llvm-project/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp

14673 lines
558 KiB
C++

//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
// both before and after the DAG is legalized.
//
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
// primarily intended to handle simplification opportunities that are implicit
// in the LLVM IR and exposed by the various codegen lowering phases.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "dagcombine"
STATISTIC(NodesCombined , "Number of dag nodes combined");
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
STATISTIC(SlicedLoads, "Number of load sliced");
namespace {
static cl::opt<bool>
CombinerAA("combiner-alias-analysis", cl::Hidden,
cl::desc("Enable DAG combiner alias-analysis heuristics"));
static cl::opt<bool>
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
cl::desc("Enable DAG combiner's use of IR alias analysis"));
static cl::opt<bool>
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
cl::desc("Enable DAG combiner's use of TBAA"));
#ifndef NDEBUG
static cl::opt<std::string>
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
cl::desc("Only use DAG-combiner alias analysis in this"
" function"));
#endif
/// Hidden option to stress test load slicing, i.e., when this option
/// is enabled, load slicing bypasses most of its profitability guards.
static cl::opt<bool>
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
cl::desc("Bypass the profitability model of load "
"slicing"),
cl::init(false));
static cl::opt<bool>
MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
cl::desc("DAG combiner may split indexing from loads"));
//------------------------------ DAGCombiner ---------------------------------//
class DAGCombiner {
SelectionDAG &DAG;
const TargetLowering &TLI;
CombineLevel Level;
CodeGenOpt::Level OptLevel;
bool LegalOperations;
bool LegalTypes;
bool ForCodeSize;
/// \brief Worklist of all of the nodes that need to be simplified.
///
/// This must behave as a stack -- new nodes to process are pushed onto the
/// back and when processing we pop off of the back.
///
/// The worklist will not contain duplicates but may contain null entries
/// due to nodes being deleted from the underlying DAG.
SmallVector<SDNode *, 64> Worklist;
/// \brief Mapping from an SDNode to its position on the worklist.
///
/// This is used to find and remove nodes from the worklist (by nulling
/// them) when they are deleted from the underlying DAG. It relies on
/// stable indices of nodes within the worklist.
DenseMap<SDNode *, unsigned> WorklistMap;
/// \brief Set of nodes which have been combined (at least once).
///
/// This is used to allow us to reliably add any operands of a DAG node
/// which have not yet been combined to the worklist.
SmallPtrSet<SDNode *, 64> CombinedNodes;
// AA - Used for DAG load/store alias analysis.
AliasAnalysis &AA;
/// When an instruction is simplified, add all users of the instruction to
/// the work lists because they might get more simplified now.
void AddUsersToWorklist(SDNode *N) {
for (SDNode *Node : N->uses())
AddToWorklist(Node);
}
/// Call the node-specific routine that folds each particular type of node.
SDValue visit(SDNode *N);
public:
/// Add to the worklist making sure its instance is at the back (next to be
/// processed.)
void AddToWorklist(SDNode *N) {
// Skip handle nodes as they can't usefully be combined and confuse the
// zero-use deletion strategy.
if (N->getOpcode() == ISD::HANDLENODE)
return;
if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
Worklist.push_back(N);
}
/// Remove all instances of N from the worklist.
void removeFromWorklist(SDNode *N) {
CombinedNodes.erase(N);
auto It = WorklistMap.find(N);
if (It == WorklistMap.end())
return; // Not in the worklist.
// Null out the entry rather than erasing it to avoid a linear operation.
Worklist[It->second] = nullptr;
WorklistMap.erase(It);
}
void deleteAndRecombine(SDNode *N);
bool recursivelyDeleteUnusedNodes(SDNode *N);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo = true);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
return CombineTo(N, &Res, 1, AddTo);
}
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
bool AddTo = true) {
SDValue To[] = { Res0, Res1 };
return CombineTo(N, To, 2, AddTo);
}
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
private:
/// Check the specified integer node value to see if it can be simplified or
/// if things it uses can be simplified by bit propagation.
/// If so, return true.
bool SimplifyDemandedBits(SDValue Op) {
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
APInt Demanded = APInt::getAllOnesValue(BitWidth);
return SimplifyDemandedBits(Op, Demanded);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
bool CombineToPreIndexedLoadStore(SDNode *N);
bool CombineToPostIndexedLoadStore(SDNode *N);
SDValue SplitIndexingFromLoad(LoadSDNode *LD);
bool SliceUpLoad(SDNode *N);
/// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
/// load.
///
/// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
/// \param InVecVT type of the input vector to EVE with bitcasts resolved.
/// \param EltNo index of the vector element to load.
/// \param OriginalLoad load that EVE came from to be replaced.
/// \returns EVE on success SDValue() on failure.
SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
SDValue PromoteIntBinOp(SDValue Op);
SDValue PromoteIntShiftOp(SDValue Op);
SDValue PromoteExtend(SDValue Op);
bool PromoteLoad(SDValue Op);
void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
SDValue Trunc, SDValue ExtLoad, SDLoc DL,
ISD::NodeType ExtType);
/// Call the node-specific routine that knows how to fold each
/// particular type of node. If that doesn't do anything, try the
/// target-specific DAG combines.
SDValue combine(SDNode *N);
// Visitation implementation - Implement dag node combining for different
// node types. The semantics are as follows:
// Return Value:
// SDValue.getNode() == 0 - No change was made
// SDValue.getNode() == N - N was replaced, is dead and has been handled.
// otherwise - N should be replaced by the returned Operand.
//
SDValue visitTokenFactor(SDNode *N);
SDValue visitMERGE_VALUES(SDNode *N);
SDValue visitADD(SDNode *N);
SDValue visitSUB(SDNode *N);
SDValue visitADDC(SDNode *N);
SDValue visitSUBC(SDNode *N);
SDValue visitADDE(SDNode *N);
SDValue visitSUBE(SDNode *N);
SDValue visitMUL(SDNode *N);
SDValue useDivRem(SDNode *N);
SDValue visitSDIV(SDNode *N);
SDValue visitUDIV(SDNode *N);
SDValue visitREM(SDNode *N);
SDValue visitMULHU(SDNode *N);
SDValue visitMULHS(SDNode *N);
SDValue visitSMUL_LOHI(SDNode *N);
SDValue visitUMUL_LOHI(SDNode *N);
SDValue visitSMULO(SDNode *N);
SDValue visitUMULO(SDNode *N);
SDValue visitIMINMAX(SDNode *N);
SDValue visitAND(SDNode *N);
SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference);
SDValue visitOR(SDNode *N);
SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference);
SDValue visitXOR(SDNode *N);
SDValue SimplifyVBinOp(SDNode *N);
SDValue visitSHL(SDNode *N);
SDValue visitSRA(SDNode *N);
SDValue visitSRL(SDNode *N);
SDValue visitRotate(SDNode *N);
SDValue visitBSWAP(SDNode *N);
SDValue visitCTLZ(SDNode *N);
SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTTZ(SDNode *N);
SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTPOP(SDNode *N);
SDValue visitSELECT(SDNode *N);
SDValue visitVSELECT(SDNode *N);
SDValue visitSELECT_CC(SDNode *N);
SDValue visitSETCC(SDNode *N);
SDValue visitSIGN_EXTEND(SDNode *N);
SDValue visitZERO_EXTEND(SDNode *N);
SDValue visitANY_EXTEND(SDNode *N);
SDValue visitSIGN_EXTEND_INREG(SDNode *N);
SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
SDValue visitTRUNCATE(SDNode *N);
SDValue visitBITCAST(SDNode *N);
SDValue visitBUILD_PAIR(SDNode *N);
SDValue visitFADD(SDNode *N);
SDValue visitFSUB(SDNode *N);
SDValue visitFMUL(SDNode *N);
SDValue visitFMA(SDNode *N);
SDValue visitFDIV(SDNode *N);
SDValue visitFREM(SDNode *N);
SDValue visitFSQRT(SDNode *N);
SDValue visitFCOPYSIGN(SDNode *N);
SDValue visitSINT_TO_FP(SDNode *N);
SDValue visitUINT_TO_FP(SDNode *N);
SDValue visitFP_TO_SINT(SDNode *N);
SDValue visitFP_TO_UINT(SDNode *N);
SDValue visitFP_ROUND(SDNode *N);
SDValue visitFP_ROUND_INREG(SDNode *N);
SDValue visitFP_EXTEND(SDNode *N);
SDValue visitFNEG(SDNode *N);
SDValue visitFABS(SDNode *N);
SDValue visitFCEIL(SDNode *N);
SDValue visitFTRUNC(SDNode *N);
SDValue visitFFLOOR(SDNode *N);
SDValue visitFMINNUM(SDNode *N);
SDValue visitFMAXNUM(SDNode *N);
SDValue visitBRCOND(SDNode *N);
SDValue visitBR_CC(SDNode *N);
SDValue visitLOAD(SDNode *N);
SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
SDValue visitSTORE(SDNode *N);
SDValue visitINSERT_VECTOR_ELT(SDNode *N);
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
SDValue visitBUILD_VECTOR(SDNode *N);
SDValue visitCONCAT_VECTORS(SDNode *N);
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
SDValue visitVECTOR_SHUFFLE(SDNode *N);
SDValue visitSCALAR_TO_VECTOR(SDNode *N);
SDValue visitINSERT_SUBVECTOR(SDNode *N);
SDValue visitMLOAD(SDNode *N);
SDValue visitMSTORE(SDNode *N);
SDValue visitMGATHER(SDNode *N);
SDValue visitMSCATTER(SDNode *N);
SDValue visitFP_TO_FP16(SDNode *N);
SDValue visitFP16_TO_FP(SDNode *N);
SDValue visitFADDForFMACombine(SDNode *N);
SDValue visitFSUBForFMACombine(SDNode *N);
SDValue visitFMULForFMACombine(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
SDValue N3, ISD::CondCode CC,
bool NotExtCompare = false);
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
SDLoc DL, bool foldBooleans = true);
bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC) const;
bool isOneUseSetCC(SDValue N) const;
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp);
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
SDValue CombineExtLoad(SDNode *N);
SDValue combineRepeatedFPDivisors(SDNode *N);
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
SDValue BuildSDIV(SDNode *N);
SDValue BuildSDIVPow2(SDNode *N);
SDValue BuildUDIV(SDNode *N);
SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags);
SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags);
SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations,
SDNodeFlags *Flags);
SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations,
SDNodeFlags *Flags);
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits = true);
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
SDValue InnerPos, SDValue InnerNeg,
unsigned PosOpcode, unsigned NegOpcode,
SDLoc DL);
SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
SDValue ReduceLoadWidth(SDNode *N);
SDValue ReduceLoadOpStoreWidth(SDNode *N);
SDValue TransformFPLoadStorePair(SDNode *N);
SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
SDValue GetDemandedBits(SDValue V, const APInt &Mask);
/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases);
/// Return true if there is any possibility that the two addresses overlap.
bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
/// Walk up chain skipping non-aliasing memory nodes, looking for a better
/// chain (aliasing node.)
SDValue FindBetterChain(SDNode *N, SDValue Chain);
/// Do FindBetterChain for a store and any possibly adjacent stores on
/// consecutive chains.
bool findBetterNeighborChains(StoreSDNode *St);
/// Holds a pointer to an LSBaseSDNode as well as information on where it
/// is located in a sequence of memory operations connected by a chain.
struct MemOpLink {
MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
// Ptr to the mem node.
LSBaseSDNode *MemNode;
// Offset from the base ptr.
int64_t OffsetFromBase;
// What is the sequence number of this mem node.
// Lowest mem operand in the DAG starts at zero.
unsigned SequenceNum;
};
/// This is a helper function for visitMUL to check the profitability
/// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
/// MulNode is the original multiply, AddNode is (add x, c1),
/// and ConstNode is c2.
bool isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode);
/// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
/// constant build_vector of the stored constant values in Stores.
SDValue getMergedConstantVectorStore(SelectionDAG &DAG,
SDLoc SL,
ArrayRef<MemOpLink> Stores,
SmallVectorImpl<SDValue> &Chains,
EVT Ty) const;
/// This is a helper function for MergeConsecutiveStores. When the source
/// elements of the consecutive stores are all constants or all extracted
/// vector elements, try to merge them into one larger store.
/// \return True if a merged store was created.
bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
EVT MemVT, unsigned NumStores,
bool IsConstantSrc, bool UseVector);
/// This is a helper function for MergeConsecutiveStores.
/// Stores that may be merged are placed in StoreNodes.
/// Loads that may alias with those stores are placed in AliasLoadNodes.
void getStoreMergeAndAliasCandidates(
StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes);
/// Merge consecutive store operations into a wide store.
/// This optimization uses wide integers or vectors when possible.
/// \return True if some memory operations were changed.
bool MergeConsecutiveStores(StoreSDNode *N);
/// \brief Try to transform a truncation where C is a constant:
/// (trunc (and X, C)) -> (and (trunc X), (trunc C))
///
/// \p N needs to be a truncation and its first operand an AND. Other
/// requirements are checked by the function (e.g. that trunc is
/// single-use) and if missed an empty SDValue is returned.
SDValue distributeTruncateThroughAnd(SDNode *N);
public:
DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
: DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize();
}
/// Runs the dag combiner on all nodes in the work list
void Run(CombineLevel AtLevel);
SelectionDAG &getDAG() const { return DAG; }
/// Returns a type large enough to hold any valid shift amount - before type
/// legalization these can be huge.
EVT getShiftAmountTy(EVT LHSTy) {
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
if (LHSTy.isVector())
return LHSTy;
auto &DL = DAG.getDataLayout();
return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy)
: TLI.getPointerTy(DL);
}
/// This method returns true if we are running before type legalization or
/// if the specified VT is legal.
bool isTypeLegal(const EVT &VT) {
if (!LegalTypes) return true;
return TLI.isTypeLegal(VT);
}
/// Convenience wrapper around TargetLowering::getSetCCResultType
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
};
}
namespace {
/// This class is a DAGUpdateListener that removes any deleted
/// nodes from the worklist.
class WorklistRemover : public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
public:
explicit WorklistRemover(DAGCombiner &dc)
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
void NodeDeleted(SDNode *N, SDNode *E) override {
DC.removeFromWorklist(N);
}
};
}
//===----------------------------------------------------------------------===//
// TargetLowering::DAGCombinerInfo implementation
//===----------------------------------------------------------------------===//
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
((DAGCombiner*)DC)->AddToWorklist(N);
}
void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
((DAGCombiner*)DC)->removeFromWorklist(N);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
}
void TargetLowering::DAGCombinerInfo::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
void DAGCombiner::deleteAndRecombine(SDNode *N) {
removeFromWorklist(N);
// If the operands of this node are only used by the node, they will now be
// dead. Make sure to re-visit them and recursively delete dead nodes.
for (const SDValue &Op : N->ops())
// For an operand generating multiple values, one of the values may
// become dead allowing further simplification (e.g. split index
// arithmetic from an indexed load).
if (Op->hasOneUse() || Op->getNumValues() > 1)
AddToWorklist(Op.getNode());
DAG.DeleteNode(N);
}
/// Return 1 if we can compute the negated form of the specified expression for
/// the same cost as the expression itself, or 2 if we can compute the negated
/// form more cheaply than the expression itself.
static char isNegatibleForFree(SDValue Op, bool LegalOperations,
const TargetLowering &TLI,
const TargetOptions *Options,
unsigned Depth = 0) {
// fneg is removable even if it has multiple uses.
if (Op.getOpcode() == ISD::FNEG) return 2;
// Don't allow anything with multiple uses.
if (!Op.hasOneUse()) return 0;
// Don't recurse exponentially.
if (Depth > 6) return 0;
switch (Op.getOpcode()) {
default: return false;
case ISD::ConstantFP:
// Don't invert constant FP values after legalize. The negated constant
// isn't necessarily legal.
return LegalOperations ? 0 : 1;
case ISD::FADD:
// FIXME: determine better conditions for this xform.
if (!Options->UnsafeFPMath) return 0;
// After operation legalization, it might not be legal to create new FSUBs.
if (LegalOperations &&
!TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType()))
return 0;
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
Options, Depth + 1))
return V;
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
Depth + 1);
case ISD::FSUB:
// We can't turn -(A-B) into B-A when we honor signed zeros.
if (!Options->UnsafeFPMath) return 0;
// fold (fneg (fsub A, B)) -> (fsub B, A)
return 1;
case ISD::FMUL:
case ISD::FDIV:
if (Options->HonorSignDependentRoundingFPMath()) return 0;
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
Options, Depth + 1))
return V;
return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
Depth + 1);
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FSIN:
return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
Depth + 1);
}
}
/// If isNegatibleForFree returns true, return the newly negated expression.
static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOperations, unsigned Depth = 0) {
const TargetOptions &Options = DAG.getTarget().Options;
// fneg is removable even if it has multiple uses.
if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
// Don't allow anything with multiple uses.
assert(Op.hasOneUse() && "Unknown reuse!");
assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
const SDNodeFlags *Flags = Op.getNode()->getFlags();
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown code");
case ISD::ConstantFP: {
APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
V.changeSign();
return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
}
case ISD::FADD:
// FIXME: determine better conditions for this xform.
assert(Options.UnsafeFPMath);
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
DAG.getTargetLoweringInfo(), &Options, Depth+1))
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1), Flags);
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(1), DAG,
LegalOperations, Depth+1),
Op.getOperand(0), Flags);
case ISD::FSUB:
// We can't turn -(A-B) into B-A when we honor signed zeros.
assert(Options.UnsafeFPMath);
// fold (fneg (fsub 0, B)) -> B
if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
if (N0CFP->isZero())
return Op.getOperand(1);
// fold (fneg (fsub A, B)) -> (fsub B, A)
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(0), Flags);
case ISD::FMUL:
case ISD::FDIV:
assert(!Options.HonorSignDependentRoundingFPMath());
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
DAG.getTargetLoweringInfo(), &Options, Depth+1))
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1), Flags);
// fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
Op.getOperand(0),
GetNegatedExpression(Op.getOperand(1), DAG,
LegalOperations, Depth+1), Flags);
case ISD::FP_EXTEND:
case ISD::FSIN:
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1));
case ISD::FP_ROUND:
return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1));
}
}
// Return true if this node is a setcc, or is a select_cc
// that selects between the target values used for true and false, making it
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
// the appropriate nodes based on the type of node we are checking. This
// simplifies life a bit for the callers.
bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC) const {
if (N.getOpcode() == ISD::SETCC) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(2);
return true;
}
if (N.getOpcode() != ISD::SELECT_CC ||
!TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
!TLI.isConstFalseVal(N.getOperand(3).getNode()))
return false;
if (TLI.getBooleanContents(N.getValueType()) ==
TargetLowering::UndefinedBooleanContent)
return false;
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(4);
return true;
}
/// Return true if this is a SetCC-equivalent operation with only one use.
/// If this is true, it allows the users to invert the operation for free when
/// it is profitable to do so.
bool DAGCombiner::isOneUseSetCC(SDValue N) const {
SDValue N0, N1, N2;
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
return true;
return false;
}
/// Returns true if N is a BUILD_VECTOR node whose
/// elements are all the same constant or undefined.
static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
if (!C)
return false;
APInt SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
EVT EltVT = N->getValueType(0).getVectorElementType();
return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
HasAnyUndefs) &&
EltVT.getSizeInBits() >= SplatBitSize);
}
// \brief Returns the SDNode if it is a constant integer BuildVector
// or constant integer.
static SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) {
if (isa<ConstantSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
return N.getNode();
return nullptr;
}
// \brief Returns the SDNode if it is a constant float BuildVector
// or constant float.
static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
if (isa<ConstantFPSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
return N.getNode();
return nullptr;
}
// \brief Returns the SDNode if it is a constant splat BuildVector or constant
// int.
static ConstantSDNode *isConstOrConstSplat(SDValue N) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
return CN;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
// BuildVectors can truncate their operands. Ignore that case here.
// FIXME: We blindly ignore splats which include undef which is overly
// pessimistic.
if (CN && UndefElements.none() &&
CN->getValueType(0) == N.getValueType().getScalarType())
return CN;
}
return nullptr;
}
// \brief Returns the SDNode if it is a constant splat BuildVector or constant
// float.
static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) {
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
return CN;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
if (CN && UndefElements.none())
return CN;
}
return nullptr;
}
SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
SDValue N0, SDValue N1) {
EVT VT = N0.getValueType();
if (N0.getOpcode() == Opc) {
if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1)) {
// reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
return SDValue();
}
if (N0.hasOneUse()) {
// reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
// use
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
if (!OpNode.getNode())
return SDValue();
AddToWorklist(OpNode.getNode());
return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
}
}
}
if (N1.getOpcode() == Opc) {
if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0)) {
// reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
return SDValue();
}
if (N1.hasOneUse()) {
// reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one
// use
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0);
if (!OpNode.getNode())
return SDValue();
AddToWorklist(OpNode.getNode());
return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
}
}
}
return SDValue();
}
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo) {
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
++NodesCombined;
DEBUG(dbgs() << "\nReplacing.1 ";
N->dump(&DAG);
dbgs() << "\nWith: ";
To[0].getNode()->dump(&DAG);
dbgs() << " and " << NumTo-1 << " other values\n");
for (unsigned i = 0, e = NumTo; i != e; ++i)
assert((!To[i].getNode() ||
N->getValueType(i) == To[i].getValueType()) &&
"Cannot combine value to value of different type!");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesWith(N, To);
if (AddTo) {
// Push the new nodes and any users onto the worklist
for (unsigned i = 0, e = NumTo; i != e; ++i) {
if (To[i].getNode()) {
AddToWorklist(To[i].getNode());
AddUsersToWorklist(To[i].getNode());
}
}
}
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (N->use_empty())
deleteAndRecombine(N);
return SDValue(N, 0);
}
void DAGCombiner::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
// Replace all uses. If any nodes become isomorphic to other nodes and
// are deleted, make sure to remove them from our worklist.
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
// Push the new node and any (possibly new) users onto the worklist.
AddToWorklist(TLO.New.getNode());
AddUsersToWorklist(TLO.New.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (TLO.Old.getNode()->use_empty())
deleteAndRecombine(TLO.Old.getNode());
}
/// Check the specified integer node value to see if it can be simplified or if
/// things it uses can be simplified by bit propagation. If so, return true.
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
APInt KnownZero, KnownOne;
if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
return false;
// Revisit the node.
AddToWorklist(Op.getNode());
// Replace the old value with the new one.
++NodesCombined;
DEBUG(dbgs() << "\nReplacing.2 ";
TLO.Old.getNode()->dump(&DAG);
dbgs() << "\nWith: ";
TLO.New.getNode()->dump(&DAG);
dbgs() << '\n');
CommitTargetLoweringOpt(TLO);
return true;
}
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
SDLoc dl(Load);
EVT VT = Load->getValueType(0);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
DEBUG(dbgs() << "\nReplacing.9 ";
Load->dump(&DAG);
dbgs() << "\nWith: ";
Trunc.getNode()->dump(&DAG);
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
deleteAndRecombine(Load);
AddToWorklist(Trunc.getNode());
}
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
Replace = false;
SDLoc dl(Op);
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
: ISD::EXTLOAD)
: LD->getExtensionType();
Replace = true;
return DAG.getExtLoad(ExtType, dl, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
}
unsigned Opc = Op.getOpcode();
switch (Opc) {
default: break;
case ISD::AssertSext:
return DAG.getNode(ISD::AssertSext, dl, PVT,
SExtPromoteOperand(Op.getOperand(0), PVT),
Op.getOperand(1));
case ISD::AssertZext:
return DAG.getNode(ISD::AssertZext, dl, PVT,
ZExtPromoteOperand(Op.getOperand(0), PVT),
Op.getOperand(1));
case ISD::Constant: {
unsigned ExtOpc =
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
return DAG.getNode(ExtOpc, dl, PVT, Op);
}
}
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
return SDValue();
return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
}
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
return SDValue();
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
DAG.getValueType(OldVT));
}
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
}
/// Promote the specified integer binary operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
bool Replace0 = false;
SDValue N0 = Op.getOperand(0);
SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
if (!NN0.getNode())
return SDValue();
bool Replace1 = false;
SDValue N1 = Op.getOperand(1);
SDValue NN1;
if (N0 == N1)
NN1 = NN0;
else {
NN1 = PromoteOperand(N1, PVT, Replace1);
if (!NN1.getNode())
return SDValue();
}
AddToWorklist(NN0.getNode());
if (NN1.getNode())
AddToWorklist(NN1.getNode());
if (Replace0)
ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
if (Replace1)
ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
DEBUG(dbgs() << "\nPromoting ";
Op.getNode()->dump(&DAG));
SDLoc dl(Op);
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(Opc, dl, PVT, NN0, NN1));
}
return SDValue();
}
/// Promote the specified integer shift operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
bool Replace = false;
SDValue N0 = Op.getOperand(0);
if (Opc == ISD::SRA)
N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
else if (Opc == ISD::SRL)
N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
else
N0 = PromoteOperand(N0, PVT, Replace);
if (!N0.getNode())
return SDValue();
AddToWorklist(N0.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
DEBUG(dbgs() << "\nPromoting ";
Op.getNode()->dump(&DAG));
SDLoc dl(Op);
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
}
return SDValue();
}
SDValue DAGCombiner::PromoteExtend(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
DEBUG(dbgs() << "\nPromoting ";
Op.getNode()->dump(&DAG));
return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
}
return SDValue();
}
bool DAGCombiner::PromoteLoad(SDValue Op) {
if (!LegalOperations)
return false;
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return false;
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return false;
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
SDLoc dl(Op);
SDNode *N = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
: ISD::EXTLOAD)
: LD->getExtensionType();
SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
DEBUG(dbgs() << "\nPromoting ";
N->dump(&DAG);
dbgs() << "\nTo: ";
Result.getNode()->dump(&DAG);
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
deleteAndRecombine(N);
AddToWorklist(Result.getNode());
return true;
}
return false;
}
/// \brief Recursively delete a node which has no uses and any operands for
/// which it is the only use.
///
/// Note that this both deletes the nodes and removes them from the worklist.
/// It also adds any nodes who have had a user deleted to the worklist as they
/// may now have only one use and subject to other combines.
bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
if (!N->use_empty())
return false;
SmallSetVector<SDNode *, 16> Nodes;
Nodes.insert(N);
do {
N = Nodes.pop_back_val();
if (!N)
continue;
if (N->use_empty()) {
for (const SDValue &ChildN : N->op_values())
Nodes.insert(ChildN.getNode());
removeFromWorklist(N);
DAG.DeleteNode(N);
} else {
AddToWorklist(N);
}
} while (!Nodes.empty());
return true;
}
//===----------------------------------------------------------------------===//
// Main DAG Combiner implementation
//===----------------------------------------------------------------------===//
void DAGCombiner::Run(CombineLevel AtLevel) {
// set the instance variables, so that the various visit routines may use it.
Level = AtLevel;
LegalOperations = Level >= AfterLegalizeVectorOps;
LegalTypes = Level >= AfterLegalizeTypes;
// Add all the dag nodes to the worklist.
for (SDNode &Node : DAG.allnodes())
AddToWorklist(&Node);
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// while the worklist isn't empty, find a node and
// try and combine it.
while (!WorklistMap.empty()) {
SDNode *N;
// The Worklist holds the SDNodes in order, but it may contain null entries.
do {
N = Worklist.pop_back_val();
} while (!N);
bool GoodWorklistEntry = WorklistMap.erase(N);
(void)GoodWorklistEntry;
assert(GoodWorklistEntry &&
"Found a worklist entry without a corresponding map entry!");
// If N has no uses, it is dead. Make sure to revisit all N's operands once
// N is deleted from the DAG, since they too may now be dead or may have a
// reduced number of uses, allowing other xforms.
if (recursivelyDeleteUnusedNodes(N))
continue;
WorklistRemover DeadNodes(*this);
// If this combine is running after legalizing the DAG, re-legalize any
// nodes pulled off the worklist.
if (Level == AfterLegalizeDAG) {
SmallSetVector<SDNode *, 16> UpdatedNodes;
bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
for (SDNode *LN : UpdatedNodes) {
AddToWorklist(LN);
AddUsersToWorklist(LN);
}
if (!NIsValid)
continue;
}
DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
// Add any operands of the new node which have not yet been combined to the
// worklist as well. Because the worklist uniques things already, this
// won't repeatedly process the same operand.
CombinedNodes.insert(N);
for (const SDValue &ChildN : N->op_values())
if (!CombinedNodes.count(ChildN.getNode()))
AddToWorklist(ChildN.getNode());
SDValue RV = combine(N);
if (!RV.getNode())
continue;
++NodesCombined;
// If we get back the same node we passed in, rather than a new node or
// zero, we know that the node must have defined multiple values and
// CombineTo was used. Since CombineTo takes care of the worklist
// mechanics for us, we have no work to do in this case.
if (RV.getNode() == N)
continue;
assert(N->getOpcode() != ISD::DELETED_NODE &&
RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
DEBUG(dbgs() << " ... into: ";
RV.getNode()->dump(&DAG));
// Transfer debug value.
DAG.TransferDbgValues(SDValue(N, 0), RV);
if (N->getNumValues() == RV.getNode()->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode());
else {
assert(N->getValueType(0) == RV.getValueType() &&
N->getNumValues() == 1 && "Type mismatch");
SDValue OpV = RV;
DAG.ReplaceAllUsesWith(N, &OpV);
}
// Push the new node and any users onto the worklist
AddToWorklist(RV.getNode());
AddUsersToWorklist(RV.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node. This will also take care of adding any
// operands which have lost a user to the worklist.
recursivelyDeleteUnusedNodes(N);
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
DAG.RemoveDeadNodes();
}
SDValue DAGCombiner::visit(SDNode *N) {
switch (N->getOpcode()) {
default: break;
case ISD::TokenFactor: return visitTokenFactor(N);
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
case ISD::ADD: return visitADD(N);
case ISD::SUB: return visitSUB(N);
case ISD::ADDC: return visitADDC(N);
case ISD::SUBC: return visitSUBC(N);
case ISD::ADDE: return visitADDE(N);
case ISD::SUBE: return visitSUBE(N);
case ISD::MUL: return visitMUL(N);
case ISD::SDIV: return visitSDIV(N);
case ISD::UDIV: return visitUDIV(N);
case ISD::SREM:
case ISD::UREM: return visitREM(N);
case ISD::MULHU: return visitMULHU(N);
case ISD::MULHS: return visitMULHS(N);
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
case ISD::SMULO: return visitSMULO(N);
case ISD::UMULO: return visitUMULO(N);
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX: return visitIMINMAX(N);
case ISD::AND: return visitAND(N);
case ISD::OR: return visitOR(N);
case ISD::XOR: return visitXOR(N);
case ISD::SHL: return visitSHL(N);
case ISD::SRA: return visitSRA(N);
case ISD::SRL: return visitSRL(N);
case ISD::ROTR:
case ISD::ROTL: return visitRotate(N);
case ISD::BSWAP: return visitBSWAP(N);
case ISD::CTLZ: return visitCTLZ(N);
case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
case ISD::CTTZ: return visitCTTZ(N);
case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
case ISD::CTPOP: return visitCTPOP(N);
case ISD::SELECT: return visitSELECT(N);
case ISD::VSELECT: return visitVSELECT(N);
case ISD::SELECT_CC: return visitSELECT_CC(N);
case ISD::SETCC: return visitSETCC(N);
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
case ISD::TRUNCATE: return visitTRUNCATE(N);
case ISD::BITCAST: return visitBITCAST(N);
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
case ISD::FADD: return visitFADD(N);
case ISD::FSUB: return visitFSUB(N);
case ISD::FMUL: return visitFMUL(N);
case ISD::FMA: return visitFMA(N);
case ISD::FDIV: return visitFDIV(N);
case ISD::FREM: return visitFREM(N);
case ISD::FSQRT: return visitFSQRT(N);
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
case ISD::FP_ROUND: return visitFP_ROUND(N);
case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
case ISD::FNEG: return visitFNEG(N);
case ISD::FABS: return visitFABS(N);
case ISD::FFLOOR: return visitFFLOOR(N);
case ISD::FMINNUM: return visitFMINNUM(N);
case ISD::FMAXNUM: return visitFMAXNUM(N);
case ISD::FCEIL: return visitFCEIL(N);
case ISD::FTRUNC: return visitFTRUNC(N);
case ISD::BRCOND: return visitBRCOND(N);
case ISD::BR_CC: return visitBR_CC(N);
case ISD::LOAD: return visitLOAD(N);
case ISD::STORE: return visitSTORE(N);
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
case ISD::MGATHER: return visitMGATHER(N);
case ISD::MLOAD: return visitMLOAD(N);
case ISD::MSCATTER: return visitMSCATTER(N);
case ISD::MSTORE: return visitMSTORE(N);
case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
}
return SDValue();
}
SDValue DAGCombiner::combine(SDNode *N) {
SDValue RV = visit(N);
// If nothing happened, try a target-specific DAG combine.
if (!RV.getNode()) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned NULL!");
if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
// Expose the DAG combiner to the target combiner impls.
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level, false, this);
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
}
}
// If nothing happened still, try promoting the operation.
if (!RV.getNode()) {
switch (N->getOpcode()) {
default: break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
RV = PromoteIntBinOp(SDValue(N, 0));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
RV = PromoteIntShiftOp(SDValue(N, 0));
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
RV = PromoteExtend(SDValue(N, 0));
break;
case ISD::LOAD:
if (PromoteLoad(SDValue(N, 0)))
RV = SDValue(N, 0);
break;
}
}
// If N is a commutative binary node, try commuting it to enable more
// sdisel CSE.
if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
N->getNumValues() == 1) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Constant operands are canonicalized to RHS.
if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
SDValue Ops[] = {N1, N0};
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
N->getFlags());
if (CSENode)
return SDValue(CSENode, 0);
}
}
return RV;
}
/// Given a node, return its input chain if it has one, otherwise return a null
/// sd operand.
static SDValue getInputChainForNode(SDNode *N) {
if (unsigned NumOps = N->getNumOperands()) {
if (N->getOperand(0).getValueType() == MVT::Other)
return N->getOperand(0);
if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
return N->getOperand(NumOps-1);
for (unsigned i = 1; i < NumOps-1; ++i)
if (N->getOperand(i).getValueType() == MVT::Other)
return N->getOperand(i);
}
return SDValue();
}
SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
// If N has two operands, where one has an input chain equal to the other,
// the 'other' chain is redundant.
if (N->getNumOperands() == 2) {
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
return N->getOperand(0);
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
return N->getOperand(1);
}
SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
SmallPtrSet<SDNode*, 16> SeenOps;
bool Changed = false; // If we should replace this token factor.
// Start out with this token factor.
TFs.push_back(N);
// Iterate through token factors. The TFs grows when new token factors are
// encountered.
for (unsigned i = 0; i < TFs.size(); ++i) {
SDNode *TF = TFs[i];
// Check each of the operands.
for (const SDValue &Op : TF->op_values()) {
switch (Op.getOpcode()) {
case ISD::EntryToken:
// Entry tokens don't need to be added to the list. They are
// redundant.
Changed = true;
break;
case ISD::TokenFactor:
if (Op.hasOneUse() &&
std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
// Queue up for processing.
TFs.push_back(Op.getNode());
// Clean up in case the token factor is removed.
AddToWorklist(Op.getNode());
Changed = true;
break;
}
// Fall thru
default:
// Only add if it isn't already in the list.
if (SeenOps.insert(Op.getNode()).second)
Ops.push_back(Op);
else
Changed = true;
break;
}
}
}
SDValue Result;
// If we've changed things around then replace token factor.
if (Changed) {
if (Ops.empty()) {
// The entry token is the only possible outcome.
Result = DAG.getEntryNode();
} else {
// New and improved token factor.
Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
}
// Add users to worklist if AA is enabled, since it may introduce
// a lot of new chained token factors while removing memory deps.
bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
: DAG.getSubtarget().useAA();
return CombineTo(N, Result, UseAA /*add to worklist*/);
}
return Result;
}
/// MERGE_VALUES can always be eliminated.
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
WorklistRemover DeadNodes(*this);
// Replacing results may cause a different MERGE_VALUES to suddenly
// be CSE'd with N, and carry its uses with it. Iterate until no
// uses remain, to ensure that the node can be safely deleted.
// First add the users of this node to the work list so that they
// can be tried again once they have new operands.
AddUsersToWorklist(N);
do {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
} while (!N->use_empty());
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
static bool isNullConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isNullValue();
}
static bool isNullFPConstant(SDValue V) {
ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
return Const != nullptr && Const->isZero() && !Const->isNegative();
}
static bool isAllOnesConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isAllOnesValue();
}
static bool isOneConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isOne();
}
/// If \p N is a ContantSDNode with isOpaque() == false return it casted to a
/// ContantSDNode pointer else nullptr.
static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
}
SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (add x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
}
// fold (add x, undef) -> undef
if (N0.getOpcode() == ISD::UNDEF)
return N0;
if (N1.getOpcode() == ISD::UNDEF)
return N1;
// fold (add c1, c2) -> c1+c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (isConstantIntBuildVectorOrConstantInt(N0) &&
!isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
// fold (add x, 0) -> x
if (isNullConstant(N1))
return N0;
// fold (add Sym, c) -> Sym+c
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
GA->getOpcode() == ISD::GlobalAddress)
return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
GA->getOffset() +
(uint64_t)N1C->getSExtValue());
// fold ((c1-A)+c2) -> (c1+c2)-A
if (N1C && N0.getOpcode() == ISD::SUB)
if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) {
SDLoc DL(N);
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(N1C->getAPIntValue()+
N0C->getAPIntValue(), DL, VT),
N0.getOperand(1));
}
// reassociate add
if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1))
return RADD;
// fold ((0-A) + B) -> B-A
if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0)))
return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
// fold (A + (0-B)) -> A-B
if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0)))
return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
// fold (A+(B-A)) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
return N1.getOperand(0);
// fold ((B-A)+A) -> B
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
return N0.getOperand(0);
// fold (A+(B-(A+C))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(0))
return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
N1.getOperand(1).getOperand(1));
// fold (A+(B-(C+A))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(1))
return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
N1.getOperand(1).getOperand(0));
// fold (A+((B-A)+or-C)) to (B+or-C)
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
N1.getOperand(0).getOpcode() == ISD::SUB &&
N0 == N1.getOperand(0).getOperand(1))
return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
N1.getOperand(0).getOperand(0), N1.getOperand(1));
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
return DAG.getNode(ISD::SUB, SDLoc(N), VT,
DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
}
if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (a+b) -> (a|b) iff a and b share no bits.
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1))
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
isNullConstant(N1.getOperand(0).getOperand(0)))
return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
DAG.getNode(ISD::SHL, SDLoc(N), VT,
N1.getOperand(0).getOperand(1),
N1.getOperand(1)));
if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB &&
isNullConstant(N0.getOperand(0).getOperand(0)))
return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
DAG.getNode(ISD::SHL, SDLoc(N), VT,
N0.getOperand(0).getOperand(1),
N0.getOperand(1)));
if (N1.getOpcode() == ISD::AND) {
SDValue AndOp0 = N1.getOperand(0);
unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
unsigned DestBits = VT.getScalarType().getSizeInBits();
// (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
// and similar xforms where the inner op is either ~0 or 0.
if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) {
SDLoc DL(N);
return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
}
}
// add (sext i1), X -> sub X, (zext i1)
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
N0.getOperand(0).getValueType() == MVT::i1 &&
!TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
SDLoc DL(N);
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
}
// add X, (sextinreg Y i1) -> sub X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDLoc DL(N);
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
}
}
return SDValue();
}
SDValue DAGCombiner::visitADDC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// If the flag result is dead, turn this into an ADD.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE,
SDLoc(N), MVT::Glue));
// canonicalize constant to RHS.
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
// fold (addc x, 0) -> x + no carry out
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
SDLoc(N), MVT::Glue));
// fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
APInt LHSZero, LHSOne;
APInt RHSZero, RHSOne;
DAG.computeKnownBits(N0, LHSZero, LHSOne);
if (LHSZero.getBoolValue()) {
DAG.computeKnownBits(N1, RHSZero, RHSOne);
// If all possibly-set bits on the LHS are clear on the RHS, return an OR.
// If all possibly-set bits on the RHS are clear on the LHS, return an OR.
if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE,
SDLoc(N), MVT::Glue));
}
return SDValue();
}
SDValue DAGCombiner::visitADDE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
N1, N0, CarryIn);
// fold (adde x, y, false) -> (addc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
// Since it may not be valid to emit a fold to zero for vector initializers
// check if we can before folding.
static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
SelectionDAG &DAG,
bool LegalOperations, bool LegalTypes) {
if (!VT.isVector())
return DAG.getConstant(0, DL, VT);
if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
return DAG.getConstant(0, DL, VT);
return SDValue();
}
SDValue DAGCombiner::visitSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (sub x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
}
// fold (sub x, x) -> 0
// FIXME: Refactor this and xor and other similar operations together.
if (N0 == N1)
return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
// fold (sub c1, c2) -> c1-c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, N0C, N1C);
// fold (sub x, c) -> (add x, -c)
if (N1C) {
SDLoc DL(N);
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
}
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
if (isAllOnesConstant(N0))
return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
// fold A-(A-B) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
return N1.getOperand(1);
// fold (A+B)-A -> B
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
return N0.getOperand(1);
// fold (A+B)-B -> A
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
return N0.getOperand(0);
// fold C2-(A+C1) -> (C2-C1)-A
ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr :
dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
SDLoc DL(N);
SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
DL, VT);
return DAG.getNode(ISD::SUB, DL, VT, NewC,
N1.getOperand(0));
}
// fold ((A+(B+or-C))-B) -> A+or-C
if (N0.getOpcode() == ISD::ADD &&
(N0.getOperand(1).getOpcode() == ISD::SUB ||
N0.getOperand(1).getOpcode() == ISD::ADD) &&
N0.getOperand(1).getOperand(0) == N1)
return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1).getOperand(1));
// fold ((A+(C+B))-B) -> A+C
if (N0.getOpcode() == ISD::ADD &&
N0.getOperand(1).getOpcode() == ISD::ADD &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::ADD, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1).getOperand(0));
// fold ((A-(B-C))-C) -> A-B
if (N0.getOpcode() == ISD::SUB &&
N0.getOperand(1).getOpcode() == ISD::SUB &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::SUB, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1).getOperand(0));
// If either operand of a sub is undef, the result is undef
if (N0.getOpcode() == ISD::UNDEF)
return N0;
if (N1.getOpcode() == ISD::UNDEF)
return N1;
// If the relocation model supports it, consider symbol offsets.
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
// fold (sub Sym, c) -> Sym-c
if (N1C && GA->getOpcode() == ISD::GlobalAddress)
return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
GA->getOffset() -
(uint64_t)N1C->getSExtValue());
// fold (sub Sym+c1, Sym+c2) -> c1-c2
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
if (GA->getGlobal() == GB->getGlobal())
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
SDLoc(N), VT);
}
// sub X, (sextinreg Y i1) -> add X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDLoc DL(N);
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
}
}
return SDValue();
}
SDValue DAGCombiner::visitSUBC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// If the flag result is dead, turn this into an SUB.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, x) -> 0 + no borrow
if (N0 == N1)
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, 0) -> x + no borrow
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
if (isAllOnesConstant(N0))
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
return SDValue();
}
SDValue DAGCombiner::visitSUBE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (sube x, y, false) -> (subc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold (mul x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, SDLoc(N), VT);
bool N0IsConst = false;
bool N1IsConst = false;
bool N1IsOpaqueConst = false;
bool N0IsOpaqueConst = false;
APInt ConstValue0, ConstValue1;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
} else {
N0IsConst = isa<ConstantSDNode>(N0);
if (N0IsConst) {
ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
}
N1IsConst = isa<ConstantSDNode>(N1);
if (N1IsConst) {
ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
}
}
// fold (mul c1, c2) -> c1*c2
if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
N0.getNode(), N1.getNode());
// canonicalize constant to RHS (vector doesn't have to splat)
if (isConstantIntBuildVectorOrConstantInt(N0) &&
!isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
// fold (mul x, 0) -> 0
if (N1IsConst && ConstValue1 == 0)
return N1;
// We require a splat of the entire scalar bit width for non-contiguous
// bit patterns.
bool IsFullSplat =
ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
// fold (mul x, 1) -> x
if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
return N0;
// fold (mul x, -1) -> 0-x
if (N1IsConst && ConstValue1.isAllOnesValue()) {
SDLoc DL(N);
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT), N0);
}
// fold (mul x, (1 << c)) -> x << c
if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() &&
IsFullSplat) {
SDLoc DL(N);
return DAG.getNode(ISD::SHL, DL, VT, N0,
DAG.getConstant(ConstValue1.logBase2(), DL,
getShiftAmountTy(N0.getValueType())));
}
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() &&
IsFullSplat) {
unsigned Log2Val = (-ConstValue1).logBase2();
SDLoc DL(N);
// FIXME: If the input is something that is easily negated (e.g. a
// single-use add), we should put the negate there.
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT),
DAG.getNode(ISD::SHL, DL, VT, N0,
DAG.getConstant(Log2Val, DL,
getShiftAmountTy(N0.getValueType()))));
}
APInt Val;
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
if (N1IsConst && N0.getOpcode() == ISD::SHL &&
(isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
isa<ConstantSDNode>(N0.getOperand(1)))) {
SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
N1, N0.getOperand(1));
AddToWorklist(C3.getNode());
return DAG.getNode(ISD::MUL, SDLoc(N), VT,
N0.getOperand(0), C3);
}
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
// use.
{
SDValue Sh(nullptr,0), Y(nullptr,0);
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
if (N0.getOpcode() == ISD::SHL &&
(isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
isa<ConstantSDNode>(N0.getOperand(1))) &&
N0.getNode()->hasOneUse()) {
Sh = N0; Y = N1;
} else if (N1.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(N1.getOperand(1)) &&
N1.getNode()->hasOneUse()) {
Sh = N1; Y = N0;
}
if (Sh.getNode()) {
SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
Sh.getOperand(0), Y);
return DAG.getNode(ISD::SHL, SDLoc(N), VT,
Mul, Sh.getOperand(1));
}
}
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
if (isConstantIntBuildVectorOrConstantInt(N1) &&
N0.getOpcode() == ISD::ADD &&
isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
isMulAddWithConstProfitable(N, N0, N1))
return DAG.getNode(ISD::ADD, SDLoc(N), VT,
DAG.getNode(ISD::MUL, SDLoc(N0), VT,
N0.getOperand(0), N1),
DAG.getNode(ISD::MUL, SDLoc(N1), VT,
N0.getOperand(1), N1));
// reassociate mul
if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
return RMUL;
return SDValue();
}
/// Return true if divmod libcall is available.
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
const TargetLowering &TLI) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: return false; // No libcall for vector types.
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
}
return TLI.getLibcallName(LC) != nullptr;
}
/// Issue divrem if both quotient and remainder are needed.
SDValue DAGCombiner::useDivRem(SDNode *Node) {
if (Node->use_empty())
return SDValue(); // This is a dead node, leave it alone.
EVT VT = Node->getValueType(0);
if (!TLI.isTypeLegal(VT))
return SDValue();
unsigned Opcode = Node->getOpcode();
bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
// If DIVREM is going to get expanded into a libcall,
// but there is no libcall available, then don't combine.
if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
!isDivRemLibcallAvailable(Node, isSigned, TLI))
return SDValue();
// If div is legal, it's better to do the normal expansion
unsigned OtherOpcode = 0;
if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
if (TLI.isOperationLegalOrCustom(Opcode, VT))
return SDValue();
} else {
OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
return SDValue();
}
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
SDValue combined;
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User == Node || User->use_empty())
continue;
// Convert the other matching node(s), too;
// otherwise, the DIVREM may get target-legalized into something
// target-specific that we won't be able to recognize.
unsigned UserOpc = User->getOpcode();
if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
User->getOperand(0) == Op0 &&
User->getOperand(1) == Op1) {
if (!combined) {
if (UserOpc == OtherOpcode) {
SDVTList VTs = DAG.getVTList(VT, VT);
combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
} else if (UserOpc == DivRemOpc) {
combined = SDValue(User, 0);
} else {
assert(UserOpc == Opcode);
continue;
}
}
if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
CombineTo(User, combined);
else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
CombineTo(User, combined.getValue(1));
}
}
return combined;
}
SDValue DAGCombiner::visitSDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
SDLoc DL(N);
// fold (sdiv c1, c2) -> c1/c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
// fold (sdiv X, 1) -> X
if (N1C && N1C->isOne())
return N0;
// fold (sdiv X, -1) -> 0-X
if (N1C && N1C->isAllOnesValue())
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT), N0);
// If we know the sign bits of both operands are zero, strength reduce to a
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
if (!VT.isVector()) {
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
}
// fold (sdiv X, pow2) -> simple ops after legalize
// FIXME: We check for the exact bit here because the generic lowering gives
// better results in that case. The target-specific lowering should learn how
// to handle exact sdivs efficiently.
if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
!cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() &&
(N1C->getAPIntValue().isPowerOf2() ||
(-N1C->getAPIntValue()).isPowerOf2())) {
// Target-specific implementation of sdiv x, pow2.
if (SDValue Res = BuildSDIVPow2(N))
return Res;
unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
// Splat the sign bit into the register
SDValue SGN =
DAG.getNode(ISD::SRA, DL, VT, N0,
DAG.getConstant(VT.getScalarSizeInBits() - 1, DL,
getShiftAmountTy(N0.getValueType())));
AddToWorklist(SGN.getNode());
// Add (N0 < 0) ? abs2 - 1 : 0;
SDValue SRL =
DAG.getNode(ISD::SRL, DL, VT, SGN,
DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL,
getShiftAmountTy(SGN.getValueType())));
SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL);
AddToWorklist(SRL.getNode());
AddToWorklist(ADD.getNode()); // Divide by pow2
SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD,
DAG.getConstant(lg2, DL,
getShiftAmountTy(ADD.getValueType())));
// If we're dividing by a positive value, we're done. Otherwise, we must
// negate the result.
if (N1C->getAPIntValue().isNonNegative())
return SRA;
AddToWorklist(SRA.getNode());
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
}
// If integer divide is expensive and we satisfy the requirements, emit an
// alternate sequence. Targets may check function attributes for size/speed
// trade-offs.
AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildSDIV(N))
return Op;
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
// Otherwise, we break the simplification logic in visitREM().
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
// undef / X -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, DL, VT);
// X / undef -> undef
if (N1.getOpcode() == ISD::UNDEF)
return N1;
return SDValue();
}
SDValue DAGCombiner::visitUDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
SDLoc DL(N);
// fold (udiv c1, c2) -> c1/c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C)
if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
N0C, N1C))
return Folded;
// fold (udiv x, (1 << c)) -> x >>u c
if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2())
return DAG.getNode(ISD::SRL, DL, VT, N0,
DAG.getConstant(N1C->getAPIntValue().logBase2(), DL,
getShiftAmountTy(N0.getValueType())));
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (N1.getOpcode() == ISD::SHL) {
if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
if (SHC->getAPIntValue().isPowerOf2()) {
EVT ADDVT = N1.getOperand(1).getValueType();
SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT,
N1.getOperand(1),
DAG.getConstant(SHC->getAPIntValue()
.logBase2(),
DL, ADDVT));
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
}
}
}
// fold (udiv x, c) -> alternate
AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildUDIV(N))
return Op;
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
// Otherwise, we break the simplification logic in visitREM().
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
// undef / X -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, DL, VT);
// X / undef -> undef
if (N1.getOpcode() == ISD::UNDEF)
return N1;
return SDValue();
}
// handles ISD::SREM and ISD::UREM
SDValue DAGCombiner::visitREM(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
bool isSigned = (Opcode == ISD::SREM);
SDLoc DL(N);
// fold (rem c1, c2) -> c1%c2
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C)
if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
return Folded;
if (isSigned) {
// If we know the sign bits of both operands are zero, strength reduce to a
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
if (!VT.isVector()) {
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
}
} else {
// fold (urem x, pow2) -> (and x, pow2-1)
if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
N1C->getAPIntValue().isPowerOf2()) {
return DAG.getNode(ISD::AND, DL, VT, N0,
DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT));
}
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
if (N1.getOpcode() == ISD::SHL) {
if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
if (SHC->getAPIntValue().isPowerOf2()) {
SDValue Add =
DAG.getNode(ISD::ADD, DL, VT, N1,
DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL,
VT));
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
}
}
}
AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
// If X/C can be simplified by the division-by-constant logic, lower
// X%C to the equivalent of X-X/C*C.
// To avoid mangling nodes, this simplification requires that the combine()
// call for the speculative DIV must not cause a DIVREM conversion. We guard
// against this by skipping the simplification if isIntDivCheap(). When
// div is not cheap, combine will not return a DIVREM. Regardless,
// checking cheapness here makes sense since the simplification results in
// fatter code.
if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) {
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1);
AddToWorklist(Div.getNode());
SDValue OptimizedDiv = combine(Div.getNode());
if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) &&
(OptimizedDiv.getOpcode() != ISD::SDIVREM));
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(Mul.getNode());
return Sub;
}
}
// sdiv, srem -> sdivrem
if (SDValue DivRem = useDivRem(N))
return DivRem.getValue(1);
// undef % X -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, DL, VT);
// X % undef -> undef
if (N1.getOpcode() == ISD::UNDEF)
return N1;
return SDValue();
}
SDValue DAGCombiner::visitMULHS(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (mulhs x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhs x, 1) -> (sra x, size(x)-1)
if (isOneConstant(N1)) {
SDLoc DL(N);
return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
DL,
getShiftAmountTy(N0.getValueType())));
}
// fold (mulhs x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, SDLoc(N), VT);
// If the type twice as wide is legal, transform the mulhs to a wider multiply
// plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(N1.getValueType())));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
return SDValue();
}
SDValue DAGCombiner::visitMULHU(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (mulhu x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhu x, 1) -> 0
if (isOneConstant(N1))
return DAG.getConstant(0, DL, N0.getValueType());
// fold (mulhu x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, DL, VT);
// If the type twice as wide is legal, transform the mulhu to a wider multiply
// plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(N1.getValueType())));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
return SDValue();
}
/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
/// give the opcodes for the two computations that are being performed. Return
/// true if a simplification was made.
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp) {
// If the high half is not needed, just compute the low half.
bool HiExists = N->hasAnyUseOfValue(1);
if (!HiExists &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
return CombineTo(N, Res, Res);
}
// If the low half is not needed, just compute the high half.
bool LoExists = N->hasAnyUseOfValue(0);
if (!LoExists &&
(!LegalOperations ||
TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
return CombineTo(N, Res, Res);
}
// If both halves are used, return as it is.
if (LoExists && HiExists)
return SDValue();
// If the two computed results can be simplified separately, separate them.
if (LoExists) {
SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
AddToWorklist(Lo.getNode());
SDValue LoOpt = combine(Lo.getNode());
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
(!LegalOperations ||
TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
return CombineTo(N, LoOpt, LoOpt);
}
if (HiExists) {
SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
AddToWorklist(Hi.getNode());
SDValue HiOpt = combine(Hi.getNode());
if (HiOpt.getNode() && HiOpt != Hi &&
(!LegalOperations ||
TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
return CombineTo(N, HiOpt, HiOpt);
}
return SDValue();
}
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
return Res;
EVT VT = N->getValueType(0);
SDLoc DL(N);
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(Lo.getValueType())));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
return Res;
EVT VT = N->getValueType(0);
SDLoc DL(N);
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getConstant(SimpleSize, DL,
getShiftAmountTy(Lo.getValueType())));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitSMULO(SDNode *N) {
// (smulo x, 2) -> (saddo x, x)
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (C2->getAPIntValue() == 2)
return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
N->getOperand(0), N->getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitUMULO(SDNode *N) {
// (umulo x, 2) -> (uaddo x, x)
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (C2->getAPIntValue() == 2)
return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
N->getOperand(0), N->getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (add c1, c2) -> c1+c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (isConstantIntBuildVectorOrConstantInt(N0) &&
!isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
return SDValue();
}
/// If this is a binary operator with two operands of the same opcode, try to
/// simplify it.
SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
EVT VT = N0.getValueType();
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
// Bail early if none of these transforms apply.
if (N0.getNode()->getNumOperands() == 0) return SDValue();
// For each of OP in AND/OR/XOR:
// fold (OP (zext x), (zext y)) -> (zext (OP x, y))
// fold (OP (sext x), (sext y)) -> (sext (OP x, y))
// fold (OP (aext x), (aext y)) -> (aext (OP x, y))
// fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
// fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
//
// do not sink logical op inside of a vector extend, since it may combine
// into a vsetcc.
EVT Op0VT = N0.getOperand(0).getValueType();
if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND ||
N0.getOpcode() == ISD::BSWAP ||
// Avoid infinite looping with PromoteIntBinOp.
(N0.getOpcode() == ISD::ANY_EXTEND &&
(!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
(N0.getOpcode() == ISD::TRUNCATE &&
(!TLI.isZExtFree(VT, Op0VT) ||
!TLI.isTruncateFree(Op0VT, VT)) &&
TLI.isTypeLegal(Op0VT))) &&
!VT.isVector() &&
Op0VT == N1.getOperand(0).getValueType() &&
(!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
AddToWorklist(ORNode.getNode());
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
}
// For each of OP in SHL/SRL/SRA/AND...
// fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
// fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
// fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
N0.getOperand(1) == N1.getOperand(1)) {
SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
AddToWorklist(ORNode.getNode());
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
ORNode, N0.getOperand(1));
}
// Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
// Only perform this optimization after type legalization and before
// LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
// adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
// we don't want to undo this promotion.
// We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
// on scalars.
if ((N0.getOpcode() == ISD::BITCAST ||
N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
Level == AfterLegalizeTypes) {
SDValue In0 = N0.getOperand(0);
SDValue In1 = N1.getOperand(0);
EVT In0Ty = In0.getValueType();
EVT In1Ty = In1.getValueType();
SDLoc DL(N);
// If both incoming values are integers, and the original types are the
// same.
if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
AddToWorklist(Op.getNode());
return BC;
}
}
// Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
// Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
// If both shuffles use the same mask, and both shuffle within a single
// vector, then it is worthwhile to move the swizzle after the operation.
// The type-legalizer generates this pattern when loading illegal
// vector types from memory. In many cases this allows additional shuffle
// optimizations.
// There are other cases where moving the shuffle after the xor/and/or
// is profitable even if shuffles don't perform a swizzle.
// If both shuffles use the same mask, and both shuffles have the same first
// or second operand, then it might still be profitable to move the shuffle
// after the xor/and/or operation.
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
"Inputs to shuffles are not the same type");
// Check that both shuffles use the same mask. The masks are known to be of
// the same length because the result vector type is the same.
// Check also that shuffles have only one use to avoid introducing extra
// instructions.
if (SVN0->hasOneUse() && SVN1->hasOneUse() &&
SVN0->getMask().equals(SVN1->getMask())) {
SDValue ShOp = N0->getOperand(1);
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
if (!LegalTypes)
ShOp = DAG.getConstant(0, SDLoc(N), VT);
else
ShOp = SDValue();
}
// (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C)
// (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C)
// (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0)
if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
N0->getOperand(0), N1->getOperand(0));
AddToWorklist(NewNode.getNode());
return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
&SVN0->getMask()[0]);
}
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
ShOp = N0->getOperand(0);
if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
if (!LegalTypes)
ShOp = DAG.getConstant(0, SDLoc(N), VT);
else
ShOp = SDValue();
}
// (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B))
// (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B))
// (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B))
if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) {
SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
N0->getOperand(1), N1->getOperand(1));
AddToWorklist(NewNode.getNode());
return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
&SVN0->getMask()[0]);
}
}
}
return SDValue();
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an And operation to a single value. This makes them reusable in the context
/// of visitSELECT(). Rules involving constants are not included as
/// visitSELECT() already handles those cases.
SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
SDNode *LocReference) {
EVT VT = N1.getValueType();
// fold (and x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, SDLoc(LocReference), VT);
// fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
SDValue LL, LR, RL, RR, CC0, CC1;
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
LL.getValueType().isInteger()) {
// fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
if (isNullConstant(LR) && Op1 == ISD::SETEQ) {
SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
LR.getValueType(), LL, RL);
AddToWorklist(ORNode.getNode());
return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
}
if (isAllOnesConstant(LR)) {
// fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
if (Op1 == ISD::SETEQ) {
SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
LR.getValueType(), LL, RL);
AddToWorklist(ANDNode.getNode());
return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
}
// fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
if (Op1 == ISD::SETGT) {
SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
LR.getValueType(), LL, RL);
AddToWorklist(ORNode.getNode());
return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
}
}
}
// Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
Op0 == Op1 && LL.getValueType().isInteger() &&
Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
(isAllOnesConstant(LR) && isNullConstant(RR)))) {
SDLoc DL(N0);
SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(),
LL, DAG.getConstant(1, DL,
LL.getValueType()));
AddToWorklist(ADDNode.getNode());
return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode,
DAG.getConstant(2, DL, LL.getValueType()),
ISD::SETUGE);
}
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
Op1 = ISD::getSetCCSwappedOperands(Op1);
std::swap(RL, RR);
}
if (LL == RL && LR == RR) {
bool isInteger = LL.getValueType().isInteger();
ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
if (Result != ISD::SETCC_INVALID &&
(!LegalOperations ||
(TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
EVT CCVT = getSetCCResultType(LL.getValueType());
if (N0.getValueType() == CCVT ||
(!LegalOperations && N0.getValueType() == MVT::i1))
return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
LL, LR, Result);
}
}
}
if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
VT.getSizeInBits() <= 64) {
if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
APInt ADDC = ADDI->getAPIntValue();
if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
// Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
// immediate for an add, but it is legal if its top c2 bits are set,
// transform the ADD so the immediate doesn't need to be materialized
// in a register.
if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
SRLI->getZExtValue());
if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
ADDC |= Mask;
if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
SDLoc DL(N0);
SDValue NewAdd =
DAG.getNode(ISD::ADD, DL, VT,
N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
CombineTo(N0.getNode(), NewAdd);
// Return N so it doesn't get rechecked!
return SDValue(LocReference, 0);
}
}
}
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (and x, 0) -> 0, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
// do not return N0, because undef node may exist in N0
return DAG.getConstant(
APInt::getNullValue(
N0.getValueType().getScalarType().getSizeInBits()),
SDLoc(N), N0.getValueType());
if (ISD::isBuildVectorAllZeros(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getConstant(
APInt::getNullValue(
N1.getValueType().getScalarType().getSizeInBits()),
SDLoc(N), N1.getValueType());
// fold (and x, -1) -> x, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllOnes(N1.getNode()))
return N0;
}
// fold (and c1, c2) -> c1&c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (isConstantIntBuildVectorOrConstantInt(N0) &&
!isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
// fold (and x, -1) -> x
if (isAllOnesConstant(N1))
return N0;
// if (and x, c) is known to be zero, return 0
unsigned BitWidth = VT.getScalarType().getSizeInBits();
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(BitWidth)))
return DAG.getConstant(0, SDLoc(N), VT);
// reassociate and
if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1))
return RAND;
// fold (and (or x, C), D) -> D if (C & D) == D
if (N1C && N0.getOpcode() == ISD::OR)
if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
return N1;
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N0Op0 = N0.getOperand(0);
APInt Mask = ~N1C->getAPIntValue();
Mask = Mask.trunc(N0Op0.getValueSizeInBits());
if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
N0.getValueType(), N0Op0);
// Replace uses of the AND with uses of the Zero extend node.
CombineTo(N, Zext);
// We actually want to replace all uses of the any_extend with the
// zero_extend, to avoid duplicating things. This will later cause this
// AND to be folded.
CombineTo(N0.getNode(), Zext);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
// (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
// already be zero by virtue of the width of the base type of the load.
//
// the 'X' node here can either be nothing or an extract_vector_elt to catch
// more cases.
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
N0.getOperand(0).getOpcode() == ISD::LOAD) ||
N0.getOpcode() == ISD::LOAD) {
LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
N0 : N0.getOperand(0) );
// Get the constant (if applicable) the zero'th operand is being ANDed with.
// This can be a pure constant or a vector splat, in which case we treat the
// vector as a scalar and use the splat value.
APInt Constant = APInt::getNullValue(1);
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
Constant = C->getAPIntValue();
} else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
SplatBitSize, HasAnyUndefs);
if (IsSplat) {
// Undef bits can contribute to a possible optimisation if set, so
// set them.
SplatValue |= SplatUndef;
// The splat value may be something like "0x00FFFFFF", which means 0 for
// the first vector value and FF for the rest, repeating. We need a mask
// that will apply equally to all members of the vector, so AND all the
// lanes of the constant together.
EVT VT = Vector->getValueType(0);
unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
// If the splat value has been compressed to a bitlength lower
// than the size of the vector lane, we need to re-expand it to
// the lane size.
if (BitWidth > SplatBitSize)
for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
SplatBitSize < BitWidth;
SplatBitSize = SplatBitSize * 2)
SplatValue |= SplatValue.shl(SplatBitSize);
// Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
// multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
if (SplatBitSize % BitWidth == 0) {
Constant = APInt::getAllOnesValue(BitWidth);
for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
}
}
}
// If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
// actually legal and isn't going to get expanded, else this is a false
// optimisation.
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
Load->getValueType(0),
Load->getMemoryVT());
// Resize the constant to the same size as the original memory access before
// extension. If it is still the AllOnesValue then this AND is completely
// unneeded.
Constant =
Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
bool B;
switch (Load->getExtensionType()) {
default: B = false; break;
case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
case ISD::ZEXTLOAD:
case ISD::NON_EXTLOAD: B = true; break;
}
if (B && Constant.isAllOnesValue()) {
// If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
// preserve semantics once we get rid of the AND.
SDValue NewLoad(Load, 0);
if (Load->getExtensionType() == ISD::EXTLOAD) {
NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
Load->getValueType(0), SDLoc(Load),
Load->getChain(), Load->getBasePtr(),
Load->getOffset(), Load->getMemoryVT(),
Load->getMemOperand());
// Replace uses of the EXTLOAD with the new ZEXTLOAD.
if (Load->getNumValues() == 3) {
// PRE/POST_INC loads have 3 values.
SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
NewLoad.getValue(2) };
CombineTo(Load, To, 3, true);
} else {
CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
}
}
// Fold the AND away, taking care not to fold to the old load node if we
// replaced it.
CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (load x), 255) -> (zextload x, i8)
// fold (and (extload x, i16), 255) -> (zextload x, i8)
// fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
if (N1C && (N0.getOpcode() == ISD::LOAD ||
(N0.getOpcode() == ISD::ANY_EXTEND &&
N0.getOperand(0).getOpcode() == ISD::LOAD))) {
bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
LoadSDNode *LN0 = HasAnyExt
? cast<LoadSDNode>(N0.getOperand(0))
: cast<LoadSDNode>(N0);
if (LN0->getExtensionType() != ISD::SEXTLOAD &&
LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT LoadedVT = LN0->getMemoryVT();
EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
if (ExtVT == LoadedVT &&
(!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy,
ExtVT))) {
SDValue NewLoad =
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
LN0->getChain(), LN0->getBasePtr(), ExtVT,
LN0->getMemOperand());
AddToWorklist(N);
CombineTo(LN0, NewLoad, NewLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// Do not change the width of a volatile load.
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
(!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy,
ExtVT)) &&
TLI.shouldReduceLoadWidth(LN0, ISD::ZEXTLOAD, ExtVT)) {
EVT PtrType = LN0->getOperand(1).getValueType();
unsigned Alignment = LN0->getAlignment();
SDValue NewPtr = LN0->getBasePtr();
// For big endian targets, we need to add an offset to the pointer
// to load the correct bytes. For little endian systems, we merely
// need to read fewer bytes from the same pointer.
if (DAG.getDataLayout().isBigEndian()) {
unsigned LVTStoreBytes = LoadedVT.getStoreSize();
unsigned EVTStoreBytes = ExtVT.getStoreSize();
unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
SDLoc DL(LN0);
NewPtr = DAG.getNode(ISD::ADD, DL, PtrType,
NewPtr, DAG.getConstant(PtrOff, DL, PtrType));
Alignment = MinAlign(Alignment, PtrOff);
}
AddToWorklist(NewPtr.getNode());
SDValue Load =
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
LN0->getChain(), NewPtr,
LN0->getPointerInfo(),
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
LN0->isInvariant(), Alignment, LN0->getAAInfo());
AddToWorklist(N);
CombineTo(LN0, Load, Load.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
}
if (SDValue Combined = visitANDLike(N0, N1, N))
return Combined;
// Simplify: (and (op x...), (op y...)) -> (op (and x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
return Tmp;
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
// fold (and (sra)) -> (and (srl)) when possible.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (zext_inreg (extload x)) -> (zextload x)
if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - MemVT.getScalarType().getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
AddToWorklist(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - MemVT.getScalarType().getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
AddToWorklist(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
N0.getOperand(1), false);
if (BSwap.getNode())
return BSwap;
}
return SDValue();
}
/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
return SDValue();
if (!TLI.isOperationLegal(ISD::BSWAP, VT))
return SDValue();
// Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
bool LookPassAnd0 = false;
bool LookPassAnd1 = false;
if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
std::swap(N0, N1);
if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() == ISD::AND) {
if (!N0.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!N01C || N01C->getZExtValue() != 0xFF00)
return SDValue();
N0 = N0.getOperand(0);
LookPassAnd0 = true;
}
if (N1.getOpcode() == ISD::AND) {
if (!N1.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C || N11C->getZExtValue() != 0xFF)
return SDValue();
N1 = N1.getOperand(0);
LookPassAnd1 = true;
}
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0.getNode()->hasOneUse() ||
!N1.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N01C || !N11C)
return SDValue();
if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
return SDValue();
// Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
SDValue N00 = N0->getOperand(0);
if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
if (!N00.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
if (!N001C || N001C->getZExtValue() != 0xFF)
return SDValue();
N00 = N00.getOperand(0);
LookPassAnd0 = true;
}
SDValue N10 = N1->getOperand(0);
if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
if (!N10.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
if (!N101C || N101C->getZExtValue() != 0xFF00)
return SDValue();
N10 = N10.getOperand(0);
LookPassAnd1 = true;
}
if (N00 != N10)
return SDValue();
// Make sure everything beyond the low halfword gets set to zero since the SRL
// 16 will clear the top bits.
unsigned OpSizeInBits = VT.getSizeInBits();
if (DemandHighBits && OpSizeInBits > 16) {
// If the left-shift isn't masked out then the only way this is a bswap is
// if all bits beyond the low 8 are 0. In that case the entire pattern
// reduces to a left shift anyway: leave it for other parts of the combiner.
if (!LookPassAnd0)
return SDValue();
// However, if the right shift isn't masked out then it might be because
// it's not needed. See if we can spot that too.
if (!LookPassAnd1 &&
!DAG.MaskedValueIsZero(
N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
return SDValue();
}
SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
if (OpSizeInBits > 16) {
SDLoc DL(N);
Res = DAG.getNode(ISD::SRL, DL, VT, Res,
DAG.getConstant(OpSizeInBits - 16, DL,
getShiftAmountTy(VT)));
}
return Res;
}
/// Return true if the specified node is an element that makes up a 32-bit
/// packed halfword byteswap.
