forked from OSchip/llvm-project
1021 lines
42 KiB
C++
1021 lines
42 KiB
C++
//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file includes support code use by SelectionDAGBuilder when lowering a
|
|
// statepoint sequence in SelectionDAG IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "StatepointLowering.h"
|
|
#include "SelectionDAGBuilder.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/GCMetadata.h"
|
|
#include "llvm/CodeGen/GCStrategy.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "statepoint-lowering"
|
|
|
|
STATISTIC(NumSlotsAllocatedForStatepoints,
|
|
"Number of stack slots allocated for statepoints");
|
|
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
|
|
STATISTIC(StatepointMaxSlotsRequired,
|
|
"Maximum number of stack slots required for a singe statepoint");
|
|
|
|
static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
|
|
SelectionDAGBuilder &Builder, uint64_t Value) {
|
|
SDLoc L = Builder.getCurSDLoc();
|
|
Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
|
|
MVT::i64));
|
|
Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
|
|
}
|
|
|
|
void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
|
|
// Consistency check
|
|
assert(PendingGCRelocateCalls.empty() &&
|
|
"Trying to visit statepoint before finished processing previous one");
|
|
Locations.clear();
|
|
NextSlotToAllocate = 0;
|
|
// Need to resize this on each safepoint - we need the two to stay in sync and
|
|
// the clear patterns of a SelectionDAGBuilder have no relation to
|
|
// FunctionLoweringInfo. Also need to ensure used bits get cleared.
|
|
AllocatedStackSlots.clear();
|
|
AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
|
|
}
|
|
|
|
void StatepointLoweringState::clear() {
|
|
Locations.clear();
|
|
AllocatedStackSlots.clear();
|
|
assert(PendingGCRelocateCalls.empty() &&
|
|
"cleared before statepoint sequence completed");
|
|
}
|
|
|
|
SDValue
|
|
StatepointLoweringState::allocateStackSlot(EVT ValueType,
|
|
SelectionDAGBuilder &Builder) {
|
|
NumSlotsAllocatedForStatepoints++;
|
|
MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
|
|
|
|
unsigned SpillSize = ValueType.getStoreSize();
|
|
assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
|
|
|
|
// First look for a previously created stack slot which is not in
|
|
// use (accounting for the fact arbitrary slots may already be
|
|
// reserved), or to create a new stack slot and use it.
|
|
|
|
const size_t NumSlots = AllocatedStackSlots.size();
|
|
assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
|
|
|
|
assert(AllocatedStackSlots.size() ==
|
|
Builder.FuncInfo.StatepointStackSlots.size() &&
|
|
"Broken invariant");
|
|
|
|
for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
|
|
if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
|
|
const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
|
|
if (MFI.getObjectSize(FI) == SpillSize) {
|
|
AllocatedStackSlots.set(NextSlotToAllocate);
|
|
// TODO: Is ValueType the right thing to use here?
|
|
return Builder.DAG.getFrameIndex(FI, ValueType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Couldn't find a free slot, so create a new one:
|
|
|
|
SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
|
|
const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
MFI.markAsStatepointSpillSlotObjectIndex(FI);
|
|
|
|
Builder.FuncInfo.StatepointStackSlots.push_back(FI);
|
|
AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
|
|
assert(AllocatedStackSlots.size() ==
|
|
Builder.FuncInfo.StatepointStackSlots.size() &&
|
|
"Broken invariant");
|
|
|
|
StatepointMaxSlotsRequired.updateMax(
|
|
Builder.FuncInfo.StatepointStackSlots.size());
|
|
|
|
return SpillSlot;
|
|
}
|
|
|
|
/// Utility function for reservePreviousStackSlotForValue. Tries to find
|
|
/// stack slot index to which we have spilled value for previous statepoints.
|
|
/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
|
|
static Optional<int> findPreviousSpillSlot(const Value *Val,
|
|
SelectionDAGBuilder &Builder,
|
|
int LookUpDepth) {
|
|
// Can not look any further - give up now
|
|
if (LookUpDepth <= 0)
|
|
return None;
|
|
|
|
// Spill location is known for gc relocates
|
|
if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
|
|
const auto &SpillMap =
|
|
Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
|
|
|
|
auto It = SpillMap.find(Relocate->getDerivedPtr());
|
|
if (It == SpillMap.end())
|
|
return None;
|
|
|
|
return It->second;
|
|
}
|
|
|
|
// Look through bitcast instructions.
|
|
if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
|
|
return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
|
|
|
|
// Look through phi nodes
|
|
// All incoming values should have same known stack slot, otherwise result
|
|
// is unknown.
