);
|
|
// fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
|
|
// sizeof(T), p, p + size, off);
|
|
asan_write((T*)(p + off));
|
|
free_aaa(p);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
NOINLINE void uaf_test(int size, int off) {
|
|
char *p = (char *)malloc_aaa(size);
|
|
free_aaa(p);
|
|
for (int i = 1; i < 100; i++)
|
|
free_aaa(malloc_aaa(i));
|
|
fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
|
|
(long)sizeof(T), p, off);
|
|
asan_write((T*)(p + off));
|
|
}
|
|
|
|
TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
|
|
#if defined(__has_feature) && __has_feature(address_sanitizer)
|
|
bool asan = 1;
|
|
#elif defined(__SANITIZE_ADDRESS__)
|
|
bool asan = 1;
|
|
#else
|
|
bool asan = 0;
|
|
#endif
|
|
EXPECT_EQ(true, asan);
|
|
}
|
|
|
|
TEST(AddressSanitizer, SimpleDeathTest) {
|
|
EXPECT_DEATH(exit(1), "");
|
|
}
|
|
|
|
TEST(AddressSanitizer, VariousMallocsTest) {
|
|
int *a = (int*)malloc(100 * sizeof(int));
|
|
a[50] = 0;
|
|
free(a);
|
|
|
|
int *r = (int*)malloc(10);
|
|
r = (int*)realloc(r, 2000 * sizeof(int));
|
|
r[1000] = 0;
|
|
free(r);
|
|
|
|
int *b = new int[100];
|
|
b[50] = 0;
|
|
delete [] b;
|
|
|
|
int *c = new int;
|
|
*c = 0;
|
|
delete c;
|
|
|
|
#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
|
|
int *pm;
|
|
int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
|
|
EXPECT_EQ(0, pm_res);
|
|
free(pm);
|
|
#endif
|
|
|
|
#if !defined(__APPLE__)
|
|
int *ma = (int*)memalign(kPageSize, kPageSize);
|
|
EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
|
|
ma[123] = 0;
|
|
free(ma);
|
|
#endif // __APPLE__
|
|
}
|
|
|
|
TEST(AddressSanitizer, CallocTest) {
|
|
int *a = (int*)calloc(100, sizeof(int));
|
|
EXPECT_EQ(0, a[10]);
|
|
free(a);
|
|
}
|
|
|
|
TEST(AddressSanitizer, VallocTest) {
|
|
void *a = valloc(100);
|
|
EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
|
|
free(a);
|
|
}
|
|
|
|
#ifndef __APPLE__
|
|
TEST(AddressSanitizer, PvallocTest) {
|
|
char *a = (char*)pvalloc(kPageSize + 100);
|
|
EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
|
|
a[kPageSize + 101] = 1; // we should not report an error here.
|
|
free(a);
|
|
|
|
a = (char*)pvalloc(0); // pvalloc(0) should allocate at least one page.
|
|
EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
|
|
a[101] = 1; // we should not report an error here.
|
|
free(a);
|
|
}
|
|
#endif // __APPLE__
|
|
|
|
void *TSDWorker(void *test_key) {
|
|
if (test_key) {
|
|
pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void TSDDestructor(void *tsd) {
|
|
// Spawning a thread will check that the current thread id is not -1.
|
|
pthread_t th;
|
|
PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
|
|
PTHREAD_JOIN(th, NULL);
|
|
}
|
|
|
|
// This tests triggers the thread-specific data destruction fiasco which occurs
|
|
// if we don't manage the TSD destructors ourselves. We create a new pthread
|
|
// key with a non-NULL destructor which is likely to be put after the destructor
|
|
// of AsanThread in the list of destructors.
|
|
// In this case the TSD for AsanThread will be destroyed before TSDDestructor
|
|
// is called for the child thread, and a CHECK will fail when we call
|
|
// pthread_create() to spawn the grandchild.
|
|
TEST(AddressSanitizer, DISABLED_TSDTest) {
|
|
pthread_t th;
|
|
pthread_key_t test_key;
|
|
pthread_key_create(&test_key, TSDDestructor);
|
|
PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
|
|
PTHREAD_JOIN(th, NULL);
|
|
pthread_key_delete(test_key);
|
|
}
|
|
|
|
template<typename T>
|
|
void OOBTest() {
|
|
char expected_str[100];
|
|
for (int size = sizeof(T); size < 20; size += 5) {
|
|
for (int i = -5; i < 0; i++) {
|
|
const char *str =
|
|
"is located.*%d byte.*to the left";
|
|
sprintf(expected_str, str, abs(i));
|
|
EXPECT_DEATH(oob_test<T>(size, i), expected_str);
|
|
}
|
|
|
|
for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
|
|
oob_test<T>(size, i);
|
|
|
|
for (int i = size - sizeof(T) + 1; i <= (int)(size + 3 * sizeof(T)); i++) {
|
|
const char *str =
|
|
"is located.*%d byte.*to the right";
|
|
int off = i >= size ? (i - size) : 0;
|
|
// we don't catch unaligned partially OOB accesses.
|
|
if (i % sizeof(T)) continue;
|
|
sprintf(expected_str, str, off);
|
|
EXPECT_DEATH(oob_test<T>(size, i), expected_str);
|
|
}
|
|
}
|
|
|
|
EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
|
|
"is located.*1 byte.*to the left");
|
|
EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
|
|
"is located.*0 byte.*to the right");
|
|
}
|
|
|
|
// TODO(glider): the following tests are EXTREMELY slow on Darwin:
|
|
// AddressSanitizer.OOB_char (125503 ms)
|
|
// AddressSanitizer.OOB_int (126890 ms)
|
|
// AddressSanitizer.OOBRightTest (315605 ms)
|
|
// AddressSanitizer.SimpleStackTest (366559 ms)
|
|
|
|
TEST(AddressSanitizer, OOB_char) {
|
|
OOBTest<U1>();
|
|
}
|
|
|
|
TEST(AddressSanitizer, OOB_int) {
|
|
OOBTest<U4>();
|
|
}
|
|
|
|
TEST(AddressSanitizer, OOBRightTest) {
|
|
for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
|
|
for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
|
|
for (size_t offset = 0; offset <= 8; offset += access_size) {
|
|
void *p = malloc(alloc_size);
|
|
// allocated: [p, p + alloc_size)
|
|
// accessed: [p + offset, p + offset + access_size)
|
|
uint8_t *addr = (uint8_t*)p + offset;
|
|
if (offset + access_size <= alloc_size) {
|
|
asan_write_sized_aligned(addr, access_size);
|
|
} else {
|
|
int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
|
|
const char *str =
|
|
"is located.%d *byte.*to the right";
|
|
char expected_str[100];
|
|
sprintf(expected_str, str, outside_bytes);
|
|
EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
|
|
expected_str);
|
|
}
|
|
free(p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizer, UAF_char) {
|
|
const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
|
|
EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
|
|
EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
|
|
EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
|
|
EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
|
|
EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
|
|
}
|
|
|
|
#if ASAN_HAS_BLACKLIST
|
|
TEST(AddressSanitizer, IgnoreTest) {
|
|
int *x = Ident(new int);
|
|
delete Ident(x);
|
|
*x = 0;
|
|
}
|
|
#endif // ASAN_HAS_BLACKLIST
|
|
|
|
struct StructWithBitField {
|
|
int bf1:1;
|
|
int bf2:1;
|
|
int bf3:1;
|
|
int bf4:29;
|
|
};
|
|
|
|
TEST(AddressSanitizer, BitFieldPositiveTest) {
|
|
StructWithBitField *x = new StructWithBitField;
|
|
delete Ident(x);
|
|
EXPECT_DEATH(x->bf1 = 0, "use-after-free");
|
|
EXPECT_DEATH(x->bf2 = 0, "use-after-free");
|
|
EXPECT_DEATH(x->bf3 = 0, "use-after-free");
|
|
EXPECT_DEATH(x->bf4 = 0, "use-after-free");
|
|
}
|
|
|
|
struct StructWithBitFields_8_24 {
|
|
int a:8;
|
|
int b:24;
|
|
};
|
|
|
|
TEST(AddressSanitizer, BitFieldNegativeTest) {
|
|
StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
|
|
x->a = 0;
|
|
x->b = 0;
|
|
delete Ident(x);
|
|
}
|
|
|
|
TEST(AddressSanitizer, OutOfMemoryTest) {
|
|
size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
|
|
EXPECT_EQ(0, realloc(0, size));
|
|
EXPECT_EQ(0, realloc(0, ~Ident(0)));
|
|
EXPECT_EQ(0, malloc(size));
|
|
EXPECT_EQ(0, malloc(~Ident(0)));
|
|
EXPECT_EQ(0, calloc(1, size));
|
|
EXPECT_EQ(0, calloc(1, ~Ident(0)));
|
|
}
|
|
|
|
#if ASAN_NEEDS_SEGV
|
|
namespace {
|
|
|
|
const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
|
|
const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
|
|
|
|
TEST(AddressSanitizer, WildAddressTest) {
|
|
char *c = (char*)0x123;
|
|
EXPECT_DEATH(*c = 0, kUnknownCrash);
|
|
}
|
|
|
|
void my_sigaction_sighandler(int, siginfo_t*, void*) {
|
|
fprintf(stderr, kOverriddenHandler);
|
|
exit(1);
|
|
}
|
|
|
|
void my_signal_sighandler(int signum) {
|
|
fprintf(stderr, kOverriddenHandler);
|
|
exit(1);
|
|
}
|
|
|
|
TEST(AddressSanitizer, SignalTest) {
|
|
struct sigaction sigact;
|
|
memset(&sigact, 0, sizeof(sigact));
|
|
sigact.sa_sigaction = my_sigaction_sighandler;
|
|
sigact.sa_flags = SA_SIGINFO;
|
|
// ASan should silently ignore sigaction()...