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
if (!N.getNode()->hasOneUse())
return false;
unsigned Opc = N.getOpcode();
if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
return false;
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!N1C)
return false;
unsigned Num;
switch (N1C->getZExtValue()) {
default:
return false;
case 0xFF: Num = 0; break;
case 0xFF00: Num = 1; break;
case 0xFF0000: Num = 2; break;
case 0xFF000000: Num = 3; break;
}
// Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
SDValue N0 = N.getOperand(0);
if (Opc == ISD::AND) {
if (Num == 0 || Num == 2) {
// (x >> 8) & 0xff
// (x >> 8) & 0xff0000
if (N0.getOpcode() != ISD::SRL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else {
// (x << 8) & 0xff00
// (x << 8) & 0xff000000
if (N0.getOpcode() != ISD::SHL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
} else if (Opc == ISD::SHL) {
// (x & 0xff) << 8
// (x & 0xff0000) << 8
if (Num != 0 && Num != 2)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else { // Opc == ISD::SRL
// (x & 0xff00) >> 8
// (x & 0xff000000) >> 8
if (Num != 1 && Num != 3)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
if (Parts[Num])
return false;
Parts[Num] = N0.getOperand(0).getNode();
return true;
}
/// Match a 32-bit packed halfword bswap. That is
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
/// => (rotl (bswap x), 16)
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
if (!TLI.isOperationLegal(ISD::BSWAP, VT))
return SDValue();
// Look for either
// (or (or (and), (and)), (or (and), (and)))
// (or (or (or (and), (and)), (and)), (and))
if (N0.getOpcode() != ISD::OR)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDNode *Parts[4] = {};
if (N1.getOpcode() == ISD::OR &&
N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
// (or (or (and), (and)), (or (and), (and)))
SDValue N000 = N00.getOperand(0);
if (!isBSwapHWordElement(N000, Parts))
return SDValue();
SDValue N001 = N00.getOperand(1);
if (!isBSwapHWordElement(N001, Parts))
return SDValue();
SDValue N010 = N01.getOperand(0);
if (!isBSwapHWordElement(N010, Parts))
return SDValue();
SDValue N011 = N01.getOperand(1);
if (!isBSwapHWordElement(N011, Parts))
return SDValue();
} else {
// (or (or (or (and), (and)), (and)), (and))
if (!isBSwapHWordElement(N1, Parts))
return SDValue();
if (!isBSwapHWordElement(N01, Parts))
return SDValue();
if (N00.getOpcode() != ISD::OR)
return SDValue();
SDValue N000 = N00.getOperand(0);
if (!isBSwapHWordElement(N000, Parts))
return SDValue();
SDValue N001 = N00.getOperand(1);
if (!isBSwapHWordElement(N001, Parts))
return SDValue();
}
// Make sure the parts are all coming from the same node.
if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
return SDValue();
SDLoc DL(N);
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
SDValue(Parts[0], 0));
// Result of the bswap should be rotated by 16. If it's not legal, then
// do (x << 16) | (x >> 16).
SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
return DAG.getNode(ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an Or operation to a single value \see visitANDLike().
SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) {
EVT VT = N1.getValueType();
// fold (or x, undef) -> -1
if (!LegalOperations &&
(N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()),
SDLoc(LocReference), VT);
}
// fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
SDValue LL, LR, RL, RR, CC0, CC1;
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) {
// fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
// fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
LR.getValueType(), LL, RL);
AddToWorklist(ORNode.getNode());
return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
}
// fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
// fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
LR.getValueType(), LL, RL);
AddToWorklist(ANDNode.getNode());
return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
}
}
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
Op1 = ISD::getSetCCSwappedOperands(Op1);
std::swap(RL, RR);
}
if (LL == RL && LR == RR) {
bool isInteger = LL.getValueType().isInteger();
ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
if (Result != ISD::SETCC_INVALID &&
(!LegalOperations ||
(TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
EVT CCVT = getSetCCResultType(LL.getValueType());
if (N0.getValueType() == CCVT ||
(!LegalOperations && N0.getValueType() == MVT::i1))
return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
LL, LR, Result);
}
}
}
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
// Don't increase # computations.
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
// We can only do this xform if we know that bits from X that are set in C2
// but not in C1 are already zero. Likewise for Y.
if (const ConstantSDNode *N0O1C =
getAsNonOpaqueConstant(N0.getOperand(1))) {
if (const ConstantSDNode *N1O1C =
getAsNonOpaqueConstant(N1.getOperand(1))) {
// We can only do this xform if we know that bits from X that are set in
// C2 but not in C1 are already zero. Likewise for Y.
const APInt &LHSMask = N0O1C->getAPIntValue();
const APInt &RHSMask = N1O1C->getAPIntValue();
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(0), N1.getOperand(0));
SDLoc DL(LocReference);
return DAG.getNode(ISD::AND, DL, VT, X,
DAG.getConstant(LHSMask | RHSMask, DL, VT));
}
}
}
}
// (or (and X, M), (and X, N)) -> (and X, (or M, N))
if (N0.getOpcode() == ISD::AND &&
N1.getOpcode() == ISD::AND &&
N0.getOperand(0) == N1.getOperand(0) &&
// Don't increase # computations.
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(1), N1.getOperand(1));
return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X);
}
return SDValue();
}
SDValue DAGCombiner::visitOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (or x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
// fold (or x, -1) -> -1, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
// do not return N0, because undef node may exist in N0
return DAG.getConstant(
APInt::getAllOnesValue(
N0.getValueType().getScalarType().getSizeInBits()),
SDLoc(N), N0.getValueType());
if (ISD::isBuildVectorAllOnes(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getConstant(
APInt::getAllOnesValue(
N1.getValueType().getScalarType().getSizeInBits()),
SDLoc(N), N1.getValueType());
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
// Do this only if the resulting shuffle is legal.
if (isa<ShuffleVectorSDNode>(N0) &&
isa<ShuffleVectorSDNode>(N1) &&
// Avoid folding a node with illegal type.
TLI.isTypeLegal(VT) &&
N0->getOperand(1) == N1->getOperand(1) &&
ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) {
bool CanFold = true;
unsigned NumElts = VT.getVectorNumElements();
const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
// We construct two shuffle masks:
// - Mask1 is a shuffle mask for a shuffle with N0 as the first operand
// and N1 as the second operand.
// - Mask2 is a shuffle mask for a shuffle with N1 as the first operand
// and N0 as the second operand.
// We do this because OR is commutable and therefore there might be
// two ways to fold this node into a shuffle.
SmallVector<int,4> Mask1;
SmallVector<int,4> Mask2;
for (unsigned i = 0; i != NumElts && CanFold; ++i) {
int M0 = SV0->getMaskElt(i);
int M1 = SV1->getMaskElt(i);
// Both shuffle indexes are undef. Propagate Undef.
if (M0 < 0 && M1 < 0) {
Mask1.push_back(M0);
Mask2.push_back(M0);
continue;
}
if (M0 < 0 || M1 < 0 ||
(M0 < (int)NumElts && M1 < (int)NumElts) ||
(M0 >= (int)NumElts && M1 >= (int)NumElts)) {
CanFold = false;
break;
}
Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts);
Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts);
}
if (CanFold) {
// Fold this sequence only if the resulting shuffle is 'legal'.
if (TLI.isShuffleMaskLegal(Mask1, VT))
return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0),
N1->getOperand(0), &Mask1[0]);
if (TLI.isShuffleMaskLegal(Mask2, VT))
return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0),
N0->getOperand(0), &Mask2[0]);
}
}
}
// fold (or c1, c2) -> c1|c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (isConstantIntBuildVectorOrConstantInt(N0) &&
!isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
// fold (or x, 0) -> x
if (isNullConstant(N1))
return N0;
// fold (or x, -1) -> -1
if (isAllOnesConstant(N1))
return N1;
// fold (or x, c) -> c iff (x & ~c) == 0
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
return N1;
if (SDValue Combined = visitORLike(N0, N1, N))
return Combined;
// Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
return BSwap;
if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
return BSwap;
// reassociate or
if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1))
return ROR;
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
// iff (c1 & c2) == 0.
if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1))) {
ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) {
if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
N1C, C1))
return DAG.getNode(
ISD::AND, SDLoc(N), VT,
DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR);
return SDValue();
}
}
// Simplify: (or (op x...), (op y...)) -> (op (or x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
return Tmp;
// See if this is some rotate idiom.
if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
return SDValue(Rot, 0);
// Simplify the operands using demanded-bits information.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// Match "(X shl/srl V1) & V2" where V2 may not be present.
static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
if (Op.getOpcode() == ISD::AND) {
if (isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
Mask = Op.getOperand(1);
Op = Op.getOperand(0);
} else {
return false;
}
}
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
Shift = Op;
return true;
}
return false;
}
// Return true if we can prove that, whenever Neg and Pos are both in the
// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
//
// (or (shift1 X, Neg), (shift2 X, Pos))
//
// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
// in direction shift1 by Neg. The range [0, EltSize) means that we only need
// to consider shift amounts with defined behavior.
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) {
// If EltSize is a power of 2 then:
//
// (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
// (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
//
// So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
// for the stronger condition:
//
// Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
//
// for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
// we can just replace Neg with Neg' for the rest of the function.
//
// In other cases we check for the even stronger condition:
//
// Neg == EltSize - Pos [B]
//
// for all Neg and Pos. Note that the (or ...) then invokes undefined
// behavior if Pos == 0 (and consequently Neg == EltSize).
//
// We could actually use [A] whenever EltSize is a power of 2, but the
// only extra cases that it would match are those uninteresting ones
// where Neg and Pos are never in range at the same time. E.g. for
// EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
// as well as (sub 32, Pos), but:
//
// (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
//
// always invokes undefined behavior for 32-bit X.
//
// Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
unsigned MaskLoBits = 0;
if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
if (NegC->getAPIntValue() == EltSize - 1) {
Neg = Neg.getOperand(0);
MaskLoBits = Log2_64(EltSize);
}
}
}
// Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
if (Neg.getOpcode() != ISD::SUB)
return 0;
ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
if (!NegC)
return 0;
SDValue NegOp1 = Neg.getOperand(1);
// On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
// Pos'. The truncation is redundant for the purpose of the equality.
if (MaskLoBits && Pos.getOpcode() == ISD::AND)
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
if (PosC->getAPIntValue() == EltSize - 1)
Pos = Pos.getOperand(0);
// The condition we need is now:
//
// (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
//
// If NegOp1 == Pos then we need:
//
// EltSize & Mask == NegC & Mask
//
// (because "x & Mask" is a truncation and distributes through subtraction).
APInt Width;
if (Pos == NegOp1)
Width = NegC->getAPIntValue();
// Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
// Then the condition we want to prove becomes:
//
// (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
//
// which, again because "x & Mask" is a truncation, becomes:
//
// NegC & Mask == (EltSize - PosC) & Mask
// EltSize & Mask == (NegC + PosC) & Mask
else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
Width = PosC->getAPIntValue() + NegC->getAPIntValue();
else
return false;
} else
return false;
// Now we just need to check that EltSize & Mask == Width & Mask.
if (MaskLoBits)
// EltSize & Mask is 0 since Mask is EltSize - 1.
return Width.getLoBits(MaskLoBits) == 0;
return Width == EltSize;
}
// A subroutine of MatchRotate used once we have found an OR of two opposite
// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
// former being preferred if supported. InnerPos and InnerNeg are Pos and
// Neg with outer conversions stripped away.
SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
SDValue Neg, SDValue InnerPos,
SDValue InnerNeg, unsigned PosOpcode,
unsigned NegOpcode, SDLoc DL) {
// fold (or (shl x, (*ext y)),
// (srl x, (*ext (sub 32, y)))) ->
// (rotl x, y) or (rotr x, (sub 32, y))
//
// fold (or (shl x, (*ext (sub 32, y))),
// (srl x, (*ext y))) ->
// (rotr x, y) or (rotl x, (sub 32, y))
EVT VT = Shifted.getValueType();
if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) {
bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
HasPos ? Pos : Neg).getNode();
}
return nullptr;
}
// MatchRotate - Handle an 'or' of two operands. If this is one of the many
// idioms for rotate, and if the target supports rotation instructions, generate
// a rot[lr].
SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
EVT VT = LHS.getValueType();
if (!TLI.isTypeLegal(VT)) return nullptr;
// The target must have at least one rotate flavor.
bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
if (!HasROTL && !HasROTR) return nullptr;
// Match "(X shl/srl V1) & V2" where V2 may not be present.
SDValue LHSShift; // The shift.
SDValue LHSMask; // AND value if any.
if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
return nullptr; // Not part of a rotate.
SDValue RHSShift; // The shift.
SDValue RHSMask; // AND value if any.
if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
return nullptr; // Not part of a rotate.
if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
return nullptr; // Not shifting the same value.
if (LHSShift.getOpcode() == RHSShift.getOpcode())
return nullptr; // Shifts must disagree.
// Canonicalize shl to left side in a shl/srl pair.
if (RHSShift.getOpcode() == ISD::SHL) {
std::swap(LHS, RHS);
std::swap(LHSShift, RHSShift);
std::swap(LHSMask, RHSMask);
}
unsigned EltSizeInBits = VT.getScalarSizeInBits();
SDValue LHSShiftArg = LHSShift.getOperand(0);
SDValue LHSShiftAmt = LHSShift.getOperand(1);
SDValue RHSShiftArg = RHSShift.getOperand(0);
SDValue RHSShiftAmt = RHSShift.getOperand(1);
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
// fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) {
uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue();
uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue();
if ((LShVal + RShVal) != EltSizeInBits)
return nullptr;
SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
// If there is an AND of either shifted operand, apply it to the result.
if (LHSMask.getNode() || RHSMask.getNode()) {
APInt AllBits = APInt::getAllOnesValue(EltSizeInBits);
SDValue Mask = DAG.getConstant(AllBits, DL, VT);
if (LHSMask.getNode()) {
APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, LHSMask,
DAG.getConstant(RHSBits, DL, VT)));
}
if (RHSMask.getNode()) {
APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, RHSMask,
DAG.getConstant(LHSBits, DL, VT)));
}
Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
}
return Rot.getNode();
}
// If there is a mask here, and we have a variable shift, we can't be sure
// that we're masking out the right stuff.
if (LHSMask.getNode() || RHSMask.getNode())
return nullptr;
// If the shift amount is sign/zext/any-extended just peel it off.
SDValue LExtOp0 = LHSShiftAmt;
SDValue RExtOp0 = RHSShiftAmt;
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
LExtOp0 = LHSShiftAmt.getOperand(0);
RExtOp0 = RHSShiftAmt.getOperand(0);
}
SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
if (TryL)
return TryL;
SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
if (TryR)
return TryR;
return nullptr;
}
SDValue DAGCombiner::visitXOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (xor x, 0) -> x, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N1;
if (ISD::isBuildVectorAllZeros(N1.getNode()))
return N0;
}
// fold (xor undef, undef) -> 0. This is a common idiom (misuse).
if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, SDLoc(N), VT);
// fold (xor x, undef) -> undef
if (N0.getOpcode() == ISD::UNDEF)
return N0;
if (N1.getOpcode() == ISD::UNDEF)
return N1;
// fold (xor c1, c2) -> c1^c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
if (isConstantIntBuildVectorOrConstantInt(N0) &&
!isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
// fold (xor x, 0) -> x
if (isNullConstant(N1))
return N0;
// reassociate xor
if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1))
return RXOR;
// fold !(x cc y) -> (x !cc y)
SDValue LHS, RHS, CC;
if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
bool isInt = LHS.getValueType().isInteger();
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
isInt);
if (!LegalOperations ||
TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
switch (N0.getOpcode()) {
default:
llvm_unreachable("Unhandled SetCC Equivalent!");
case ISD::SETCC:
return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
case ISD::SELECT_CC:
return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
N0.getOperand(3), NotCC);
}
}
}
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND &&
N0.getNode()->hasOneUse() &&
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
SDValue V = N0.getOperand(0);
SDLoc DL(N0);
V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V,
DAG.getConstant(1, DL, V.getValueType()));
AddToWorklist(V.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
if (isOneConstant(N1) && VT == MVT::i1 &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
}
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
if (isAllOnesConstant(N1) &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
}
}
// fold (xor (and x, y), y) -> (and (not x), y)
if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
N0->getOperand(1) == N1) {
SDValue X = N0->getOperand(0);
SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
AddToWorklist(NotX.getNode());
return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
}
// fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
if (N1C && N0.getOpcode() == ISD::XOR) {
if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) {
SDLoc DL(N);
return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
DAG.getConstant(N1C->getAPIntValue() ^
N00C->getAPIntValue(), DL, VT));
}
if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) {
SDLoc DL(N);
return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
DAG.getConstant(N1C->getAPIntValue() ^
N01C->getAPIntValue(), DL, VT));
}
}
// fold (xor x, x) -> 0
if (N0 == N1)
return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
// fold (xor (shl 1, x), -1) -> (rotl ~1, x)
// Here is a concrete example of this equivalence:
// i16 x == 14
// i16 shl == 1 << 14 == 16384 == 0b0100000000000000
// i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
//
// =>
//
// i16 ~1 == 0b1111111111111110
// i16 rol(~1, 14) == 0b1011111111111111
//
// Some additional tips to help conceptualize this transform:
// - Try to see the operation as placing a single zero in a value of all ones.
// - There exists no value for x which would allow the result to contain zero.
// - Values of x larger than the bitwidth are undefined and do not require a
// consistent result.
// - Pushing the zero left requires shifting one bits in from the right.
// A rotate left of ~1 is a nice way of achieving the desired result.
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL
&& isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
SDLoc DL(N);
return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
N0.getOperand(1));
}
// Simplify: xor (op x...), (op y...) -> (op (xor x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
return Tmp;
// Simplify the expression using non-local knowledge.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// Handle transforms common to the three shifts, when the shift amount is a
/// constant.
SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
SDNode *LHS = N->getOperand(0).getNode();
if (!LHS->hasOneUse()) return SDValue();
// We want to pull some binops through shifts, so that we have (and (shift))
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of
// thing happens with address calculations, so it's important to canonicalize
// it.
bool HighBitSet = false; // Can we transform this if the high bit is set?
switch (LHS->getOpcode()) {
default: return SDValue();
case ISD::OR:
case ISD::XOR:
HighBitSet = false; // We can only transform sra if the high bit is clear.
break;
case ISD::AND:
HighBitSet = true; // We can only transform sra if the high bit is set.
break;
case ISD::ADD:
if (N->getOpcode() != ISD::SHL)
return SDValue(); // only shl(add) not sr[al](add).
HighBitSet = false; // We can only transform sra if the high bit is clear.
break;
}
// We require the RHS of the binop to be a constant and not opaque as well.
ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
if (!BinOpCst) return SDValue();
// FIXME: disable this unless the input to the binop is a shift by a constant.
// If it is not a shift, it pessimizes some common cases like:
//
// void foo(int *X, int i) { X[i & 1235] = 1; }
// int bar(int *X, int i) { return X[i & 255]; }
SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
BinOpLHSVal->getOpcode() != ISD::SRA &&
BinOpLHSVal->getOpcode() != ISD::SRL) ||
!isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
return SDValue();
EVT VT = N->getValueType(0);
// If this is a signed shift right, and the high bit is modified by the
// logical operation, do not perform the transformation. The highBitSet
// boolean indicates the value of the high bit of the constant which would
// cause it to be modified for this operation.
if (N->getOpcode() == ISD::SRA) {
bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
if (BinOpRHSSignSet != HighBitSet)
return SDValue();
}
if (!TLI.isDesirableToCommuteWithShift(LHS))
return SDValue();
// Fold the constants, shifting the binop RHS by the shift amount.
SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
N->getValueType(0),
LHS->getOperand(1), N->getOperand(1));
assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
// Create the new shift.
SDValue NewShift = DAG.getNode(N->getOpcode(),
SDLoc(LHS->getOperand(0)),
VT, LHS->getOperand(0), N->getOperand(1));
// Create the new binop.
return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
}
SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
assert(N->getOpcode() == ISD::TRUNCATE);
assert(N->getOperand(0).getOpcode() == ISD::AND);
// (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
SDValue N01 = N->getOperand(0).getOperand(1);
if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) {
if (!N01C->isOpaque()) {
EVT TruncVT = N->getValueType(0);
SDValue N00 = N->getOperand(0).getOperand(0);
APInt TruncC = N01C->getAPIntValue();
TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits());
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, TruncVT,
DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00),
DAG.getConstant(TruncC, DL, TruncVT));
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitRotate(SDNode *N) {
// fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
if (N->getOperand(1).getOpcode() == ISD::TRUNCATE &&
N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) {
SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode());
if (NewOp1.getNode())
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
N->getOperand(0), NewOp1);
}
return SDValue();
}
SDValue DAGCombiner::visitSHL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold vector ops
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
// If setcc produces all-one true value then:
// (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
if (N1CV && N1CV->isConstant()) {
if (N0.getOpcode() == ISD::AND) {
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
N01CV, N1CV))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
}
} else {
N1C = isConstOrConstSplat(N1);
}
}
}
// fold (shl c1, c2) -> c1<<c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
// fold (shl 0, x) -> 0
if (isNullConstant(N0))
return N0;
// fold (shl x, c >= size(x)) -> undef
if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
return DAG.getUNDEF(VT);
// fold (shl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (shl undef, x) -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, SDLoc(N), VT);
// if (shl x, c) is known to be zero, return 0
if (DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(OpSizeInBits)))
return DAG.getConstant(0, SDLoc(N), VT);
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
if (NewOp1.getNode())
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
}
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SHL) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t c1 = N0C1->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
SDLoc DL(N);
if (c1 + c2 >= OpSizeInBits)
return DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(c1 + c2, DL, N1.getValueType()));
}
}
// fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
// For this to be valid, the second form must not preserve any of the bits
// that are shifted out by the inner shift in the first form. This means
// the outer shift size must be >= the number of bits added by the ext.
// As a corollary, we don't care what kind of ext it is.
if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND) &&
N0.getOperand(0).getOpcode() == ISD::SHL) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
uint64_t c1 = N0Op0C1->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
EVT InnerShiftVT = N0Op0.getValueType();
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
if (c2 >= OpSizeInBits - InnerShiftSize) {
SDLoc DL(N0);
if (c1 + c2 >= OpSizeInBits)
return DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::SHL, DL, VT,
DAG.getNode(N0.getOpcode(), DL, VT,
N0Op0->getOperand(0)),
DAG.getConstant(c1 + c2, DL, N1.getValueType()));
}
}
}
// fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
// Only fold this if the inner zext has no other uses to avoid increasing
// the total number of instructions.
if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::SRL) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
uint64_t c1 = N0Op0C1->getZExtValue();
if (c1 < VT.getScalarSizeInBits()) {
uint64_t c2 = N1C->getZExtValue();
if (c1 == c2) {
SDValue NewOp0 = N0.getOperand(0);
EVT CountVT = NewOp0.getOperand(1).getValueType();
SDLoc DL(N);
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
NewOp0,
DAG.getConstant(c2, DL, CountVT));
AddToWorklist(NewSHL.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
}
}
}
}
// fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
// fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t C1 = N0C1->getZExtValue();
uint64_t C2 = N1C->getZExtValue();
SDLoc DL(N);
if (C1 <= C2)
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(C2 - C1, DL, N1.getValueType()));
return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
DAG.getConstant(C1 - C2, DL, N1.getValueType()));
}
}
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
// (and (srl x, (sub c1, c2), MASK)
// Only fold this if the inner shift has no other uses -- if it does, folding
// this will increase the total number of instructions.
if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t c1 = N0C1->getZExtValue();
if (c1 < OpSizeInBits) {
uint64_t c2 = N1C->getZExtValue();
APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
SDValue Shift;
if (c2 > c1) {
Mask = Mask.shl(c2 - c1);
SDLoc DL(N);
Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(c2 - c1, DL, N1.getValueType()));
} else {
Mask = Mask.lshr(c1 - c2);
SDLoc DL(N);
Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
DAG.getConstant(c1 - c2, DL, N1.getValueType()));
}
SDLoc DL(N0);
return DAG.getNode(ISD::AND, DL, VT, Shift,
DAG.getConstant(Mask, DL, VT));
}
}
}
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
unsigned BitSize = VT.getScalarSizeInBits();
SDLoc DL(N);
SDValue HiBitsMask =
DAG.getConstant(APInt::getHighBitsSet(BitSize,
BitSize - N1C->getZExtValue()),
DL, VT);
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
HiBitsMask);
}
// fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// Variant of version done on multiply, except mul by a power of 2 is turned
// into a shift.
APInt Val;
if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
(isa<ConstantSDNode>(N0.getOperand(1)) ||
isConstantSplatVector(N0.getOperand(1).getNode(), Val))) {
SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1);
}
// fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
if (SDValue Folded =
DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C))
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded);
}
}
if (N1C && !N1C->isOpaque())
if (SDValue NewSHL = visitShiftByConstant(N, N1C))
return NewSHL;
return SDValue();
}
SDValue DAGCombiner::visitSRA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
// fold vector ops
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
N1C = isConstOrConstSplat(N1);
}
// fold (sra c1, c2) -> (sra c1, c2)
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
// fold (sra 0, x) -> 0
if (isNullConstant(N0))
return N0;
// fold (sra -1, x) -> -1
if (isAllOnesConstant(N0))
return N0;
// fold (sra x, (setge c, size(x))) -> undef
if (N1C && N1C->getZExtValue() >= OpSizeInBits)
return DAG.getUNDEF(VT);
// fold (sra x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
// sext_inreg.
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
if (VT.isVector())
ExtVT = EVT::getVectorVT(*DAG.getContext(),
ExtVT, VT.getVectorNumElements());
if ((!LegalOperations ||
TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
N0.getOperand(0), DAG.getValueType(ExtVT));
}
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SRA) {
if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) {
unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
if (Sum >= OpSizeInBits)
Sum = OpSizeInBits - 1;
SDLoc DL(N);
return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0),
DAG.getConstant(Sum, DL, N1.getValueType()));
}
}
// fold (sra (shl X, m), (sub result_size, n))
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
// result_size - n != m.
// If truncate is free for the target sext(shl) is likely to result in better
// code.
if (N0.getOpcode() == ISD::SHL && N1C) {
// Get the two constanst of the shifts, CN0 = m, CN = n.
const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
if (N01C) {
LLVMContext &Ctx = *DAG.getContext();
// Determine what the truncate's result bitsize and type would be.
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
if (VT.isVector())
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
// Determine the residual right-shift amount.
signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
// If the shift is not a no-op (in which case this should be just a sign
// extend already), the truncated to type is legal, sign_extend is legal
// on that type, and the truncate to that type is both legal and free,
// perform the transform.
if ((ShiftAmt > 0) &&
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
TLI.isTruncateFree(VT, TruncVT)) {
SDLoc DL(N);
SDValue Amt = DAG.getConstant(ShiftAmt, DL,
getShiftAmountTy(N0.getOperand(0).getValueType()));
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
N0.getOperand(0), Amt);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
Shift);
return DAG.getNode(ISD::SIGN_EXTEND, DL,
N->getValueType(0), Trunc);
}
}
}
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
if (NewOp1.getNode())
return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
}
// fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
// if c1 is equal to the number of bits the trunc removes
if (N0.getOpcode() == ISD::TRUNCATE &&
(N0.getOperand(0).getOpcode() == ISD::SRL ||
N0.getOperand(0).getOpcode() == ISD::SRA) &&
N0.getOperand(0).hasOneUse() &&
N0.getOperand(0).getOperand(1).hasOneUse() &&
N1C) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
unsigned LargeShiftVal = LargeShift->getZExtValue();
EVT LargeVT = N0Op0.getValueType();
if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
SDLoc DL(N);
SDValue Amt =
DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
N0Op0.getOperand(0), Amt);
return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
}
}
}
// Simplify, based on bits shifted out of the LHS.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// If the sign bit is known to be zero, switch this to a SRL.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRA = visitShiftByConstant(N, N1C))
return NewSRA;
return SDValue();
}
SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
// fold vector ops
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
N1C = isConstOrConstSplat(N1);
}
// fold (srl c1, c2) -> c1 >>u c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
// fold (srl 0, x) -> 0
if (isNullConstant(N0))
return N0;
// fold (srl x, c >= size(x)) -> undef
if (N1C && N1C->getZExtValue() >= OpSizeInBits)
return DAG.getUNDEF(VT);
// fold (srl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// if (srl x, c) is known to be zero, return 0
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(OpSizeInBits)))
return DAG.getConstant(0, SDLoc(N), VT);
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SRL) {
if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t c1 = N01C->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
SDLoc DL(N);
if (c1 + c2 >= OpSizeInBits)
return DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
DAG.getConstant(c1 + c2, DL, N1.getValueType()));
}
}
// fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
N0.getOperand(0).getOpcode() == ISD::SRL &&
isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
uint64_t c1 =
cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
EVT InnerShiftVT = N0.getOperand(0).getValueType();
EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
// This is only valid if the OpSizeInBits + c1 = size of inner shift.
if (c1 + OpSizeInBits == InnerShiftSize) {
SDLoc DL(N0);
if (c1 + c2 >= InnerShiftSize)
return DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::TRUNCATE, DL, VT,
DAG.getNode(ISD::SRL, DL, InnerShiftVT,
N0.getOperand(0)->getOperand(0),
DAG.getConstant(c1 + c2, DL,
ShiftCountVT)));
}
}
// fold (srl (shl x, c), c) -> (and x, cst2)
if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) {
unsigned BitSize = N0.getScalarValueSizeInBits();
if (BitSize <= 64) {
uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize;
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
DAG.getConstant(~0ULL >> ShAmt, DL, VT));
}
}
// fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
// Shifting in all undef bits?
EVT SmallVT = N0.getOperand(0).getValueType();
unsigned BitSize = SmallVT.getScalarSizeInBits();
if (N1C->getZExtValue() >= BitSize)
return DAG.getUNDEF(VT);
if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
uint64_t ShiftAmt = N1C->getZExtValue();
SDLoc DL0(N0);
SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
N0.getOperand(0),
DAG.getConstant(ShiftAmt, DL0,
getShiftAmountTy(SmallVT)));
AddToWorklist(SmallShift.getNode());
APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt);
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
DAG.getConstant(Mask, DL, VT));
}
}
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
// bit, which is unmodified by sra.
if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
if (N0.getOpcode() == ISD::SRA)
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
}
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
if (N1C && N0.getOpcode() == ISD::CTLZ &&
N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
APInt KnownZero, KnownOne;
DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne);
// If any of the input bits are KnownOne, then the input couldn't be all
// zeros, thus the result of the srl will always be zero.
if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
// If all of the bits input the to ctlz node are known to be zero, then
// the result of the ctlz is "32" and the result of the shift is one.
APInt UnknownBits = ~KnownZero;
if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
// Otherwise, check to see if there is exactly one bit input to the ctlz.
if ((UnknownBits & (UnknownBits - 1)) == 0) {
// Okay, we know that only that the single bit specified by UnknownBits
// could be set on input to the CTLZ node. If this bit is set, the SRL
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
// to an SRL/XOR pair, which is likely to simplify more.
unsigned ShAmt = UnknownBits.countTrailingZeros();
SDValue Op = N0.getOperand(0);
if (ShAmt) {
SDLoc DL(N0);
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
DAG.getConstant(ShAmt, DL,
getShiftAmountTy(Op.getValueType())));
AddToWorklist(Op.getNode());
}
SDLoc DL(N);
return DAG.getNode(ISD::XOR, DL, VT,
Op, DAG.getConstant(1, DL, VT));
}
}
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
}
// fold operands of srl based on knowledge that the low bits are not
// demanded.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRL = visitShiftByConstant(N, N1C))
return NewSRL;
// Attempt to convert a srl of a load into a narrower zero-extending load.
if (SDValue NarrowLoad = ReduceLoadWidth(N))
return NarrowLoad;
// Here is a common situation. We want to optimize:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// However when after the source operand of SRL is optimized into AND, the SRL
// itself may not be optimized further. Look for it and add the BRCOND into
// the worklist.
if (N->hasOneUse()) {
SDNode *Use = *N->use_begin();
if (Use->getOpcode() == ISD::BRCOND)
AddToWorklist(Use);
else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
// Also look pass the truncate.
Use = *Use->use_begin();
if (Use->getOpcode() == ISD::BRCOND)
AddToWorklist(Use);
}
}
return SDValue();
}
SDValue DAGCombiner::visitBSWAP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (bswap c1) -> c2
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
// fold (bswap (bswap x)) -> x
if (N0.getOpcode() == ISD::BSWAP)
return N0->getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctlz c1) -> c2
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctlz_zero_undef c1) -> c2
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (cttz c1) -> c2
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (cttz_zero_undef c1) -> c2
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ctpop c1) -> c2
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
return SDValue();
}
/// \brief Generate Min/Max node
static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS,
SDValue True, SDValue False,
ISD::CondCode CC, const TargetLowering &TLI,
SelectionDAG &DAG) {
if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
return SDValue();
switch (CC) {
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETULT:
case ISD::SETULE: {
unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
if (TLI.isOperationLegal(Opcode, VT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGT:
case ISD::SETUGE: {
unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
if (TLI.isOperationLegal(Opcode, VT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
default:
return SDValue();
}
}
SDValue DAGCombiner::visitSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
EVT VT0 = N0.getValueType();
// fold (select C, X, X) -> X
if (N1 == N2)
return N1;
if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) {
// fold (select true, X, Y) -> X
// fold (select false, X, Y) -> Y
return !N0C->isNullValue() ? N1 : N2;
}
// fold (select C, 1, X) -> (or C, X)
if (VT == MVT::i1 && isOneConstant(N1))
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
// fold (select C, 0, 1) -> (xor C, 1)
// We can't do this reliably if integer based booleans have different contents
// to floating point based booleans. This is because we can't tell whether we
// have an integer-based boolean or a floating-point-based boolean unless we
// can find the SETCC that produced it and inspect its operands. This is
// fairly easy if C is the SETCC node, but it can potentially be
// undiscoverable (or not reasonably discoverable). For example, it could be
// in another basic block or it could require searching a complicated
// expression.
if (VT.isInteger() &&
(VT0 == MVT::i1 || (VT0.isInteger() &&
TLI.getBooleanContents(false, false) ==
TLI.getBooleanContents(false, true) &&
TLI.getBooleanContents(false, false) ==
TargetLowering::ZeroOrOneBooleanContent)) &&
isNullConstant(N1) && isOneConstant(N2)) {
SDValue XORNode;
if (VT == VT0) {
SDLoc DL(N);
return DAG.getNode(ISD::XOR, DL, VT0,
N0, DAG.getConstant(1, DL, VT0));
}
SDLoc DL0(N0);
XORNode = DAG.getNode(ISD::XOR, DL0, VT0,
N0, DAG.getConstant(1, DL0, VT0));
AddToWorklist(XORNode.getNode());
if (VT.bitsGT(VT0))
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
}
// fold (select C, 0, X) -> (and (not C), X)
if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
AddToWorklist(NOTNode.getNode());
return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
}
// fold (select C, X, 1) -> (or (not C), X)
if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
AddToWorklist(NOTNode.getNode());
return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
}
// fold (select C, X, 0) -> (and C, X)
if (VT == MVT::i1 && isNullConstant(N2))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
// fold (select X, X, Y) -> (or X, Y)
// fold (select X, 1, Y) -> (or X, Y)
if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
// fold (select X, Y, X) -> (and X, Y)
// fold (select X, Y, 0) -> (and X, Y)
if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
if (VT0 == MVT::i1) {
// The code in this block deals with the following 2 equivalences:
// select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
// select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
// The target can specify its prefered form with the
// shouldNormalizeToSelectSequence() callback. However we always transform
// to the right anyway if we find the inner select exists in the DAG anyway
// and we always transform to the left side if we know that we can further
// optimize the combination of the conditions.
bool normalizeToSequence
= TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
// select (and Cond0, Cond1), X, Y
// -> select Cond0, (select Cond1, X, Y), Y
if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
N1.getValueType(), Cond1, N1, N2);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0,
InnerSelect, N2);
}
// select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
N1.getValueType(), Cond1, N1, N2);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1,
InnerSelect);
}
// select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
SDValue N1_0 = N1->getOperand(0);
SDValue N1_1 = N1->getOperand(1);
SDValue N1_2 = N1->getOperand(2);
if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
// Create the actual and node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(),
N0, N1_0);
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And,
N1_1, N2);
}
// Otherwise see if we can optimize the "and" to a better pattern.
if (SDValue Combined = visitANDLike(N0, N1_0, N))
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
N1_1, N2);
}
}
// select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
SDValue N2_0 = N2->getOperand(0);
SDValue N2_1 = N2->getOperand(1);
SDValue N2_2 = N2->getOperand(2);
if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
// Create the actual or node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(),
N0, N2_0);
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or,
N1, N2_2);
}
// Otherwise see if we can optimize to a better pattern.
if (SDValue Combined = visitORLike(N0, N2_0, N))
return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
N1, N2_2);
}
}
}
// fold selects based on a setcc into other things, such as min/max/abs
if (N0.getOpcode() == ISD::SETCC) {
// select x, y (fcmp lt x, y) -> fminnum x, y
// select x, y (fcmp gt x, y) -> fmaxnum x, y
//
// This is OK if we don't care about what happens if either operand is a
// NaN.