|
|
if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
|
|
Optional<int> MergedResult = None;
|
|
|
|
for (auto &IncomingValue : Phi->incoming_values()) {
|
|
Optional<int> SpillSlot =
|
|
findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
|
|
if (!SpillSlot.hasValue())
|
|
return None;
|
|
|
|
if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
|
|
return None;
|
|
|
|
MergedResult = SpillSlot;
|
|
}
|
|
return MergedResult;
|
|
}
|
|
|
|
// TODO: We can do better for PHI nodes. In cases like this:
|
|
// ptr = phi(relocated_pointer, not_relocated_pointer)
|
|
// statepoint(ptr)
|
|
// We will return that stack slot for ptr is unknown. And later we might
|
|
// assign different stack slots for ptr and relocated_pointer. This limits
|
|
// llvm's ability to remove redundant stores.
|
|
// Unfortunately it's hard to accomplish in current infrastructure.
|
|
// We use this function to eliminate spill store completely, while
|
|
// in example we still need to emit store, but instead of any location
|
|
// we need to use special "preferred" location.
|
|
|
|
// TODO: handle simple updates. If a value is modified and the original
|
|
// value is no longer live, it would be nice to put the modified value in the
|
|
// same slot. This allows folding of the memory accesses for some
|
|
// instructions types (like an increment).
|
|
// statepoint (i)
|
|
// i1 = i+1
|
|
// statepoint (i1)
|
|
// However we need to be careful for cases like this:
|
|
// statepoint(i)
|
|
// i1 = i+1
|
|
// statepoint(i, i1)
|
|
// Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
|
|
// put handling of simple modifications in this function like it's done
|
|
// for bitcasts we might end up reserving i's slot for 'i+1' because order in
|
|
// which we visit values is unspecified.
|
|
|
|
// Don't know any information about this instruction
|
|
return None;
|
|
}
|
|
|
|
/// Try to find existing copies of the incoming values in stack slots used for
|
|
/// statepoint spilling. If we can find a spill slot for the incoming value,
|
|
/// mark that slot as allocated, and reuse the same slot for this safepoint.
|
|
/// This helps to avoid series of loads and stores that only serve to reshuffle
|
|
/// values on the stack between calls.
|
|
static void reservePreviousStackSlotForValue(const Value *IncomingValue,
|
|
SelectionDAGBuilder &Builder) {
|
|
SDValue Incoming = Builder.getValue(IncomingValue);
|
|
|
|
if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
|
|
// We won't need to spill this, so no need to check for previously
|
|
// allocated stack slots
|
|
return;
|
|
}
|
|
|
|
SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
|
|
if (OldLocation.getNode())
|
|
// Duplicates in input
|
|
return;
|
|
|
|
const int LookUpDepth = 6;
|
|
Optional<int> Index =
|
|
findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
|
|
if (!Index.hasValue())
|
|
return;
|
|
|
|
const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
|
|
|
|
auto SlotIt = find(StatepointSlots, *Index);
|
|
assert(SlotIt != StatepointSlots.end() &&
|
|
"Value spilled to the unknown stack slot");
|
|
|
|
// This is one of our dedicated lowering slots
|
|
const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
|
|
if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
|
|
// stack slot already assigned to someone else, can't use it!
|
|
// TODO: currently we reserve space for gc arguments after doing
|
|
// normal allocation for deopt arguments. We should reserve for
|
|
// _all_ deopt and gc arguments, then start allocating. This
|
|
// will prevent some moves being inserted when vm state changes,
|
|
// but gc state doesn't between two calls.
|
|
return;
|
|
}
|
|
// Reserve this stack slot
|
|
Builder.StatepointLowering.reserveStackSlot(Offset);
|
|
|
|
// Cache this slot so we find it when going through the normal
|
|
// assignment loop.
|
|
SDValue Loc =
|
|
Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
|
|
Builder.StatepointLowering.setLocation(Incoming, Loc);
|
|
}
|
|
|
|
/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
|
|
/// is not required for correctness. It's purpose is to reduce the size of
|
|
/// StackMap section. It has no effect on the number of spill slots required
|
|
/// or the actual lowering.