|
|
EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
|
|
#ifdef __APPLE__
|
|
EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
|
|
#endif
|
|
char *c = (char*)0x123;
|
|
EXPECT_DEATH(*c = 0, kUnknownCrash);
|
|
// ... and signal().
|
|
EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
|
|
EXPECT_DEATH(*c = 0, kUnknownCrash);
|
|
}
|
|
} // namespace
|
|
#endif
|
|
|
|
static void MallocStress(size_t n) {
|
|
uint32_t seed = my_rand(&global_seed);
|
|
for (size_t iter = 0; iter < 10; iter++) {
|
|
vector<void *> vec;
|
|
for (size_t i = 0; i < n; i++) {
|
|
if ((i % 3) == 0) {
|
|
if (vec.empty()) continue;
|
|
size_t idx = my_rand(&seed) % vec.size();
|
|
void *ptr = vec[idx];
|
|
vec[idx] = vec.back();
|
|
vec.pop_back();
|
|
free_aaa(ptr);
|
|
} else {
|
|
size_t size = my_rand(&seed) % 1000 + 1;
|
|
#ifndef __APPLE__
|
|
size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
|
|
char *ptr = (char*)memalign_aaa(alignment, size);
|
|
#else
|
|
char *ptr = (char*) malloc_aaa(size);
|
|
#endif
|
|
vec.push_back(ptr);
|
|
ptr[0] = 0;
|
|
ptr[size-1] = 0;
|
|
ptr[size/2] = 0;
|
|
}
|
|
}
|
|
for (size_t i = 0; i < vec.size(); i++)
|
|
free_aaa(vec[i]);
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizer, MallocStressTest) {
|
|
MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
|
|
}
|
|
|
|
static void TestLargeMalloc(size_t size) {
|
|
char buff[1024];
|
|
sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
|
|
EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
|
|
}
|
|
|
|
TEST(AddressSanitizer, LargeMallocTest) {
|
|
for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
|
|
TestLargeMalloc(i);
|
|
}
|
|
}
|
|
|
|
#if ASAN_LOW_MEMORY != 1
|
|
TEST(AddressSanitizer, HugeMallocTest) {
|
|
#ifdef __APPLE__
|
|
// It was empirically found out that 1215 megabytes is the maximum amount of
|
|
// memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
|
|
// 32-bit Mac 10.7 gives even less (< 1G).
|
|
// (the libSystem malloc() allows allocating up to 2300 megabytes without
|
|
// ASan).
|
|
size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
|
|
#else
|
|
size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
|
|
#endif
|
|
TestLargeMalloc(n_megs << 20);
|
|
}
|
|
#endif
|
|
|
|
TEST(AddressSanitizer, ThreadedMallocStressTest) {
|
|
const int kNumThreads = 4;
|
|
const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
|
|
pthread_t t[kNumThreads];
|
|
for (int i = 0; i < kNumThreads; i++) {
|
|
PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
|
|
(void*)kNumIterations);
|
|
}
|
|
for (int i = 0; i < kNumThreads; i++) {
|
|
PTHREAD_JOIN(t[i], 0);
|
|
}
|
|
}
|
|
|
|
void *ManyThreadsWorker(void *a) {
|
|
for (int iter = 0; iter < 100; iter++) {
|
|
for (size_t size = 100; size < 2000; size *= 2) {
|
|
free(Ident(malloc(size)));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
TEST(AddressSanitizer, ManyThreadsTest) {
|
|
const size_t kNumThreads =
|
|
(SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
|
|
pthread_t t[kNumThreads];
|
|
for (size_t i = 0; i < kNumThreads; i++) {
|
|
PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
|
|
}
|
|
for (size_t i = 0; i < kNumThreads; i++) {
|
|
PTHREAD_JOIN(t[i], 0);
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizer, ReallocTest) {
|
|
const int kMinElem = 5;
|
|
int *ptr = (int*)malloc(sizeof(int) * kMinElem);
|
|
ptr[3] = 3;
|
|
for (int i = 0; i < 10000; i++) {
|
|
ptr = (int*)realloc(ptr,
|
|
(my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
|
|
EXPECT_EQ(3, ptr[3]);
|
|
}
|
|
}
|
|
|
|
#ifndef __APPLE__
|
|
static const char *kMallocUsableSizeErrorMsg =
|
|
"AddressSanitizer: attempting to call malloc_usable_size()";
|
|
|
|
TEST(AddressSanitizer, MallocUsableSizeTest) {
|
|
const size_t kArraySize = 100;
|
|
char *array = Ident((char*)malloc(kArraySize));
|
|
int *int_ptr = Ident(new int);
|
|
EXPECT_EQ(0U, malloc_usable_size(NULL));
|
|
EXPECT_EQ(kArraySize, malloc_usable_size(array));
|
|
EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
|
|
EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
|
|
EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
|
|
kMallocUsableSizeErrorMsg);
|
|
free(array);
|
|
EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
|
|
}
|
|
#endif
|
|
|
|
void WrongFree() {
|
|
int *x = (int*)malloc(100 * sizeof(int));
|
|
// Use the allocated memory, otherwise Clang will optimize it out.
|
|
Ident(x);
|
|
free(x + 1);
|
|
}
|
|
|
|
TEST(AddressSanitizer, WrongFreeTest) {
|
|
EXPECT_DEATH(WrongFree(),
|
|
"ERROR: AddressSanitizer: attempting free.*not malloc");
|
|
}
|
|
|
|
void DoubleFree() {
|
|
int *x = (int*)malloc(100 * sizeof(int));
|
|
fprintf(stderr, "DoubleFree: x=%p\n", x);
|
|
free(x);
|
|
free(x);
|
|
fprintf(stderr, "should have failed in the second free(%p)\n", x);
|
|
abort();
|
|
}
|
|
|
|
TEST(AddressSanitizer, DoubleFreeTest) {
|
|
EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
|
|
"ERROR: AddressSanitizer: attempting double-free"
|
|
".*is located 0 bytes inside of 400-byte region"
|
|
".*freed by thread T0 here"
|
|
".*previously allocated by thread T0 here");
|
|
}
|
|
|
|
template<int kSize>
|
|
NOINLINE void SizedStackTest() {
|
|
char a[kSize];
|
|
char *A = Ident((char*)&a);
|
|
for (size_t i = 0; i < kSize; i++)
|
|
A[i] = i;
|
|
EXPECT_DEATH(A[-1] = 0, "");
|
|
EXPECT_DEATH(A[-20] = 0, "");
|
|
EXPECT_DEATH(A[-31] = 0, "");
|
|
EXPECT_DEATH(A[kSize] = 0, "");
|
|
EXPECT_DEATH(A[kSize + 1] = 0, "");
|
|
EXPECT_DEATH(A[kSize + 10] = 0, "");
|
|
EXPECT_DEATH(A[kSize + 31] = 0, "");
|
|
}
|
|
|
|
TEST(AddressSanitizer, SimpleStackTest) {
|
|
SizedStackTest<1>();
|
|
SizedStackTest<2>();
|
|
SizedStackTest<3>();
|
|
SizedStackTest<4>();
|
|
SizedStackTest<5>();
|
|
SizedStackTest<6>();
|
|
SizedStackTest<7>();
|
|
SizedStackTest<16>();
|
|
SizedStackTest<25>();
|
|
SizedStackTest<34>();
|
|
SizedStackTest<43>();
|
|
SizedStackTest<51>();
|
|
SizedStackTest<62>();
|
|
SizedStackTest<64>();
|
|
SizedStackTest<128>();
|
|
}
|
|
|
|
TEST(AddressSanitizer, ManyStackObjectsTest) {
|
|
char XXX[10];
|
|
char YYY[20];
|
|
char ZZZ[30];
|
|
Ident(XXX);
|
|
Ident(YYY);
|
|
EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
|
|
}
|
|
|
|
NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
|
|
char d[4] = {0};
|
|
char *D = Ident(d);
|
|
switch (frame) {
|
|
case 3: a[5]++; break;
|
|
case 2: b[5]++; break;
|
|
case 1: c[5]++; break;
|
|
case 0: D[5]++; break;
|
|
}
|
|
}
|
|
NOINLINE static void Frame1(int frame, char *a, char *b) {
|
|
char c[4] = {0}; Frame0(frame, a, b, c);
|
|
break_optimization(0);
|
|
}
|
|
NOINLINE static void Frame2(int frame, char *a) {
|
|
char b[4] = {0}; Frame1(frame, a, b);
|
|
break_optimization(0);
|
|
}
|
|
NOINLINE static void Frame3(int frame) {
|
|
char a[4] = {0}; Frame2(frame, a);
|
|
break_optimization(0);
|
|
}
|
|
|
|
TEST(AddressSanitizer, GuiltyStackFrame0Test) {
|
|
EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
|
|
}
|
|
TEST(AddressSanitizer, GuiltyStackFrame1Test) {
|
|
EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
|
|
}
|
|
TEST(AddressSanitizer, GuiltyStackFrame2Test) {
|
|
EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
|
|
}
|
|
TEST(AddressSanitizer, GuiltyStackFrame3Test) {
|
|
EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
|
|
}
|
|
|
|
NOINLINE void LongJmpFunc1(jmp_buf buf) {
|
|
// create three red zones for these two stack objects.