//
// FIXME: Instead of testing for UnsafeFPMath, this should be checking for
// no signed zeros as well as no nans.
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.UnsafeFPMath &&
VT.isFloatingPoint() && N0.hasOneUse() &&
DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) {
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0),
N0.getOperand(1), N1, N2, CC,
TLI, DAG))
return FMinMax;
}
if ((!LegalOperations &&
TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) ||
TLI.isOperationLegal(ISD::SELECT_CC, VT))
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1),
N1, N2, N0.getOperand(2));
return SimplifySelect(SDLoc(N), N0, N1, N2);
}
return SDValue();
}
static
std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// Split the inputs.
SDValue Lo, Hi, LL, LH, RL, RH;
std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
return std::make_pair(Lo, Hi);
}
// This function assumes all the vselect's arguments are CONCAT_VECTOR
// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
SDLoc dl(N);
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = N->getValueType(0);
int NumElems = VT.getVectorNumElements();
assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
RHS.getOpcode() == ISD::CONCAT_VECTORS &&
Cond.getOpcode() == ISD::BUILD_VECTOR);
// CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
// binary ones here.
if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
return SDValue();
// We're sure we have an even number of elements due to the
// concat_vectors we have as arguments to vselect.
// Skip BV elements until we find one that's not an UNDEF
// After we find an UNDEF element, keep looping until we get to half the
// length of the BV and see if all the non-undef nodes are the same.
ConstantSDNode *BottomHalf = nullptr;
for (int i = 0; i < NumElems / 2; ++i) {
if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
continue;
if (BottomHalf == nullptr)
BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != BottomHalf)
return SDValue();
}
// Do the same for the second half of the BuildVector
ConstantSDNode *TopHalf = nullptr;
for (int i = NumElems / 2; i < NumElems; ++i) {
if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
continue;
if (TopHalf == nullptr)
TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != TopHalf)
return SDValue();
}
assert(TopHalf && BottomHalf &&
"One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function.");
return DAG.getNode(
ISD::CONCAT_VECTORS, dl, VT,
BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
}
SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
SDValue Mask = MSC->getMask();
SDValue Data = MSC->getValue();
SDLoc DL(N);
// If the MSCATTER data type requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() != ISD::SETCC)
return SDValue();
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
SDValue Chain = MSC->getChain();
EVT MemoryVT = MSC->getMemoryVT();
unsigned Alignment = MSC->getOriginalAlignment();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
SDValue BasePtr = MSC->getBasePtr();
SDValue IndexLo, IndexHi;
std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MSC->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, MSC->getAAInfo(), MSC->getRanges());
SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo };
Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
DL, OpsLo, MMO);
SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi};
Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
DL, OpsHi, MMO);
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
SDValue DAGCombiner::visitMSTORE(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
SDValue Mask = MST->getMask();
SDValue Data = MST->getValue();
SDLoc DL(N);
// If the MSTORE data type requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() == ISD::SETCC) {
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0));
SDValue Chain = MST->getChain();
SDValue Ptr = MST->getBasePtr();
EVT MemoryVT = MST->getMemoryVT();
unsigned Alignment = MST->getOriginalAlignment();
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == Data->getValueType(0).getSizeInBits()/8) ?
Alignment/2 : Alignment;
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MST->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, MST->getAAInfo(), MST->getRanges());
Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
MST->isTruncatingStore());
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
MMO = DAG.getMachineFunction().
getMachineMemOperand(MST->getPointerInfo(),
MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
SecondHalfAlignment, MST->getAAInfo(),
MST->getRanges());
Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
MST->isTruncatingStore());
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
return SDValue();
}
SDValue DAGCombiner::visitMGATHER(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N);
SDValue Mask = MGT->getMask();
SDLoc DL(N);
// If the MGATHER result requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() != ISD::SETCC)
return SDValue();
EVT VT = N->getValueType(0);
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
SDValue Src0 = MGT->getValue();
SDValue Src0Lo, Src0Hi;
std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
SDValue Chain = MGT->getChain();
EVT MemoryVT = MGT->getMemoryVT();
unsigned Alignment = MGT->getOriginalAlignment();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue BasePtr = MGT->getBasePtr();
SDValue Index = MGT->getIndex();
SDValue IndexLo, IndexHi;
std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MGT->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MGT->getAAInfo(), MGT->getRanges());
SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo };
Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
MMO);
SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi};
Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
MMO);
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
// Build a factor node to remember that this load is independent of the
// other one.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
SDValue RetOps[] = { GatherRes, Chain };
return DAG.getMergeValues(RetOps, DL);
}
SDValue DAGCombiner::visitMLOAD(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
SDValue Mask = MLD->getMask();
SDLoc DL(N);
// If the MLOAD result requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() == ISD::SETCC) {
EVT VT = N->getValueType(0);
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
SDValue Src0 = MLD->getSrc0();
SDValue Src0Lo, Src0Hi;
std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
SDValue Chain = MLD->getChain();
SDValue Ptr = MLD->getBasePtr();
EVT MemoryVT = MLD->getMemoryVT();
unsigned Alignment = MLD->getOriginalAlignment();
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
Alignment/2 : Alignment;
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MLD->getAAInfo(), MLD->getRanges());
Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
ISD::NON_EXTLOAD);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
ISD::NON_EXTLOAD);
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
// Build a factor node to remember that this load is independent of the
// other one.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
SDValue RetOps[] = { LoadRes, Chain };
return DAG.getMergeValues(RetOps, DL);
}
return SDValue();
}
SDValue DAGCombiner::visitVSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDLoc DL(N);
// Canonicalize integer abs.
// vselect (setg[te] X, 0), X, -X ->
// vselect (setgt X, -1), X, -X ->
// vselect (setl[te] X, 0), -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N0.getOpcode() == ISD::SETCC) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
bool isAbs = false;
bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
(ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
if (isAbs) {
EVT VT = LHS.getValueType();
SDValue Shift = DAG.getNode(
ISD::SRA, DL, VT, LHS,
DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT));
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
AddToWorklist(Shift.getNode());
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
}
}
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
// If the VSELECT result requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (N0.getOpcode() == ISD::SETCC) {
EVT VT = N->getValueType(0);
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
// Add the new VSELECT nodes to the work list in case they need to be split
// again.
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
// Fold (vselect (build_vector all_ones), N1, N2) -> N1
if (ISD::isBuildVectorAllOnes(N0.getNode()))
return N1;
// Fold (vselect (build_vector all_zeros), N1, N2) -> N2
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return N2;
// The ConvertSelectToConcatVector function is assuming both the above
// checks for (vselect (build_vector all{ones,zeros) ...) have been made
// and addressed.
if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
N2.getOpcode() == ISD::CONCAT_VECTORS &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
return CV;
}
return SDValue();
}
SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue N3 = N->getOperand(3);
SDValue N4 = N->getOperand(4);
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
// fold select_cc lhs, rhs, x, x, cc -> x
if (N2 == N3)
return N2;
// Determine if the condition we're dealing with is constant
SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
N0, N1, CC, SDLoc(N), false);
if (SCC.getNode()) {
AddToWorklist(SCC.getNode());
if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
if (!SCCC->isNullValue())
return N2; // cond always true -> true val
else
return N3; // cond always false -> false val
} else if (SCC->getOpcode() == ISD::UNDEF) {
// When the condition is UNDEF, just return the first operand. This is
// coherent the DAG creation, no setcc node is created in this case
return N2;
} else if (SCC.getOpcode() == ISD::SETCC) {
// Fold to a simpler select_cc
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
SCC.getOperand(0), SCC.getOperand(1), N2, N3,
SCC.getOperand(2));
}
}
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N2, N3))
return SDValue(N, 0); // Don't revisit N.
// fold select_cc into other things, such as min/max/abs
return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
}
SDValue DAGCombiner::visitSETCC(SDNode *N) {
return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
cast<CondCodeSDNode>(N->getOperand(2))->get(),
SDLoc(N));
}
/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
/// a build_vector of constants.
/// This function is called by the DAGCombiner when visiting sext/zext/aext
/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
/// Vector extends are not folded if operations are legal; this is to
/// avoid introducing illegal build_vector dag nodes.
static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
SelectionDAG &DAG, bool LegalTypes,
bool LegalOperations) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
&& "Expected EXTEND dag node in input!");
// fold (sext c1) -> c1
// fold (zext c1) -> c1
// fold (aext c1) -> c1
if (isa<ConstantSDNode>(N0))
return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode();
// fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
// fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
// fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
EVT SVT = VT.getScalarType();
if (!(VT.isVector() &&
(!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
return nullptr;
// We can fold this node into a build_vector.
unsigned VTBits = SVT.getSizeInBits();
unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits();
SmallVector<SDValue, 8> Elts;
unsigned NumElts = VT.getVectorNumElements();
SDLoc DL(N);
for (unsigned i=0; i != NumElts; ++i) {
SDValue Op = N0->getOperand(i);
if (Op->getOpcode() == ISD::UNDEF) {
Elts.push_back(DAG.getUNDEF(SVT));
continue;
}
SDLoc DL(Op);
// Get the constant value and if needed trunc it to the size of the type.
// Nodes like build_vector might have constants wider than the scalar type.
APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
else
Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode();
}
// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
// transformation. Returns true if extension are possible and the above
// mentioned transformation is profitable.
static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
unsigned ExtOpc,
SmallVectorImpl<SDNode *> &ExtendNodes,
const TargetLowering &TLI) {
bool HasCopyToRegUses = false;
bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
UE = N0.getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User == N)
continue;
if (UI.getUse().getResNo() != N0.getResNo())
continue;
// FIXME: Only extend SETCC N, N and SETCC N, c for now.
if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
// Sign bits will be lost after a zext.
return false;
bool Add = false;
for (unsigned i = 0; i != 2; ++i) {
SDValue UseOp = User->getOperand(i);
if (UseOp == N0)
continue;
if (!isa<ConstantSDNode>(UseOp))
return false;
Add = true;
}
if (Add)
ExtendNodes.push_back(User);
continue;
}
// If truncates aren't free and there are users we can't
// extend, it isn't worthwhile.
if (!isTruncFree)
return false;
// Remember if this value is live-out.
if (User->getOpcode() == ISD::CopyToReg)
HasCopyToRegUses = true;
}
if (HasCopyToRegUses) {
bool BothLiveOut = false;
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
BothLiveOut = true;
break;
}
}
if (BothLiveOut)
// Both unextended and extended values are live out. There had better be
// a good reason for the transformation.
return ExtendNodes.size();
}
return true;
}
void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
SDValue Trunc, SDValue ExtLoad, SDLoc DL,
ISD::NodeType ExtType) {
// Extend SetCC uses if necessary.
for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
SDNode *SetCC = SetCCs[i];
SmallVector<SDValue, 4> Ops;
for (unsigned j = 0; j != 2; ++j) {
SDValue SOp = SetCC->getOperand(j);
if (SOp == Trunc)
Ops.push_back(ExtLoad);
else
Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
}
Ops.push_back(SetCC->getOperand(2));
CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
}
}
// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT DstVT = N->getValueType(0);
EVT SrcVT = N0.getValueType();
assert((N->getOpcode() == ISD::SIGN_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND) &&
"Unexpected node type (not an extend)!");
// fold (sext (load x)) to multiple smaller sextloads; same for zext.
// For example, on a target with legal v4i32, but illegal v8i32, turn:
// (v8i32 (sext (v8i16 (load x))))
// into:
// (v8i32 (concat_vectors (v4i32 (sextload x)),
// (v4i32 (sextload (x + 16)))))
// Where uses of the original load, i.e.:
// (v8i16 (load x))
// are replaced with:
// (v8i16 (truncate
// (v8i32 (concat_vectors (v4i32 (sextload x)),
// (v4i32 (sextload (x + 16)))))))
//
// This combine is only applicable to illegal, but splittable, vectors.
// All legal types, and illegal non-vector types, are handled elsewhere.
// This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
//
if (N0->getOpcode() != ISD::LOAD)
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
!N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
!DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
return SDValue();
SmallVector<SDNode *, 4> SetCCs;
if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI))
return SDValue();
ISD::LoadExtType ExtType =
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
// Try to split the vector types to get down to legal types.
EVT SplitSrcVT = SrcVT;
EVT SplitDstVT = DstVT;
while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
SplitSrcVT.getVectorNumElements() > 1) {
SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
}
if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
return SDValue();
SDLoc DL(N);
const unsigned NumSplits =
DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
const unsigned Stride = SplitSrcVT.getStoreSize();
SmallVector<SDValue, 4> Loads;
SmallVector<SDValue, 4> Chains;
SDValue BasePtr = LN0->getBasePtr();
for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
const unsigned Offset = Idx * Stride;
const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
SDValue SplitLoad = DAG.getExtLoad(
ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr,
LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT,
LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(),
Align, LN0->getAAInfo());
BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
DAG.getConstant(Stride, DL, BasePtr.getValueType()));
Loads.push_back(SplitLoad.getValue(0));
Chains.push_back(SplitLoad.getValue(1));
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
CombineTo(N, NewValue);
// Replace uses of the original load (before extension)
// with a truncate of the concatenated sextloaded vectors.
SDValue Trunc =
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
CombineTo(N0.getNode(), Trunc, NewChain);
ExtendSetCCUses(SetCCs, Trunc, NewValue, DL,
(ISD::NodeType)N->getOpcode());
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
// fold (sext (sext x)) -> (sext x)
// fold (sext (aext x)) -> (sext x)
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
N0.getOperand(0));
if (N0.getOpcode() == ISD::TRUNCATE) {
// fold (sext (truncate (load x))) -> (sext (smaller load x))
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode* oye = N0.getNode()->getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
SDValue Op = N0.getOperand(0);
unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
unsigned DestBits = VT.getScalarType().getSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
if (OpBits == DestBits) {
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
// bits, it is already ready.
if (NumSignBits > DestBits-MidBits)
return Op;
} else if (OpBits < DestBits) {
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
// bits, just sext from i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
} else {
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
// bits, just truncate to i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
}
// fold (sext (truncate x)) -> (sextinreg x).
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
N0.getValueType())) {
if (OpBits < DestBits)
Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
else if (OpBits > DestBits)
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
DAG.getValueType(N0.getValueType()));
}
}
// fold (sext (load x)) -> (sext (truncate (sextload x)))
// Only generate vector extloads when 1) they're legal, and 2) they are
// deemed desirable by the target.
if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
((!LegalOperations && !VT.isVector() &&
!cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
if (VT.isVector())
DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
ISD::SIGN_EXTEND);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (sext (load x)) to multiple smaller sextloads.
// Only on illegal but splittable vectors.
if (SDValue ExtLoad = CombineExtLoad(N))
return ExtLoad;
// fold (sext (sextload x)) -> (sext (truncate (sextload x)))
// fold (sext ( extload x)) -> (sext (truncate (sextload x)))
if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), MemVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (sext (and/or/xor (load x), cst)) ->
// (and/or/xor (sextload x), (sext cst))
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
SetCCs, TLI);
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
LN0->getChain(), LN0->getBasePtr(),
LN0->getMemoryVT(),
LN0->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.sext(VT.getSizeInBits());
SDLoc DL(N);
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
ExtLoad, DAG.getConstant(Mask, DL, VT));
SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
SDLoc(N0.getOperand(0)),
N0.getOperand(0).getValueType(), ExtLoad);
CombineTo(N, And);
CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
ISD::SIGN_EXTEND);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
if (N0.getOpcode() == ISD::SETCC) {
EVT N0VT = N0.getOperand(0).getValueType();
// sext(setcc) -> sext_in_reg(vsetcc) for vectors.
// Only do this before legalize for now.
if (VT.isVector() && !LegalOperations &&
TLI.getBooleanContents(N0VT) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
// On some architectures (such as SSE/NEON/etc) the SETCC result type is
// of the same size as the compared operands. Only optimize sext(setcc())
// if this is the case.
EVT SVT = getSetCCResultType(N0VT);
// We know that the # elements of the results is the same as the
// # elements of the compare (and the # elements of the compare result
// for that matter). Check to see that they are the same size. If so,
// we know that the element size of the sext'd result matches the
// element size of the compare operands.
if (VT.getSizeInBits() == SVT.getSizeInBits())
return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If the desired elements are smaller or larger than the source
// elements we can use a matching integer vector type and then
// truncate/sign extend
EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
if (SVT == MatchingVectorType) {
SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
N0.getOperand(0), N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
}
}
// sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0)
unsigned ElementWidth = VT.getScalarType().getSizeInBits();
SDLoc DL(N);
SDValue NegOne =
DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT);
SDValue SCC =
SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
NegOne, DAG.getConstant(0, DL, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
if (SCC.getNode()) return SCC;
if (!VT.isVector()) {
EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType());
if (!LegalOperations ||
TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) {
SDLoc DL(N);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
SDValue SetCC = DAG.getSetCC(DL, SetCCVT,
N0.getOperand(0), N0.getOperand(1), CC);
return DAG.getSelect(DL, VT, SetCC,
NegOne, DAG.getConstant(0, DL, VT));
}
}
}
// fold (sext x) -> (zext x) if the sign bit is known zero.
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
return SDValue();
}
// isTruncateOf - If N is a truncate of some other value, return true, record
// the value being truncated in Op and which of Op's bits are zero in KnownZero.
// This function computes KnownZero to avoid a duplicated call to
// computeKnownBits in the caller.
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
APInt &KnownZero) {
APInt KnownOne;
if (N->getOpcode() == ISD::TRUNCATE) {
Op = N->getOperand(0);
DAG.computeKnownBits(Op, KnownZero, KnownOne);
return true;
}
if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
return false;
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
assert(Op0.getValueType() == Op1.getValueType());
if (isNullConstant(Op0))
Op = Op1;
else if (isNullConstant(Op1))
Op = Op0;
else
return false;
DAG.computeKnownBits(Op, KnownZero, KnownOne);
if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
return false;
return true;
}
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
// fold (zext (zext x)) -> (zext x)
// fold (zext (aext x)) -> (zext x)
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
N0.getOperand(0));
// fold (zext (truncate x)) -> (zext x) or
// (zext (truncate x)) -> (truncate x)
// This is valid when the truncated bits of x are already zero.
// FIXME: We should extend this to work for vectors too.
SDValue Op;
APInt KnownZero;
if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
APInt TruncatedBits =
(Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
APInt(Op.getValueSizeInBits(), 0) :
APInt::getBitsSet(Op.getValueSizeInBits(),
N0.getValueSizeInBits(),
std::min(Op.getValueSizeInBits(),
VT.getSizeInBits()));
if (TruncatedBits == (KnownZero & TruncatedBits)) {
if (VT.bitsGT(Op.getValueType()))
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
if (VT.bitsLT(Op.getValueType()))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
return Op;
}
}
// fold (zext (truncate (load x))) -> (zext (smaller load x))
// fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode* oye = N0.getNode()->getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (zext (truncate x)) -> (and x, mask)
if (N0.getOpcode() == ISD::TRUNCATE) {
// fold (zext (truncate (load x))) -> (zext (smaller load x))
// fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode *oye = N0.getNode()->getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
EVT SrcVT = N0.getOperand(0).getValueType();
EVT MinVT = N0.getValueType();
// Try to mask before the extension to avoid having to generate a larger mask,
// possibly over several sub-vectors.
if (SrcVT.bitsLT(VT)) {
if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
SDValue Op = N0.getOperand(0);
Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
AddToWorklist(Op.getNode());
return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
}
}
if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
SDValue Op = N0.getOperand(0);
if (SrcVT.bitsLT(VT)) {
Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
AddToWorklist(Op.getNode());
} else if (SrcVT.bitsGT(VT)) {
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
AddToWorklist(Op.getNode());
}
return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
}
}
// Fold (zext (and (trunc x), cst)) -> (and x, cst),
// if either of the casts is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType()) ||
!TLI.isZExtFree(N0.getValueType(), VT))) {
SDValue X = N0.getOperand(0).getOperand(0);
if (X.getValueType().bitsLT(VT)) {
X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
} else if (X.getValueType().bitsGT(VT)) {
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
}
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
X, DAG.getConstant(Mask, DL, VT));
}
// fold (zext (load x)) -> (zext (truncate (zextload x)))
// Only generate vector extloads when 1) they're legal, and 2) they are
// deemed desirable by the target.
if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
((!LegalOperations && !VT.isVector() &&
!cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
if (VT.isVector())
DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
ISD::ZERO_EXTEND);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (zext (load x)) to multiple smaller zextloads.
// Only on illegal but splittable vectors.
if (SDValue ExtLoad = CombineExtLoad(N))
return ExtLoad;
// fold (zext (and/or/xor (load x), cst)) ->
// (and/or/xor (zextload x), (zext cst))
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
SetCCs, TLI);
if (DoXform) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
LN0->getChain(), LN0->getBasePtr(),
LN0->getMemoryVT(),
LN0->getMemOperand());
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL(N);
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
ExtLoad, DAG.getConstant(Mask, DL, VT));
SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
SDLoc(N0.getOperand(0)),
N0.getOperand(0).getValueType(), ExtLoad);
CombineTo(N, And);
CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
ISD::ZERO_EXTEND);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
// fold (zext (zextload x)) -> (zext (truncate (zextload x)))
// fold (zext ( extload x)) -> (zext (truncate (zextload x)))
if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), MemVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
ExtLoad),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
if (N0.getOpcode() == ISD::SETCC) {
if (!LegalOperations && VT.isVector() &&
N0.getValueType().getVectorElementType() == MVT::i1) {
EVT N0VT = N0.getOperand(0).getValueType();
if (getSetCCResultType(N0VT) == N0.getValueType())
return SDValue();
// zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
// Only do this before legalize for now.
EVT EltVT = VT.getVectorElementType();
SDLoc DL(N);
SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
DAG.getConstant(1, DL, EltVT));
if (VT.getSizeInBits() == N0VT.getSizeInBits())
// We know that the # elements of the results is the same as the
// # elements of the compare (and the # elements of the compare result
// for that matter). Check to see that they are the same size. If so,
// we know that the element size of the sext'd result matches the
// element size of the compare operands.
return DAG.getNode(ISD::AND, DL, VT,
DAG.getSetCC(DL, VT, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get()),
DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
OneOps));
// If the desired elements are smaller or larger than the source
// elements we can use a matching integer vector type and then
// truncate/sign extend
EVT MatchingElementType =
EVT::getIntegerVT(*DAG.getContext(),
N0VT.getScalarType().getSizeInBits());
EVT MatchingVectorType =
EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
N0VT.getVectorNumElements());
SDValue VsetCC =
DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getNode(ISD::AND, DL, VT,
DAG.getSExtOrTrunc(VsetCC, DL, VT),
DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps));
}
// zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
SDLoc DL(N);
SDValue SCC =
SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
if (SCC.getNode()) return SCC;
}
// (zext (shl (zext x), cst)) -> (shl (zext x), cst)
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
N0.hasOneUse()) {
SDValue ShAmt = N0.getOperand(1);
unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
if (N0.getOpcode() == ISD::SHL) {
SDValue InnerZExt = N0.getOperand(0);
// If the original shl may be shifting out bits, do not perform this
// transformation.
unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
InnerZExt.getOperand(0).getValueType().getSizeInBits();
if (ShAmtVal > KnownZeroBits)
return SDValue();
}
SDLoc DL(N);
// Ensure that the shift amount is wide enough for the shifted value.
if (VT.getSizeInBits() >= 256)
ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
return DAG.getNode(N0.getOpcode(), DL, VT,
DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
ShAmt);
}
return SDValue();
}
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
if (N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
// fold (aext (truncate (load x))) -> (aext (smaller load x))
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
SDNode* oye = N0.getNode()->getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
AddToWorklist(oye);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (aext (truncate x))
if (N0.getOpcode() == ISD::TRUNCATE) {
SDValue TruncOp = N0.getOperand(0);
if (TruncOp.getValueType() == VT)
return TruncOp; // x iff x size == zext size.
if (TruncOp.getValueType().bitsGT(VT))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
}
// Fold (aext (and (trunc x), cst)) -> (and x, cst)
// if the trunc is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType())) {
SDValue X = N0.getOperand(0).getOperand(0);
if (X.getValueType().bitsLT(VT)) {
X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
} else if (X.getValueType().bitsGT(VT)) {
X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
}
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
X, DAG.getConstant(Mask, DL, VT));
}
// fold (aext (load x)) -> (aext (truncate (extload x)))
// None of the supported targets knows how to perform load and any_ext
// on vectors in one instruction. We only perform this transformation on
// scalars.
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad);
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
ISD::ANY_EXTEND);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (aext (zextload x)) -> (aext (truncate (zextload x)))
// fold (aext (sextload x)) -> (aext (truncate (sextload x)))
// fold (aext ( extload x)) -> (aext (truncate (extload x)))
if (N0.getOpcode() == ISD::LOAD &&
!ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
ISD::LoadExtType ExtType = LN0->getExtensionType();
EVT MemVT = LN0->getMemoryVT();
if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
VT, LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
if (N0.getOpcode() == ISD::SETCC) {
// For vectors:
// aext(setcc) -> vsetcc
// aext(setcc) -> truncate(vsetcc)
// aext(setcc) -> aext(vsetcc)
// Only do this before legalize for now.
if (VT.isVector() && !LegalOperations) {
EVT N0VT = N0.getOperand(0).getValueType();
// We know that the # elements of the results is the same as the
// # elements of the compare (and the # elements of the compare result
// for that matter). Check to see that they are the same size. If so,
// we know that the element size of the sext'd result matches the
// element size of the compare operands.
if (VT.getSizeInBits() == N0VT.getSizeInBits())
return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If the desired elements are smaller or larger than the source
// elements we can use a matching integer vector type and then
// truncate/any extend
else {
EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
SDValue VsetCC =
DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
}
}
// aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
SDLoc DL(N);
SDValue SCC =
SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
if (SCC.getNode())
return SCC;
}
return SDValue();
}
/// See if the specified operand can be simplified with the knowledge that only
/// the bits specified by Mask are used. If so, return the simpler operand,
/// otherwise return a null SDValue.
SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
switch (V.getOpcode()) {
default: break;
case ISD::Constant: {
const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
assert(CV && "Const value should be ConstSDNode.");
const APInt &CVal = CV->getAPIntValue();
APInt NewVal = CVal & Mask;
if (NewVal != CVal)
return DAG.getConstant(NewVal, SDLoc(V), V.getValueType());
break;
}
case ISD::OR:
case ISD::XOR:
// If the LHS or RHS don't contribute bits to the or, drop them.
if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
return V.getOperand(1);
if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
return V.getOperand(0);
break;
case ISD::SRL:
// Only look at single-use SRLs.
if (!V.getNode()->hasOneUse())
break;
if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) {
// See if we can recursively simplify the LHS.
unsigned Amt = RHSC->getZExtValue();
// Watch out for shift count overflow though.
if (Amt >= Mask.getBitWidth()) break;
APInt NewMask = Mask << Amt;
if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
SimplifyLHS, V.getOperand(1));
}
}
return SDValue();
}
/// If the result of a wider load is shifted to right of N bits and then
/// truncated to a narrower type and where N is a multiple of number of bits of
/// the narrower type, transform it to a narrower load from address + N / num of
/// bits of new type. If the result is to be extended, also fold the extension
/// to form a extending load.
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
unsigned Opc = N->getOpcode();
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT ExtVT = VT;
// This transformation isn't valid for vector loads.
if (VT.isVector())
return SDValue();
// Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
// extended to VT.
if (Opc == ISD::SIGN_EXTEND_INREG) {
ExtType = ISD::SEXTLOAD;
ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
} else if (Opc == ISD::SRL) {
// Another special-case: SRL is basically zero-extending a narrower value.
ExtType = ISD::ZEXTLOAD;
N0 = SDValue(N, 0);
ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!N01) return SDValue();
ExtVT = EVT::getIntegerVT(*DAG.getContext(),
VT.getSizeInBits() - N01->getZExtValue());
}
if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT))
return SDValue();
unsigned EVTBits = ExtVT.getSizeInBits();
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!ExtVT.isRound())
return SDValue();
unsigned ShAmt = 0;
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
ShAmt = N01->getZExtValue();
// Is the shift amount a multiple of size of VT?
if ((ShAmt & (EVTBits-1)) == 0) {
N0 = N0.getOperand(0);
// Is the load width a multiple of size of VT?
if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
return SDValue();
}
// At this point, we must have a load or else we can't do the transform.
if (!isa<LoadSDNode>(N0)) return SDValue();
// Because a SRL must be assumed to *need* to zero-extend the high bits
// (as opposed to anyext the high bits), we can't combine the zextload
// lowering of SRL and an sextload.
if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
return SDValue();
// If the shift amount is larger than the input type then we're not
// accessing any of the loaded bytes. If the load was a zextload/extload
// then the result of the shift+trunc is zero/undef (handled elsewhere).
if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
return SDValue();
}
}
// If the load is shifted left (and the result isn't shifted back right),
// we can fold the truncate through the shift.
unsigned ShLeftAmt = 0;
if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
ShLeftAmt = N01->getZExtValue();
N0 = N0.getOperand(0);
}
}
// If we haven't found a load, we can't narrow it. Don't transform one with
// multiple uses, this would require adding a new load.
if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
return SDValue();
// Don't change the width of a volatile load.
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (LN0->isVolatile())
return SDValue();
// Verify that we are actually reducing a load width here.
if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
return SDValue();
// For the transform to be legal, the load must produce only two values
// (the value loaded and the chain). Don't transform a pre-increment
// load, for example, which produces an extra value. Otherwise the
// transformation is not equivalent, and the downstream logic to replace
// uses gets things wrong.
if (LN0->getNumValues() > 2)
return SDValue();
// If the load that we're shrinking is an extload and we're not just
// discarding the extension we can't simply shrink the load. Bail.
// TODO: It would be possible to merge the extensions in some cases.
if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
return SDValue();
if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT))
return SDValue();
EVT PtrType = N0.getOperand(1).getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
// It's not possible to generate a constant of extended or untyped type.
return SDValue();
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (DAG.getDataLayout().isBigEndian()) {
unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
}
uint64_t PtrOff = ShAmt / 8;
unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
SDLoc DL(LN0);
SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
PtrType, LN0->getBasePtr(),
DAG.getConstant(PtrOff, DL, PtrType));
AddToWorklist(NewPtr.getNode());
SDValue Load;
if (ExtType == ISD::NON_EXTLOAD)
Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff),
LN0->isVolatile(), LN0->isNonTemporal(),
LN0->isInvariant(), NewAlign, LN0->getAAInfo());
else
Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff),
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
LN0->isInvariant(), NewAlign, LN0->getAAInfo());
// Replace the old load's chain with the new load's chain.
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
// Shift the result left, if we've swallowed a left shift.
SDValue Result = Load;
if (ShLeftAmt != 0) {
EVT ShImmTy = getShiftAmountTy(Result.getValueType());
if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
ShImmTy = VT;
// If the shift amount is as large as the result size (but, presumably,
// no larger than the source) then the useful bits of the result are
// zero; we can't simply return the shortened shift, because the result
// of that operation is undefined.
SDLoc DL(N0);
if (ShLeftAmt >= VT.getSizeInBits())
Result = DAG.getConstant(0, DL, VT);
else
Result = DAG.getNode(ISD::SHL, DL, VT,
Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
}
// Return the new loaded value.
return Result;
}
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N1)->getVT();
unsigned VTBits = VT.getScalarType().getSizeInBits();
unsigned EVTBits = EVT.getScalarType().getSizeInBits();
if (N0.isUndef())
return DAG.getUNDEF(VT);
// fold (sext_in_reg c1) -> c1
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
// If the input is already sign extended, just drop the extension.
if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
return N0;
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
N0.getOperand(0), N1);
// fold (sext_in_reg (sext x)) -> (sext x)
// fold (sext_in_reg (aext x)) -> (sext x)
// if x is small enough.
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
}
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
// fold operands of sext_in_reg based on knowledge that the top bits are not
// demanded.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (sext_in_reg (load x)) -> (smaller sextload x)
// fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
if (SDValue NarrowLoad = ReduceLoadWidth(N))
return NarrowLoad;
// fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
// fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
// We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
if (N0.getOpcode() == ISD::SRL) {
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
// We can turn this into an SRA iff the input to the SRL is already sign
// extended enough.
unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
return DAG.getNode(ISD::SRA, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1));
}
}
// fold (sext_inreg (extload x)) -> (sextload x)
if (ISD::isEXTLoad(N0.getNode()) &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), EVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
AddToWorklist(ExtLoad.getNode());
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse() &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), EVT,
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
N0.getOperand(1), false);
if (BSwap.getNode())
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
BSwap, N1);
}
return SDValue();
}
SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(VT);
if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
LegalOperations))
return SDValue(Res, 0);
return SDValue();
}
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
bool isLE = DAG.getDataLayout().isLittleEndian();
// noop truncate
if (N0.getValueType() == N->getValueType(0))
return N0;
// fold (truncate c1) -> c1
if (isConstantIntBuildVectorOrConstantInt(N0))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
// fold (truncate (truncate x)) -> (truncate x)
if (N0.getOpcode() == ISD::TRUNCATE)
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x
if (N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND ||
N0.getOpcode() == ISD::ANY_EXTEND) {
if (N0.getOperand(0).getValueType().bitsLT(VT))
// if the source is smaller than the dest, we still need an extend
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
N0.getOperand(0));
if (N0.getOperand(0).getValueType().bitsGT(VT))
// if the source is larger than the dest, than we just need the truncate
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
// if the source and dest are the same type, we can drop both the extend
// and the truncate.
return N0.getOperand(0);
}
// Fold extract-and-trunc into a narrow extract. For example:
// i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
// i32 y = TRUNCATE(i64 x)
// -- becomes --
// v16i8 b = BITCAST (v2i64 val)
// i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
//
// Note: We only run this optimization after type legalization (which often
// creates this pattern) and before operation legalization after which
// we need to be more careful about the vector instructions that we generate.
if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
EVT VecTy = N0.getOperand(0).getValueType();
EVT ExTy = N0.getValueType();
EVT TrTy = N->getValueType(0);
unsigned NumElem = VecTy.getVectorNumElements();
unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
SDValue EltNo = N0->getOperand(1);
if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
NVT, N0.getOperand(0));
SDLoc DL(N);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
DL, TrTy, V,
DAG.getConstant(Index, DL, IndexTy));
}
}
// trunc (select c, a, b) -> select c, (trunc a), (trunc b)
if (N0.getOpcode() == ISD::SELECT) {
EVT SrcVT = N0.getValueType();
if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
TLI.isTruncateFree(SrcVT, VT)) {
SDLoc SL(N0);
SDValue Cond = N0.getOperand(0);
SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
}
}
// Fold a series of buildvector, bitcast, and truncate if possible.