|
|
static void
|
|
removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
|
|
SmallVectorImpl<const Value *> &Ptrs,
|
|
SmallVectorImpl<const GCRelocateInst *> &Relocs,
|
|
SelectionDAGBuilder &Builder,
|
|
FunctionLoweringInfo::StatepointSpillMap &SSM) {
|
|
DenseMap<SDValue, const Value *> Seen;
|
|
|
|
SmallVector<const Value *, 64> NewBases, NewPtrs;
|
|
SmallVector<const GCRelocateInst *, 64> NewRelocs;
|
|
for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
|
|
SDValue SD = Builder.getValue(Ptrs[i]);
|
|
auto SeenIt = Seen.find(SD);
|
|
|
|
if (SeenIt == Seen.end()) {
|
|
// Only add non-duplicates
|
|
NewBases.push_back(Bases[i]);
|
|
NewPtrs.push_back(Ptrs[i]);
|
|
NewRelocs.push_back(Relocs[i]);
|
|
Seen[SD] = Ptrs[i];
|
|
} else {
|
|
// Duplicate pointer found, note in SSM and move on:
|
|
SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
|
|
}
|
|
}
|
|
assert(Bases.size() >= NewBases.size());
|
|
assert(Ptrs.size() >= NewPtrs.size());
|
|
assert(Relocs.size() >= NewRelocs.size());
|
|
Bases = NewBases;
|
|
Ptrs = NewPtrs;
|
|
Relocs = NewRelocs;
|
|
assert(Ptrs.size() == Bases.size());
|
|
assert(Ptrs.size() == Relocs.size());
|
|
}
|
|
|
|
/// Extract call from statepoint, lower it and return pointer to the
|
|
/// call node. Also update NodeMap so that getValue(statepoint) will
|
|
/// reference lowered call result
|
|
static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
|
|
SelectionDAGBuilder::StatepointLoweringInfo &SI,
|
|
SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
|
|
SDValue ReturnValue, CallEndVal;
|
|
std::tie(ReturnValue, CallEndVal) =
|
|
Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
|
|
SDNode *CallEnd = CallEndVal.getNode();
|
|
|
|
// Get a call instruction from the call sequence chain. Tail calls are not
|
|
// allowed. The following code is essentially reverse engineering X86's
|
|
// LowerCallTo.
|
|
//
|
|
// We are expecting DAG to have the following form:
|
|
//
|
|
// ch = eh_label (only in case of invoke statepoint)
|
|
// ch, glue = callseq_start ch
|
|
// ch, glue = X86::Call ch, glue
|
|
// ch, glue = callseq_end ch, glue
|
|
// get_return_value ch, glue
|
|
//
|
|
// get_return_value can either be a sequence of CopyFromReg instructions
|
|
// to grab the return value from the return register(s), or it can be a LOAD
|
|
// to load a value returned by reference via a stack slot.
|
|
|
|
bool HasDef = !SI.CLI.RetTy->isVoidTy();
|
|
if (HasDef) {
|
|
if (CallEnd->getOpcode() == ISD::LOAD)
|
|
CallEnd = CallEnd->getOperand(0).getNode();
|
|
else
|
|
while (CallEnd->getOpcode() == ISD::CopyFromReg)
|
|
CallEnd = CallEnd->getOperand(0).getNode();
|
|
}
|
|
|
|
assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
|
|
return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
|
|
}
|
|
|
|
/// Spill a value incoming to the statepoint. It might be either part of
|
|
/// vmstate
|
|
/// or gcstate. In both cases unconditionally spill it on the stack unless it
|
|
/// is a null constant. Return pair with first element being frame index
|
|
/// containing saved value and second element with outgoing chain from the
|
|
/// emitted store
|
|
static std::pair<SDValue, SDValue>
|
|
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
|
|
SelectionDAGBuilder &Builder) {
|
|
SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
|
|
|
|
// Emit new store if we didn't do it for this ptr before
|
|
if (!Loc.getNode()) {
|
|
Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
|
|
Builder);
|
|
int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
// We use TargetFrameIndex so that isel will not select it into LEA
|
|
Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
|
|
|
|
// TODO: We can create TokenFactor node instead of
|
|
// chaining stores one after another, this may allow
|
|
// a bit more optimal scheduling for them
|
|
|
|
#ifndef NDEBUG
|
|
// Right now we always allocate spill slots that are of the same
|
|
// size as the value we're about to spill (the size of spillee can
|
|
// vary since we spill vectors of pointers too). At some point we
|
|
// can consider allowing spills of smaller values to larger slots
|
|
// (i.e. change the '==' in the assert below to a '>=').
|
|
MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
|
|
assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
|
|
"Bad spill: stack slot does not match!");
|
|
#endif
|
|
|
|
Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
|
|
MachinePointerInfo::getFixedStack(
|
|
Builder.DAG.getMachineFunction(), Index));
|
|
|
|
Builder.StatepointLowering.setLocation(Incoming, Loc);
|
|
}
|
|
|
|
assert(Loc.getNode());
|
|
return std::make_pair(Loc, Chain);
|
|
}
|
|
|
|
/// Lower a single value incoming to a statepoint node. This value can be
|
|
/// either a deopt value or a gc value, the handling is the same. We special
|
|
/// case constants and allocas, then fall back to spilling if required.
|
|
static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
|
|
SmallVectorImpl<SDValue> &Ops,
|
|
SelectionDAGBuilder &Builder) {
|
|
SDValue Chain = Builder.getRoot();
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
|
|
// If the original value was a constant, make sure it gets recorded as
|
|
// such in the stackmap. This is required so that the consumer can
|
|
// parse any internal format to the deopt state. It also handles null
|
|
// pointers and other constant pointers in GC states. Note the constant
|
|
// vectors do not appear to actually hit this path and that anything larger
|
|
// than an i64 value (not type!) will fail asserts here.