|
|
int a;
|
|
int b;
|
|
|
|
int *A = Ident(&a);
|
|
int *B = Ident(&b);
|
|
*A = *B;
|
|
longjmp(buf, 1);
|
|
}
|
|
|
|
NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
|
|
// create three red zones for these two stack objects.
|
|
int a;
|
|
int b;
|
|
|
|
int *A = Ident(&a);
|
|
int *B = Ident(&b);
|
|
*A = *B;
|
|
__builtin_longjmp((void**)buf, 1);
|
|
}
|
|
|
|
NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
|
|
// create three red zones for these two stack objects.
|
|
int a;
|
|
int b;
|
|
|
|
int *A = Ident(&a);
|
|
int *B = Ident(&b);
|
|
*A = *B;
|
|
_longjmp(buf, 1);
|
|
}
|
|
|
|
NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
|
|
// create three red zones for these two stack objects.
|
|
int a;
|
|
int b;
|
|
|
|
int *A = Ident(&a);
|
|
int *B = Ident(&b);
|
|
*A = *B;
|
|
siglongjmp(buf, 1);
|
|
}
|
|
|
|
|
|
NOINLINE void TouchStackFunc() {
|
|
int a[100]; // long array will intersect with redzones from LongJmpFunc1.
|
|
int *A = Ident(a);
|
|
for (int i = 0; i < 100; i++)
|
|
A[i] = i*i;
|
|
}
|
|
|
|
// Test that we handle longjmp and do not report fals positives on stack.
|
|
TEST(AddressSanitizer, LongJmpTest) {
|
|
static jmp_buf buf;
|
|
if (!setjmp(buf)) {
|
|
LongJmpFunc1(buf);
|
|
} else {
|
|
TouchStackFunc();
|
|
}
|
|
}
|
|
|
|
#if not defined(__ANDROID__)
|
|
TEST(AddressSanitizer, BuiltinLongJmpTest) {
|
|
static jmp_buf buf;
|
|
if (!__builtin_setjmp((void**)buf)) {
|
|
BuiltinLongJmpFunc1(buf);
|
|
} else {
|
|
TouchStackFunc();
|
|
}
|
|
}
|
|
#endif // not defined(__ANDROID__)
|
|
|
|
TEST(AddressSanitizer, UnderscopeLongJmpTest) {
|
|
static jmp_buf buf;
|
|
if (!_setjmp(buf)) {
|
|
UnderscopeLongJmpFunc1(buf);
|
|
} else {
|
|
TouchStackFunc();
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizer, SigLongJmpTest) {
|
|
static sigjmp_buf buf;
|
|
if (!sigsetjmp(buf, 1)) {
|
|
SigLongJmpFunc1(buf);
|
|
} else {
|
|
TouchStackFunc();
|
|
}
|
|
}
|
|
|
|
#ifdef __EXCEPTIONS
|
|
NOINLINE void ThrowFunc() {
|
|
// create three red zones for these two stack objects.
|
|
int a;
|
|
int b;
|
|
|
|
int *A = Ident(&a);
|
|
int *B = Ident(&b);
|
|
*A = *B;
|
|
ASAN_THROW(1);
|
|
}
|
|
|
|
TEST(AddressSanitizer, CxxExceptionTest) {
|
|
if (ASAN_UAR) return;
|
|
// TODO(kcc): this test crashes on 32-bit for some reason...
|
|
if (SANITIZER_WORDSIZE == 32) return;
|
|
try {
|
|
ThrowFunc();
|
|
} catch(...) {}
|
|
TouchStackFunc();
|
|
}
|
|
#endif
|
|
|
|
void *ThreadStackReuseFunc1(void *unused) {
|
|
// create three red zones for these two stack objects.
|
|
int a;
|
|
int b;
|
|
|
|
int *A = Ident(&a);
|
|
int *B = Ident(&b);
|
|
*A = *B;
|
|
pthread_exit(0);
|
|
return 0;
|
|
}
|
|
|
|
void *ThreadStackReuseFunc2(void *unused) {
|
|
TouchStackFunc();
|
|
return 0;
|
|
}
|
|
|
|
TEST(AddressSanitizer, ThreadStackReuseTest) {
|
|
pthread_t t;
|
|
PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
|
|
PTHREAD_JOIN(t, 0);
|
|
PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
|
|
PTHREAD_JOIN(t, 0);
|
|
}
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
TEST(AddressSanitizer, Store128Test) {
|
|
char *a = Ident((char*)malloc(Ident(12)));
|
|
char *p = a;
|
|
if (((uintptr_t)a % 16) != 0)
|
|
p = a + 8;
|
|
assert(((uintptr_t)p % 16) == 0);
|
|
__m128i value_wide = _mm_set1_epi16(0x1234);
|
|
EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
|
|
"AddressSanitizer: heap-buffer-overflow");
|
|
EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
|
|
"WRITE of size 16");
|
|
EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
|
|
"located 0 bytes to the right of 12-byte");
|
|
free(a);
|
|
}
|
|
#endif
|
|
|
|
static string RightOOBErrorMessage(int oob_distance) {
|
|
assert(oob_distance >= 0);
|
|
char expected_str[100];
|
|
sprintf(expected_str, "located %d bytes to the right", oob_distance);
|
|
return string(expected_str);
|
|
}
|
|
|
|
static string LeftOOBErrorMessage(int oob_distance) {
|
|
assert(oob_distance > 0);
|
|
char expected_str[100];
|
|
sprintf(expected_str, "located %d bytes to the left", oob_distance);
|
|
return string(expected_str);
|
|
}
|
|
|
|
template<typename T>
|
|
void MemSetOOBTestTemplate(size_t length) {
|
|
if (length == 0) return;
|
|
size_t size = Ident(sizeof(T) * length);
|
|
T *array = Ident((T*)malloc(size));
|
|
int element = Ident(42);
|
|
int zero = Ident(0);
|
|
// memset interval inside array
|
|
memset(array, element, size);
|
|
memset(array, element, size - 1);
|
|
memset(array + length - 1, element, sizeof(T));
|
|
memset(array, element, 1);
|
|
|
|
// memset 0 bytes
|
|
memset(array - 10, element, zero);
|
|
memset(array - 1, element, zero);
|
|
memset(array, element, zero);
|
|
memset(array + length, 0, zero);
|
|
memset(array + length + 1, 0, zero);
|
|
|
|
// try to memset bytes to the right of array
|
|
EXPECT_DEATH(memset(array, 0, size + 1),
|
|
RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
|
|
RightOOBErrorMessage(4));
|
|
EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
|
|
RightOOBErrorMessage(2 * sizeof(T) - 1));
|
|
// whole interval is to the right
|
|
EXPECT_DEATH(memset(array + length + 1, 0, 10),
|
|
RightOOBErrorMessage(sizeof(T)));
|
|
|
|
// try to memset bytes to the left of array
|
|
EXPECT_DEATH(memset((char*)array - 1, element, size),
|
|
LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(memset((char*)array - 5, 0, 6),
|
|
LeftOOBErrorMessage(5));
|
|
EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
|
|
LeftOOBErrorMessage(5 * sizeof(T)));
|
|
// whole interval is to the left
|
|
EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
|
|
LeftOOBErrorMessage(2 * sizeof(T)));
|
|
|
|
// try to memset bytes both to the left & to the right
|
|
EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
|
|
LeftOOBErrorMessage(2));
|
|
|
|
free(array);
|
|
}
|
|
|
|
TEST(AddressSanitizer, MemSetOOBTest) {
|
|
MemSetOOBTestTemplate<char>(100);
|
|
MemSetOOBTestTemplate<int>(5);
|
|
MemSetOOBTestTemplate<double>(256);
|
|
// We can test arrays of structres/classes here, but what for?