// For example fold
// (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
// (2xi32 (buildvector x, y)).
if (Level == AfterLegalizeVectorOps && VT.isVector() &&
N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
N0.getOperand(0).hasOneUse()) {
SDValue BuildVect = N0.getOperand(0);
EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
EVT TruncVecEltTy = VT.getVectorElementType();
// Check that the element types match.
if (BuildVectEltTy == TruncVecEltTy) {
// Now we only need to compute the offset of the truncated elements.
unsigned BuildVecNumElts = BuildVect.getNumOperands();
unsigned TruncVecNumElts = VT.getVectorNumElements();
unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
"Invalid number of elements");
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
Opnds.push_back(BuildVect.getOperand(i));
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
}
}
// See if we can simplify the input to this truncate through knowledge that
// only the low bits are being used.
// For example "trunc (or (shl x, 8), y)" // -> trunc y
// Currently we only perform this optimization on scalars because vectors
// may have different active low bits.
if (!VT.isVector()) {
SDValue Shorter =
GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
VT.getSizeInBits()));
if (Shorter.getNode())
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
}
// fold (truncate (load x)) -> (smaller load x)
// fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
if (SDValue Reduced = ReduceLoadWidth(N))
return Reduced;
// Handle the case where the load remains an extending load even
// after truncation.
if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (!LN0->isVolatile() &&
LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
VT, LN0->getChain(), LN0->getBasePtr(),
LN0->getMemoryVT(),
LN0->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
return NewLoad;
}
}
}
// fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
// where ... are all 'undef'.
if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
SmallVector<EVT, 8> VTs;
SDValue V;
unsigned Idx = 0;
unsigned NumDefs = 0;
for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
SDValue X = N0.getOperand(i);
if (X.getOpcode() != ISD::UNDEF) {
V = X;
Idx = i;
NumDefs++;
}
// Stop if more than one members are non-undef.
if (NumDefs > 1)
break;
VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
VT.getVectorElementType(),
X.getValueType().getVectorNumElements()));
}
if (NumDefs == 0)
return DAG.getUNDEF(VT);
if (NumDefs == 1) {
assert(V.getNode() && "The single defined operand is empty!");
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
if (i != Idx) {
Opnds.push_back(DAG.getUNDEF(VTs[i]));
continue;
}
SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
AddToWorklist(NV.getNode());
Opnds.push_back(NV);
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
}
}
// Simplify the operands using demanded-bits information.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
SDValue Elt = N->getOperand(i);
if (Elt.getOpcode() != ISD::MERGE_VALUES)
return Elt.getNode();
return Elt.getOperand(Elt.getResNo()).getNode();
}
/// build_pair (load, load) -> load
/// if load locations are consecutive.
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
assert(N->getOpcode() == ISD::BUILD_PAIR);
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
LD1->getAddressSpace() != LD2->getAddressSpace())
return SDValue();
EVT LD1VT = LD1->getValueType(0);
if (ISD::isNON_EXTLoad(LD2) &&
LD2->hasOneUse() &&
// If both are volatile this would reduce the number of volatile loads.
// If one is volatile it might be ok, but play conservative and bail out.
!LD1->isVolatile() &&
!LD2->isVolatile() &&
DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
unsigned Align = LD1->getAlignment();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
VT.getTypeForEVT(*DAG.getContext()));
if (NewAlign <= Align &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
LD1->getBasePtr(), LD1->getPointerInfo(),
false, false, false, Align);
}
return SDValue();
}
SDValue DAGCombiner::visitBITCAST(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// If the input is a BUILD_VECTOR with all constant elements, fold this now.
// Only do this before legalize, since afterward the target may be depending
// on the bitconvert.
// First check to see if this is all constant.
if (!LegalTypes &&
N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
VT.isVector()) {
bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant();
EVT DestEltVT = N->getValueType(0).getVectorElementType();
assert(!DestEltVT.isVector() &&
"Element type of vector ValueType must not be vector!");
if (isSimple)
return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
}
// If the input is a constant, let getNode fold it.
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
// If we can't allow illegal operations, we need to check that this is just
// a fp -> int or int -> conversion and that the resulting operation will
// be legal.
if (!LegalOperations ||
(isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
(isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
TLI.isOperationLegal(ISD::Constant, VT)))
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
}
// (conv (conv x, t1), t2) -> (conv x, t2)
if (N0.getOpcode() == ISD::BITCAST)
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
N0.getOperand(0));
// fold (conv (load x)) -> (load (conv*)x)
// If the resultant load doesn't need a higher alignment than the original!
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile() &&
// Do not remove the cast if the types differ in endian layout.
TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
unsigned Align = DAG.getDataLayout().getABITypeAlignment(
VT.getTypeForEVT(*DAG.getContext()));
unsigned OrigAlign = LN0->getAlignment();
if (Align <= OrigAlign) {
SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
LN0->getBasePtr(), LN0->getPointerInfo(),
LN0->isVolatile(), LN0->isNonTemporal(),
LN0->isInvariant(), OrigAlign,
LN0->getAAInfo());
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
return Load;
}
}
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
// This often reduces constant pool loads.
if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
(N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
N0.getNode()->hasOneUse() && VT.isInteger() &&
!VT.isVector() && !N0.getValueType().isVector()) {
SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
N0.getOperand(0));
AddToWorklist(NewConv.getNode());
SDLoc DL(N);
APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
if (N0.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::XOR, DL, VT,
NewConv, DAG.getConstant(SignBit, DL, VT));
assert(N0.getOpcode() == ISD::FABS);
return DAG.getNode(ISD::AND, DL, VT,
NewConv, DAG.getConstant(~SignBit, DL, VT));
}
// fold (bitconvert (fcopysign cst, x)) ->
// (or (and (bitconvert x), sign), (and cst, (not sign)))
// Note that we don't handle (copysign x, cst) because this can always be
// folded to an fneg or fabs.
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
VT.isInteger() && !VT.isVector()) {
unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
if (isTypeLegal(IntXVT)) {
SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
IntXVT, N0.getOperand(1));
AddToWorklist(X.getNode());
// If X has a different width than the result/lhs, sext it or truncate it.
unsigned VTWidth = VT.getSizeInBits();
if (OrigXWidth < VTWidth) {
X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
AddToWorklist(X.getNode());
} else if (OrigXWidth > VTWidth) {
// To get the sign bit in the right place, we have to shift it right
// before truncating.
SDLoc DL(X);
X = DAG.getNode(ISD::SRL, DL,
X.getValueType(), X,
DAG.getConstant(OrigXWidth-VTWidth, DL,
X.getValueType()));
AddToWorklist(X.getNode());
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
AddToWorklist(X.getNode());
}
APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
X = DAG.getNode(ISD::AND, SDLoc(X), VT,
X, DAG.getConstant(SignBit, SDLoc(X), VT));
AddToWorklist(X.getNode());
SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
VT, N0.getOperand(0));
Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
AddToWorklist(Cst.getNode());
return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
}
}
// bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
if (N0.getOpcode() == ISD::BUILD_PAIR)
if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
return CombineLD;
// Remove double bitcasts from shuffles - this is often a legacy of
// XformToShuffleWithZero being used to combine bitmaskings (of
// float vectors bitcast to integer vectors) into shuffles.
// bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
N0->getOpcode() == ISD::VECTOR_SHUFFLE &&
VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
!(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
// If operands are a bitcast, peek through if it casts the original VT.
// If operands are a constant, just bitcast back to original VT.
auto PeekThroughBitcast = [&](SDValue Op) {
if (Op.getOpcode() == ISD::BITCAST &&
Op.getOperand(0).getValueType() == VT)
return SDValue(Op.getOperand(0));
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
return SDValue();
};
SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
if (!(SV0 && SV1))
return SDValue();
int MaskScale =
VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
SmallVector<int, 8> NewMask;
for (int M : SVN->getMask())
for (int i = 0; i != MaskScale; ++i)
NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
if (!LegalMask) {
std::swap(SV0, SV1);
ShuffleVectorSDNode::commuteMask(NewMask);
LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
}
if (LegalMask)
return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
}
return SDValue();
}
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
EVT VT = N->getValueType(0);
return CombineConsecutiveLoads(N, VT);
}
/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
/// operands. DstEltVT indicates the destination element value type.
SDValue DAGCombiner::
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
// If this is already the right type, we're done.
if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
unsigned SrcBitSize = SrcEltVT.getSizeInBits();
unsigned DstBitSize = DstEltVT.getSizeInBits();
// If this is a conversion of N elements of one type to N elements of another
// type, convert each element. This handles FP<->INT cases.
if (SrcBitSize == DstBitSize) {
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
BV->getValueType(0).getVectorNumElements());
// Due to the FP element handling below calling this routine recursively,
// we can end up with a scalar-to-vector node here.
if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
DAG.getNode(ISD::BITCAST, SDLoc(BV),
DstEltVT, BV->getOperand(0)));
SmallVector<SDValue, 8> Ops;
for (SDValue Op : BV->op_values()) {
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated. Make that explicit here.
if (Op.getValueType() != SrcEltVT)
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
DstEltVT, Op));
AddToWorklist(Ops.back().getNode());
}
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops);
}
// Otherwise, we're growing or shrinking the elements. To avoid having to
// handle annoying details of growing/shrinking FP values, we convert them to
// int first.
if (SrcEltVT.isFloatingPoint()) {
// Convert the input float vector to a int vector where the elements are the
// same sizes.
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
SrcEltVT = IntVT;
}
// Now we know the input is an integer vector. If the output is a FP type,
// convert to integer first, then to FP of the right size.
if (DstEltVT.isFloatingPoint()) {
EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
// Next, convert to FP elements of the same size.
return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
}
SDLoc DL(BV);
// Okay, we know the src/dst types are both integers of differing types.
// Handling growing first.
assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
if (SrcBitSize < DstBitSize) {
unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e;
i += NumInputsPerOutput) {
bool isLE = DAG.getDataLayout().isLittleEndian();
APInt NewBits = APInt(DstBitSize, 0);
bool EltIsUndef = true;
for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
// Shift the previously computed bits over.
NewBits <<= SrcBitSize;
SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
if (Op.getOpcode() == ISD::UNDEF) continue;
EltIsUndef = false;
NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
zextOrTrunc(SrcBitSize).zext(DstBitSize);
}
if (EltIsUndef)
Ops.push_back(DAG.getUNDEF(DstEltVT));
else
Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
}
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
// Finally, this must be the case where we are shrinking elements: each input
// turns into multiple outputs.
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
NumOutputsPerInput*BV->getNumOperands());
SmallVector<SDValue, 8> Ops;
for (const SDValue &Op : BV->op_values()) {
if (Op.getOpcode() == ISD::UNDEF) {
Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
continue;
}
APInt OpVal = cast<ConstantSDNode>(Op)->
getAPIntValue().zextOrTrunc(SrcBitSize);
for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
APInt ThisVal = OpVal.trunc(DstBitSize);
Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
OpVal = OpVal.lshr(DstBitSize);
}
// For big endian targets, swap the order of the pieces of each element.
if (DAG.getDataLayout().isBigEndian())
std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
}
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// Try to perform FMA combining on a given FADD node.
SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const TargetOptions &Options = DAG.getTarget().Options;
bool AllowFusion =
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
// Floating-point multiply-add with intermediate rounding.
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
bool LookThroughFPExt = TLI.isFPExtFree(VT);
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && N0.getOpcode() == ISD::FMUL &&
N1.getOpcode() == ISD::FMUL) {
if (N0.getNode()->use_size() > N1.getNode()->use_size())
std::swap(N0, N1);
}
// fold (fadd (fmul x, y), z) -> (fma x, y, z)
if (N0.getOpcode() == ISD::FMUL &&
(Aggressive || N0->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1), N1);
}
// fold (fadd x, (fmul y, z)) -> (fma y, z, x)
// Note: Commutes FADD operands.
if (N1.getOpcode() == ISD::FMUL &&
(Aggressive || N1->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(0), N1.getOperand(1), N0);
}
// Look through FP_EXTEND nodes to do more combining.
if (AllowFusion && LookThroughFPExt) {
// fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FMUL)
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)), N1);
}
// fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
// Note: Commutes FADD operands.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (N10.getOpcode() == ISD::FMUL)
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(1)), N0);
}
}
// More folding opportunities when target permits.
if ((AllowFusion || HasFMAD) && Aggressive) {
// fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
if (N0.getOpcode() == PreferredFusedOpcode &&
N0.getOperand(2).getOpcode() == ISD::FMUL) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(2).getOperand(0),
N0.getOperand(2).getOperand(1),
N1));
}
// fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
if (N1->getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FMUL) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(0), N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(2).getOperand(0),
N1.getOperand(2).getOperand(1),
N0));
}
if (AllowFusion && LookThroughFPExt) {
// fold (fadd (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y, (fma (fpext u), (fpext v), z))
auto FoldFAddFMAFPExtFMul = [&] (
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
Z));
};
if (N0.getOpcode() == PreferredFusedOpcode) {
SDValue N02 = N0.getOperand(2);
if (N02.getOpcode() == ISD::FP_EXTEND) {
SDValue N020 = N02.getOperand(0);
if (N020.getOpcode() == ISD::FMUL)
return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
N020.getOperand(0), N020.getOperand(1),
N1);
}
}
// fold (fadd (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
auto FoldFAddFPExtFMAFMul = [&] (
SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
Z));
};
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == PreferredFusedOpcode) {
SDValue N002 = N00.getOperand(2);
if (N002.getOpcode() == ISD::FMUL)
return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
N002.getOperand(0), N002.getOperand(1),
N1);
}
}
// fold (fadd x, (fma y, z, (fpext (fmul u, v)))
// -> (fma y, z, (fma (fpext u), (fpext v), x))
if (N1.getOpcode() == PreferredFusedOpcode) {
SDValue N12 = N1.getOperand(2);
if (N12.getOpcode() == ISD::FP_EXTEND) {
SDValue N120 = N12.getOperand(0);
if (N120.getOpcode() == ISD::FMUL)
return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
N120.getOperand(0), N120.getOperand(1),
N0);
}
}
// fold (fadd x, (fpext (fma y, z, (fmul u, v)))
// -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (N10.getOpcode() == PreferredFusedOpcode) {
SDValue N102 = N10.getOperand(2);
if (N102.getOpcode() == ISD::FMUL)
return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
N102.getOperand(0), N102.getOperand(1),
N0);
}
}
}
}
return SDValue();
}
/// Try to perform FMA combining on a given FSUB node.
SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
const TargetOptions &Options = DAG.getTarget().Options;
bool AllowFusion =
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
// Floating-point multiply-add with intermediate rounding.
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
bool LookThroughFPExt = TLI.isFPExtFree(VT);
// fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
if (N0.getOpcode() == ISD::FMUL &&
(Aggressive || N0->hasOneUse())) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(ISD::FNEG, SL, VT, N1));
}
// fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
// Note: Commutes FSUB operands.
if (N1.getOpcode() == ISD::FMUL &&
(Aggressive || N1->hasOneUse()))
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
N1.getOperand(0)),
N1.getOperand(1), N0);
// fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
if (N0.getOpcode() == ISD::FNEG &&
N0.getOperand(0).getOpcode() == ISD::FMUL &&
(Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
SDValue N00 = N0.getOperand(0).getOperand(0);
SDValue N01 = N0.getOperand(0).getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
DAG.getNode(ISD::FNEG, SL, VT, N1));
}
// Look through FP_EXTEND nodes to do more combining.
if (AllowFusion && LookThroughFPExt) {
// fold (fsub (fpext (fmul x, y)), z)
// -> (fma (fpext x), (fpext y), (fneg z))
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FMUL)
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT, N1));
}
// fold (fsub x, (fpext (fmul y, z)))
// -> (fma (fneg (fpext y)), (fpext z), x)
// Note: Commutes FSUB operands.
if (N1.getOpcode() == ISD::FP_EXTEND) {
SDValue N10 = N1.getOperand(0);
if (N10.getOpcode() == ISD::FMUL)
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(0))),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N10.getOperand(1)),
N0);
}
// fold (fsub (fpext (fneg (fmul, x, y))), z)
// -> (fneg (fma (fpext x), (fpext y), z))
// Note: This could be removed with appropriate canonicalization of the
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
// from implementing the canonicalization in visitFSUB.
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FNEG) {
SDValue N000 = N00.getOperand(0);
if (N000.getOpcode() == ISD::FMUL) {
return DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(1)),
N1));
}
}
}
// fold (fsub (fneg (fpext (fmul, x, y))), z)
// -> (fneg (fma (fpext x)), (fpext y), z)
// Note: This could be removed with appropriate canonicalization of the
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
// from implementing the canonicalization in visitFSUB.
if (N0.getOpcode() == ISD::FNEG) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::FP_EXTEND) {
SDValue N000 = N00.getOperand(0);
if (N000.getOpcode() == ISD::FMUL) {
return DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N000.getOperand(1)),
N1));
}
}
}
}
// More folding opportunities when target permits.
if ((AllowFusion || HasFMAD) && Aggressive) {
// fold (fsub (fma x, y, (fmul u, v)), z)
// -> (fma x, y (fma u, v, (fneg z)))
if (N0.getOpcode() == PreferredFusedOpcode &&
N0.getOperand(2).getOpcode() == ISD::FMUL) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(2).getOperand(0),
N0.getOperand(2).getOperand(1),
DAG.getNode(ISD::FNEG, SL, VT,
N1)));
}
// fold (fsub x, (fma y, z, (fmul u, v)))
// -> (fma (fneg y), z, (fma (fneg u), v, x))
if (N1.getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FMUL) {
SDValue N20 = N1.getOperand(2).getOperand(0);
SDValue N21 = N1.getOperand(2).getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
N1.getOperand(0)),
N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N20),
N21, N0));
}
if (AllowFusion && LookThroughFPExt) {
// fold (fsub (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
if (N0.getOpcode() == PreferredFusedOpcode) {
SDValue N02 = N0.getOperand(2);
if (N02.getOpcode() == ISD::FP_EXTEND) {
SDValue N020 = N02.getOperand(0);
if (N020.getOpcode() == ISD::FMUL)
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N020.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N020.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT,
N1)));
}
}
// fold (fsub (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y),
// (fma (fpext u), (fpext v), (fneg z)))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N0.getOpcode() == ISD::FP_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == PreferredFusedOpcode) {
SDValue N002 = N00.getOperand(2);
if (N002.getOpcode() == ISD::FMUL)
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N00.getOperand(1)),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N002.getOperand(0)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N002.getOperand(1)),
DAG.getNode(ISD::FNEG, SL, VT,
N1)));
}
}
// fold (fsub x, (fma y, z, (fpext (fmul u, v))))
// -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
if (N1.getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
SDValue N120 = N1.getOperand(2).getOperand(0);
if (N120.getOpcode() == ISD::FMUL) {
SDValue N1200 = N120.getOperand(0);
SDValue N1201 = N120.getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL,
VT, N1200)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N1201),
N0));
}
}
// fold (fsub x, (fpext (fma y, z, (fmul u, v))))
// -> (fma (fneg (fpext y)), (fpext z),
// (fma (fneg (fpext u)), (fpext v), x))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (N1.getOpcode() == ISD::FP_EXTEND &&
N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
SDValue N100 = N1.getOperand(0).getOperand(0);
SDValue N101 = N1.getOperand(0).getOperand(1);
SDValue N102 = N1.getOperand(0).getOperand(2);
if (N102.getOpcode() == ISD::FMUL) {
SDValue N1020 = N102.getOperand(0);
SDValue N1021 = N102.getOperand(1);
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N100)),
DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT,
DAG.getNode(ISD::FP_EXTEND, SL,
VT, N1020)),
DAG.getNode(ISD::FP_EXTEND, SL, VT,
N1021),
N0));
}
}
}
}
return SDValue();
}
/// Try to perform FMA combining on a given FMUL node.
SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc SL(N);
assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
const TargetOptions &Options = DAG.getTarget().Options;
bool AllowFusion =
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
// Floating-point multiply-add with intermediate rounding.
bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
// Always prefer FMAD to FMA for precision.
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
// fold (fmul (fadd x, +1.0), y) -> (fma x, y, y)
// fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y))
auto FuseFADD = [&](SDValue X, SDValue Y) {
if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
if (XC1 && XC1->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
if (XC1 && XC1->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y));
}
return SDValue();
};
if (SDValue FMA = FuseFADD(N0, N1))
return FMA;
if (SDValue FMA = FuseFADD(N1, N0))
return FMA;
// fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y)
// fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y))
// fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y))
// fold (fmul (fsub x, -1.0), y) -> (fma x, y, y)
auto FuseFSUB = [&](SDValue X, SDValue Y) {
if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
auto XC0 = isConstOrConstSplatFP(X.getOperand(0));
if (XC0 && XC0->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
Y);
if (XC0 && XC0->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT,
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y));
auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
if (XC1 && XC1->isExactlyValue(+1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
DAG.getNode(ISD::FNEG, SL, VT, Y));
if (XC1 && XC1->isExactlyValue(-1.0))
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
}
return SDValue();
};
if (SDValue FMA = FuseFSUB(N0, N1))
return FMA;
if (SDValue FMA = FuseFSUB(N1, N0))
return FMA;
return SDValue();
}
SDValue DAGCombiner::visitFADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fadd c1, c2) -> c1 + c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
// fold (fadd A, (fneg B)) -> (fsub A, B)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
return DAG.getNode(ISD::FSUB, DL, VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations), Flags);
// fold (fadd (fneg A), B) -> (fsub B, A)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
return DAG.getNode(ISD::FSUB, DL, VT, N1,
GetNegatedExpression(N0, DAG, LegalOperations), Flags);
// If 'unsafe math' is enabled, fold lots of things.
if (Options.UnsafeFPMath) {
// No FP constant should be created after legalization as Instruction
// Selection pass has a hard time dealing with FP constants.
bool AllowNewConst = (Level < AfterLegalizeDAG);
// fold (fadd A, 0) -> A
if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1))
if (N1C->isZero())
return N0;
// fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)))
return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0),
DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1,
Flags),
Flags);
// If allowed, fold (fadd (fneg x), x) -> 0.0
if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
return DAG.getConstantFP(0.0, DL, VT);
// If allowed, fold (fadd x, (fneg x)) -> 0.0
if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
return DAG.getConstantFP(0.0, DL, VT);
// We can fold chains of FADD's of the same value into multiplications.
// This transform is not safe in general because we are reducing the number
// of rounding steps.
if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
if (N0.getOpcode() == ISD::FMUL) {
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
// (fadd (fmul x, c), x) -> (fmul x, c+1)
if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
}
// (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
N1.getOperand(0) == N1.getOperand(1) &&
N0.getOperand(0) == N1.getOperand(0)) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
DAG.getConstantFP(2.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
}
}
if (N1.getOpcode() == ISD::FMUL) {
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
// (fadd x, (fmul x, c)) -> (fmul x, c+1)
if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
}
// (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
N0.getOperand(0) == N0.getOperand(1) &&
N1.getOperand(0) == N0.getOperand(0)) {
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
DAG.getConstantFP(2.0, DL, VT), Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
}
}
if (N0.getOpcode() == ISD::FADD && AllowNewConst) {
bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
// (fadd (fadd x, x), x) -> (fmul x, 3.0)
if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
(N0.getOperand(0) == N1)) {
return DAG.getNode(ISD::FMUL, DL, VT,
N1, DAG.getConstantFP(3.0, DL, VT), Flags);
}
}
if (N1.getOpcode() == ISD::FADD && AllowNewConst) {
bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
// (fadd x, (fadd x, x)) -> (fmul x, 3.0)
if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
N1.getOperand(0) == N0) {
return DAG.getNode(ISD::FMUL, DL, VT,
N0, DAG.getConstantFP(3.0, DL, VT), Flags);
}
}
// (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
if (AllowNewConst &&
N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
N0.getOperand(0) == N0.getOperand(1) &&
N1.getOperand(0) == N1.getOperand(1) &&
N0.getOperand(0) == N1.getOperand(0)) {
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
DAG.getConstantFP(4.0, DL, VT), Flags);
}
}
} // enable-unsafe-fp-math
// FADD -> FMA combines:
if (SDValue Fused = visitFADDForFMACombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
EVT VT = N->getValueType(0);
SDLoc dl(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fsub c1, c2) -> c1-c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags);
// fold (fsub A, (fneg B)) -> (fadd A, B)
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
return DAG.getNode(ISD::FADD, dl, VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations), Flags);
// If 'unsafe math' is enabled, fold lots of things.
if (Options.UnsafeFPMath) {
// (fsub A, 0) -> A
if (N1CFP && N1CFP->isZero())
return N0;
// (fsub 0, B) -> -B
if (N0CFP && N0CFP->isZero()) {
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
return GetNegatedExpression(N1, DAG, LegalOperations);
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, dl, VT, N1);
}
// (fsub x, x) -> 0.0
if (N0 == N1)
return DAG.getConstantFP(0.0f, dl, VT);
// (fsub x, (fadd x, y)) -> (fneg y)
// (fsub x, (fadd y, x)) -> (fneg y)
if (N1.getOpcode() == ISD::FADD) {
SDValue N10 = N1->getOperand(0);
SDValue N11 = N1->getOperand(1);
if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options))
return GetNegatedExpression(N11, DAG, LegalOperations);
if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options))
return GetNegatedExpression(N10, DAG, LegalOperations);
}
}
// FSUB -> FMA combines:
if (SDValue Fused = visitFSUBForFMACombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
// fold vector ops
if (VT.isVector()) {
// This just handles C1 * C2 for vectors. Other vector folds are below.
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
}
// fold (fmul c1, c2) -> c1*c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
// canonicalize constant to RHS
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
// fold (fmul A, 1.0) -> A
if (N1CFP && N1CFP->isExactlyValue(1.0))
return N0;
if (Options.UnsafeFPMath) {
// fold (fmul A, 0) -> 0
if (N1CFP && N1CFP->isZero())
return N1;
// fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
if (N0.getOpcode() == ISD::FMUL) {
// Fold scalars or any vector constants (not just splats).
// This fold is done in general by InstCombine, but extra fmul insts
// may have been generated during lowering.
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
auto *BV00 = dyn_cast<BuildVectorSDNode>(N00);
auto *BV01 = dyn_cast<BuildVectorSDNode>(N01);
// Check 1: Make sure that the first operand of the inner multiply is NOT
// a constant. Otherwise, we may induce infinite looping.
if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) {
// Check 2: Make sure that the second operand of the inner multiply and
// the second operand of the outer multiply are constants.
if ((N1CFP && isConstOrConstSplatFP(N01)) ||
(BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) {
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
}
}
}
// fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c))
// Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs
// during an early run of DAGCombiner can prevent folding with fmuls
// inserted during lowering.
if (N0.getOpcode() == ISD::FADD &&
(N0.getOperand(0) == N0.getOperand(1)) &&
N0.hasOneUse()) {
const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
}
}
// fold (fmul X, 2.0) -> (fadd X, X)
if (N1CFP && N1CFP->isExactlyValue(+2.0))
return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
// fold (fmul X, -1.0) -> (fneg X)
if (N1CFP && N1CFP->isExactlyValue(-1.0))
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, DL, VT, N0);
// fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
return DAG.getNode(ISD::FMUL, DL, VT,
GetNegatedExpression(N0, DAG, LegalOperations),
GetNegatedExpression(N1, DAG, LegalOperations),
Flags);
}
}
// FMUL -> FMA combines:
if (SDValue Fused = visitFMULForFMACombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
return SDValue();
}
SDValue DAGCombiner::visitFMA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
SDLoc dl(N);
const TargetOptions &Options = DAG.getTarget().Options;
// Constant fold FMA.
if (isa<ConstantFPSDNode>(N0) &&
isa<ConstantFPSDNode>(N1) &&
isa<ConstantFPSDNode>(N2)) {
return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2);
}
if (Options.UnsafeFPMath) {
if (N0CFP && N0CFP->isZero())
return N2;
if (N1CFP && N1CFP->isZero())
return N2;
}
// TODO: The FMA node should have flags that propagate to these nodes.
if (N0CFP && N0CFP->isExactlyValue(1.0))
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
if (N1CFP && N1CFP->isExactlyValue(1.0))
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
// Canonicalize (fma c, x, y) -> (fma x, c, y)
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
// TODO: FMA nodes should have flags that propagate to the created nodes.
// For now, create a Flags object for use with all unsafe math transforms.
SDNodeFlags Flags;
Flags.setUnsafeAlgebra(true);
if (Options.UnsafeFPMath) {
// (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
return DAG.getNode(ISD::FMUL, dl, VT, N0,
DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1),
&Flags), &Flags);
}
// (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
if (N0.getOpcode() == ISD::FMUL &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
return DAG.getNode(ISD::FMA, dl, VT,
N0.getOperand(0),
DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1),
&Flags),
N2);
}
}
// (fma x, 1, y) -> (fadd x, y)
// (fma x, -1, y) -> (fadd (fneg x), y)
if (N1CFP) {
if (N1CFP->isExactlyValue(1.0))
// TODO: The FMA node should have flags that propagate to this node.
return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
if (N1CFP->isExactlyValue(-1.0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
AddToWorklist(RHSNeg.getNode());
// TODO: The FMA node should have flags that propagate to this node.
return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
}
}
if (Options.UnsafeFPMath) {
// (fma x, c, x) -> (fmul x, (c+1))
if (N1CFP && N0 == N2) {
return DAG.getNode(ISD::FMUL, dl, VT, N0,
DAG.getNode(ISD::FADD, dl, VT,
N1, DAG.getConstantFP(1.0, dl, VT),
&Flags), &Flags);
}
// (fma x, c, (fneg x)) -> (fmul x, (c-1))
if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
return DAG.getNode(ISD::FMUL, dl, VT, N0,
DAG.getNode(ISD::FADD, dl, VT,
N1, DAG.getConstantFP(-1.0, dl, VT),
&Flags), &Flags);
}
}
return SDValue();
}
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal.
// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
// Notice that this is not always beneficial. One reason is different target
// may have different costs for FDIV and FMUL, so sometimes the cost of two
// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
const SDNodeFlags *Flags = N->getFlags();
if (!UnsafeMath && !Flags->hasAllowReciprocal())
return SDValue();
// Skip if current node is a reciprocal.
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
if (N0CFP && N0CFP->isExactlyValue(1.0))
return SDValue();
// Exit early if the target does not want this transform or if there can't
// possibly be enough uses of the divisor to make the transform worthwhile.
SDValue N1 = N->getOperand(1);
unsigned MinUses = TLI.combineRepeatedFPDivisors();
if (!MinUses || N1->use_size() < MinUses)
return SDValue();
// Find all FDIV users of the same divisor.
// Use a set because duplicates may be present in the user list.
SetVector<SDNode *> Users;
for (auto *U : N1->uses()) {
if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
// This division is eligible for optimization only if global unsafe math
// is enabled or if this division allows reciprocal formation.
if (UnsafeMath || U->getFlags()->hasAllowReciprocal())
Users.insert(U);
}
}
// Now that we have the actual number of divisor uses, make sure it meets
// the minimum threshold specified by the target.
if (Users.size() < MinUses)
return SDValue();
EVT VT = N->getValueType(0);
SDLoc DL(N);
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
// Dividend / Divisor -> Dividend * Reciprocal
for (auto *U : Users) {
SDValue Dividend = U->getOperand(0);
if (Dividend != FPOne) {
SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
Reciprocal, Flags);
CombineTo(U, NewNode);
} else if (U != Reciprocal.getNode()) {
// In the absence of fast-math-flags, this user node is always the
// same node as Reciprocal, but with FMF they may be different nodes.
CombineTo(U, Reciprocal);
}
}
return SDValue(N, 0); // N was replaced.
}
SDValue DAGCombiner::visitFDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
// fold (fdiv c1, c2) -> c1/c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
if (Options.UnsafeFPMath) {
// fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
if (N1CFP) {
// Compute the reciprocal 1.0 / c2.
APFloat N1APF = N1CFP->getValueAPF();
APFloat Recip(N1APF.getSemantics(), 1); // 1.0
APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
// Only do the transform if the reciprocal is a legal fp immediate that
// isn't too nasty (eg NaN, denormal, ...).
if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
(!LegalOperations ||
// FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
// backend)... we should handle this gracefully after Legalize.
// TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
TLI.isFPImmLegal(Recip, VT)))
return DAG.getNode(ISD::FMUL, DL, VT, N0,
DAG.getConstantFP(Recip, DL, VT), Flags);
}
// If this FDIV is part of a reciprocal square root, it may be folded
// into a target-specific square root estimate instruction.
if (N1.getOpcode() == ISD::FSQRT) {
if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) {
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FP_EXTEND &&
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0),
Flags)) {
RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FP_ROUND &&
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0),
Flags)) {
RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
} else if (N1.getOpcode() == ISD::FMUL) {
// Look through an FMUL. Even though this won't remove the FDIV directly,
// it's still worthwhile to get rid of the FSQRT if possible.
SDValue SqrtOp;
SDValue OtherOp;
if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
SqrtOp = N1.getOperand(0);
OtherOp = N1.getOperand(1);
} else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
SqrtOp = N1.getOperand(1);
OtherOp = N1.getOperand(0);
}
if (SqrtOp.getNode()) {
// We found a FSQRT, so try to make this fold:
// x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
}
}
// Fold into a reciprocal estimate and multiply instead of a real divide.
if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
}
}
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
GetNegatedExpression(N0, DAG, LegalOperations),
GetNegatedExpression(N1, DAG, LegalOperations),
Flags);
}
}
if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N))
return CombineRepeatedDivisors;
return SDValue();
}
SDValue DAGCombiner::visitFREM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
// fold (frem c1, c2) -> fmod(c1,c2)
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1,
&cast<BinaryWithFlagsSDNode>(N)->Flags);
return SDValue();
}
SDValue DAGCombiner::visitFSQRT(SDNode *N) {
if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap())
return SDValue();
// TODO: FSQRT nodes should have flags that propagate to the created nodes.
// For now, create a Flags object for use with all unsafe math transforms.
SDNodeFlags Flags;
Flags.setUnsafeAlgebra(true);
// Compute this as X * (1/sqrt(X)) = X * (X ** -0.5)
SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags);
if (!RV)
return SDValue();
EVT VT = RV.getValueType();
SDLoc DL(N);
RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags);
AddToWorklist(RV.getNode());
// Unfortunately, RV is now NaN if the input was exactly 0.
// Select out this case and force the answer to 0.
SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
EVT CCVT = getSetCCResultType(VT);
SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ);
AddToWorklist(ZeroCmp.getNode());
AddToWorklist(RV.getNode());
return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
ZeroCmp, Zero, RV);
}
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
if (N0CFP && N1CFP) // Constant fold
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
if (N1CFP) {
const APFloat& V = N1CFP->getValueAPF();
// copysign(x, c1) -> fabs(x) iff ispos(c1)
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
if (!V.isNegative()) {
if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
} else {
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
}
}
// copysign(fabs(x), y) -> copysign(x, y)
// copysign(fneg(x), y) -> copysign(x, y)
// copysign(copysign(x,z), y) -> copysign(x, y)
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
N0.getOperand(0), N1);
// copysign(x, abs(y)) -> abs(x)
if (N1.getOpcode() == ISD::FABS)
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
// copysign(x, copysign(y,z)) -> copysign(x, z)
if (N1.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
N0, N1.getOperand(1));
// copysign(x, fp_extend(y)) -> copysign(x, y)
// copysign(x, fp_round(y)) -> copysign(x, y)
if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
N0, N1.getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = N0.getValueType();
// fold (sint_to_fp c1) -> c1fp
if (isConstantIntBuildVectorOrConstantInt(N0) &&
// ...but only if the target supports immediate floating-point values
(!LegalOperations ||
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
// If the input is a legal type, and SINT_TO_FP is not legal on this target,
// but UINT_TO_FP is legal on this target, try to convert.
if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to UINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
}
// The next optimizations are desirable only if SELECT_CC can be lowered.