|
|
pushStackMapConstant(Ops, Builder, C->getSExtValue());
|
|
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
|
|
// This handles allocas as arguments to the statepoint (this is only
|
|
// really meaningful for a deopt value. For GC, we'd be trying to
|
|
// relocate the address of the alloca itself?)
|
|
assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
|
|
"Incoming value is a frame index!");
|
|
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
|
|
Builder.getFrameIndexTy()));
|
|
} else if (LiveInOnly) {
|
|
// If this value is live in (not live-on-return, or live-through), we can
|
|
// treat it the same way patchpoint treats it's "live in" values. We'll
|
|
// end up folding some of these into stack references, but they'll be
|
|
// handled by the register allocator. Note that we do not have the notion
|
|
// of a late use so these values might be placed in registers which are
|
|
// clobbered by the call. This is fine for live-in.
|
|
Ops.push_back(Incoming);
|
|
} else {
|
|
// Otherwise, locate a spill slot and explicitly spill it so it
|
|
// can be found by the runtime later. We currently do not support
|
|
// tracking values through callee saved registers to their eventual
|
|
// spill location. This would be a useful optimization, but would
|
|
// need to be optional since it requires a lot of complexity on the
|
|
// runtime side which not all would support.
|
|
auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
|
|
Ops.push_back(Res.first);
|
|
Chain = Res.second;
|
|
}
|
|
|
|
Builder.DAG.setRoot(Chain);
|
|
}
|
|
|
|
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
|
|
/// lowering is described in lowerIncomingStatepointValue. This function is
|
|
/// responsible for lowering everything in the right position and playing some
|
|
/// tricks to avoid redundant stack manipulation where possible. On
|
|
/// completion, 'Ops' will contain ready to use operands for machine code
|
|
/// statepoint. The chain nodes will have already been created and the DAG root
|
|
/// will be set to the last value spilled (if any were).
|
|
static void
|
|
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
|
|
SelectionDAGBuilder::StatepointLoweringInfo &SI,
|
|
SelectionDAGBuilder &Builder) {
|
|
// Lower the deopt and gc arguments for this statepoint. Layout will be:
|
|
// deopt argument length, deopt arguments.., gc arguments...
|
|
#ifndef NDEBUG
|
|
if (auto *GFI = Builder.GFI) {
|
|
// Check that each of the gc pointer and bases we've gotten out of the
|
|
// safepoint is something the strategy thinks might be a pointer (or vector
|
|
// of pointers) into the GC heap. This is basically just here to help catch
|
|
// errors during statepoint insertion. TODO: This should actually be in the
|
|
// Verifier, but we can't get to the GCStrategy from there (yet).
|
|
GCStrategy &S = GFI->getStrategy();
|
|
for (const Value *V : SI.Bases) {
|
|
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
|
|
if (Opt.hasValue()) {
|
|
assert(Opt.getValue() &&
|
|
"non gc managed base pointer found in statepoint");
|
|
}
|
|
}
|
|
for (const Value *V : SI.Ptrs) {
|
|
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
|
|
if (Opt.hasValue()) {
|
|
assert(Opt.getValue() &&
|
|
"non gc managed derived pointer found in statepoint");
|
|
}
|
|
}
|
|
assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
|
|
} else {
|
|
assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
|
|
assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
|
|
}
|
|
#endif
|
|
|
|
// Figure out what lowering strategy we're going to use for each part
|
|
// Note: Is is conservatively correct to lower both "live-in" and "live-out"
|
|
// as "live-through". A "live-through" variable is one which is "live-in",
|
|
// "live-out", and live throughout the lifetime of the call (i.e. we can find
|
|
// it from any PC within the transitive callee of the statepoint). In
|
|
// particular, if the callee spills callee preserved registers we may not
|
|
// be able to find a value placed in that register during the call. This is
|
|
// fine for live-out, but not for live-through. If we were willing to make
|
|
// assumptions about the code generator producing the callee, we could
|
|
// potentially allow live-through values in callee saved registers.
|
|
const bool LiveInDeopt =
|
|
SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
|
|
|
|
auto isGCValue =[&](const Value *V) {
|
|
return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
|
|
};
|
|
|
|
// Before we actually start lowering (and allocating spill slots for values),
|
|
// reserve any stack slots which we judge to be profitable to reuse for a
|
|
// particular value. This is purely an optimization over the code below and
|
|
// doesn't change semantics at all. It is important for performance that we
|
|
// reserve slots for both deopt and gc values before lowering either.