|
|
}
|
|
|
|
// Same test for memcpy and memmove functions
|
|
template <typename T, class M>
|
|
void MemTransferOOBTestTemplate(size_t length) {
|
|
if (length == 0) return;
|
|
size_t size = Ident(sizeof(T) * length);
|
|
T *src = Ident((T*)malloc(size));
|
|
T *dest = Ident((T*)malloc(size));
|
|
int zero = Ident(0);
|
|
|
|
// valid transfer of bytes between arrays
|
|
M::transfer(dest, src, size);
|
|
M::transfer(dest + 1, src, size - sizeof(T));
|
|
M::transfer(dest, src + length - 1, sizeof(T));
|
|
M::transfer(dest, src, 1);
|
|
|
|
// transfer zero bytes
|
|
M::transfer(dest - 1, src, 0);
|
|
M::transfer(dest + length, src, zero);
|
|
M::transfer(dest, src - 1, zero);
|
|
M::transfer(dest, src, zero);
|
|
|
|
// try to change mem to the right of dest
|
|
EXPECT_DEATH(M::transfer(dest + 1, src, size),
|
|
RightOOBErrorMessage(sizeof(T) - 1));
|
|
EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
|
|
RightOOBErrorMessage(3));
|
|
|
|
// try to change mem to the left of dest
|
|
EXPECT_DEATH(M::transfer(dest - 2, src, size),
|
|
LeftOOBErrorMessage(2 * sizeof(T)));
|
|
EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
|
|
LeftOOBErrorMessage(3));
|
|
|
|
// try to access mem to the right of src
|
|
EXPECT_DEATH(M::transfer(dest, src + 2, size),
|
|
RightOOBErrorMessage(2 * sizeof(T) - 1));
|
|
EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
|
|
RightOOBErrorMessage(2));
|
|
|
|
// try to access mem to the left of src
|
|
EXPECT_DEATH(M::transfer(dest, src - 1, size),
|
|
LeftOOBErrorMessage(sizeof(T)));
|
|
EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
|
|
LeftOOBErrorMessage(6));
|
|
|
|
// Generally we don't need to test cases where both accessing src and writing
|
|
// to dest address to poisoned memory.
|
|
|
|
T *big_src = Ident((T*)malloc(size * 2));
|
|
T *big_dest = Ident((T*)malloc(size * 2));
|
|
// try to change mem to both sides of dest
|
|
EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
|
|
LeftOOBErrorMessage(sizeof(T)));
|
|
// try to access mem to both sides of src
|
|
EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
|
|
LeftOOBErrorMessage(2 * sizeof(T)));
|
|
|
|
free(src);
|
|
free(dest);
|
|
free(big_src);
|
|
free(big_dest);
|
|
}
|
|
|
|
class MemCpyWrapper {
|
|
public:
|
|
static void* transfer(void *to, const void *from, size_t size) {
|
|
return memcpy(to, from, size);
|
|
}
|
|
};
|
|
TEST(AddressSanitizer, MemCpyOOBTest) {
|
|
MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
|
|
MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
|
|
}
|
|
|
|
class MemMoveWrapper {
|
|
public:
|
|
static void* transfer(void *to, const void *from, size_t size) {
|
|
return memmove(to, from, size);
|
|
}
|
|
};
|
|
TEST(AddressSanitizer, MemMoveOOBTest) {
|
|
MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
|
|
MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
|
|
}
|
|
|
|
// Tests for string functions
|
|
|
|
// Used for string functions tests
|
|
static char global_string[] = "global";
|
|
static size_t global_string_length = 6;
|
|
|
|
// Input to a test is a zero-terminated string str with given length
|
|
// Accesses to the bytes to the left and to the right of str
|
|
// are presumed to produce OOB errors
|
|
void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
|
|
// Normal strlen calls
|
|
EXPECT_EQ(strlen(str), length);
|
|
if (length > 0) {
|
|
EXPECT_EQ(length - 1, strlen(str + 1));
|
|
EXPECT_EQ(0U, strlen(str + length));
|
|
}
|
|
// Arg of strlen is not malloced, OOB access
|
|
if (!is_global) {
|
|
// We don't insert RedZones to the left of global variables
|
|
EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
|
|
}
|
|
EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
|
|
// Overwrite terminator
|
|
str[length] = 'a';
|
|
// String is not zero-terminated, strlen will lead to OOB access
|
|
EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
|
|
// Restore terminator
|
|
str[length] = 0;
|
|
}
|
|
TEST(AddressSanitizer, StrLenOOBTest) {
|
|
// Check heap-allocated string
|
|
size_t length = Ident(10);
|
|
char *heap_string = Ident((char*)malloc(length + 1));
|
|
char stack_string[10 + 1];
|
|
break_optimization(&stack_string);
|
|
for (size_t i = 0; i < length; i++) {
|
|
heap_string[i] = 'a';
|
|
stack_string[i] = 'b';
|
|
}
|
|
heap_string[length] = 0;
|
|
stack_string[length] = 0;
|
|
StrLenOOBTestTemplate(heap_string, length, false);
|
|
// TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
|
|
// make test for stack_string work. Or move it to output tests.
|
|
// StrLenOOBTestTemplate(stack_string, length, false);
|
|
StrLenOOBTestTemplate(global_string, global_string_length, true);
|
|
free(heap_string);
|
|
}
|
|
|
|
static inline char* MallocAndMemsetString(size_t size, char ch) {
|
|
char *s = Ident((char*)malloc(size));
|
|
memset(s, ch, size);
|
|
return s;
|
|
}
|
|
static inline char* MallocAndMemsetString(size_t size) {
|
|
return MallocAndMemsetString(size, 'z');
|
|
}
|
|
|
|
#ifndef __APPLE__
|
|
TEST(AddressSanitizer, StrNLenOOBTest) {
|
|
size_t size = Ident(123);
|
|
char *str = MallocAndMemsetString(size);
|
|
// Normal strnlen calls.
|
|
Ident(strnlen(str - 1, 0));
|
|
Ident(strnlen(str, size));
|
|
Ident(strnlen(str + size - 1, 1));
|
|
str[size - 1] = '\0';
|
|
Ident(strnlen(str, 2 * size));
|
|
// Argument points to not allocated memory.
|
|
EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
|
|
// Overwrite the terminating '\0' and hit unallocated memory.
|
|
str[size - 1] = 'z';
|
|
EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
|
|
free(str);
|
|
}
|
|
#endif
|
|
|
|
TEST(AddressSanitizer, StrDupOOBTest) {
|
|
size_t size = Ident(42);
|
|
char *str = MallocAndMemsetString(size);
|
|
char *new_str;
|
|
// Normal strdup calls.
|
|
str[size - 1] = '\0';
|
|
new_str = strdup(str);
|
|
free(new_str);
|
|
new_str = strdup(str + size - 1);
|
|
free(new_str);
|
|
// Argument points to not allocated memory.
|
|
EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
|
|
// Overwrite the terminating '\0' and hit unallocated memory.
|
|
str[size - 1] = 'z';
|
|
EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
|
|
free(str);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrCpyOOBTest) {
|
|
size_t to_size = Ident(30);
|
|
size_t from_size = Ident(6); // less than to_size
|
|
char *to = Ident((char*)malloc(to_size));
|
|
char *from = Ident((char*)malloc(from_size));
|
|
// Normal strcpy calls.
|
|
strcpy(from, "hello");
|
|
strcpy(to, from);
|
|
strcpy(to + to_size - from_size, from);
|
|
// Length of "from" is too small.
|
|
EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
|
|
// "to" or "from" points to not allocated memory.
|
|
EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
|
|
// Overwrite the terminating '\0' character and hit unallocated memory.
|
|
from[from_size - 1] = '!';
|
|
EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
|
|
free(to);
|
|
free(from);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrNCpyOOBTest) {
|
|
size_t to_size = Ident(20);
|
|
size_t from_size = Ident(6); // less than to_size
|
|
char *to = Ident((char*)malloc(to_size));
|
|
// From is a zero-terminated string "hello\0" of length 6
|
|
char *from = Ident((char*)malloc(from_size));
|
|
strcpy(from, "hello");
|
|
// copy 0 bytes
|
|
strncpy(to, from, 0);
|
|
strncpy(to - 1, from - 1, 0);
|
|
// normal strncpy calls
|
|
strncpy(to, from, from_size);
|
|
strncpy(to, from, to_size);
|
|
strncpy(to, from + from_size - 1, to_size);
|
|
strncpy(to + to_size - 1, from, 1);
|
|
// One of {to, from} points to not allocated memory
|
|
EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
|
|
LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
|
|
LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
|
|
RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
|
|
RightOOBErrorMessage(0));
|
|
// Length of "to" is too small
|
|
EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
|
|
RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
|
|
RightOOBErrorMessage(0));
|
|
// Overwrite terminator in from
|
|
from[from_size - 1] = '!';
|
|
// normal strncpy call
|
|
strncpy(to, from, from_size);
|
|
// Length of "from" is too small
|
|
EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
|
|
RightOOBErrorMessage(0));
|
|
free(to);
|
|
free(from);
|
|
}
|
|
|
|
// Users may have different definitions of "strchr" and "index", so provide
|
|
// function pointer typedefs and overload RunStrChrTest implementation.