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
// fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
!VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0), N0.getOperand(1),
DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
// fold (sint_to_fp (zext (setcc x, y, cc))) ->
// (select_cc x, y, 1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::ZERO_EXTEND &&
N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(0).getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
}
return SDValue();
}
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = N0.getValueType();
// fold (uint_to_fp c1) -> c1fp
if (isConstantIntBuildVectorOrConstantInt(N0) &&
// ...but only if the target supports immediate floating-point values
(!LegalOperations ||
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
// If the input is a legal type, and UINT_TO_FP is not legal on this target,
// but SINT_TO_FP is legal on this target, try to convert.
if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to SINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
}
// The next optimizations are desirable only if SELECT_CC can be lowered.
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
// fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
SDLoc DL(N);
SDValue Ops[] =
{ N0.getOperand(0), N0.getOperand(1),
DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
N0.getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
}
return SDValue();
}
// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
return SDValue();
SDValue Src = N0.getOperand(0);
EVT SrcVT = Src.getValueType();
bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
// We can safely assume the conversion won't overflow the output range,
// because (for example) (uint8_t)18293.f is undefined behavior.
// Since we can assume the conversion won't overflow, our decision as to
// whether the input will fit in the float should depend on the minimum
// of the input range and output range.
// This means this is also safe for a signed input and unsigned output, since
// a negative input would lead to undefined behavior.
unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
unsigned ActualSize = std::min(InputSize, OutputSize);
const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
// We can only fold away the float conversion if the input range can be
// represented exactly in the float range.
if (APFloat::semanticsPrecision(sem) >= ActualSize) {
if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
}
if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
if (SrcVT == VT)
return Src;
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Src);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fp_to_sint c1fp) -> c1
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
return FoldIntToFPToInt(N, DAG);
}
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fp_to_uint c1fp) -> c1
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
return FoldIntToFPToInt(N, DAG);
}
SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
EVT VT = N->getValueType(0);
// fold (fp_round c1fp) -> c1fp
if (N0CFP)
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
// fold (fp_round (fp_extend x)) -> x
if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
return N0.getOperand(0);
// fold (fp_round (fp_round x)) -> (fp_round x)
if (N0.getOpcode() == ISD::FP_ROUND) {
const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1;
// If the first fp_round isn't a value preserving truncation, it might
// introduce a tie in the second fp_round, that wouldn't occur in the
// single-step fp_round we want to fold to.
// In other words, double rounding isn't the same as rounding.
// Also, this is a value preserving truncation iff both fp_round's are.
if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
SDLoc DL(N);
return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
}
}
// fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
N0.getOperand(0), N1);
AddToWorklist(Tmp.getNode());
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
Tmp, N0.getOperand(1));
}
return SDValue();
}
SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
// fold (fp_round_inreg c1fp) -> c1fp
if (N0CFP && isTypeLegal(EVT)) {
SDLoc DL(N);
SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() &&
N->use_begin()->getOpcode() == ISD::FP_ROUND)
return SDValue();
// fold (fp_extend c1fp) -> c1fp
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
// fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
if (N0.getOpcode() == ISD::FP16_TO_FP &&
TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
// value of X.
if (N0.getOpcode() == ISD::FP_ROUND
&& N0.getNode()->getConstantOperandVal(1) == 1) {
SDValue In = N0.getOperand(0);
if (In.getValueType() == VT) return In;
if (VT.bitsLT(In.getValueType()))
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
In, N0.getOperand(1));
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
}
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), N0.getValueType(),
LN0->getMemOperand());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
N0.getValueType(), ExtLoad,
DAG.getIntPtrConstant(1, SDLoc(N0))),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
return SDValue();
}
SDValue DAGCombiner::visitFCEIL(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fceil c1) -> fceil(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ftrunc c1) -> ftrunc(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (ffloor c1) -> ffloor(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
return SDValue();
}
// FIXME: FNEG and FABS have a lot in common; refactor.
SDValue DAGCombiner::visitFNEG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// Constant fold FNEG.
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
&DAG.getTarget().Options))
return GetNegatedExpression(N0, DAG, LegalOperations);
// Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
// constant pool values.
if (!TLI.isFNegFree(VT) &&
N0.getOpcode() == ISD::BITCAST &&
N0.getNode()->hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
APInt SignMask;
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x80... per scalar element
// and splat it.
SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x80...
SignMask = APInt::getSignBit(IntVT.getSizeInBits());
}
SDLoc DL0(N0);
Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
DAG.getConstant(SignMask, DL0, IntVT));
AddToWorklist(Int.getNode());
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int);
}
}
// (fneg (fmul c, x)) -> (fmul -c, x)
if (N0.getOpcode() == ISD::FMUL &&
(N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
if (CFP1) {
APFloat CVal = CFP1->getValueAPF();
CVal.changeSign();
if (Level >= AfterLegalizeDAG &&
(TLI.isFPImmLegal(CVal, N->getValueType(0)) ||
TLI.isOperationLegal(ISD::ConstantFP, N->getValueType(0))))
return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
DAG.getNode(ISD::FNEG, SDLoc(N), VT,
N0.getOperand(1)),
&cast<BinaryWithFlagsSDNode>(N0)->Flags);
}
}
return SDValue();
}
SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
if (N0CFP && N1CFP) {
const APFloat &C0 = N0CFP->getValueAPF();
const APFloat &C1 = N1CFP->getValueAPF();
return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT);
}
// Canonicalize to constant on RHS.
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0);
return SDValue();
}
SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
if (N0CFP && N1CFP) {
const APFloat &C0 = N0CFP->getValueAPF();
const APFloat &C1 = N1CFP->getValueAPF();
return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT);
}
// Canonicalize to constant on RHS.
if (isConstantFPBuildVectorOrConstantFP(N0) &&
!isConstantFPBuildVectorOrConstantFP(N1))
return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0);
return SDValue();
}
SDValue DAGCombiner::visitFABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fold (fabs c1) -> fabs(c1)
if (isConstantFPBuildVectorOrConstantFP(N0))
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
// fold (fabs (fabs x)) -> (fabs x)
if (N0.getOpcode() == ISD::FABS)
return N->getOperand(0);
// fold (fabs (fneg x)) -> (fabs x)
// fold (fabs (fcopysign x, y)) -> (fabs x)
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
// Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading
// constant pool values.
if (!TLI.isFAbsFree(VT) &&
N0.getOpcode() == ISD::BITCAST &&
N0.getNode()->hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
APInt SignMask;
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x7f... per scalar element
// and splat it.
SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x7f...
SignMask = ~APInt::getSignBit(IntVT.getSizeInBits());
}
SDLoc DL(N0);
Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
DAG.getConstant(SignMask, DL, IntVT));
AddToWorklist(Int.getNode());
return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int);
}
}
return SDValue();
}
SDValue DAGCombiner::visitBRCOND(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
// If N is a constant we could fold this into a fallthrough or unconditional
// branch. However that doesn't happen very often in normal code, because
// Instcombine/SimplifyCFG should have handled the available opportunities.
// If we did this folding here, it would be necessary to update the
// MachineBasicBlock CFG, which is awkward.
// fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
// on the target.
if (N1.getOpcode() == ISD::SETCC &&
TLI.isOperationLegalOrCustom(ISD::BR_CC,
N1.getOperand(0).getValueType())) {
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
Chain, N1.getOperand(2),
N1.getOperand(0), N1.getOperand(1), N2);
}
if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
(N1.getOperand(0).hasOneUse() &&
N1.getOperand(0).getOpcode() == ISD::SRL))) {
SDNode *Trunc = nullptr;
if (N1.getOpcode() == ISD::TRUNCATE) {
// Look pass the truncate.
Trunc = N1.getNode();
N1 = N1.getOperand(0);
}
// Match this pattern so that we can generate simpler code:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and i32 %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// This applies only when the AND constant value has one bit set and the
// SRL constant is equal to the log2 of the AND constant. The back-end is
// smart enough to convert the result into a TEST/JMP sequence.
SDValue Op0 = N1.getOperand(0);
SDValue Op1 = N1.getOperand(1);
if (Op0.getOpcode() == ISD::AND &&
Op1.getOpcode() == ISD::Constant) {
SDValue AndOp1 = Op0.getOperand(1);
if (AndOp1.getOpcode() == ISD::Constant) {
const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
if (AndConst.isPowerOf2() &&
cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
SDLoc DL(N);
SDValue SetCC =
DAG.getSetCC(DL,
getSetCCResultType(Op0.getValueType()),
Op0, DAG.getConstant(0, DL, Op0.getValueType()),
ISD::SETNE);
SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL,
MVT::Other, Chain, SetCC, N2);
// Don't add the new BRCond into the worklist or else SimplifySelectCC
// will convert it back to (X & C1) >> C2.
CombineTo(N, NewBRCond, false);
// Truncate is dead.
if (Trunc)
deleteAndRecombine(Trunc);
// Replace the uses of SRL with SETCC
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
deleteAndRecombine(N1.getNode());
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
if (Trunc)
// Restore N1 if the above transformation doesn't match.
N1 = N->getOperand(1);
}
// Transform br(xor(x, y)) -> br(x != y)
// Transform br(xor(xor(x,y), 1)) -> br (x == y)
if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
SDNode *TheXor = N1.getNode();
SDValue Op0 = TheXor->getOperand(0);
SDValue Op1 = TheXor->getOperand(1);
if (Op0.getOpcode() == Op1.getOpcode()) {
// Avoid missing important xor optimizations.
if (SDValue Tmp = visitXOR(TheXor)) {
if (Tmp.getNode() != TheXor) {
DEBUG(dbgs() << "\nReplacing.8 ";
TheXor->dump(&DAG);
dbgs() << "\nWith: ";
Tmp.getNode()->dump(&DAG);
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
deleteAndRecombine(TheXor);
return DAG.getNode(ISD::BRCOND, SDLoc(N),
MVT::Other, Chain, Tmp, N2);
}
// visitXOR has changed XOR's operands or replaced the XOR completely,
// bail out.
return SDValue(N, 0);
}
}
if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
bool Equal = false;
if (isOneConstant(Op0) && Op0.hasOneUse() &&
Op0.getOpcode() == ISD::XOR) {
TheXor = Op0.getNode();
Equal = true;
}
EVT SetCCVT = N1.getValueType();
if (LegalTypes)
SetCCVT = getSetCCResultType(SetCCVT);
SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
SetCCVT,
Op0, Op1,
Equal ? ISD::SETEQ : ISD::SETNE);
// Replace the uses of XOR with SETCC
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
deleteAndRecombine(N1.getNode());
return DAG.getNode(ISD::BRCOND, SDLoc(N),
MVT::Other, Chain, SetCC, N2);
}
}
return SDValue();
}
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
//
SDValue DAGCombiner::visitBR_CC(SDNode *N) {
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
// If N is a constant we could fold this into a fallthrough or unconditional
// branch. However that doesn't happen very often in normal code, because
// Instcombine/SimplifyCFG should have handled the available opportunities.
// If we did this folding here, it would be necessary to update the
// MachineBasicBlock CFG, which is awkward.
// Use SimplifySetCC to simplify SETCC's.
SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
CondLHS, CondRHS, CC->get(), SDLoc(N),
false);
if (Simp.getNode()) AddToWorklist(Simp.getNode());
// fold to a simpler setcc
if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
N->getOperand(0), Simp.getOperand(2),
Simp.getOperand(0), Simp.getOperand(1),
N->getOperand(4));
return SDValue();
}
/// Return true if 'Use' is a load or a store that uses N as its base pointer
/// and that N may be folded in the load / store addressing mode.
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
SelectionDAG &DAG,
const TargetLowering &TLI) {
EVT VT;
unsigned AS;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
return false;
VT = LD->getMemoryVT();
AS = LD->getAddressSpace();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
return false;
VT = ST->getMemoryVT();
AS = ST->getAddressSpace();
} else
return false;
TargetLowering::AddrMode AM;
if (N->getOpcode() == ISD::ADD) {
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else if (N->getOpcode() == ISD::SUB) {
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = -Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else
return false;
return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
VT.getTypeForEVT(*DAG.getContext()), AS);
}
/// Try turning a load/store into a pre-indexed load/store when the base
/// pointer is an add or subtract and it has other uses besides the load/store.
/// After the transformation, the new indexed load/store has effectively folded
/// the add/subtract in and all of its other uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
// If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
// out. There is no reason to make this a preinc/predec.
if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
Ptr.getNode()->hasOneUse())
return false;
// Ask the target to do addressing mode selection.
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
return false;
// Backends without true r+i pre-indexed forms may need to pass a
// constant base with a variable offset so that constant coercion
// will work with the patterns in canonical form.
bool Swapped = false;
if (isa<ConstantSDNode>(BasePtr)) {
std::swap(BasePtr, Offset);
Swapped = true;
}
// Don't create a indexed load / store with zero offset.
if (isNullConstant(Offset))
return false;
// Try turning it into a pre-indexed load / store except when:
// 1) The new base ptr is a frame index.
// 2) If N is a store and the new base ptr is either the same as or is a
// predecessor of the value being stored.
// 3) Another use of old base ptr is a predecessor of N. If ptr is folded
// that would create a cycle.
// 4) All uses are load / store ops that use it as old base ptr.
// Check #1. Preinc'ing a frame index would require copying the stack pointer
// (plus the implicit offset) to a register to preinc anyway.
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
return false;
// Check #2.
if (!isLoad) {
SDValue Val = cast<StoreSDNode>(N)->getValue();
if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
return false;
}
// If the offset is a constant, there may be other adds of constants that
// can be folded with this one. We should do this to avoid having to keep
// a copy of the original base pointer.
SmallVector<SDNode *, 16> OtherUses;
if (isa<ConstantSDNode>(Offset))
for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
UE = BasePtr.getNode()->use_end();
UI != UE; ++UI) {
SDUse &Use = UI.getUse();
// Skip the use that is Ptr and uses of other results from BasePtr's
// node (important for nodes that return multiple results).
if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
continue;
if (Use.getUser()->isPredecessorOf(N))
continue;
if (Use.getUser()->getOpcode() != ISD::ADD &&
Use.getUser()->getOpcode() != ISD::SUB) {
OtherUses.clear();
break;
}
SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
if (!isa<ConstantSDNode>(Op1)) {
OtherUses.clear();
break;
}
// FIXME: In some cases, we can be smarter about this.
if (Op1.getValueType() != Offset.getValueType()) {
OtherUses.clear();
break;
}
OtherUses.push_back(Use.getUser());
}
if (Swapped)
std::swap(BasePtr, Offset);
// Now check for #3 and #4.
bool RealUse = false;
// Caches for hasPredecessorHelper
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
for (SDNode *Use : Ptr.getNode()->uses()) {
if (Use == N)
continue;
if (N->hasPredecessorHelper(Use, Visited, Worklist))
return false;
// If Ptr may be folded in addressing mode of other use, then it's
// not profitable to do this transformation.
if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
RealUse = true;
}
if (!RealUse)
return false;
SDValue Result;
if (isLoad)
Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
else
Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
++PreIndexedNodes;
++NodesCombined;
DEBUG(dbgs() << "\nReplacing.4 ";
N->dump(&DAG);
dbgs() << "\nWith: ";
Result.getNode()->dump(&DAG);
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
}
// Finally, since the node is now dead, remove it from the graph.
deleteAndRecombine(N);
if (Swapped)
std::swap(BasePtr, Offset);
// Replace other uses of BasePtr that can be updated to use Ptr
for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
unsigned OffsetIdx = 1;
if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
OffsetIdx = 0;
assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
BasePtr.getNode() && "Expected BasePtr operand");
// We need to replace ptr0 in the following expression:
// x0 * offset0 + y0 * ptr0 = t0
// knowing that
// x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
//
// where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
// indexed load/store and the expresion that needs to be re-written.
//
// Therefore, we have:
// t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
ConstantSDNode *CN =
cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
int X0, X1, Y0, Y1;
APInt Offset0 = CN->getAPIntValue();
APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
APInt CNV = Offset0;
if (X0 < 0) CNV = -CNV;
if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
else CNV = CNV - Offset1;
SDLoc DL(OtherUses[i]);
// We can now generate the new expression.
SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
SDValue NewUse = DAG.getNode(Opcode,
DL,
OtherUses[i]->getValueType(0), NewOp1, NewOp2);
DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
deleteAndRecombine(OtherUses[i]);
}
// Replace the uses of Ptr with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
deleteAndRecombine(Ptr.getNode());
return true;
}
/// Try to combine a load/store with a add/sub of the base pointer node into a
/// post-indexed load/store. The transformation folded the add/subtract into the
/// new indexed load/store effectively and all of its uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
if (Ptr.getNode()->hasOneUse())
return false;
for (SDNode *Op : Ptr.getNode()->uses()) {
if (Op == N ||
(Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
continue;
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
// Don't create a indexed load / store with zero offset.
if (isNullConstant(Offset))
continue;
// Try turning it into a post-indexed load / store except when
// 1) All uses are load / store ops that use it as base ptr (and
// it may be folded as addressing mmode).
// 2) Op must be independent of N, i.e. Op is neither a predecessor
// nor a successor of N. Otherwise, if Op is folded that would
// create a cycle.
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
continue;
// Check for #1.
bool TryNext = false;
for (SDNode *Use : BasePtr.getNode()->uses()) {
if (Use == Ptr.getNode())
continue;
// If all the uses are load / store addresses, then don't do the
// transformation.
if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
bool RealUse = false;
for (SDNode *UseUse : Use->uses()) {
if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
RealUse = true;
}
if (!RealUse) {
TryNext = true;
break;
}
}
}
if (TryNext)
continue;
// Check for #2
if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
SDValue Result = isLoad
? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM)
: DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
BasePtr, Offset, AM);
++PostIndexedNodes;
++NodesCombined;
DEBUG(dbgs() << "\nReplacing.5 ";
N->dump(&DAG);
dbgs() << "\nWith: ";
Result.getNode()->dump(&DAG);
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
}
// Finally, since the node is now dead, remove it from the graph.
deleteAndRecombine(N);
// Replace the uses of Use with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
Result.getValue(isLoad ? 1 : 0));
deleteAndRecombine(Op);
return true;
}
}
}
return false;
}
/// \brief Return the base-pointer arithmetic from an indexed \p LD.
SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
ISD::MemIndexedMode AM = LD->getAddressingMode();
assert(AM != ISD::UNINDEXED);
SDValue BP = LD->getOperand(1);
SDValue Inc = LD->getOperand(2);
// Some backends use TargetConstants for load offsets, but don't expect
// TargetConstants in general ADD nodes. We can convert these constants into
// regular Constants (if the constant is not opaque).
assert((Inc.getOpcode() != ISD::TargetConstant ||
!cast<ConstantSDNode>(Inc)->isOpaque()) &&
"Cannot split out indexing using opaque target constants");
if (Inc.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
ConstInc->getValueType(0));
}
unsigned Opc =
(AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
}
SDValue DAGCombiner::visitLOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
// If load is not volatile and there are no uses of the loaded value (and
// the updated indexed value in case of indexed loads), change uses of the
// chain value into uses of the chain input (i.e. delete the dead load).
if (!LD->isVolatile()) {
if (N->getValueType(1) == MVT::Other) {
// Unindexed loads.
if (!N->hasAnyUseOfValue(0)) {
// It's not safe to use the two value CombineTo variant here. e.g.
// v1, chain2 = load chain1, loc
// v2, chain3 = load chain2, loc
// v3 = add v2, c
// Now we replace use of chain2 with chain1. This makes the second load
// isomorphic to the one we are deleting, and thus makes this load live.
DEBUG(dbgs() << "\nReplacing.6 ";
N->dump(&DAG);
dbgs() << "\nWith chain: ";
Chain.getNode()->dump(&DAG);
dbgs() << "\n");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
if (N->use_empty())
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
} else {
// Indexed loads.
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
// If this load has an opaque TargetConstant offset, then we cannot split
// the indexing into an add/sub directly (that TargetConstant may not be
// valid for a different type of node, and we cannot convert an opaque
// target constant into a regular constant).
bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
if (!N->hasAnyUseOfValue(0) &&
((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
SDValue Index;
if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
Index = SplitIndexingFromLoad(LD);
// Try to fold the base pointer arithmetic into subsequent loads and
// stores.
AddUsersToWorklist(N);
} else
Index = DAG.getUNDEF(N->getValueType(1));
DEBUG(dbgs() << "\nReplacing.7 ";
N->dump(&DAG);
dbgs() << "\nWith: ";
Undef.getNode()->dump(&DAG);
dbgs() << " and 2 other values\n");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
// If this load is directly stored, replace the load value with the stored
// value.
// TODO: Handle store large -> read small portion.
// TODO: Handle TRUNCSTORE/LOADEXT
if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
if (ISD::isNON_TRUNCStore(Chain.getNode())) {
StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
if (PrevST->getBasePtr() == Ptr &&
PrevST->getValue().getValueType() == N->getValueType(0))
return CombineTo(N, Chain.getOperand(1), Chain);
}
}
// Try to infer better alignment information than the load already has.
if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
if (Align > LD->getMemOperand()->getBaseAlignment()) {
SDValue NewLoad =
DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
LD->getValueType(0),
Chain, Ptr, LD->getPointerInfo(),
LD->getMemoryVT(),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(), Align, LD->getAAInfo());
if (NewLoad.getNode() != N)
return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
}
}
}
bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
: DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
UseAA = false;
#endif
if (UseAA && LD->isUnindexed()) {
// Walk up chain skipping non-aliasing memory nodes.
SDValue BetterChain = FindBetterChain(N, Chain);
// If there is a better chain.
if (Chain != BetterChain) {
SDValue ReplLoad;
// Replace the chain to void dependency.
if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
BetterChain, Ptr, LD->getMemOperand());
} else {
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
LD->getValueType(0),
BetterChain, Ptr, LD->getMemoryVT(),
LD->getMemOperand());
}
// Create token factor to keep old chain connected.
SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
MVT::Other, Chain, ReplLoad.getValue(1));
// Make sure the new and old chains are cleaned up.
AddToWorklist(Token.getNode());
// Replace uses with load result and token factor. Don't add users
// to work list.
return CombineTo(N, ReplLoad.getValue(0), Token, false);
}
}
// Try transforming N to an indexed load.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
// Try to slice up N to more direct loads if the slices are mapped to
// different register banks or pairing can take place.
if (SliceUpLoad(N))
return SDValue(N, 0);
return SDValue();
}
namespace {
/// \brief Helper structure used to slice a load in smaller loads.
/// Basically a slice is obtained from the following sequence:
/// Origin = load Ty1, Base
/// Shift = srl Ty1 Origin, CstTy Amount
/// Inst = trunc Shift to Ty2
///
/// Then, it will be rewriten into:
/// Slice = load SliceTy, Base + SliceOffset
/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
///
/// SliceTy is deduced from the number of bits that are actually used to
/// build Inst.
struct LoadedSlice {
/// \brief Helper structure used to compute the cost of a slice.
struct Cost {
/// Are we optimizing for code size.
bool ForCodeSize;
/// Various cost.
unsigned Loads;
unsigned Truncates;
unsigned CrossRegisterBanksCopies;
unsigned ZExts;
unsigned Shift;
Cost(bool ForCodeSize = false)
: ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
/// \brief Get the cost of one isolated slice.
Cost(const LoadedSlice &LS, bool ForCodeSize = false)
: ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
EVT TruncType = LS.Inst->getValueType(0);
EVT LoadedType = LS.getLoadedType();
if (TruncType != LoadedType &&
!LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
ZExts = 1;
}
/// \brief Account for slicing gain in the current cost.
/// Slicing provide a few gains like removing a shift or a
/// truncate. This method allows to grow the cost of the original
/// load with the gain from this slice.
void addSliceGain(const LoadedSlice &LS) {
// Each slice saves a truncate.
const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
LS.Inst->getValueType(0)))
++Truncates;
// If there is a shift amount, this slice gets rid of it.
if (LS.Shift)
++Shift;
// If this slice can merge a cross register bank copy, account for it.
if (LS.canMergeExpensiveCrossRegisterBankCopy())
++CrossRegisterBanksCopies;
}
Cost &operator+=(const Cost &RHS) {
Loads += RHS.Loads;
Truncates += RHS.Truncates;
CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
ZExts += RHS.ZExts;
Shift += RHS.Shift;
return *this;
}
bool operator==(const Cost &RHS) const {
return Loads == RHS.Loads && Truncates == RHS.Truncates &&
CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
ZExts == RHS.ZExts && Shift == RHS.Shift;
}
bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
bool operator<(const Cost &RHS) const {
// Assume cross register banks copies are as expensive as loads.
// FIXME: Do we want some more target hooks?
unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
// Unless we are optimizing for code size, consider the
// expensive operation first.
if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
return ExpensiveOpsLHS < ExpensiveOpsRHS;
return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
(RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
}
bool operator>(const Cost &RHS) const { return RHS < *this; }
bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
};
// The last instruction that represent the slice. This should be a
// truncate instruction.
SDNode *Inst;
// The original load instruction.
LoadSDNode *Origin;
// The right shift amount in bits from the original load.
unsigned Shift;
// The DAG from which Origin came from.
// This is used to get some contextual information about legal types, etc.
SelectionDAG *DAG;
LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
unsigned Shift = 0, SelectionDAG *DAG = nullptr)
: Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
/// \brief Get the bits used in a chunk of bits \p BitWidth large.
/// \return Result is \p BitWidth and has used bits set to 1 and
/// not used bits set to 0.
APInt getUsedBits() const {
// Reproduce the trunc(lshr) sequence:
// - Start from the truncated value.
// - Zero extend to the desired bit width.
// - Shift left.
assert(Origin && "No original load to compare against.");
unsigned BitWidth = Origin->getValueSizeInBits(0);
assert(Inst && "This slice is not bound to an instruction");
assert(Inst->getValueSizeInBits(0) <= BitWidth &&
"Extracted slice is bigger than the whole type!");
APInt UsedBits(Inst->getValueSizeInBits(0), 0);
UsedBits.setAllBits();
UsedBits = UsedBits.zext(BitWidth);
UsedBits <<= Shift;
return UsedBits;
}
/// \brief Get the size of the slice to be loaded in bytes.
unsigned getLoadedSize() const {
unsigned SliceSize = getUsedBits().countPopulation();
assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
return SliceSize / 8;
}
/// \brief Get the type that will be loaded for this slice.
/// Note: This may not be the final type for the slice.
EVT getLoadedType() const {
assert(DAG && "Missing context");
LLVMContext &Ctxt = *DAG->getContext();
return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
}
/// \brief Get the alignment of the load used for this slice.
unsigned getAlignment() const {
unsigned Alignment = Origin->getAlignment();
unsigned Offset = getOffsetFromBase();
if (Offset != 0)
Alignment = MinAlign(Alignment, Alignment + Offset);
return Alignment;
}
/// \brief Check if this slice can be rewritten with legal operations.
bool isLegal() const {
// An invalid slice is not legal.
if (!Origin || !Inst || !DAG)
return false;
// Offsets are for indexed load only, we do not handle that.
if (Origin->getOffset().getOpcode() != ISD::UNDEF)
return false;
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
// Check that the type is legal.
EVT SliceType = getLoadedType();
if (!TLI.isTypeLegal(SliceType))
return false;
// Check that the load is legal for this type.
if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
return false;
// Check that the offset can be computed.
// 1. Check its type.
EVT PtrType = Origin->getBasePtr().getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
return false;
// 2. Check that it fits in the immediate.
if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
return false;
// 3. Check that the computation is legal.
if (!TLI.isOperationLegal(ISD::ADD, PtrType))
return false;
// Check that the zext is legal if it needs one.
EVT TruncateType = Inst->getValueType(0);
if (TruncateType != SliceType &&
!TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
return false;
return true;
}
/// \brief Get the offset in bytes of this slice in the original chunk of
/// bits.
/// \pre DAG != nullptr.
uint64_t getOffsetFromBase() const {
assert(DAG && "Missing context.");
bool IsBigEndian = DAG->getDataLayout().isBigEndian();
assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
uint64_t Offset = Shift / 8;
unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
"The size of the original loaded type is not a multiple of a"
" byte.");
// If Offset is bigger than TySizeInBytes, it means we are loading all
// zeros. This should have been optimized before in the process.
assert(TySizeInBytes > Offset &&
"Invalid shift amount for given loaded size");
if (IsBigEndian)
Offset = TySizeInBytes - Offset - getLoadedSize();
return Offset;
}
/// \brief Generate the sequence of instructions to load the slice
/// represented by this object and redirect the uses of this slice to
/// this new sequence of instructions.
/// \pre this->Inst && this->Origin are valid Instructions and this
/// object passed the legal check: LoadedSlice::isLegal returned true.
/// \return The last instruction of the sequence used to load the slice.
SDValue loadSlice() const {
assert(Inst && Origin && "Unable to replace a non-existing slice.");
const SDValue &OldBaseAddr = Origin->getBasePtr();
SDValue BaseAddr = OldBaseAddr;
// Get the offset in that chunk of bytes w.r.t. the endianess.
int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
assert(Offset >= 0 && "Offset too big to fit in int64_t!");
if (Offset) {
// BaseAddr = BaseAddr + Offset.
EVT ArithType = BaseAddr.getValueType();
SDLoc DL(Origin);
BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
DAG->getConstant(Offset, DL, ArithType));
}
// Create the type of the loaded slice according to its size.
EVT SliceType = getLoadedType();
// Create the load for the slice.
SDValue LastInst = DAG->getLoad(
SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
// If the final type is not the same as the loaded type, this means that
// we have to pad with zero. Create a zero extend for that.
EVT FinalType = Inst->getValueType(0);
if (SliceType != FinalType)
LastInst =
DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
return LastInst;
}
/// \brief Check if this slice can be merged with an expensive cross register
/// bank copy. E.g.,
/// i = load i32
/// f = bitcast i32 i to float
bool canMergeExpensiveCrossRegisterBankCopy() const {
if (!Inst || !Inst->hasOneUse())
return false;
SDNode *Use = *Inst->use_begin();
if (Use->getOpcode() != ISD::BITCAST)
return false;
assert(DAG && "Missing context");
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
EVT ResVT = Use->getValueType(0);
const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
const TargetRegisterClass *ArgRC =
TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
return false;
// At this point, we know that we perform a cross-register-bank copy.
// Check if it is expensive.
const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
// Assume bitcasts are cheap, unless both register classes do not
// explicitly share a common sub class.
if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
return false;
// Check if it will be merged with the load.
// 1. Check the alignment constraint.
unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
ResVT.getTypeForEVT(*DAG->getContext()));
if (RequiredAlignment > getAlignment())
return false;
// 2. Check that the load is a legal operation for that type.
if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
return false;
// 3. Check that we do not have a zext in the way.
if (Inst->getValueType(0) != getLoadedType())
return false;
return true;
}
};
}
/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
/// \p UsedBits looks like 0..0 1..1 0..0.
static bool areUsedBitsDense(const APInt &UsedBits) {
// If all the bits are one, this is dense!
if (UsedBits.isAllOnesValue())
return true;
// Get rid of the unused bits on the right.
APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
// Get rid of the unused bits on the left.
if (NarrowedUsedBits.countLeadingZeros())
NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
// Check that the chunk of bits is completely used.
return NarrowedUsedBits.isAllOnesValue();
}
/// \brief Check whether or not \p First and \p Second are next to each other
/// in memory. This means that there is no hole between the bits loaded
/// by \p First and the bits loaded by \p Second.
static bool areSlicesNextToEachOther(const LoadedSlice &First,
const LoadedSlice &Second) {
assert(First.Origin == Second.Origin && First.Origin &&
"Unable to match different memory origins.");
APInt UsedBits = First.getUsedBits();
assert((UsedBits & Second.getUsedBits()) == 0 &&
"Slices are not supposed to overlap.");
UsedBits |= Second.getUsedBits();
return areUsedBitsDense(UsedBits);
}
/// \brief Adjust the \p GlobalLSCost according to the target
/// paring capabilities and the layout of the slices.
/// \pre \p GlobalLSCost should account for at least as many loads as
/// there is in the slices in \p LoadedSlices.
static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
LoadedSlice::Cost &GlobalLSCost) {
unsigned NumberOfSlices = LoadedSlices.size();
// If there is less than 2 elements, no pairing is possible.
if (NumberOfSlices < 2)
return;
// Sort the slices so that elements that are likely to be next to each
// other in memory are next to each other in the list.
std::sort(LoadedSlices.begin(), LoadedSlices.end(),
[](const LoadedSlice &LHS, const LoadedSlice &RHS) {
assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
});
const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
// First (resp. Second) is the first (resp. Second) potentially candidate
// to be placed in a paired load.
const LoadedSlice *First = nullptr;
const LoadedSlice *Second = nullptr;
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
// Set the beginning of the pair.
First = Second) {
Second = &LoadedSlices[CurrSlice];
// If First is NULL, it means we start a new pair.
// Get to the next slice.
if (!First)
continue;
EVT LoadedType = First->getLoadedType();
// If the types of the slices are different, we cannot pair them.
if (LoadedType != Second->getLoadedType())
continue;
// Check if the target supplies paired loads for this type.
unsigned RequiredAlignment = 0;
if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
// move to the next pair, this type is hopeless.
Second = nullptr;
continue;
}
// Check if we meet the alignment requirement.
if (RequiredAlignment > First->getAlignment())
continue;
// Check that both loads are next to each other in memory.
if (!areSlicesNextToEachOther(*First, *Second))
continue;
assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
--GlobalLSCost.Loads;
// Move to the next pair.
Second = nullptr;
}
}
/// \brief Check the profitability of all involved LoadedSlice.
/// Currently, it is considered profitable if there is exactly two
/// involved slices (1) which are (2) next to each other in memory, and
/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
///
/// Note: The order of the elements in \p LoadedSlices may be modified, but not
/// the elements themselves.
///
/// FIXME: When the cost model will be mature enough, we can relax
/// constraints (1) and (2).
static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
const APInt &UsedBits, bool ForCodeSize) {
unsigned NumberOfSlices = LoadedSlices.size();
if (StressLoadSlicing)
return NumberOfSlices > 1;
// Check (1).
if (NumberOfSlices != 2)
return false;
// Check (2).
if (!areUsedBitsDense(UsedBits))
return false;
// Check (3).
LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
// The original code has one big load.
OrigCost.Loads = 1;
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
const LoadedSlice &LS = LoadedSlices[CurrSlice];
// Accumulate the cost of all the slices.
LoadedSlice::Cost SliceCost(LS, ForCodeSize);
GlobalSlicingCost += SliceCost;
// Account as cost in the original configuration the gain obtained
// with the current slices.
OrigCost.addSliceGain(LS);
}
// If the target supports paired load, adjust the cost accordingly.
adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
return OrigCost > GlobalSlicingCost;
}
/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
/// operations, split it in the various pieces being extracted.
///
/// This sort of thing is introduced by SROA.
/// This slicing takes care not to insert overlapping loads.
/// \pre LI is a simple load (i.e., not an atomic or volatile load).
bool DAGCombiner::SliceUpLoad(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
LoadSDNode *LD = cast<LoadSDNode>(N);
if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
!LD->getValueType(0).isInteger())
return false;
// Keep track of already used bits to detect overlapping values.
// In that case, we will just abort the transformation.
APInt UsedBits(LD->getValueSizeInBits(0), 0);
SmallVector<LoadedSlice, 4> LoadedSlices;
// Check if this load is used as several smaller chunks of bits.
// Basically, look for uses in trunc or trunc(lshr) and record a new chain
// of computation for each trunc.
for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
UI != UIEnd; ++UI) {
// Skip the uses of the chain.
if (UI.getUse().getResNo() != 0)
continue;
SDNode *User = *UI;
unsigned Shift = 0;
// Check if this is a trunc(lshr).
if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
isa<ConstantSDNode>(User->getOperand(1))) {
Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
User = *User->use_begin();
}
// At this point, User is a Truncate, iff we encountered, trunc or
// trunc(lshr).
if (User->getOpcode() != ISD::TRUNCATE)
return false;
// The width of the type must be a power of 2 and greater than 8-bits.