|
|
for (const Value *V : SI.DeoptState) {
|
|
if (!LiveInDeopt || isGCValue(V))
|
|
reservePreviousStackSlotForValue(V, Builder);
|
|
}
|
|
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
|
|
reservePreviousStackSlotForValue(SI.Bases[i], Builder);
|
|
reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
|
|
}
|
|
|
|
// First, prefix the list with the number of unique values to be
|
|
// lowered. Note that this is the number of *Values* not the
|
|
// number of SDValues required to lower them.
|
|
const int NumVMSArgs = SI.DeoptState.size();
|
|
pushStackMapConstant(Ops, Builder, NumVMSArgs);
|
|
|
|
// The vm state arguments are lowered in an opaque manner. We do not know
|
|
// what type of values are contained within.
|
|
for (const Value *V : SI.DeoptState) {
|
|
SDValue Incoming = Builder.getValue(V);
|
|
const bool LiveInValue = LiveInDeopt && !isGCValue(V);
|
|
lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder);
|
|
}
|
|
|
|
// Finally, go ahead and lower all the gc arguments. There's no prefixed
|
|
// length for this one. After lowering, we'll have the base and pointer
|
|
// arrays interwoven with each (lowered) base pointer immediately followed by
|
|
// it's (lowered) derived pointer. i.e
|
|
// (base[0], ptr[0], base[1], ptr[1], ...)
|
|
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
|
|
const Value *Base = SI.Bases[i];
|
|
lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
|
|
Ops, Builder);
|
|
|
|
const Value *Ptr = SI.Ptrs[i];
|
|
lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
|
|
Ops, Builder);
|
|
}
|
|
|
|
// If there are any explicit spill slots passed to the statepoint, record
|
|
// them, but otherwise do not do anything special. These are user provided
|
|
// allocas and give control over placement to the consumer. In this case,
|
|
// it is the contents of the slot which may get updated, not the pointer to
|
|
// the alloca
|
|
for (Value *V : SI.GCArgs) {
|
|
SDValue Incoming = Builder.getValue(V);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
|
|
// This handles allocas as arguments to the statepoint
|
|
assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
|
|
"Incoming value is a frame index!");
|
|
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
|
|
Builder.getFrameIndexTy()));
|
|
}
|
|
}
|
|
|
|
// Record computed locations for all lowered values.
|
|
// This can not be embedded in lowering loops as we need to record *all*
|
|
// values, while previous loops account only values with unique SDValues.
|
|
const Instruction *StatepointInstr = SI.StatepointInstr;
|
|
auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
|
|
|
|
for (const GCRelocateInst *Relocate : SI.GCRelocates) {
|
|
const Value *V = Relocate->getDerivedPtr();
|
|
SDValue SDV = Builder.getValue(V);
|
|
SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
|
|
|
|
if (Loc.getNode()) {
|
|
SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
} else {
|
|
// Record value as visited, but not spilled. This is case for allocas
|
|
// and constants. For this values we can avoid emitting spill load while
|
|
// visiting corresponding gc_relocate.
|
|
// Actually we do not need to record them in this map at all.
|
|
// We do this only to check that we are not relocating any unvisited
|
|
// value.
|
|
SpillMap.SlotMap[V] = None;
|
|
|
|
// Default llvm mechanisms for exporting values which are used in
|
|
// different basic blocks does not work for gc relocates.
|
|
// Note that it would be incorrect to teach llvm that all relocates are
|
|
// uses of the corresponding values so that it would automatically
|
|
// export them. Relocates of the spilled values does not use original
|
|
// value.
|
|
if (Relocate->getParent() != StatepointInstr->getParent())
|
|
Builder.ExportFromCurrentBlock(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
|
|
SelectionDAGBuilder::StatepointLoweringInfo &SI) {
|
|
// The basic scheme here is that information about both the original call and
|
|
// the safepoint is encoded in the CallInst. We create a temporary call and
|
|
// lower it, then reverse engineer the calling sequence.
|
|
|
|
NumOfStatepoints++;
|
|
// Clear state
|
|
StatepointLowering.startNewStatepoint(*this);
|
|
|
|
#ifndef NDEBUG
|
|
// We schedule gc relocates before removeDuplicateGCPtrs since we _will_
|
|
// encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
|
|
for (auto *Reloc : SI.GCRelocates)
|
|
if (Reloc->getParent() == SI.StatepointInstr->getParent())
|
|
StatepointLowering.scheduleRelocCall(*Reloc);
|
|
#endif
|
|
|
|
// Remove any redundant llvm::Values which map to the same SDValue as another
|
|
// input. Also has the effect of removing duplicates in the original
|
|
// llvm::Value input list as well. This is a useful optimization for
|
|
// reducing the size of the StackMap section. It has no other impact.
|
|
removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
|
|
FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
|
|
assert(SI.Bases.size() == SI.Ptrs.size() &&
|
|
SI.Ptrs.size() == SI.GCRelocates.size());
|
|
|
|
// Lower statepoint vmstate and gcstate arguments
|
|
SmallVector<SDValue, 10> LoweredMetaArgs;
|
|
lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this);
|
|
|
|
// Now that we've emitted the spills, we need to update the root so that the
|
|
// call sequence is ordered correctly.