|
|
// We can't use macro for RunStrChrTest body here, as this macro would
|
|
// confuse EXPECT_DEATH gtest macro.
|
|
typedef char*(*PointerToStrChr1)(const char*, int);
|
|
typedef char*(*PointerToStrChr2)(char*, int);
|
|
|
|
USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
|
|
size_t size = Ident(100);
|
|
char *str = MallocAndMemsetString(size);
|
|
str[10] = 'q';
|
|
str[11] = '\0';
|
|
EXPECT_EQ(str, StrChr(str, 'z'));
|
|
EXPECT_EQ(str + 10, StrChr(str, 'q'));
|
|
EXPECT_EQ(NULL, StrChr(str, 'a'));
|
|
// StrChr argument points to not allocated memory.
|
|
EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
|
|
// Overwrite the terminator and hit not allocated memory.
|
|
str[11] = 'z';
|
|
EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
|
|
free(str);
|
|
}
|
|
USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
|
|
size_t size = Ident(100);
|
|
char *str = MallocAndMemsetString(size);
|
|
str[10] = 'q';
|
|
str[11] = '\0';
|
|
EXPECT_EQ(str, StrChr(str, 'z'));
|
|
EXPECT_EQ(str + 10, StrChr(str, 'q'));
|
|
EXPECT_EQ(NULL, StrChr(str, 'a'));
|
|
// StrChr argument points to not allocated memory.
|
|
EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
|
|
// Overwrite the terminator and hit not allocated memory.
|
|
str[11] = 'z';
|
|
EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
|
|
free(str);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
|
|
RunStrChrTest(&strchr);
|
|
RunStrChrTest(&index);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
|
|
// strcmp
|
|
EXPECT_EQ(0, strcmp("", ""));
|
|
EXPECT_EQ(0, strcmp("abcd", "abcd"));
|
|
EXPECT_GT(0, strcmp("ab", "ac"));
|
|
EXPECT_GT(0, strcmp("abc", "abcd"));
|
|
EXPECT_LT(0, strcmp("acc", "abc"));
|
|
EXPECT_LT(0, strcmp("abcd", "abc"));
|
|
|
|
// strncmp
|
|
EXPECT_EQ(0, strncmp("a", "b", 0));
|
|
EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
|
|
EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
|
|
EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
|
|
EXPECT_GT(0, strncmp("a", "b", 5));
|
|
EXPECT_GT(0, strncmp("bc", "bcde", 4));
|
|
EXPECT_LT(0, strncmp("xyz", "xyy", 10));
|
|
EXPECT_LT(0, strncmp("baa", "aaa", 1));
|
|
EXPECT_LT(0, strncmp("zyx", "", 2));
|
|
|
|
// strcasecmp
|
|
EXPECT_EQ(0, strcasecmp("", ""));
|
|
EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
|
|
EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
|
|
EXPECT_GT(0, strcasecmp("aB", "Ac"));
|
|
EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
|
|
EXPECT_LT(0, strcasecmp("acc", "abc"));
|
|
EXPECT_LT(0, strcasecmp("ABCd", "abc"));
|
|
|
|
// strncasecmp
|
|
EXPECT_EQ(0, strncasecmp("a", "b", 0));
|
|
EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
|
|
EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
|
|
EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
|
|
EXPECT_GT(0, strncasecmp("a", "B", 5));
|
|
EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
|
|
EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
|
|
EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
|
|
EXPECT_LT(0, strncasecmp("zyx", "", 2));
|
|
|
|
// memcmp
|
|
EXPECT_EQ(0, memcmp("a", "b", 0));
|
|
EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
|
|
EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
|
|
EXPECT_GT(0, memcmp("abb\0", "abba", 4));
|
|
EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
|
|
EXPECT_LT(0, memcmp("zza", "zyx", 3));
|
|
}
|
|
|
|
typedef int(*PointerToStrCmp)(const char*, const char*);
|
|
void RunStrCmpTest(PointerToStrCmp StrCmp) {
|
|
size_t size = Ident(100);
|
|
char *s1 = MallocAndMemsetString(size);
|
|
char *s2 = MallocAndMemsetString(size);
|
|
s1[size - 1] = '\0';
|
|
s2[size - 1] = '\0';
|
|
// Normal StrCmp calls
|
|
Ident(StrCmp(s1, s2));
|
|
Ident(StrCmp(s1, s2 + size - 1));
|
|
Ident(StrCmp(s1 + size - 1, s2 + size - 1));
|
|
s1[size - 1] = 'z';
|
|
s2[size - 1] = 'x';
|
|
Ident(StrCmp(s1, s2));
|
|
// One of arguments points to not allocated memory.
|
|
EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
|
|
// Hit unallocated memory and die.
|
|
s2[size - 1] = 'z';
|
|
EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
|
|
free(s1);
|
|
free(s2);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrCmpOOBTest) {
|
|
RunStrCmpTest(&strcmp);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrCaseCmpOOBTest) {
|
|
RunStrCmpTest(&strcasecmp);
|
|
}
|
|
|
|
typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
|
|
void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
|
|
size_t size = Ident(100);
|
|
char *s1 = MallocAndMemsetString(size);
|
|
char *s2 = MallocAndMemsetString(size);
|
|
s1[size - 1] = '\0';
|
|
s2[size - 1] = '\0';
|
|
// Normal StrNCmp calls
|
|
Ident(StrNCmp(s1, s2, size + 2));
|
|
s1[size - 1] = 'z';
|
|
s2[size - 1] = 'x';
|
|
Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
|
|
s2[size - 1] = 'z';
|
|
Ident(StrNCmp(s1 - 1, s2 - 1, 0));
|
|
Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
|
|
// One of arguments points to not allocated memory.
|
|
EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
|
|
// Hit unallocated memory and die.
|
|
EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
|
|
free(s1);
|
|
free(s2);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrNCmpOOBTest) {
|
|
RunStrNCmpTest(&strncmp);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
|
|
RunStrNCmpTest(&strncasecmp);
|
|
}
|
|
|
|
TEST(AddressSanitizer, MemCmpOOBTest) {
|
|
size_t size = Ident(100);
|
|
char *s1 = MallocAndMemsetString(size);
|
|
char *s2 = MallocAndMemsetString(size);
|
|
// Normal memcmp calls.
|
|
Ident(memcmp(s1, s2, size));
|
|
Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
|
|
Ident(memcmp(s1 - 1, s2 - 1, 0));
|
|
// One of arguments points to not allocated memory.
|
|
EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
|
|
// Hit unallocated memory and die.
|
|
EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
|
|
// Zero bytes are not terminators and don't prevent from OOB.
|
|
s1[size - 1] = '\0';
|
|
s2[size - 1] = '\0';
|
|
EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
|
|
free(s1);
|
|
free(s2);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrCatOOBTest) {
|
|
size_t to_size = Ident(100);
|
|
char *to = MallocAndMemsetString(to_size);
|
|
to[0] = '\0';
|
|
size_t from_size = Ident(20);
|
|
char *from = MallocAndMemsetString(from_size);
|
|
from[from_size - 1] = '\0';
|
|
// Normal strcat calls.
|
|
strcat(to, from);
|
|
strcat(to, from);
|
|
strcat(to + from_size, from + from_size - 2);
|
|
// Passing an invalid pointer is an error even when concatenating an empty
|
|
// string.
|
|
EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBErrorMessage(1));
|
|
// One of arguments points to not allocated memory.
|
|
EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
|
|
|
|
// "from" is not zero-terminated.
|
|
from[from_size - 1] = 'z';
|
|
EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
|
|
from[from_size - 1] = '\0';
|
|
// "to" is not zero-terminated.
|
|
memset(to, 'z', to_size);
|
|
EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
|
|
// "to" is too short to fit "from".
|
|
to[to_size - from_size + 1] = '\0';
|
|
EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
|
|
// length of "to" is just enough.
|
|
strcat(to, from + 1);
|
|
|
|
free(to);
|
|
free(from);
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrNCatOOBTest) {
|
|
size_t to_size = Ident(100);
|
|
char *to = MallocAndMemsetString(to_size);
|
|
to[0] = '\0';
|
|
size_t from_size = Ident(20);
|
|
char *from = MallocAndMemsetString(from_size);
|
|
// Normal strncat calls.
|
|
strncat(to, from, 0);
|
|
strncat(to, from, from_size);
|
|
from[from_size - 1] = '\0';
|
|
strncat(to, from, 2 * from_size);
|
|
// Catenating empty string with an invalid string is still an error.
|
|
EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBErrorMessage(1));
|
|
strncat(to, from + from_size - 1, 10);
|
|
// One of arguments points to not allocated memory.
|
|
EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBErrorMessage(1));
|
|
EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBErrorMessage(0));
|
|
|
|
memset(from, 'z', from_size);
|
|
memset(to, 'z', to_size);
|
|
to[0] = '\0';
|
|
// "from" is too short.
|
|
EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBErrorMessage(0));
|
|
// "to" is not zero-terminated.
|
|
EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBErrorMessage(0));
|
|
// "to" is too short to fit "from".
|
|
to[0] = 'z';
|
|
to[to_size - from_size + 1] = '\0';
|
|
EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBErrorMessage(0));
|
|
// "to" is just enough.
|
|
strncat(to, from, from_size - 2);
|
|
|
|
free(to);
|
|
free(from);
|
|
}
|
|
|
|
static string OverlapErrorMessage(const string &func) {
|
|
return func + "-param-overlap";
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrArgsOverlapTest) {
|
|
size_t size = Ident(100);
|
|
char *str = Ident((char*)malloc(size));
|
|
|
|
// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
|
|
// memmove().
|
|
#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
|
|
(MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
|
|
// Check "memcpy". Use Ident() to avoid inlining.
|
|
memset(str, 'z', size);
|
|
Ident(memcpy)(str + 1, str + 11, 10);
|
|
Ident(memcpy)(str, str, 0);
|
|
EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
|
|
EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
|
|
#endif
|
|
|
|
// We do not treat memcpy with to==from as a bug.
|
|
// See http://llvm.org/bugs/show_bug.cgi?id=11763.
|
|
// EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
|
|
// OverlapErrorMessage("memcpy"));
|
|
|
|
// Check "strcpy".
|
|
memset(str, 'z', size);
|
|
str[9] = '\0';
|
|
strcpy(str + 10, str);
|
|
EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
|
|
EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
|
|
strcpy(str, str + 5);
|
|
|
|
// Check "strncpy".
|
|
memset(str, 'z', size);
|
|
strncpy(str, str + 10, 10);
|
|
EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
|
|
EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
|
|
str[10] = '\0';
|
|
strncpy(str + 11, str, 20);
|
|
EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
|
|
|
|
// Check "strcat".
|
|
memset(str, 'z', size);
|
|
str[10] = '\0';
|
|
str[20] = '\0';
|
|
strcat(str, str + 10);
|
|
EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
|
|
str[10] = '\0';
|
|
strcat(str + 11, str);
|
|
EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
|
|
EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
|
|
EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
|
|
|
|
// Check "strncat".
|
|
memset(str, 'z', size);
|
|
str[10] = '\0';
|
|
strncat(str, str + 10, 10); // from is empty
|
|
EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
|
|
str[10] = '\0';
|
|
str[20] = '\0';
|
|
strncat(str + 5, str, 5);
|
|
str[10] = '\0';
|
|
EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
|
|
EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
|
|
|
|
free(str);
|
|
}
|
|
|
|
void CallAtoi(const char *nptr) {
|
|
Ident(atoi(nptr));
|
|
}
|
|
void CallAtol(const char *nptr) {
|
|
Ident(atol(nptr));
|
|
}
|
|
void CallAtoll(const char *nptr) {
|
|
Ident(atoll(nptr));
|
|
}
|
|
typedef void(*PointerToCallAtoi)(const char*);
|
|
|
|
void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
|
|
char *array = MallocAndMemsetString(10, '1');
|
|
// Invalid pointer to the string.
|
|
EXPECT_DEATH(Atoi(array + 11), RightOOBErrorMessage(1));
|
|
EXPECT_DEATH(Atoi(array - 1), LeftOOBErrorMessage(1));
|
|
// Die if a buffer doesn't have terminating NULL.
|
|
EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
|
|
// Make last symbol a terminating NULL or other non-digit.
|
|
array[9] = '\0';
|
|
Atoi(array);
|
|
array[9] = 'a';
|
|
Atoi(array);
|
|
Atoi(array + 9);
|
|
// Sometimes we need to detect overflow if no digits are found.
|
|
memset(array, ' ', 10);
|
|
EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
|
|
array[9] = '-';
|
|
EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Atoi(array + 9), RightOOBErrorMessage(0));
|
|
array[8] = '-';
|
|
Atoi(array);
|
|
delete array;
|
|
}
|
|
|
|
TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
|
|
RunAtoiOOBTest(&CallAtoi);
|
|
RunAtoiOOBTest(&CallAtol);
|
|
RunAtoiOOBTest(&CallAtoll);
|
|
}
|
|
|
|
void CallStrtol(const char *nptr, char **endptr, int base) {
|
|
Ident(strtol(nptr, endptr, base));
|
|
}
|
|
void CallStrtoll(const char *nptr, char **endptr, int base) {
|
|
Ident(strtoll(nptr, endptr, base));
|
|
}
|
|
typedef void(*PointerToCallStrtol)(const char*, char**, int);
|
|
|
|
void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
|
|
char *array = MallocAndMemsetString(3);
|
|
char *endptr = NULL;
|
|
array[0] = '1';
|
|
array[1] = '2';
|
|
array[2] = '3';
|
|
// Invalid pointer to the string.
|
|
EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBErrorMessage(0));
|
|
EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBErrorMessage(1));
|
|
// Buffer overflow if there is no terminating null (depends on base).
|
|
Strtol(array, &endptr, 3);
|
|
EXPECT_EQ(array + 2, endptr);
|
|
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
|
|
array[2] = 'z';
|
|
Strtol(array, &endptr, 35);
|
|
EXPECT_EQ(array + 2, endptr);
|
|
EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBErrorMessage(0));
|
|
// Add terminating zero to get rid of overflow.
|
|
array[2] = '\0';
|
|
Strtol(array, NULL, 36);
|
|
// Don't check for overflow if base is invalid.
|
|
Strtol(array - 1, NULL, -1);
|
|
Strtol(array + 3, NULL, 1);
|
|
// Sometimes we need to detect overflow if no digits are found.
|
|
array[0] = array[1] = array[2] = ' ';
|
|
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
|
|
array[2] = '+';
|
|
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
|
|
array[2] = '-';
|
|
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
|
|
array[1] = '+';
|
|
Strtol(array, NULL, 0);
|
|
array[1] = array[2] = 'z';
|
|
Strtol(array, &endptr, 0);
|
|
EXPECT_EQ(array, endptr);
|
|
Strtol(array + 2, NULL, 0);
|
|
EXPECT_EQ(array, endptr);
|
|
delete array;
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrtollOOBTest) {
|
|
RunStrtolOOBTest(&CallStrtoll);
|
|
}
|
|
TEST(AddressSanitizer, StrtolOOBTest) {
|
|
RunStrtolOOBTest(&CallStrtol);
|
|
}
|
|
|
|
// At the moment we instrument memcpy/memove/memset calls at compile time so we
|
|
// can't handle OOB error if these functions are called by pointer, see disabled
|
|
// MemIntrinsicCallByPointerTest below
|
|
typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
|
|
typedef void*(*PointerToMemSet)(void*, int, size_t);
|
|
|
|
void CallMemSetByPointer(PointerToMemSet MemSet) {
|
|
size_t size = Ident(100);
|
|
char *array = Ident((char*)malloc(size));
|
|
EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
|
|
free(array);
|
|
}
|
|
|
|
void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
|
|
size_t size = Ident(100);
|
|
char *src = Ident((char*)malloc(size));
|
|
char *dst = Ident((char*)malloc(size));
|
|
EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
|
|
free(src);
|
|
free(dst);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
|
|
CallMemSetByPointer(&memset);
|
|
CallMemTransferByPointer(&memcpy);
|
|
CallMemTransferByPointer(&memmove);
|
|
}
|
|
|
|
// This test case fails
|
|
// Clang optimizes memcpy/memset calls which lead to unaligned access
|
|
TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
|
|
int size = Ident(4096);
|
|
char *s = Ident((char*)malloc(size));
|
|
EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
|
|
free(s);
|
|
}
|
|
|
|
// TODO(samsonov): Add a test with malloc(0)
|
|
// TODO(samsonov): Add tests for str* and mem* functions.
|
|
|
|
NOINLINE static int LargeFunction(bool do_bad_access) {
|
|
int *x = new int[100];
|
|
x[0]++;
|
|
x[1]++;
|
|
x[2]++;
|
|
x[3]++;
|
|
x[4]++;
|
|
x[5]++;
|
|
x[6]++;
|
|
x[7]++;
|
|
x[8]++;
|
|
x[9]++;
|
|
|
|
x[do_bad_access ? 100 : 0]++; int res = __LINE__;
|
|
|
|
x[10]++;
|
|
x[11]++;
|
|
x[12]++;
|
|
x[13]++;
|
|
x[14]++;
|
|
x[15]++;
|
|
x[16]++;
|
|
x[17]++;
|
|
x[18]++;
|
|
x[19]++;
|
|
|
|
delete x;
|
|
return res;
|
|
}
|
|
|
|
// Test the we have correct debug info for the failing instruction.