|
|
SI.CLI.setChain(getRoot());
|
|
|
|
// Get call node, we will replace it later with statepoint
|
|
SDValue ReturnVal;
|
|
SDNode *CallNode;
|
|
std::tie(ReturnVal, CallNode) =
|
|
lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
|
|
|
|
// Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
|
|
// nodes with all the appropriate arguments and return values.
|
|
|
|
// Call Node: Chain, Target, {Args}, RegMask, [Glue]
|
|
SDValue Chain = CallNode->getOperand(0);
|
|
|
|
SDValue Glue;
|
|
bool CallHasIncomingGlue = CallNode->getGluedNode();
|
|
if (CallHasIncomingGlue) {
|
|
// Glue is always last operand
|
|
Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
|
|
}
|
|
|
|
// Build the GC_TRANSITION_START node if necessary.
|
|
//
|
|
// The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
|
|
// order in which they appear in the call to the statepoint intrinsic. If
|
|
// any of the operands is a pointer-typed, that operand is immediately
|
|
// followed by a SRCVALUE for the pointer that may be used during lowering
|
|
// (e.g. to form MachinePointerInfo values for loads/stores).
|
|
const bool IsGCTransition =
|
|
(SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
|
|
(uint64_t)StatepointFlags::GCTransition;
|
|
if (IsGCTransition) {
|
|
SmallVector<SDValue, 8> TSOps;
|
|
|
|
// Add chain
|
|
TSOps.push_back(Chain);
|
|
|
|
// Add GC transition arguments
|
|
for (const Value *V : SI.GCTransitionArgs) {
|
|
TSOps.push_back(getValue(V));
|
|
if (V->getType()->isPointerTy())
|
|
TSOps.push_back(DAG.getSrcValue(V));
|
|
}
|
|
|
|
// Add glue if necessary
|
|
if (CallHasIncomingGlue)
|
|
TSOps.push_back(Glue);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDValue GCTransitionStart =
|
|
DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
|
|
|
|
Chain = GCTransitionStart.getValue(0);
|
|
Glue = GCTransitionStart.getValue(1);
|
|
}
|
|
|
|
// TODO: Currently, all of these operands are being marked as read/write in
|
|
// PrologEpilougeInserter.cpp, we should special case the VMState arguments
|
|
// and flags to be read-only.
|
|
SmallVector<SDValue, 40> Ops;
|
|
|
|
// Add the <id> and <numBytes> constants.
|
|
Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
|
|
|
|
// Calculate and push starting position of vmstate arguments
|
|
// Get number of arguments incoming directly into call node
|
|
unsigned NumCallRegArgs =
|
|
CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
|
|
Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
|
|
|
|
// Add call target
|
|
SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
|
|
Ops.push_back(CallTarget);
|
|
|
|
// Add call arguments
|
|
// Get position of register mask in the call
|
|
SDNode::op_iterator RegMaskIt;
|
|
if (CallHasIncomingGlue)
|
|
RegMaskIt = CallNode->op_end() - 2;
|
|
else
|
|
RegMaskIt = CallNode->op_end() - 1;
|
|
Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
|
|
|
|
// Add a constant argument for the calling convention
|
|
pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
|
|
|
|
// Add a constant argument for the flags
|
|
uint64_t Flags = SI.StatepointFlags;
|
|
assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
|
|
"Unknown flag used");
|
|
pushStackMapConstant(Ops, *this, Flags);
|
|
|
|
// Insert all vmstate and gcstate arguments
|
|
Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
|
|
|
|
// Add register mask from call node
|
|
Ops.push_back(*RegMaskIt);
|
|
|
|
// Add chain
|
|
Ops.push_back(Chain);
|
|
|
|
// Same for the glue, but we add it only if original call had it
|
|
if (Glue.getNode())
|
|
Ops.push_back(Glue);
|
|
|
|
// Compute return values. Provide a glue output since we consume one as
|
|
// input. This allows someone else to chain off us as needed.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDNode *StatepointMCNode =
|
|
DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
|
|
|
|
SDNode *SinkNode = StatepointMCNode;
|
|
|
|
// Build the GC_TRANSITION_END node if necessary.
|
|
//
|
|
// See the comment above regarding GC_TRANSITION_START for the layout of
|
|
// the operands to the GC_TRANSITION_END node.
|
|
if (IsGCTransition) {
|
|
SmallVector<SDValue, 8> TEOps;
|
|
|
|
// Add chain
|
|
TEOps.push_back(SDValue(StatepointMCNode, 0));
|
|
|
|
// Add GC transition arguments
|
|
for (const Value *V : SI.GCTransitionArgs) {
|
|
TEOps.push_back(getValue(V));
|
|
if (V->getType()->isPointerTy())
|
|
TEOps.push_back(DAG.getSrcValue(V));
|
|
}
|
|
|
|
// Add glue
|
|
TEOps.push_back(SDValue(StatepointMCNode, 1));
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDValue GCTransitionStart =
|
|
DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
|
|
|
|
SinkNode = GCTransitionStart.getNode();
|
|
}
|
|
|
|
// Replace original call
|
|
DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
|
|
// Remove original call node
|
|
DAG.DeleteNode(CallNode);
|
|
|
|
// DON'T set the root - under the assumption that it's already set past the
|
|
// inserted node we created.
|
|
|
|
// TODO: A better future implementation would be to emit a single variable
|
|
// argument, variable return value STATEPOINT node here and then hookup the
|
|
// return value of each gc.relocate to the respective output of the
|
|
// previously emitted STATEPOINT value. Unfortunately, this doesn't appear
|
|
// to actually be possible today.
|
|
|
|
return ReturnVal;
|
|
}
|
|
|
|
void
|
|
SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
|
|
const BasicBlock *EHPadBB /*= nullptr*/) {
|
|
assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg &&
|
|
"anyregcc is not supported on statepoints!");
|
|
|
|
#ifndef NDEBUG
|
|
// If this is a malformed statepoint, report it early to simplify debugging.
|
|
// This should catch any IR level mistake that's made when constructing or
|
|
// transforming statepoints.
|
|
ISP.verify();
|
|
|
|
// Check that the associated GCStrategy expects to encounter statepoints.
|
|
assert(GFI->getStrategy().useStatepoints() &&
|
|
"GCStrategy does not expect to encounter statepoints");
|
|
#endif
|
|
|
|
SDValue ActualCallee;
|
|
|
|
if (ISP.getNumPatchBytes() > 0) {
|
|
// If we've been asked to emit a nop sequence instead of a call instruction
|
|
// for this statepoint then don't lower the call target, but use a constant
|
|
// `null` instead. Not lowering the call target lets statepoint clients get
|
|
// away without providing a physical address for the symbolic call target at
|
|
// link time.
|
|
|
|
const auto &TLI = DAG.getTargetLoweringInfo();
|
|
const auto &DL = DAG.getDataLayout();
|
|
|
|
unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
|
|
ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
|
|
} else {
|
|
ActualCallee = getValue(ISP.getCalledValue());
|
|
}
|
|
|
|
StatepointLoweringInfo SI(DAG);
|
|
populateCallLoweringInfo(SI.CLI, ISP.getCallSite(),
|
|
ImmutableStatepoint::CallArgsBeginPos,
|
|
ISP.getNumCallArgs(), ActualCallee,
|
|
ISP.getActualReturnType(), false /* IsPatchPoint */);
|
|
|
|
for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
|
|
SI.GCRelocates.push_back(Relocate);
|
|
SI.Bases.push_back(Relocate->getBasePtr());
|
|
SI.Ptrs.push_back(Relocate->getDerivedPtr());
|
|
}
|
|
|
|
SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
|
|
SI.StatepointInstr = ISP.getInstruction();
|
|
SI.GCTransitionArgs =
|
|
ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
|
|
SI.ID = ISP.getID();
|
|
SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
|
|
SI.StatepointFlags = ISP.getFlags();
|
|
SI.NumPatchBytes = ISP.getNumPatchBytes();
|
|
SI.EHPadBB = EHPadBB;
|
|
|
|
SDValue ReturnValue = LowerAsSTATEPOINT(SI);
|
|
|
|
// Export the result value if needed
|
|
const GCResultInst *GCResult = ISP.getGCResult();
|
|
Type *RetTy = ISP.getActualReturnType();
|
|
if (!RetTy->isVoidTy() && GCResult) {
|
|
if (GCResult->getParent() != ISP.getCallSite().getParent()) {
|
|
// Result value will be used in a different basic block so we need to
|
|
// export it now. Default exporting mechanism will not work here because
|
|
// statepoint call has a different type than the actual call. It means
|
|
// that by default llvm will create export register of the wrong type
|
|
// (always i32 in our case). So instead we need to create export register
|
|
// with correct type manually.
|
|
// TODO: To eliminate this problem we can remove gc.result intrinsics
|
|
// completely and make statepoint call to return a tuple.
|
|
unsigned Reg = FuncInfo.CreateRegs(RetTy);
|
|
RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
|
|
DAG.getDataLayout(), Reg, RetTy, true);
|
|
SDValue Chain = DAG.getEntryNode();
|
|
|
|
RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
|
|
PendingExports.push_back(Chain);
|
|
FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
|
|
} else {
|
|
// Result value will be used in a same basic block. Don't export it or
|
|
// perform any explicit register copies.
|
|
// We'll replace the actuall call node shortly. gc_result will grab
|
|
// this value.