|
|
// This test requires the in-process symbolizer to be enabled by default.
|
|
TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
|
|
int failing_line = LargeFunction(false);
|
|
char expected_warning[128];
|
|
sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
|
|
EXPECT_DEATH(LargeFunction(true), expected_warning);
|
|
}
|
|
|
|
// Check that we unwind and symbolize correctly.
|
|
TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
|
|
int *a = (int*)malloc_aaa(sizeof(int));
|
|
*a = 1;
|
|
free_aaa(a);
|
|
EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
|
|
"malloc_fff.*malloc_eee.*malloc_ddd");
|
|
}
|
|
|
|
void *ThreadedTestAlloc(void *a) {
|
|
int **p = (int**)a;
|
|
*p = new int;
|
|
return 0;
|
|
}
|
|
|
|
void *ThreadedTestFree(void *a) {
|
|
int **p = (int**)a;
|
|
delete *p;
|
|
return 0;
|
|
}
|
|
|
|
void *ThreadedTestUse(void *a) {
|
|
int **p = (int**)a;
|
|
**p = 1;
|
|
return 0;
|
|
}
|
|
|
|
void ThreadedTestSpawn() {
|
|
pthread_t t;
|
|
int *x;
|
|
PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
|
|
PTHREAD_JOIN(t, 0);
|
|
PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
|
|
PTHREAD_JOIN(t, 0);
|
|
PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
|
|
PTHREAD_JOIN(t, 0);
|
|
}
|
|
|
|
TEST(AddressSanitizer, ThreadedTest) {
|
|
EXPECT_DEATH(ThreadedTestSpawn(),
|
|
ASAN_PCRE_DOTALL
|
|
"Thread T.*created"
|
|
".*Thread T.*created"
|
|
".*Thread T.*created");
|
|
}
|
|
|
|
#if ASAN_NEEDS_SEGV
|
|
TEST(AddressSanitizer, ShadowGapTest) {
|
|
#if SANITIZER_WORDSIZE == 32
|
|
char *addr = (char*)0x22000000;
|
|
#else
|
|
char *addr = (char*)0x0000100000080000;
|
|
#endif
|
|
EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
|
|
}
|
|
#endif // ASAN_NEEDS_SEGV
|
|
|
|
extern "C" {
|
|
NOINLINE static void UseThenFreeThenUse() {
|
|
char *x = Ident((char*)malloc(8));
|
|
*x = 1;
|
|
free_aaa(x);
|
|
*x = 2;
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizer, UseThenFreeThenUseTest) {
|
|
EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
|
|
}
|
|
|
|
TEST(AddressSanitizer, StrDupTest) {
|
|
free(strdup(Ident("123")));
|
|
}
|
|
|
|
// Currently we create and poison redzone at right of global variables.
|
|
char glob5[5];
|
|
static char static110[110];
|
|
const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
|
|
static const char StaticConstGlob[3] = {9, 8, 7};
|
|
extern int GlobalsTest(int x);
|
|
|
|
TEST(AddressSanitizer, GlobalTest) {
|
|
static char func_static15[15];
|
|
|
|
static char fs1[10];
|
|
static char fs2[10];
|
|
static char fs3[10];
|
|
|
|
glob5[Ident(0)] = 0;
|
|
glob5[Ident(1)] = 0;
|
|
glob5[Ident(2)] = 0;
|
|
glob5[Ident(3)] = 0;
|
|
glob5[Ident(4)] = 0;
|
|
|
|
EXPECT_DEATH(glob5[Ident(5)] = 0,
|
|
"0 bytes to the right of global variable.*glob5.* size 5");
|
|
EXPECT_DEATH(glob5[Ident(5+6)] = 0,
|
|
"6 bytes to the right of global variable.*glob5.* size 5");
|
|
Ident(static110); // avoid optimizations
|
|
static110[Ident(0)] = 0;
|
|
static110[Ident(109)] = 0;
|
|
EXPECT_DEATH(static110[Ident(110)] = 0,
|
|
"0 bytes to the right of global variable");
|
|
EXPECT_DEATH(static110[Ident(110+7)] = 0,
|
|
"7 bytes to the right of global variable");
|
|
|
|
Ident(func_static15); // avoid optimizations
|
|
func_static15[Ident(0)] = 0;
|
|
EXPECT_DEATH(func_static15[Ident(15)] = 0,
|
|
"0 bytes to the right of global variable");
|
|
EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
|
|
"9 bytes to the right of global variable");
|
|
|
|
Ident(fs1);
|
|
Ident(fs2);
|
|
Ident(fs3);
|
|
|
|
// We don't create left redzones, so this is not 100% guaranteed to fail.
|
|
// But most likely will.
|
|
EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
|
|
|
|
EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
|
|
"is located 1 bytes to the right of .*ConstGlob");
|
|
EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
|
|
"is located 2 bytes to the right of .*StaticConstGlob");
|
|
|
|
// call stuff from another file.
|
|
GlobalsTest(0);
|
|
}
|
|
|
|
TEST(AddressSanitizer, GlobalStringConstTest) {
|
|
static const char *zoo = "FOOBAR123";
|
|
const char *p = Ident(zoo);
|
|
EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
|
|
}
|
|
|
|
TEST(AddressSanitizer, FileNameInGlobalReportTest) {
|
|
static char zoo[10];
|
|
const char *p = Ident(zoo);
|
|
// The file name should be present in the report.
|
|
EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
|
|
}
|
|
|
|
int *ReturnsPointerToALocalObject() {
|
|
int a = 0;
|
|
return Ident(&a);
|
|
}
|
|
|
|
#if ASAN_UAR == 1
|
|
TEST(AddressSanitizer, LocalReferenceReturnTest) {
|
|
int *(*f)() = Ident(ReturnsPointerToALocalObject);
|
|
int *p = f();
|
|
// Call 'f' a few more times, 'p' should still be poisoned.
|
|
for (int i = 0; i < 32; i++)
|
|
f();
|
|
EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
|
|
EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
|
|
}
|
|
#endif
|
|
|
|
template <int kSize>
|
|
NOINLINE static void FuncWithStack() {
|
|
char x[kSize];
|
|
Ident(x)[0] = 0;
|
|
Ident(x)[kSize-1] = 0;
|
|
}
|
|
|
|
static void LotsOfStackReuse() {
|
|
int LargeStack[10000];
|
|
Ident(LargeStack)[0] = 0;
|
|
for (int i = 0; i < 10000; i++) {
|
|
FuncWithStack<128 * 1>();
|
|
FuncWithStack<128 * 2>();
|
|
FuncWithStack<128 * 4>();
|
|
FuncWithStack<128 * 8>();
|
|
FuncWithStack<128 * 16>();
|
|
FuncWithStack<128 * 32>();
|
|
FuncWithStack<128 * 64>();
|
|
FuncWithStack<128 * 128>();
|
|
FuncWithStack<128 * 256>();
|
|
FuncWithStack<128 * 512>();
|
|
Ident(LargeStack)[0] = 0;
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizer, StressStackReuseTest) {
|
|
LotsOfStackReuse();
|
|
}
|
|
|
|
TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
|
|
const int kNumThreads = 20;
|
|
pthread_t t[kNumThreads];
|
|
for (int i = 0; i < kNumThreads; i++) {
|
|
PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
|
|
}
|
|
for (int i = 0; i < kNumThreads; i++) {
|
|
PTHREAD_JOIN(t[i], 0);
|
|
}
|
|
}
|
|
|
|
static void *PthreadExit(void *a) {
|
|
pthread_exit(0);
|
|
return 0;
|
|
}
|
|
|
|
TEST(AddressSanitizer, PthreadExitTest) {
|
|
pthread_t t;
|
|
for (int i = 0; i < 1000; i++) {
|
|
PTHREAD_CREATE(&t, 0, PthreadExit, 0);
|
|
PTHREAD_JOIN(t, 0);
|
|
}
|
|
}
|
|
|
|
#ifdef __EXCEPTIONS
|
|
NOINLINE static void StackReuseAndException() {
|
|
int large_stack[1000];
|
|
Ident(large_stack);
|
|
ASAN_THROW(1);
|
|
}
|
|
|
|
// TODO(kcc): support exceptions with use-after-return.
|
|
TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
|
|
for (int i = 0; i < 10000; i++) {
|
|
try {
|
|
StackReuseAndException();
|
|
} catch(...) {
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
TEST(AddressSanitizer, MlockTest) {
|
|
EXPECT_EQ(0, mlockall(MCL_CURRENT));
|
|
EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
|
|
EXPECT_EQ(0, munlockall());
|
|
EXPECT_EQ(0, munlock((void*)0x987, 0x654));
|
|
}
|
|
|
|
struct LargeStruct {
|
|
int foo[100];
|
|
};
|
|
|
|
// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
|
|
// Struct copy should not cause asan warning even if lhs == rhs.