|
|
setValue(ISP.getInstruction(), ReturnValue);
|
|
}
|
|
} else {
|
|
// The token value is never used from here on, just generate a poison value
|
|
setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
|
|
ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB,
|
|
bool VarArgDisallowed, bool ForceVoidReturnTy) {
|
|
StatepointLoweringInfo SI(DAG);
|
|
unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin();
|
|
populateCallLoweringInfo(
|
|
SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee,
|
|
ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(),
|
|
false);
|
|
if (!VarArgDisallowed)
|
|
SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg();
|
|
|
|
auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt);
|
|
|
|
unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
|
|
|
|
auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes());
|
|
SI.ID = SD.StatepointID.getValueOr(DefaultID);
|
|
SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
|
|
|
|
SI.DeoptState =
|
|
ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
|
|
SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
|
|
SI.EHPadBB = EHPadBB;
|
|
|
|
// NB! The GC arguments are deliberately left empty.
|
|
|
|
if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
|
|
const Instruction *Inst = CS.getInstruction();
|
|
ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal);
|
|
setValue(Inst, ReturnVal);
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
|
|
ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) {
|
|
LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB,
|
|
/* VarArgDisallowed = */ false,
|
|
/* ForceVoidReturnTy = */ false);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
|
|
// The result value of the gc_result is simply the result of the actual
|
|
// call. We've already emitted this, so just grab the value.
|
|
const Instruction *I = CI.getStatepoint();
|
|
|
|
if (I->getParent() != CI.getParent()) {
|
|
// Statepoint is in different basic block so we should have stored call
|
|
// result in a virtual register.
|
|
// We can not use default getValue() functionality to copy value from this
|
|
// register because statepoint and actual call return types can be
|
|
// different, and getValue() will use CopyFromReg of the wrong type,
|
|
// which is always i32 in our case.
|
|
PointerType *CalleeType = cast<PointerType>(
|
|
ImmutableStatepoint(I).getCalledValue()->getType());
|
|
Type *RetTy =
|
|
cast<FunctionType>(CalleeType->getElementType())->getReturnType();
|
|
SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
|
|
|
|
assert(CopyFromReg.getNode());
|
|
setValue(&CI, CopyFromReg);
|
|
} else {
|
|
setValue(&CI, getValue(I));
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
|
|
#ifndef NDEBUG
|
|
// Consistency check
|
|
// We skip this check for relocates not in the same basic block as their
|
|
// statepoint. It would be too expensive to preserve validation info through
|
|
// different basic blocks.
|
|
if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
|
|
StatepointLowering.relocCallVisited(Relocate);
|
|
|
|
auto *Ty = Relocate.getType()->getScalarType();
|
|
if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
|
|
assert(*IsManaged && "Non gc managed pointer relocated!");
|
|
#endif
|
|
|
|
const Value *DerivedPtr = Relocate.getDerivedPtr();
|
|
SDValue SD = getValue(DerivedPtr);
|
|
|
|
auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
|
|
auto SlotIt = SpillMap.find(DerivedPtr);
|
|
assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
|
|
Optional<int> DerivedPtrLocation = SlotIt->second;
|
|
|
|
// We didn't need to spill these special cases (constants and allocas).
|
|
// See the handling in spillIncomingValueForStatepoint for detail.
|
|
if (!DerivedPtrLocation) {
|
|
setValue(&Relocate, SD);
|
|
return;
|
|
}
|
|
|
|
SDValue SpillSlot =
|
|
DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy());
|
|
|
|
// Be conservative: flush all pending loads
|
|
// TODO: Probably we can be less restrictive on this,
|
|
// it may allow more scheduling opportunities.
|
|
SDValue Chain = getRoot();
|
|
|
|
SDValue SpillLoad =
|
|
DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
|
|
Relocate.getType()),
|
|
getCurSDLoc(), Chain, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
|
|
*DerivedPtrLocation));
|
|
|
|
// Again, be conservative, don't emit pending loads
|
|
DAG.setRoot(SpillLoad.getValue(1));
|
|
|
|
assert(SpillLoad.getNode());
|
|
setValue(&Relocate, SpillLoad);
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
|
|
const auto &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
// We don't lower calls to __llvm_deoptimize as varargs, but as a regular
|
|
// call. We also do not lower the return value to any virtual register, and
|
|
// change the immediately following return to a trap instruction.
|
|
LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
|
|
/* VarArgDisallowed = */ true,
|
|
/* ForceVoidReturnTy = */ true);
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerDeoptimizingReturn() {
|
|
// We do not lower the return value from llvm.deoptimize to any virtual
|
|
// register, and change the immediately following return to a trap
|
|
// instruction.
|
|
if (DAG.getTarget().Options.TrapUnreachable)
|
|
DAG.setRoot(
|
|
DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
|
|
}
|