|
|
TEST(AddressSanitizer, LargeStructCopyTest) {
|
|
LargeStruct a;
|
|
*Ident(&a) = *Ident(&a);
|
|
}
|
|
|
|
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
|
|
static void NoAddressSafety() {
|
|
char *foo = new char[10];
|
|
Ident(foo)[10] = 0;
|
|
delete [] foo;
|
|
}
|
|
|
|
TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
|
|
Ident(NoAddressSafety)();
|
|
}
|
|
|
|
// ------------------ demo tests; run each one-by-one -------------
|
|
// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
|
|
TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
|
|
ThreadedTestSpawn();
|
|
}
|
|
|
|
void *SimpleBugOnSTack(void *x = 0) {
|
|
char a[20];
|
|
Ident(a)[20] = 0;
|
|
return 0;
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoStackTest) {
|
|
SimpleBugOnSTack();
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
|
|
pthread_t t;
|
|
PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
|
|
PTHREAD_JOIN(t, 0);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
|
|
uaf_test<U1>(10, 0);
|
|
}
|
|
TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
|
|
uaf_test<U1>(10, -2);
|
|
}
|
|
TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
|
|
uaf_test<U1>(10, 10);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
|
|
uaf_test<U1>(kLargeMalloc, 0);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
|
|
oob_test<U1>(10, -1);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
|
|
oob_test<U1>(kLargeMalloc, -1);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
|
|
oob_test<U1>(10, 10);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
|
|
oob_test<U1>(kLargeMalloc, kLargeMalloc);
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoOOM) {
|
|
size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
|
|
printf("%p\n", malloc(size));
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
|
|
DoubleFree();
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
|
|
int *a = 0;
|
|
Ident(a)[10] = 0;
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
|
|
static char a[100];
|
|
static char b[100];
|
|
static char c[100];
|
|
Ident(a);
|
|
Ident(b);
|
|
Ident(c);
|
|
Ident(a)[5] = 0;
|
|
Ident(b)[105] = 0;
|
|
Ident(a)[5] = 0;
|
|
}
|
|
|
|
TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
|
|
const size_t kAllocSize = (1 << 28) - 1024;
|
|
size_t total_size = 0;
|
|
while (true) {
|
|
char *x = (char*)malloc(kAllocSize);
|
|
memset(x, 0, kAllocSize);
|
|
total_size += kAllocSize;
|
|
fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
|
|
}
|
|
}
|
|
|
|
// http://code.google.com/p/address-sanitizer/issues/detail?id=66
|
|
TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
|
|
for (int i = 0; i < 1000000; i++) {
|
|
delete [] (Ident(new char [8644]));
|
|
}
|
|
char *x = new char[8192];
|
|
EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
|
|
delete [] Ident(x);
|
|
}
|
|
|
|
#ifdef __APPLE__
|
|
#include "asan_mac_test.h"
|
|
TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
|
|
EXPECT_DEATH(
|
|
CFAllocatorDefaultDoubleFree(NULL),
|
|
"attempting double-free");
|
|
}
|
|
|
|
void CFAllocator_DoubleFreeOnPthread() {
|
|
pthread_t child;
|
|
PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
|
|
PTHREAD_JOIN(child, NULL); // Shouldn't be reached.
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
|
|
EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
|
|
}
|
|
|
|
namespace {
|
|
|
|
void *GLOB;
|
|
|
|
void *CFAllocatorAllocateToGlob(void *unused) {
|
|
GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
|
|
return NULL;
|
|
}
|
|
|
|
void *CFAllocatorDeallocateFromGlob(void *unused) {
|
|
char *p = (char*)GLOB;
|
|
p[100] = 'A'; // ASan should report an error here.
|
|
CFAllocatorDeallocate(NULL, GLOB);
|
|
return NULL;
|
|
}
|
|
|
|
void CFAllocator_PassMemoryToAnotherThread() {
|
|
pthread_t th1, th2;
|
|
PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
|
|
PTHREAD_JOIN(th1, NULL);
|
|
PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
|
|
PTHREAD_JOIN(th2, NULL);
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
|
|
EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
|
|
"heap-buffer-overflow");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// TODO(glider): figure out whether we still need these tests. Is it correct
|
|
// to intercept the non-default CFAllocators?
|
|
TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
|
|
EXPECT_DEATH(
|
|
CFAllocatorSystemDefaultDoubleFree(),
|
|
"attempting double-free");
|
|
}
|
|
|
|
// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
|
|
TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
|
|
EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
|
|
EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, GCDDispatchAsync) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, GCDDispatchSync) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
|
|
}
|
|
|
|
|
|
TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, GCDDispatchAfter) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, GCDSourceEvent) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, GCDSourceCancel) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, GCDGroupAsync) {
|
|
// Make sure the whole ASan report is printed, i.e. that we don't die
|
|
// on a CHECK.
|
|
EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
|
|
}
|
|
|
|
void *MallocIntrospectionLockWorker(void *_) {
|
|
const int kNumPointers = 100;
|
|
int i;
|
|
void *pointers[kNumPointers];
|
|
for (i = 0; i < kNumPointers; i++) {
|
|
pointers[i] = malloc(i + 1);
|
|
}
|
|
for (i = 0; i < kNumPointers; i++) {
|
|
free(pointers[i]);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void *MallocIntrospectionLockForker(void *_) {
|
|
pid_t result = fork();
|
|
if (result == -1) {
|
|
perror("fork");
|
|
}
|
|
assert(result != -1);
|
|
if (result == 0) {
|
|
// Call malloc in the child process to make sure we won't deadlock.
|
|
void *ptr = malloc(42);
|
|
free(ptr);
|
|
exit(0);
|
|
} else {
|
|
// Return in the parent process.
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, MallocIntrospectionLock) {
|
|
// Incorrect implementation of force_lock and force_unlock in our malloc zone
|
|
// will cause forked processes to deadlock.
|
|
// TODO(glider): need to detect that none of the child processes deadlocked.
|
|
const int kNumWorkers = 5, kNumIterations = 100;
|
|
int i, iter;
|
|
for (iter = 0; iter < kNumIterations; iter++) {
|
|
pthread_t workers[kNumWorkers], forker;
|
|
for (i = 0; i < kNumWorkers; i++) {
|
|
PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
|
|
}
|
|
PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
|
|
for (i = 0; i < kNumWorkers; i++) {
|
|
PTHREAD_JOIN(workers[i], 0);
|
|
}
|
|
PTHREAD_JOIN(forker, 0);
|
|
}
|
|
}
|
|
|
|
void *TSDAllocWorker(void *test_key) {
|
|
if (test_key) {
|
|
void *mem = malloc(10);
|
|
pthread_setspecific(*(pthread_key_t*)test_key, mem);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
|
|
pthread_t th;
|
|
pthread_key_t test_key;
|
|
pthread_key_create(&test_key, CallFreeOnWorkqueue);
|
|
PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
|
|
PTHREAD_JOIN(th, NULL);
|
|
pthread_key_delete(test_key);
|
|
}
|
|
|
|
// Test that CFStringCreateCopy does not copy constant strings.
|
|
TEST(AddressSanitizerMac, CFStringCreateCopy) {
|
|
CFStringRef str = CFSTR("Hello world!\n");
|
|
CFStringRef str2 = CFStringCreateCopy(0, str);
|
|
EXPECT_EQ(str, str2);
|
|
}
|
|
|
|
TEST(AddressSanitizerMac, NSObjectOOB) {
|
|
// Make sure that our allocators are used for NSObjects.
|
|
EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
|
|
}
|
|
|
|
// Make sure that correct pointer is passed to free() when deallocating a
|
|
// NSURL object.
|
|
// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
|
|
TEST(AddressSanitizerMac, NSURLDeallocation) {
|
|
TestNSURLDeallocation();
|
|
}
|
|
|
|
// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
|
|
TEST(AddressSanitizerMac, Mstats) {
|
|
malloc_statistics_t stats1, stats2;
|
|
malloc_zone_statistics(/*all zones*/NULL, &stats1);
|
|
const int kMallocSize = 100000;
|
|
void *alloc = Ident(malloc(kMallocSize));
|
|
malloc_zone_statistics(/*all zones*/NULL, &stats2);
|
|
EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
|
|
EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
|
|
free(alloc);
|
|
// Even the default OSX allocator may not change the stats after free().
|
|
}
|
|
#endif // __APPLE__
|
|
|
|
// Test that instrumentation of stack allocations takes into account
|
|
// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
|
|
// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
|
|
TEST(AddressSanitizer, LongDoubleNegativeTest) {
|
|
long double a, b;
|
|
static long double c;
|
|
memcpy(Ident(&a), Ident(&b), sizeof(long double));
|
|
memcpy(Ident(&c), Ident(&b), sizeof(long double));
|
|
}
|