// Otherwise the load cannot be represented in LLVM IR.
// Moreover, if we shifted with a non-8-bits multiple, the slice
// will be across several bytes. We do not support that.
unsigned Width = User->getValueSizeInBits(0);
if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
return 0;
// Build the slice for this chain of computations.
LoadedSlice LS(User, LD, Shift, &DAG);
APInt CurrentUsedBits = LS.getUsedBits();
// Check if this slice overlaps with another.
if ((CurrentUsedBits & UsedBits) != 0)
return false;
// Update the bits used globally.
UsedBits |= CurrentUsedBits;
// Check if the new slice would be legal.
if (!LS.isLegal())
return false;
// Record the slice.
LoadedSlices.push_back(LS);
}
// Abort slicing if it does not seem to be profitable.
if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
return false;
++SlicedLoads;
// Rewrite each chain to use an independent load.
// By construction, each chain can be represented by a unique load.
// Prepare the argument for the new token factor for all the slices.
SmallVector<SDValue, 8> ArgChains;
for (SmallVectorImpl<LoadedSlice>::const_iterator
LSIt = LoadedSlices.begin(),
LSItEnd = LoadedSlices.end();
LSIt != LSItEnd; ++LSIt) {
SDValue SliceInst = LSIt->loadSlice();
CombineTo(LSIt->Inst, SliceInst, true);
if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
SliceInst = SliceInst.getOperand(0);
assert(SliceInst->getOpcode() == ISD::LOAD &&
"It takes more than a zext to get to the loaded slice!!");
ArgChains.push_back(SliceInst.getValue(1));
}
SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
ArgChains);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
return true;
}
/// Check to see if V is (and load (ptr), imm), where the load is having
/// specific bytes cleared out. If so, return the byte size being masked out
/// and the shift amount.
static std::pair<unsigned, unsigned>
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
std::pair<unsigned, unsigned> Result(0, 0);
// Check for the structure we're looking for.
if (V->getOpcode() != ISD::AND ||
!isa<ConstantSDNode>(V->getOperand(1)) ||
!ISD::isNormalLoad(V->getOperand(0).getNode()))
return Result;
// Check the chain and pointer.
LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
// The store should be chained directly to the load or be an operand of a
// tokenfactor.
if (LD == Chain.getNode())
; // ok.
else if (Chain->getOpcode() != ISD::TokenFactor)
return Result; // Fail.
else {
bool isOk = false;
for (const SDValue &ChainOp : Chain->op_values())
if (ChainOp.getNode() == LD) {
isOk = true;
break;
}
if (!isOk) return Result;
}
// This only handles simple types.
if (V.getValueType() != MVT::i16 &&
V.getValueType() != MVT::i32 &&
V.getValueType() != MVT::i64)
return Result;
// Check the constant mask. Invert it so that the bits being masked out are
// 0 and the bits being kept are 1. Use getSExtValue so that leading bits
// follow the sign bit for uniformity.
uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
unsigned NotMaskLZ = countLeadingZeros(NotMask);
if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
unsigned NotMaskTZ = countTrailingZeros(NotMask);
if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
if (NotMaskLZ == 64) return Result; // All zero mask.
// See if we have a continuous run of bits. If so, we have 0*1+0*
if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
return Result;
// Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
if (V.getValueType() != MVT::i64 && NotMaskLZ)
NotMaskLZ -= 64-V.getValueSizeInBits();
unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
switch (MaskedBytes) {
case 1:
case 2:
case 4: break;
default: return Result; // All one mask, or 5-byte mask.
}
// Verify that the first bit starts at a multiple of mask so that the access
// is aligned the same as the access width.
if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
Result.first = MaskedBytes;
Result.second = NotMaskTZ/8;
return Result;
}
/// Check to see if IVal is something that provides a value as specified by
/// MaskInfo. If so, replace the specified store with a narrower store of
/// truncated IVal.
static SDNode *
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
SDValue IVal, StoreSDNode *St,
DAGCombiner *DC) {
unsigned NumBytes = MaskInfo.first;
unsigned ByteShift = MaskInfo.second;
SelectionDAG &DAG = DC->getDAG();
// Check to see if IVal is all zeros in the part being masked in by the 'or'
// that uses this. If not, this is not a replacement.
APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
ByteShift*8, (ByteShift+NumBytes)*8);
if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
// Check that it is legal on the target to do this. It is legal if the new
// VT we're shrinking to (i8/i16/i32) is legal or we're still before type
// legalization.
MVT VT = MVT::getIntegerVT(NumBytes*8);
if (!DC->isTypeLegal(VT))
return nullptr;
// Okay, we can do this! Replace the 'St' store with a store of IVal that is
// shifted by ByteShift and truncated down to NumBytes.
if (ByteShift) {
SDLoc DL(IVal);
IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
DAG.getConstant(ByteShift*8, DL,
DC->getShiftAmountTy(IVal.getValueType())));
}
// Figure out the offset for the store and the alignment of the access.
unsigned StOffset;
unsigned NewAlign = St->getAlignment();
if (DAG.getDataLayout().isLittleEndian())
StOffset = ByteShift;
else
StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
SDValue Ptr = St->getBasePtr();
if (StOffset) {
SDLoc DL(IVal);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
NewAlign = MinAlign(NewAlign, StOffset);
}
// Truncate down to the new size.
IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
++OpsNarrowed;
return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
St->getPointerInfo().getWithOffset(StOffset),
false, false, NewAlign).getNode();
}
/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
/// narrowing the load and store if it would end up being a win for performance
/// or code size.
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
if (ST->isVolatile())
return SDValue();
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
EVT VT = Value.getValueType();
if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
return SDValue();
unsigned Opc = Value.getOpcode();
// If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
// is a byte mask indicating a consecutive number of bytes, check to see if
// Y is known to provide just those bytes. If so, we try to replace the
// load + replace + store sequence with a single (narrower) store, which makes
// the load dead.
if (Opc == ISD::OR) {
std::pair<unsigned, unsigned> MaskedLoad;
MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
if (MaskedLoad.first)
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
Value.getOperand(1), ST,this))
return SDValue(NewST, 0);
// Or is commutative, so try swapping X and Y.
MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
if (MaskedLoad.first)
if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
Value.getOperand(0), ST,this))
return SDValue(NewST, 0);
}
if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
Value.getOperand(1).getOpcode() != ISD::Constant)
return SDValue();
SDValue N0 = Value.getOperand(0);
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Chain == SDValue(N0.getNode(), 1)) {
LoadSDNode *LD = cast<LoadSDNode>(N0);
if (LD->getBasePtr() != Ptr ||
LD->getPointerInfo().getAddrSpace() !=
ST->getPointerInfo().getAddrSpace())
return SDValue();
// Find the type to narrow it the load / op / store to.
SDValue N1 = Value.getOperand(1);
unsigned BitWidth = N1.getValueSizeInBits();
APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
if (Opc == ISD::AND)
Imm ^= APInt::getAllOnesValue(BitWidth);
if (Imm == 0 || Imm.isAllOnesValue())
return SDValue();
unsigned ShAmt = Imm.countTrailingZeros();
unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
unsigned NewBW = NextPowerOf2(MSB - ShAmt);
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
// The narrowing should be profitable, the load/store operation should be
// legal (or custom) and the store size should be equal to the NewVT width.
while (NewBW < BitWidth &&
(NewVT.getStoreSizeInBits() != NewBW ||
!TLI.isOperationLegalOrCustom(Opc, NewVT) ||
!TLI.isNarrowingProfitable(VT, NewVT))) {
NewBW = NextPowerOf2(NewBW);
NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
}
if (NewBW >= BitWidth)
return SDValue();
// If the lsb changed does not start at the type bitwidth boundary,
// start at the previous one.
if (ShAmt % NewBW)
ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
std::min(BitWidth, ShAmt + NewBW));
if ((Imm & Mask) == Imm) {
APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
if (Opc == ISD::AND)
NewImm ^= APInt::getAllOnesValue(NewBW);
uint64_t PtrOff = ShAmt / 8;
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (DAG.getDataLayout().isBigEndian())
PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
return SDValue();
SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
Ptr.getValueType(), Ptr,
DAG.getConstant(PtrOff, SDLoc(LD),
Ptr.getValueType()));
SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
LD->getChain(), NewPtr,
LD->getPointerInfo().getWithOffset(PtrOff),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(), NewAlign,
LD->getAAInfo());
SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
DAG.getConstant(NewImm, SDLoc(Value),
NewVT));
SDValue NewST = DAG.getStore(Chain, SDLoc(N),
NewVal, NewPtr,
ST->getPointerInfo().getWithOffset(PtrOff),
false, false, NewAlign);
AddToWorklist(NewPtr.getNode());
AddToWorklist(NewLD.getNode());
AddToWorklist(NewVal.getNode());
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
++OpsNarrowed;
return NewST;
}
}
return SDValue();
}
/// For a given floating point load / store pair, if the load value isn't used
/// by any other operations, then consider transforming the pair to integer
/// load / store operations if the target deems the transformation profitable.
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
Value.hasOneUse() &&
Chain == SDValue(Value.getNode(), 1)) {
LoadSDNode *LD = cast<LoadSDNode>(Value);
EVT VT = LD->getMemoryVT();
if (!VT.isFloatingPoint() ||
VT != ST->getMemoryVT() ||
LD->isNonTemporal() ||
ST->isNonTemporal() ||
LD->getPointerInfo().getAddrSpace() != 0 ||
ST->getPointerInfo().getAddrSpace() != 0)
return SDValue();
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
!TLI.isOperationLegal(ISD::STORE, IntVT) ||
!TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
!TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
return SDValue();
unsigned LDAlign = LD->getAlignment();
unsigned STAlign = ST->getAlignment();
Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
if (LDAlign < ABIAlign || STAlign < ABIAlign)
return SDValue();
SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
LD->getChain(), LD->getBasePtr(),
LD->getPointerInfo(),
false, false, false, LDAlign);
SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
NewLD, ST->getBasePtr(),
ST->getPointerInfo(),
false, false, STAlign);
AddToWorklist(NewLD.getNode());
AddToWorklist(NewST.getNode());
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
++LdStFP2Int;
return NewST;
}
return SDValue();
}
namespace {
/// Helper struct to parse and store a memory address as base + index + offset.
/// We ignore sign extensions when it is safe to do so.
/// The following two expressions are not equivalent. To differentiate we need
/// to store whether there was a sign extension involved in the index
/// computation.
/// (load (i64 add (i64 copyfromreg %c)
/// (i64 signextend (add (i8 load %index)
/// (i8 1))))
/// vs
///
/// (load (i64 add (i64 copyfromreg %c)
/// (i64 signextend (i32 add (i32 signextend (i8 load %index))
/// (i32 1)))))
struct BaseIndexOffset {
SDValue Base;
SDValue Index;
int64_t Offset;
bool IsIndexSignExt;
BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
bool IsIndexSignExt) :
Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
bool equalBaseIndex(const BaseIndexOffset &Other) {
return Other.Base == Base && Other.Index == Index &&
Other.IsIndexSignExt == IsIndexSignExt;
}
/// Parses tree in Ptr for base, index, offset addresses.
static BaseIndexOffset match(SDValue Ptr) {
bool IsIndexSignExt = false;
// We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
// instruction, then it could be just the BASE or everything else we don't
// know how to handle. Just use Ptr as BASE and give up.
if (Ptr->getOpcode() != ISD::ADD)
return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
// We know that we have at least an ADD instruction. Try to pattern match
// the simple case of BASE + OFFSET.
if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
IsIndexSignExt);
}
// Inside a loop the current BASE pointer is calculated using an ADD and a
// MUL instruction. In this case Ptr is the actual BASE pointer.
// (i64 add (i64 %array_ptr)
// (i64 mul (i64 %induction_var)
// (i64 %element_size)))
if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
// Look at Base + Index + Offset cases.
SDValue Base = Ptr->getOperand(0);
SDValue IndexOffset = Ptr->getOperand(1);
// Skip signextends.
if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
IndexOffset = IndexOffset->getOperand(0);
IsIndexSignExt = true;
}
// Either the case of Base + Index (no offset) or something else.
if (IndexOffset->getOpcode() != ISD::ADD)
return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
// Now we have the case of Base + Index + offset.
SDValue Index = IndexOffset->getOperand(0);
SDValue Offset = IndexOffset->getOperand(1);
if (!isa<ConstantSDNode>(Offset))
return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
// Ignore signextends.
if (Index->getOpcode() == ISD::SIGN_EXTEND) {
Index = Index->getOperand(0);
IsIndexSignExt = true;
} else IsIndexSignExt = false;
int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
}
};
} // namespace
// This is a helper function for visitMUL to check the profitability
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
// MulNode is the original multiply, AddNode is (add x, c1),
// and ConstNode is c2.
//
// If the (add x, c1) has multiple uses, we could increase
// the number of adds if we make this transformation.
// It would only be worth doing this if we can remove a
// multiply in the process. Check for that here.
// To illustrate:
// (A + c1) * c3
// (A + c2) * c3
// We're checking for cases where we have common "c3 * A" expressions.
bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode) {
APInt Val;
// If the add only has one use, this would be OK to do.
if (AddNode.getNode()->hasOneUse())
return true;
// Walk all the users of the constant with which we're multiplying.
for (SDNode *Use : ConstNode->uses()) {
if (Use == MulNode) // This use is the one we're on right now. Skip it.
continue;
if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
SDNode *OtherOp;
SDNode *MulVar = AddNode.getOperand(0).getNode();
// OtherOp is what we're multiplying against the constant.
if (Use->getOperand(0) == ConstNode)
OtherOp = Use->getOperand(1).getNode();
else
OtherOp = Use->getOperand(0).getNode();
// Check to see if multiply is with the same operand of our "add".
//
// ConstNode = CONST
// Use = ConstNode * A <-- visiting Use. OtherOp is A.
// ...
// AddNode = (A + c1) <-- MulVar is A.
// = AddNode * ConstNode <-- current visiting instruction.
//
// If we make this transformation, we will have a common
// multiply (ConstNode * A) that we can save.
if (OtherOp == MulVar)
return true;
// Now check to see if a future expansion will give us a common
// multiply.
//
// ConstNode = CONST
// AddNode = (A + c1)
// ... = AddNode * ConstNode <-- current visiting instruction.
// ...
// OtherOp = (A + c2)
// Use = OtherOp * ConstNode <-- visiting Use.
//
// If we make this transformation, we will have a common
// multiply (CONST * A) after we also do the same transformation
// to the "t2" instruction.
if (OtherOp->getOpcode() == ISD::ADD &&
isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
OtherOp->getOperand(0).getNode() == MulVar)
return true;
}
}
// Didn't find a case where this would be profitable.
return false;
}
SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG,
SDLoc SL,
ArrayRef<MemOpLink> Stores,
SmallVectorImpl<SDValue> &Chains,
EVT Ty) const {
SmallVector<SDValue, 8> BuildVector;
for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) {
StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode);
Chains.push_back(St->getChain());
BuildVector.push_back(St->getValue());
}
return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector);
}
bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT,
unsigned NumStores, bool IsConstantSrc, bool UseVector) {
// Make sure we have something to merge.
if (NumStores < 2)
return false;
int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned LatestNodeUsed = 0;
for (unsigned i=0; i < NumStores; ++i) {
// Find a chain for the new wide-store operand. Notice that some
// of the store nodes that we found may not be selected for inclusion
// in the wide store. The chain we use needs to be the chain of the
// latest store node which is *used* and replaced by the wide store.
if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
LatestNodeUsed = i;
}
SmallVector<SDValue, 8> Chains;
// The latest Node in the DAG.
LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
SDLoc DL(StoreNodes[0].MemNode);
SDValue StoredVal;
if (UseVector) {
bool IsVec = MemVT.isVector();
unsigned Elts = NumStores;
if (IsVec) {
// When merging vector stores, get the total number of elements.
Elts *= MemVT.getVectorNumElements();
}
// Get the type for the merged vector store.
EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
if (IsConstantSrc) {
StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty);
} else {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumStores; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue Val = St->getValue();
// All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type.
if (Val.getValueType() != MemVT)
return false;
Ops.push_back(Val);
Chains.push_back(St->getChain());
}
// Build the extracted vector elements back into a vector.
StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
DL, Ty, Ops); }
} else {
// We should always use a vector store when merging extracted vector
// elements, so this path implies a store of constants.
assert(IsConstantSrc && "Merged vector elements should use vector store");
unsigned SizeInBits = NumStores * ElementSizeBytes * 8;
APInt StoreInt(SizeInBits, 0);
// Construct a single integer constant which is made of the smaller
// constant inputs.
bool IsLE = DAG.getDataLayout().isLittleEndian();
for (unsigned i = 0; i < NumStores; ++i) {
unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
Chains.push_back(St->getChain());
SDValue Val = St->getValue();
StoreInt <<= ElementSizeBytes * 8;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
StoreInt |= C->getAPIntValue().zext(SizeInBits);
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits);
} else {
llvm_unreachable("Invalid constant element type");
}
}
// Create the new Load and Store operations.
EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
}
assert(!Chains.empty());
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal,
FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(),
false, false,
FirstInChain->getAlignment());
// Replace the last store with the new store
CombineTo(LatestOp, NewStore);
// Erase all other stores.
for (unsigned i = 0; i < NumStores; ++i) {
if (StoreNodes[i].MemNode == LatestOp)
continue;
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
// ReplaceAllUsesWith will replace all uses that existed when it was
// called, but graph optimizations may cause new ones to appear. For
// example, the case in pr14333 looks like
//
// St's chain -> St -> another store -> X
//
// And the only difference from St to the other store is the chain.
// When we change it's chain to be St's chain they become identical,
// get CSEed and the net result is that X is now a use of St.
// Since we know that St is redundant, just iterate.
while (!St->use_empty())
DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
deleteAndRecombine(St);
}
return true;
}
void DAGCombiner::getStoreMergeAndAliasCandidates(
StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) {
// This holds the base pointer, index, and the offset in bytes from the base
// pointer.
BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
// We must have a base and an offset.
if (!BasePtr.Base.getNode())
return;
// Do not handle stores to undef base pointers.
if (BasePtr.Base.getOpcode() == ISD::UNDEF)
return;
// Walk up the chain and look for nodes with offsets from the same
// base pointer. Stop when reaching an instruction with a different kind
// or instruction which has a different base pointer.
EVT MemVT = St->getMemoryVT();
unsigned Seq = 0;
StoreSDNode *Index = St;
bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
: DAG.getSubtarget().useAA();
if (UseAA) {
// Look at other users of the same chain. Stores on the same chain do not
// alias. If combiner-aa is enabled, non-aliasing stores are canonicalized
// to be on the same chain, so don't bother looking at adjacent chains.
SDValue Chain = St->getChain();
for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) {
if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
if (I.getOperandNo() != 0)
continue;
if (OtherST->isVolatile() || OtherST->isIndexed())
continue;
if (OtherST->getMemoryVT() != MemVT)
continue;
BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr());
if (Ptr.equalBaseIndex(BasePtr))
StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++));
}
}
return;
}
while (Index) {
// If the chain has more than one use, then we can't reorder the mem ops.
if (Index != St && !SDValue(Index, 0)->hasOneUse())
break;
// Find the base pointer and offset for this memory node.
BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
// Check that the base pointer is the same as the original one.
if (!Ptr.equalBaseIndex(BasePtr))
break;
// The memory operands must not be volatile.
if (Index->isVolatile() || Index->isIndexed())
break;
// No truncation.
if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
if (St->isTruncatingStore())
break;
// The stored memory type must be the same.
if (Index->getMemoryVT() != MemVT)
break;
// We do not allow under-aligned stores in order to prevent
// overriding stores. NOTE: this is a bad hack. Alignment SHOULD
// be irrelevant here; what MATTERS is that we not move memory
// operations that potentially overlap past each-other.
if (Index->getAlignment() < MemVT.getStoreSize())
break;
// We found a potential memory operand to merge.
StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
// Find the next memory operand in the chain. If the next operand in the
// chain is a store then move up and continue the scan with the next
// memory operand. If the next operand is a load save it and use alias
// information to check if it interferes with anything.
SDNode *NextInChain = Index->getChain().getNode();
while (1) {
if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
// We found a store node. Use it for the next iteration.
Index = STn;
break;
} else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
if (Ldn->isVolatile()) {
Index = nullptr;
break;
}
// Save the load node for later. Continue the scan.
AliasLoadNodes.push_back(Ldn);
NextInChain = Ldn->getChain().getNode();
continue;
} else {
Index = nullptr;
break;
}
}
}
}
bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
if (OptLevel == CodeGenOpt::None)
return false;
EVT MemVT = St->getMemoryVT();
int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute(
Attribute::NoImplicitFloat);
// This function cannot currently deal with non-byte-sized memory sizes.
if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
return false;
if (!MemVT.isSimple())
return false;
// Perform an early exit check. Do not bother looking at stored values that
// are not constants, loads, or extracted vector elements.
SDValue StoredVal = St->getValue();
bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
isa<ConstantFPSDNode>(StoredVal);
bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
return false;
// Don't merge vectors into wider vectors if the source data comes from loads.
// TODO: This restriction can be lifted by using logic similar to the
// ExtractVecSrc case.
if (MemVT.isVector() && IsLoadSrc)
return false;
// Only look at ends of store sequences.
SDValue Chain = SDValue(St, 0);
if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
return false;
// Save the LoadSDNodes that we find in the chain.
// We need to make sure that these nodes do not interfere with
// any of the store nodes.
SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
// Save the StoreSDNodes that we find in the chain.
SmallVector<MemOpLink, 8> StoreNodes;
getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes);
// Check if there is anything to merge.
if (StoreNodes.size() < 2)
return false;
// Sort the memory operands according to their distance from the
// base pointer. As a secondary criteria: make sure stores coming
// later in the code come first in the list. This is important for
// the non-UseAA case, because we're merging stores into the FINAL
// store along a chain which potentially contains aliasing stores.
// Thus, if there are multiple stores to the same address, the last
// one can be considered for merging but not the others.
std::sort(StoreNodes.begin(), StoreNodes.end(),
[](MemOpLink LHS, MemOpLink RHS) {
return LHS.OffsetFromBase < RHS.OffsetFromBase ||
(LHS.OffsetFromBase == RHS.OffsetFromBase &&
LHS.SequenceNum < RHS.SequenceNum);
});
// Scan the memory operations on the chain and find the first non-consecutive
// store memory address.
unsigned LastConsecutiveStore = 0;
int64_t StartAddress = StoreNodes[0].OffsetFromBase;
for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
// Check that the addresses are consecutive starting from the second
// element in the list of stores.
if (i > 0) {
int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
break;
}
bool Alias = false;
// Check if this store interferes with any of the loads that we found.
for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
Alias = true;
break;
}
// We found a load that alias with this store. Stop the sequence.
if (Alias)
break;
// Mark this node as useful.
LastConsecutiveStore = i;
}
// The node with the lowest store address.
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
unsigned FirstStoreAlign = FirstInChain->getAlignment();
LLVMContext &Context = *DAG.getContext();
const DataLayout &DL = DAG.getDataLayout();
// Store the constants into memory as one consecutive store.
if (IsConstantSrc) {
unsigned LastLegalType = 0;
unsigned LastLegalVectorType = 0;
bool NonZero = false;
for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
SDValue StoredVal = St->getValue();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
NonZero |= !C->isNullValue();
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
NonZero |= !C->getConstantFPValue()->isNullValue();
} else {
// Non-constant.
break;
}
// Find a legal type for the constant store.
unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
bool IsFast;
if (TLI.isTypeLegal(StoreTy) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFast) && IsFast) {
LastLegalType = i+1;
// Or check whether a truncstore is legal.
} else if (TLI.getTypeAction(Context, StoreTy) ==
TargetLowering::TypePromoteInteger) {
EVT LegalizedStoredValueTy =
TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
FirstStoreAS, FirstStoreAlign, &IsFast) &&
IsFast) {
LastLegalType = i + 1;
}
}
// We only use vectors if the constant is known to be zero or the target
// allows it and the function is not marked with the noimplicitfloat
// attribute.
if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1,
FirstStoreAS)) &&
!NoVectors) {
// Find a legal type for the vector store.
EVT Ty = EVT::getVectorVT(Context, MemVT, i+1);
if (TLI.isTypeLegal(Ty) &&
TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
FirstStoreAlign, &IsFast) && IsFast)
LastLegalVectorType = i + 1;
}
}
// Check if we found a legal integer type to store.
if (LastLegalType == 0 && LastLegalVectorType == 0)
return false;
bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
true, UseVector);
}
// When extracting multiple vector elements, try to store them
// in one vector store rather than a sequence of scalar stores.
if (IsExtractVecSrc) {
unsigned NumStoresToMerge = 0;
bool IsVec = MemVT.isVector();
for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
unsigned StoreValOpcode = St->getValue().getOpcode();
// This restriction could be loosened.
// Bail out if any stored values are not elements extracted from a vector.
// It should be possible to handle mixed sources, but load sources need
// more careful handling (see the block of code below that handles
// consecutive loads).
if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT &&
StoreValOpcode != ISD::EXTRACT_SUBVECTOR)
return false;
// Find a legal type for the vector store.
unsigned Elts = i + 1;
if (IsVec) {
// When merging vector stores, get the total number of elements.
Elts *= MemVT.getVectorNumElements();
}
EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
bool IsFast;
if (TLI.isTypeLegal(Ty) &&
TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
FirstStoreAlign, &IsFast) && IsFast)
NumStoresToMerge = i + 1;
}
return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge,
false, true);
}
// Below we handle the case of multiple consecutive stores that
// come from multiple consecutive loads. We merge them into a single
// wide load and a single wide store.
// Look for load nodes which are used by the stored values.
SmallVector<MemOpLink, 8> LoadNodes;
// Find acceptable loads. Loads need to have the same chain (token factor),
// must not be zext, volatile, indexed, and they must be consecutive.
BaseIndexOffset LdBasePtr;
for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
if (!Ld) break;
// Loads must only have one use.
if (!Ld->hasNUsesOfValue(1, 0))
break;
// The memory operands must not be volatile.
if (Ld->isVolatile() || Ld->isIndexed())
break;
// We do not accept ext loads.
if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
break;
// The stored memory type must be the same.
if (Ld->getMemoryVT() != MemVT)
break;
BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
// If this is not the first ptr that we check.
if (LdBasePtr.Base.getNode()) {
// The base ptr must be the same.
if (!LdPtr.equalBaseIndex(LdBasePtr))
break;
} else {
// Check that all other base pointers are the same as this one.
LdBasePtr = LdPtr;
}
// We found a potential memory operand to merge.
LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
}
if (LoadNodes.size() < 2)
return false;
// If we have load/store pair instructions and we only have two values,
// don't bother.
unsigned RequiredAlignment;
if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
St->getAlignment() >= RequiredAlignment)
return false;
LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
unsigned FirstLoadAS = FirstLoad->getAddressSpace();
unsigned FirstLoadAlign = FirstLoad->getAlignment();
// Scan the memory operations on the chain and find the first non-consecutive
// load memory address. These variables hold the index in the store node
// array.
unsigned LastConsecutiveLoad = 0;
// This variable refers to the size and not index in the array.
unsigned LastLegalVectorType = 0;
unsigned LastLegalIntegerType = 0;
StartAddress = LoadNodes[0].OffsetFromBase;
SDValue FirstChain = FirstLoad->getChain();
for (unsigned i = 1; i < LoadNodes.size(); ++i) {
// All loads much share the same chain.
if (LoadNodes[i].MemNode->getChain() != FirstChain)
break;
int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
break;
LastConsecutiveLoad = i;
// Find a legal type for the vector store.
EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1);
bool IsFastSt, IsFastLd;
if (TLI.isTypeLegal(StoreTy) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFastSt) && IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
FirstLoadAlign, &IsFastLd) && IsFastLd) {
LastLegalVectorType = i + 1;
}
// Find a legal type for the integer store.
unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
StoreTy = EVT::getIntegerVT(Context, SizeInBits);
if (TLI.isTypeLegal(StoreTy) &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
FirstStoreAlign, &IsFastSt) && IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
FirstLoadAlign, &IsFastLd) && IsFastLd)
LastLegalIntegerType = i + 1;
// Or check whether a truncstore and extload is legal.
else if (TLI.getTypeAction(Context, StoreTy) ==
TargetLowering::TypePromoteInteger) {
EVT LegalizedStoredValueTy =
TLI.getTypeToTransformTo(Context, StoreTy);
if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) &&
TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
FirstStoreAS, FirstStoreAlign, &IsFastSt) &&
IsFastSt &&
TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
FirstLoadAS, FirstLoadAlign, &IsFastLd) &&
IsFastLd)
LastLegalIntegerType = i+1;
}
}
// Only use vector types if the vector type is larger than the integer type.
// If they are the same, use integers.
bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
// We add +1 here because the LastXXX variables refer to location while
// the NumElem refers to array/index size.
unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
NumElem = std::min(LastLegalType, NumElem);
if (NumElem < 2)
return false;
// Collect the chains from all merged stores.
SmallVector<SDValue, 8> MergeStoreChains;
MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain());
// The latest Node in the DAG.
unsigned LatestNodeUsed = 0;
for (unsigned i=1; i<NumElem; ++i) {
// Find a chain for the new wide-store operand. Notice that some
// of the store nodes that we found may not be selected for inclusion
// in the wide store. The chain we use needs to be the chain of the
// latest store node which is *used* and replaced by the wide store.
if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
LatestNodeUsed = i;
MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain());
}
LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
// Find if it is better to use vectors or integers to load and store
// to memory.
EVT JointMemOpVT;
if (UseVectorTy) {
JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem);
} else {
unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
}
SDLoc LoadDL(LoadNodes[0].MemNode);
SDLoc StoreDL(StoreNodes[0].MemNode);
// The merged loads are required to have the same chain, so using the first's
// chain is acceptable.
SDValue NewLoad = DAG.getLoad(
JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign);
SDValue NewStoreChain =
DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains);
SDValue NewStore = DAG.getStore(
NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
FirstInChain->getPointerInfo(), false, false, FirstStoreAlign);
// Replace one of the loads with the new load.
LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
SDValue(NewLoad.getNode(), 1));
// Remove the rest of the load chains.
for (unsigned i = 1; i < NumElem ; ++i) {
// Replace all chain users of the old load nodes with the chain of the new
// load node.
LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
}
// Replace the last store with the new store.
CombineTo(LatestOp, NewStore);
// Erase all other stores.
for (unsigned i = 0; i < NumElem ; ++i) {
// Remove all Store nodes.
if (StoreNodes[i].MemNode == LatestOp)
continue;
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
deleteAndRecombine(St);
}
return true;
}
SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
SDLoc SL(ST);
SDValue ReplStore;
// Replace the chain to avoid dependency.
if (ST->isTruncatingStore()) {
ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
ST->getBasePtr(), ST->getMemoryVT(),
ST->getMemOperand());
} else {
ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
ST->getMemOperand());
}
// Create token to keep both nodes around.
SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
MVT::Other, ST->getChain(), ReplStore);
// Make sure the new and old chains are cleaned up.
AddToWorklist(Token.getNode());
// Don't add users to work list.
return CombineTo(ST, Token, false);
}
SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
SDValue Value = ST->getValue();
if (Value.getOpcode() == ISD::TargetConstantFP)
return SDValue();
SDLoc DL(ST);
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
// NOTE: If the original store is volatile, this transform must not increase
// the number of stores. For example, on x86-32 an f64 can be stored in one
// processor operation but an i64 (which is not legal) requires two. So the
// transform should not be done in this case.
SDValue Tmp;
switch (CFP->getSimpleValueType(0).SimpleTy) {
default:
llvm_unreachable("Unknown FP type");
case MVT::f16: // We don't do this for these yet.
case MVT::f80:
case MVT::f128:
case MVT::ppcf128:
return SDValue();
case MVT::f32:
if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
;
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
bitcastToAPInt().getZExtValue(), SDLoc(CFP),
MVT::i32);
return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
}
return SDValue();
case MVT::f64:
if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
!ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
;
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
getZExtValue(), SDLoc(CFP), MVT::i64);
return DAG.getStore(Chain, DL, Tmp,
Ptr, ST->getMemOperand());
}
if (!ST->isVolatile() &&
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
// Many FP stores are not made apparent until after legalize, e.g. for
// argument passing. Since this is so common, custom legalize the
// 64-bit integer store into two 32-bit stores.
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
AAMDNodes AAInfo = ST->getAAInfo();
SDValue St0 = DAG.getStore(Chain, DL, Lo,
Ptr, ST->getPointerInfo(),
isVolatile, isNonTemporal,
ST->getAlignment(), AAInfo);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(4, DL, Ptr.getValueType()));
Alignment = MinAlign(Alignment, 4U);
SDValue St1 = DAG.getStore(Chain, DL, Hi,
Ptr, ST->getPointerInfo().getWithOffset(4),
isVolatile, isNonTemporal,
Alignment, AAInfo);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
St0, St1);
}
return SDValue();
}
}
SDValue DAGCombiner::visitSTORE(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
// If this is a store of a bit convert, store the input value if the
// resultant store does not need a higher alignment than the original.
if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
ST->isUnindexed()) {
unsigned OrigAlign = ST->getAlignment();
EVT SVT = Value.getOperand(0).getValueType();
unsigned Align = DAG.getDataLayout().getABITypeAlignment(
SVT.getTypeForEVT(*DAG.getContext()));
if (Align <= OrigAlign &&
((!LegalOperations && !ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
Ptr, ST->getPointerInfo(), ST->isVolatile(),
ST->isNonTemporal(), OrigAlign,
ST->getAAInfo());
}
// Turn 'store undef, Ptr' -> nothing.
if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
return Chain;
// Try to infer better alignment information than the store already has.
if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
if (Align > ST->getAlignment()) {
SDValue NewStore =
DAG.getTruncStore(Chain, SDLoc(N), Value,
Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
ST->isVolatile(), ST->isNonTemporal(), Align,
ST->getAAInfo());
if (NewStore.getNode() != N)
return CombineTo(ST, NewStore, true);
}
}
}
// Try transforming a pair floating point load / store ops to integer
// load / store ops.
if (SDValue NewST = TransformFPLoadStorePair(N))
return NewST;
bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
: DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
UseAA = false;
#endif
if (UseAA && ST->isUnindexed()) {
// FIXME: We should do this even without AA enabled. AA will just allow
// FindBetterChain to work in more situations. The problem with this is that
// any combine that expects memory operations to be on consecutive chains
// first needs to be updated to look for users of the same chain.
// Walk up chain skipping non-aliasing memory nodes, on this store and any
// adjacent stores.
if (findBetterNeighborChains(ST)) {
// replaceStoreChain uses CombineTo, which handled all of the worklist
// manipulation. Return the original node to not do anything else.
return SDValue(ST, 0);
}
}
// Try transforming N to an indexed store.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
// FIXME: is there such a thing as a truncating indexed store?
if (ST->isTruncatingStore() && ST->isUnindexed() &&
Value.getValueType().isInteger()) {
// See if we can simplify the input to this truncstore with knowledge that
// only the low bits are being used. For example:
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
SDValue Shorter =
GetDemandedBits(Value,
APInt::getLowBitsSet(
Value.getValueType().getScalarType().getSizeInBits(),
ST->getMemoryVT().getScalarType().getSizeInBits()));
AddToWorklist(Value.getNode());
if (Shorter.getNode())
return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
Ptr, ST->getMemoryVT(), ST->getMemOperand());
// Otherwise, see if we can simplify the operation with
// SimplifyDemandedBits, which only works if the value has a single use.
if (SimplifyDemandedBits(Value,
APInt::getLowBitsSet(
Value.getValueType().getScalarType().getSizeInBits(),
ST->getMemoryVT().getScalarType().getSizeInBits())))
return SDValue(N, 0);
}
// If this is a load followed by a store to the same location, then the store
// is dead/noop.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
ST->isUnindexed() && !ST->isVolatile() &&
// There can't be any side effects between the load and store, such as
// a call or store.
Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
// The store is dead, remove it.
return Chain;
}
}
// If this is a store followed by a store with the same value to the same
// location, then the store is dead/noop.
if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() &&
ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() &&
ST1->isUnindexed() && !ST1->isVolatile()) {
// The store is dead, remove it.
return Chain;
}
}
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
// truncating store. We can do this even if this is already a truncstore.
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
&& Value.getNode()->hasOneUse() && ST->isUnindexed() &&
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
ST->getMemoryVT())) {
return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
Ptr, ST->getMemoryVT(), ST->getMemOperand());
}
// Only perform this optimization before the types are legal, because we
// don't want to perform this optimization on every DAGCombine invocation.
if (!LegalTypes) {
bool EverChanged = false;
do {
// There can be multiple store sequences on the same chain.
// Keep trying to merge store sequences until we are unable to do so
// or until we merge the last store on the chain.
bool Changed = MergeConsecutiveStores(ST);
EverChanged |= Changed;
if (!Changed) break;
} while (ST->getOpcode() != ISD::DELETED_NODE);
if (EverChanged)
return SDValue(N, 0);
}
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
//
// Make sure to do this only after attempting to merge stores in order to
// avoid changing the types of some subset of stores due to visit order,
// preventing their merging.
if (isa<ConstantFPSDNode>(Value)) {
if (SDValue NewSt = replaceStoreOfFPConstant(ST))
return NewSt;
}
return ReduceLoadOpStoreWidth(N);
}
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
SDValue InVec = N->getOperand(0);
SDValue InVal = N->getOperand(1);
SDValue EltNo = N->getOperand(2);
SDLoc dl(N);
// If the inserted element is an UNDEF, just use the input vector.
if (InVal.getOpcode() == ISD::UNDEF)
return InVec;
EVT VT = InVec.getValueType();
// If we can't generate a legal BUILD_VECTOR, exit
if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
return SDValue();
// Check that we know which element is being inserted
if (!isa<ConstantSDNode>(EltNo))
return SDValue();
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
// Canonicalize insert_vector_elt dag nodes.
// Example:
// (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
// -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
//
// Do this only if the child insert_vector node has one use; also
// do this only if indices are both constants and Idx1 < Idx0.
if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
&& isa<ConstantSDNode>(InVec.getOperand(2))) {
unsigned OtherElt =
cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue();
if (Elt < OtherElt) {
// Swap nodes.
SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT,
InVec.getOperand(0), InVal, EltNo);
AddToWorklist(NewOp.getNode());
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
}
}
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the
// vector elements.
SmallVector<SDValue, 8> Ops;
// Do not combine these two vectors if the output vector will not replace
// the input vector.
if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
Ops.append(InVec.getNode()->op_begin(),
InVec.getNode()->op_end());
} else if (InVec.getOpcode() == ISD::UNDEF) {
unsigned NElts = VT.getVectorNumElements();
Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
} else {
return SDValue();
}
// Insert the element
if (Elt < Ops.size()) {
// All the operands of BUILD_VECTOR must have the same type;
// we enforce that here.
EVT OpVT = Ops[0].getValueType();
if (InVal.getValueType() != OpVT)
InVal = OpVT.bitsGT(InVal.getValueType()) ?
DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
Ops[Elt] = InVal;
}
// Return the new vector
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
}
SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
EVT ResultVT = EVE->getValueType(0);
EVT VecEltVT = InVecVT.getVectorElementType();
unsigned Align = OriginalLoad->getAlignment();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
VecEltVT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
return SDValue();
Align = NewAlign;
SDValue NewPtr = OriginalLoad->getBasePtr();
SDValue Offset;
EVT PtrType = NewPtr.getValueType();
MachinePointerInfo MPI;
SDLoc DL(EVE);
if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
int Elt = ConstEltNo->getZExtValue();
unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
Offset = DAG.getConstant(PtrOff, DL, PtrType);
MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
} else {
Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
Offset = DAG.getNode(
ISD::MUL, DL, PtrType, Offset,
DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
MPI = OriginalLoad->getPointerInfo();
}
NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
// The replacement we need to do here is a little tricky: we need to
// replace an extractelement of a load with a load.
// Use ReplaceAllUsesOfValuesWith to do the replacement.
// Note that this replacement assumes that the extractvalue is the only
// use of the load; that's okay because we don't want to perform this
// transformation in other cases anyway.
SDValue Load;
SDValue Chain;
if (ResultVT.bitsGT(VecEltVT)) {
// If the result type of vextract is wider than the load, then issue an
// extending load instead.
ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
VecEltVT)
? ISD::ZEXTLOAD
: ISD::EXTLOAD;
Load = DAG.getExtLoad(
ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI,
VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
Chain = Load.getValue(1);
} else {
Load = DAG.getLoad(
VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI,
OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
Chain = Load.getValue(1);
if (ResultVT.bitsLT(VecEltVT))
Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
else
Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load);
}
WorklistRemover DeadNodes(*this);
SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
SDValue To[] = { Load, Chain };
DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
// Since we're explicitly calling ReplaceAllUses, add the new node to the
// worklist explicitly as well.
AddToWorklist(Load.getNode());
AddUsersToWorklist(Load.getNode()); // Add users too
// Make sure to revisit this node to clean it up; it will usually be dead.
AddToWorklist(EVE);
++OpsNarrowed;
return SDValue(EVE, 0);
}
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
// (vextract (scalar_to_vector val, 0) -> val
SDValue InVec = N->getOperand(0);
EVT VT = InVec.getValueType();
EVT NVT = N->getValueType(0);
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
// Check if the result type doesn't match the inserted element type. A
// SCALAR_TO_VECTOR may truncate the inserted element and the
// EXTRACT_VECTOR_ELT may widen the extracted vector.
SDValue InOp = InVec.getOperand(0);
if (InOp.getValueType() != NVT) {
assert(InOp.getValueType().isInteger() && NVT.isInteger());
return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
}
return InOp;
}
SDValue EltNo = N->getOperand(1);
ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
// extract_vector_elt (build_vector x, y), 1 -> y
if (ConstEltNo &&
InVec.getOpcode() == ISD::BUILD_VECTOR &&
TLI.isTypeLegal(VT) &&
(InVec.hasOneUse() ||
TLI.aggressivelyPreferBuildVectorSources(VT))) {
SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue());
EVT InEltVT = Elt.getValueType();
// Sometimes build_vector's scalar input types do not match result type.
if (NVT == InEltVT)
return Elt;
// TODO: It may be useful to truncate if free if the build_vector implicitly
// converts.
}
// Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
// We only perform this optimization before the op legalization phase because
// we may introduce new vector instructions which are not backed by TD
// patterns. For example on AVX, extracting elements from a wide vector
// without using extract_subvector. However, if we can find an underlying
// scalar value, then we can always use that.
if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) {
int NumElem = VT.getVectorNumElements();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
// Find the new index to extract from.
int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue());
// Extracting an undef index is undef.
if (OrigElt == -1)
return DAG.getUNDEF(NVT);
// Select the right vector half to extract from.
SDValue SVInVec;
if (OrigElt < NumElem) {
SVInVec = InVec->getOperand(0);
} else {
SVInVec = InVec->getOperand(1);
OrigElt -= NumElem;
}
if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
SDValue InOp = SVInVec.getOperand(OrigElt);
if (InOp.getValueType() != NVT) {
assert(InOp.getValueType().isInteger() && NVT.isInteger());
InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT);
}
return InOp;
}
// FIXME: We should handle recursing on other vector shuffles and
// scalar_to_vector here as well.
if (!LegalOperations) {
EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec,
DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy));
}
}
bool BCNumEltsChanged = false;
EVT ExtVT = VT.getVectorElementType();
EVT LVT = ExtVT;
// If the result of load has to be truncated, then it's not necessarily
// profitable.
if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
return SDValue();
if (InVec.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
EVT BCVT = InVec.getOperand(0).getValueType();
if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
return SDValue();
if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
BCNumEltsChanged = true;
InVec = InVec.getOperand(0);
ExtVT = BCVT.getVectorElementType();
}
// (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
ISD::isNormalLoad(InVec.getNode()) &&
!N->getOperand(1)->hasPredecessor(InVec.getNode())) {
SDValue Index = N->getOperand(1);
if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec))
return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
OrigLoad);
}
// Perform only after legalization to ensure build_vector / vector_shuffle
// optimizations have already been done.
if (!LegalOperations) return SDValue();
// (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
if (ConstEltNo) {
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
LoadSDNode *LN0 = nullptr;
const ShuffleVectorSDNode *SVN = nullptr;
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
} else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
InVec.getOperand(0).getValueType() == ExtVT &&
ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
LN0 = cast<LoadSDNode>(InVec.getOperand(0));
} else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
// (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
// =>
// (load $addr+1*size)
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
// If the bit convert changed the number of elements, it is unsafe
// to examine the mask.
if (BCNumEltsChanged)
return SDValue();
// Select the input vector, guarding against out of range extract vector.
unsigned NumElems = VT.getVectorNumElements();
int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
if (InVec.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
InVec = InVec.getOperand(0);
}
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType());
}
}
// Make sure we found a non-volatile load and the extractelement is
// the only use.
if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
return SDValue();
// If Idx was -1 above, Elt is going to be -1, so just return undef.
if (Elt == -1)
return DAG.getUNDEF(LVT);
return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
}
return SDValue();
}
// Simplify (build_vec (ext )) to (bitcast (build_vec ))
SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
// We perform this optimization post type-legalization because
// the type-legalizer often scalarizes integer-promoted vectors.
// Performing this optimization before may create bit-casts which
// will be type-legalized to complex code sequences.
// We perform this optimization only before the operation legalizer because we
// may introduce illegal operations.
if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
return SDValue();
unsigned NumInScalars = N->getNumOperands();
SDLoc dl(N);
EVT VT = N->getValueType(0);
// Check to see if this is a BUILD_VECTOR of a bunch of values
// which come from any_extend or zero_extend nodes. If so, we can create
// a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
// optimizations. We do not handle sign-extend because we can't fill the sign
// using shuffles.
EVT SourceType = MVT::Other;
bool AllAnyExt = true;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue In = N->getOperand(i);
// Ignore undef inputs.
if (In.getOpcode() == ISD::UNDEF) continue;
bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
// Abort if the element is not an extension.
if (!ZeroExt && !AnyExt) {
SourceType = MVT::Other;
break;
}
// The input is a ZeroExt or AnyExt. Check the original type.
EVT InTy = In.getOperand(0).getValueType();
// Check that all of the widened source types are the same.
if (SourceType == MVT::Other)
// First time.
SourceType = InTy;
else if (InTy != SourceType) {
// Multiple income types. Abort.
SourceType = MVT::Other;
break;
}
// Check if all of the extends are ANY_EXTENDs.
AllAnyExt &= AnyExt;
}
// In order to have valid types, all of the inputs must be extended from the
// same source type and all of the inputs must be any or zero extend.
// Scalar sizes must be a power of two.
EVT OutScalarTy = VT.getScalarType();
bool ValidTypes = SourceType != MVT::Other &&
isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
isPowerOf2_32(SourceType.getSizeInBits());
// Create a new simpler BUILD_VECTOR sequence which other optimizations can
// turn into a single shuffle instruction.
if (!ValidTypes)
return SDValue();
bool isLE = DAG.getDataLayout().isLittleEndian();
unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
assert(ElemRatio > 1 && "Invalid element size ratio");
SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
DAG.getConstant(0, SDLoc(N), SourceType);
unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
// Populate the new build_vector
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Cast = N->getOperand(i);
assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
Cast.getOpcode() == ISD::ZERO_EXTEND ||
Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
SDValue In;
if (Cast.getOpcode() == ISD::UNDEF)
In = DAG.getUNDEF(SourceType);
else
In = Cast->getOperand(0);
unsigned Index = isLE ? (i * ElemRatio) :
(i * ElemRatio + (ElemRatio - 1));
assert(Index < Ops.size() && "Invalid index");
Ops[Index] = In;
}
// The type of the new BUILD_VECTOR node.
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
"Invalid vector size");
// Check if the new vector type is legal.
if (!isTypeLegal(VecVT)) return SDValue();
// Make the new BUILD_VECTOR.
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
// The new BUILD_VECTOR node has the potential to be further optimized.
AddToWorklist(BV.getNode());
// Bitcast to the desired type.
return DAG.getNode(ISD::BITCAST, dl, VT, BV);
}
SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumInScalars = N->getNumOperands();
SDLoc dl(N);
EVT SrcVT = MVT::Other;
unsigned Opcode = ISD::DELETED_NODE;
unsigned NumDefs = 0;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue In = N->getOperand(i);
unsigned Opc = In.getOpcode();
if (Opc == ISD::UNDEF)
continue;
// If all scalar values are floats and converted from integers.
if (Opcode == ISD::DELETED_NODE &&
(Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
Opcode = Opc;
}
if (Opc != Opcode)
return SDValue();
EVT InVT = In.getOperand(0).getValueType();
// If all scalar values are typed differently, bail out. It's chosen to
// simplify BUILD_VECTOR of integer types.
if (SrcVT == MVT::Other)
SrcVT = InVT;
if (SrcVT != InVT)
return SDValue();
NumDefs++;
}
// If the vector has just one element defined, it's not worth to fold it into
// a vectorized one.
if (NumDefs < 2)
return SDValue();
assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
&& "Should only handle conversion from integer to float.");
assert(SrcVT != MVT::Other && "Cannot determine source type!");
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
return SDValue();
// Just because the floating-point vector type is legal does not necessarily
// mean that the corresponding integer vector type is.
if (!isTypeLegal(NVT))
return SDValue();
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue In = N->getOperand(i);
if (In.getOpcode() == ISD::UNDEF)
Opnds.push_back(DAG.getUNDEF(SrcVT));
else
Opnds.push_back(In.getOperand(0));
}
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds);
AddToWorklist(BV.getNode());
return DAG.getNode(Opcode, dl, VT, BV);
}
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
unsigned NumInScalars = N->getNumOperands();
SDLoc dl(N);
EVT VT = N->getValueType(0);
// A vector built entirely of undefs is undef.
if (ISD::allOperandsUndef(N))
return DAG.getUNDEF(VT);
if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
return V;
if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
return V;
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
// operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
// at most two distinct vectors, turn this into a shuffle node.
// Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
if (!isTypeLegal(VT))
return SDValue();
// May only combine to shuffle after legalize if shuffle is legal.
if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
return SDValue();
SDValue VecIn1, VecIn2;
bool UsesZeroVector = false;
for (unsigned i = 0; i != NumInScalars; ++i) {
SDValue Op = N->getOperand(i);
// Ignore undef inputs.
if (Op.getOpcode() == ISD::UNDEF) continue;
// See if we can combine this build_vector into a blend with a zero vector.
if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) {
UsesZeroVector = true;
continue;
}
// If this input is something other than a EXTRACT_VECTOR_ELT with a
// constant index, bail out.
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Op.getOperand(1))) {
VecIn1 = VecIn2 = SDValue(nullptr, 0);
break;
}
// We allow up to two distinct input vectors.
SDValue ExtractedFromVec = Op.getOperand(0);
if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
continue;
if (!VecIn1.getNode()) {
VecIn1 = ExtractedFromVec;
} else if (!VecIn2.getNode() && !UsesZeroVector) {
VecIn2 = ExtractedFromVec;
} else {
// Too many inputs.
VecIn1 = VecIn2 = SDValue(nullptr, 0);
break;
}
}
// If everything is good, we can make a shuffle operation.
if (VecIn1.getNode()) {
unsigned InNumElements = VecIn1.getValueType().getVectorNumElements();
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != NumInScalars; ++i) {
unsigned Opcode = N->getOperand(i).getOpcode();
if (Opcode == ISD::UNDEF) {
Mask.push_back(-1);
continue;
}
// Operands can also be zero.
if (Opcode != ISD::EXTRACT_VECTOR_ELT) {
assert(UsesZeroVector &&
(Opcode == ISD::Constant || Opcode == ISD::ConstantFP) &&
"Unexpected node found!");
Mask.push_back(NumInScalars+i);
continue;
}
// If extracting from the first vector, just use the index directly.
SDValue Extract = N->getOperand(i);
SDValue ExtVal = Extract.getOperand(1);
unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
if (Extract.getOperand(0) == VecIn1) {
Mask.push_back(ExtIndex);
continue;
}
// Otherwise, use InIdx + InputVecSize
Mask.push_back(InNumElements + ExtIndex);
}
// Avoid introducing illegal shuffles with zero.
if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT))
return SDValue();
// We can't generate a shuffle node with mismatched input and output types.
// Attempt to transform a single input vector to the correct type.
if ((VT != VecIn1.getValueType())) {
// If the input vector type has a different base type to the output
// vector type, bail out.
EVT VTElemType = VT.getVectorElementType();
if ((VecIn1.getValueType().getVectorElementType() != VTElemType) ||
(VecIn2.getNode() &&
(VecIn2.getValueType().getVectorElementType() != VTElemType)))
return SDValue();
// If the input vector is too small, widen it.
// We only support widening of vectors which are half the size of the
// output registers. For example XMM->YMM widening on X86 with AVX.
EVT VecInT = VecIn1.getValueType();
if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) {
// If we only have one small input, widen it by adding undef values.
if (!VecIn2.getNode())
VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1,
DAG.getUNDEF(VecIn1.getValueType()));
else if (VecIn1.getValueType() == VecIn2.getValueType()) {
// If we have two small inputs of the same type, try to concat them.
VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2);
VecIn2 = SDValue(nullptr, 0);
} else
return SDValue();
} else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) {
// If the input vector is too large, try to split it.
// We don't support having two input vectors that are too large.
// If the zero vector was used, we can not split the vector,
// since we'd need 3 inputs.
if (UsesZeroVector || VecIn2.getNode())
return SDValue();
if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements()))
return SDValue();
// Try to replace VecIn1 with two extract_subvectors
// No need to update the masks, they should still be correct.
VecIn2 = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
DAG.getConstant(VT.getVectorNumElements(), dl,
TLI.getVectorIdxTy(DAG.getDataLayout())));
VecIn1 = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
} else
return SDValue();
}
if (UsesZeroVector)
VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) :
DAG.getConstantFP(0.0, dl, VT);
else
// If VecIn2 is unused then change it to undef.
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
// Check that we were able to transform all incoming values to the same
// type.
if (VecIn2.getValueType() != VecIn1.getValueType() ||
VecIn1.getValueType() != VT)
return SDValue();
// Return the new VECTOR_SHUFFLE node.
SDValue Ops[2];
Ops[0] = VecIn1;
Ops[1] = VecIn2;
return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
}
return SDValue();
}
static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT OpVT = N->getOperand(0).getValueType();
// If the operands are legal vectors, leave them alone.
if (TLI.isTypeLegal(OpVT))
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
SmallVector<SDValue, 8> Ops;
EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
// Keep track of what we encounter.
bool AnyInteger = false;
bool AnyFP = false;
for (const SDValue &Op : N->ops()) {
if (ISD::BITCAST == Op.getOpcode() &&
!Op.getOperand(0).getValueType().isVector())
Ops.push_back(Op.getOperand(0));
else if (ISD::UNDEF == Op.getOpcode())
Ops.push_back(ScalarUndef);
else
return SDValue();
// Note whether we encounter an integer or floating point scalar.
// If it's neither, bail out, it could be something weird like x86mmx.
EVT LastOpVT = Ops.back().getValueType();
if (LastOpVT.isFloatingPoint())
AnyFP = true;
else if (LastOpVT.isInteger())
AnyInteger = true;
else
return SDValue();
}
// If any of the operands is a floating point scalar bitcast to a vector,
// use floating point types throughout, and bitcast everything.
// Replace UNDEFs by another scalar UNDEF node, of the final desired type.
if (AnyFP) {
SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
if (AnyInteger) {
for (SDValue &Op : Ops) {
if (Op.getValueType() == SVT)
continue;
if (Op.getOpcode() == ISD::UNDEF)
Op = ScalarUndef;
else
Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op);
}
}
}
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
VT.getSizeInBits() / SVT.getSizeInBits());
return DAG.getNode(ISD::BITCAST, DL, VT,
DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops));
}
// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
// most two distinct vectors the same size as the result, attempt to turn this
// into a legal shuffle.
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
EVT OpVT = N->getOperand(0).getValueType();
int NumElts = VT.getVectorNumElements();
int NumOpElts = OpVT.getVectorNumElements();
SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
SmallVector<int, 8> Mask;
for (SDValue Op : N->ops()) {
// Peek through any bitcast.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
// UNDEF nodes convert to UNDEF shuffle mask values.
if (Op.getOpcode() == ISD::UNDEF) {
Mask.append((unsigned)NumOpElts, -1);
continue;
}
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
// What vector are we extracting the subvector from and at what index?
SDValue ExtVec = Op.getOperand(0);
// We want the EVT of the original extraction to correctly scale the
// extraction index.
EVT ExtVT = ExtVec.getValueType();
// Peek through any bitcast.
while (ExtVec.getOpcode() == ISD::BITCAST)
ExtVec = ExtVec.getOperand(0);
// UNDEF nodes convert to UNDEF shuffle mask values.
if (ExtVec.getOpcode() == ISD::UNDEF) {
Mask.append((unsigned)NumOpElts, -1);
continue;
}
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// Ensure that we are extracting a subvector from a vector the same
// size as the result.
if (ExtVT.getSizeInBits() != VT.getSizeInBits())
return SDValue();
// Scale the subvector index to account for any bitcast.
int NumExtElts = ExtVT.getVectorNumElements();
if (0 == (NumExtElts % NumElts))
ExtIdx /= (NumExtElts / NumElts);
else if (0 == (NumElts % NumExtElts))
ExtIdx *= (NumElts / NumExtElts);
else
return SDValue();
// At most we can reference 2 inputs in the final shuffle.
if (SV0.getOpcode() == ISD::UNDEF || SV0 == ExtVec) {
SV0 = ExtVec;
for (int i = 0; i != NumOpElts; ++i)
Mask.push_back(i + ExtIdx);
} else if (SV1.getOpcode() == ISD::UNDEF || SV1 == ExtVec) {
SV1 = ExtVec;
for (int i = 0; i != NumOpElts; ++i)
Mask.push_back(i + ExtIdx + NumElts);
} else {
return SDValue();
}
}
if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
return SDValue();
return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
DAG.getBitcast(VT, SV1), Mask);
}
SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
// If we only have one input vector, we don't need to do any concatenation.
if (N->getNumOperands() == 1)
return N->getOperand(0);
// Check if all of the operands are undefs.
EVT VT = N->getValueType(0);
if (ISD::allOperandsUndef(N))
return DAG.getUNDEF(VT);
// Optimize concat_vectors where all but the first of the vectors are undef.
if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
return Op.getOpcode() == ISD::UNDEF;
})) {
SDValue In = N->getOperand(0);
assert(In.getValueType().isVector() && "Must concat vectors");
// Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
if (In->getOpcode() == ISD::BITCAST &&
!In->getOperand(0)->getValueType(0).isVector()) {
SDValue Scalar = In->getOperand(0);
// If the bitcast type isn't legal, it might be a trunc of a legal type;
// look through the trunc so we can still do the transform:
// concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
if (Scalar->getOpcode() == ISD::TRUNCATE &&
!TLI.isTypeLegal(Scalar.getValueType()) &&
TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
Scalar = Scalar->getOperand(0);
EVT SclTy = Scalar->getValueType(0);
if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
return SDValue();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
VT.getSizeInBits() / SclTy.getSizeInBits());
if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
return SDValue();
SDLoc dl = SDLoc(N);
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
return DAG.getNode(ISD::BITCAST, dl, VT, Res);
}
}
// Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
// We have already tested above for an UNDEF only concatenation.
// fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
// -> (BUILD_VECTOR A, B, ..., C, D, ...)
auto IsBuildVectorOrUndef = [](const SDValue &Op) {
return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
};
bool AllBuildVectorsOrUndefs =
std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef);
if (AllBuildVectorsOrUndefs) {
SmallVector<SDValue, 8> Opnds;
EVT SVT = VT.getScalarType();
EVT MinVT = SVT;
if (!SVT.isFloatingPoint()) {
// If BUILD_VECTOR are from built from integer, they may have different
// operand types. Get the smallest type and truncate all operands to it.
bool FoundMinVT = false;
for (const SDValue &Op : N->ops())
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
EVT OpSVT = Op.getOperand(0)->getValueType(0);
MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
FoundMinVT = true;
}
assert(FoundMinVT && "Concat vector type mismatch");
}
for (const SDValue &Op : N->ops()) {
EVT OpVT = Op.getValueType();
unsigned NumElts = OpVT.getVectorNumElements();
if (ISD::UNDEF == Op.getOpcode())
Opnds.append(NumElts, DAG.getUNDEF(MinVT));
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
if (SVT.isFloatingPoint()) {
assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
} else {
for (unsigned i = 0; i != NumElts; ++i)
Opnds.push_back(
DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
}
}
}
assert(VT.getVectorNumElements() == Opnds.size() &&
"Concat vector type mismatch");
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
}
// Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
if (SDValue V = combineConcatVectorOfScalars(N, DAG))
return V;
// Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
return V;
// Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
// nodes often generate nop CONCAT_VECTOR nodes.
// Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
// place the incoming vectors at the exact same location.
SDValue SingleSource = SDValue();
unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Op = N->getOperand(i);
if (Op.getOpcode() == ISD::UNDEF)
continue;
// Check if this is the identity extract:
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
// Find the single incoming vector for the extract_subvector.
if (SingleSource.getNode()) {
if (Op.getOperand(0) != SingleSource)
return SDValue();
} else {
SingleSource = Op.getOperand(0);
// Check the source type is the same as the type of the result.
// If not, this concat may extend the vector, so we can not
// optimize it away.
if (SingleSource.getValueType() != N->getValueType(0))
return SDValue();
}
unsigned IdentityIndex = i * PartNumElem;
ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
// The extract index must be constant.
if (!CS)
return SDValue();
// Check that we are reading from the identity index.
if (CS->getZExtValue() != IdentityIndex)
return SDValue();
}
if (SingleSource.getNode())
return SingleSource;
return SDValue();
}
SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
EVT NVT = N->getValueType(0);
SDValue V = N->getOperand(0);
if (V->getOpcode() == ISD::CONCAT_VECTORS) {
// Combine:
// (extract_subvec (concat V1, V2, ...), i)
// Into:
// Vi if possible
// Only operand 0 is checked as 'concat' assumes all inputs of the same
// type.
if (V->getOperand(0).getValueType() != NVT)
return SDValue();
unsigned Idx = N->getConstantOperandVal(1);
unsigned NumElems = NVT.getVectorNumElements();
assert((Idx % NumElems) == 0 &&
"IDX in concat is not a multiple of the result vector length.");
return V->getOperand(Idx / NumElems);
}
// Skip bitcasting
if (V->getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
SDLoc dl(N);
// Handle only simple case where vector being inserted and vector
// being extracted are of same type, and are half size of larger vectors.
EVT BigVT = V->getOperand(0).getValueType();
EVT SmallVT = V->getOperand(1).getValueType();
if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
return SDValue();
// Only handle cases where both indexes are constants with the same type.
ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
if (InsIdx && ExtIdx &&
InsIdx->getValueType(0).getSizeInBits() <= 64 &&
ExtIdx->getValueType(0).getSizeInBits() <= 64) {
// Combine:
// (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
// Into:
// indices are equal or bit offsets are equal => V1
// otherwise => (extract_subvec V1, ExtIdx)
if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
DAG.getNode(ISD::BITCAST, dl,
N->getOperand(0).getValueType(),
V->getOperand(0)), N->getOperand(1));
}
}
return SDValue();
}
static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements,
SDValue V, SelectionDAG &DAG) {
SDLoc DL(V);
EVT VT = V.getValueType();
switch (V.getOpcode()) {
default:
return V;
case ISD::CONCAT_VECTORS: {
EVT OpVT = V->getOperand(0).getValueType();
int OpSize = OpVT.getVectorNumElements();
SmallBitVector OpUsedElements(OpSize, false);
bool FoundSimplification = false;
SmallVector<SDValue, 4> NewOps;
NewOps.reserve(V->getNumOperands());
for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) {
SDValue Op = V->getOperand(i);
bool OpUsed = false;
for (int j = 0; j < OpSize; ++j)
if (UsedElements[i * OpSize + j]) {
OpUsedElements[j] = true;
OpUsed = true;
}
NewOps.push_back(
OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG)
: DAG.getUNDEF(OpVT));
FoundSimplification |= Op == NewOps.back();
OpUsedElements.reset();
}
if (FoundSimplification)
V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps);
return V;
}
case ISD::INSERT_SUBVECTOR: {
SDValue BaseV = V->getOperand(0);
SDValue SubV = V->getOperand(1);
auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2));
if (!IdxN)
return V;
int SubSize = SubV.getValueType().getVectorNumElements();
int Idx = IdxN->getZExtValue();
bool SubVectorUsed = false;
SmallBitVector SubUsedElements(SubSize, false);
for (int i = 0; i < SubSize; ++i)
if (UsedElements[i + Idx]) {
SubVectorUsed = true;
SubUsedElements[i] = true;
UsedElements[i + Idx] = false;
}
// Now recurse on both the base and sub vectors.
SDValue SimplifiedSubV =
SubVectorUsed
? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG)
: DAG.getUNDEF(SubV.getValueType());
SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG);
if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV)
V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
SimplifiedBaseV, SimplifiedSubV, V->getOperand(2));
return V;
}
}
}
static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0,
SDValue N1, SelectionDAG &DAG) {
EVT VT = SVN->getValueType(0);
int NumElts = VT.getVectorNumElements();
SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false);
for (int M : SVN->getMask())
if (M >= 0 && M < NumElts)
N0UsedElements[M] = true;
else if (M >= NumElts)
N1UsedElements[M - NumElts] = true;
SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG);
SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG);
if (S0 == N0 && S1 == N1)
return SDValue();
return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask());
}
// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
// or turn a shuffle of a single concat into simpler shuffle then concat.
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
SmallVector<SDValue, 4> Ops;
EVT ConcatVT = N0.getOperand(0).getValueType();
unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
unsigned NumConcats = NumElts / NumElemsPerConcat;
// Special case: shuffle(concat(A,B)) can be more efficiently represented
// as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
// half vector elements.
if (NumElemsPerConcat * 2 == NumElts && N1.getOpcode() == ISD::UNDEF &&
std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
SVN->getMask().end(), [](int i) { return i == -1; })) {
N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat));
N1 = DAG.getUNDEF(ConcatVT);
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
}
// Look at every vector that's inserted. We're looking for exact
// subvector-sized copies from a concatenated vector
for (unsigned I = 0; I != NumConcats; ++I) {
// Make sure we're dealing with a copy.
unsigned Begin = I * NumElemsPerConcat;
bool AllUndef = true, NoUndef = true;
for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
if (SVN->getMaskElt(J) >= 0)
AllUndef = false;
else
NoUndef = false;
}
if (NoUndef) {
if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
return SDValue();
for (unsigned J = 1; J != NumElemsPerConcat; ++J)
if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
return SDValue();
unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
if (FirstElt < N0.getNumOperands())
Ops.push_back(N0.getOperand(FirstElt));
else
Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
} else if (AllUndef) {
Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
} else { // Mixed with general masks and undefs, can't do optimization.
return SDValue();
}
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
// Canonicalize shuffle undef, undef -> undef
if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(VT);
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
// Canonicalize shuffle v, v -> v, undef
if (N0 == N1) {
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= (int)NumElts) Idx -= NumElts;
NewMask.push_back(Idx);
}
return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
&NewMask[0]);
}
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
if (N0.getOpcode() == ISD::UNDEF) {
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= 0) {
if (Idx >= (int)NumElts)
Idx -= NumElts;
else
Idx = -1; // remove reference to lhs
}
NewMask.push_back(Idx);
}
return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
&NewMask[0]);
}
// Remove references to rhs if it is undef
if (N1.getOpcode() == ISD::UNDEF) {
bool Changed = false;
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx >= (int)NumElts) {
Idx = -1;
Changed = true;
}
NewMask.push_back(Idx);
}
if (Changed)
return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
}
// If it is a splat, check if the argument vector is another splat or a
// build_vector.
if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
SDNode *V = N0.getNode();
// If this is a bit convert that changes the element type of the vector but
// not the number of vector elements, look through it. Be careful not to
// look though conversions that change things like v4f32 to v2f64.
if (V->getOpcode() == ISD::BITCAST) {
SDValue ConvInput = V->getOperand(0);
if (ConvInput.getValueType().isVector() &&
ConvInput.getValueType().getVectorNumElements() == NumElts)
V = ConvInput.getNode();
}
if (V->getOpcode() == ISD::BUILD_VECTOR) {
assert(V->getNumOperands() == NumElts &&
"BUILD_VECTOR has wrong number of operands");
SDValue Base;
bool AllSame = true;
for (unsigned i = 0; i != NumElts; ++i) {
if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
Base = V->getOperand(i);
break;
}
}
// Splat of <u, u, u, u>, return <u, u, u, u>
if (!Base.getNode())
return N0;
for (unsigned i = 0; i != NumElts; ++i) {
if (V->getOperand(i) != Base) {
AllSame = false;
break;
}
}
// Splat of <x, x, x, x>, return <x, x, x, x>
if (AllSame)
return N0;
// Canonicalize any other splat as a build_vector.
const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
SmallVector<SDValue, 8> Ops(NumElts, Splatted);
SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
V->getValueType(0), Ops);
// We may have jumped through bitcasts, so the type of the
// BUILD_VECTOR may not match the type of the shuffle.
if (V->getValueType(0) != VT)
NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV);
return NewBV;
}
}
// There are various patterns used to build up a vector from smaller vectors,
// subvectors, or elements. Scan chains of these and replace unused insertions
// or components with undef.
if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG))
return S;
if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
Level < AfterLegalizeVectorOps &&
(N1.getOpcode() == ISD::UNDEF ||
(N1.getOpcode() == ISD::CONCAT_VECTORS &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
SDValue V = partitionShuffleOfConcats(N, DAG);
if (V.getNode())
return V;
}
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
SmallVector<SDValue, 8> Ops;
for (int M : SVN->getMask()) {
SDValue Op = DAG.getUNDEF(VT.getScalarType());
if (M >= 0) {
int Idx = M % NumElts;
SDValue &S = (M < (int)NumElts ? N0 : N1);
if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) {
Op = S.getOperand(Idx);
} else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) {
if (Idx == 0)
Op = S.getOperand(0);
} else {
// Operand can't be combined - bail out.
break;
}
}
Ops.push_back(Op);
}
if (Ops.size() == VT.getVectorNumElements()) {
// BUILD_VECTOR requires all inputs to be of the same type, find the
// maximum type and extend them all.
EVT SVT = VT.getScalarType();
if (SVT.isInteger())
for (SDValue &Op : Ops)
SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
if (SVT != VT.getScalarType())
for (SDValue &Op : Ops)
Op = TLI.isZExtFree(Op.getValueType(), SVT)
? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT)
: DAG.getSExtOrTrunc(Op, SDLoc(N), SVT);
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops);
}
}
// If this shuffle only has a single input that is a bitcasted shuffle,
// attempt to merge the 2 shuffles and suitably bitcast the inputs/output
// back to their original types.
if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
N1.getOpcode() == ISD::UNDEF && Level < AfterLegalizeVectorOps &&
TLI.isTypeLegal(VT)) {
// Peek through the bitcast only if there is one user.
SDValue BC0 = N0;
while (BC0.getOpcode() == ISD::BITCAST) {
if (!BC0.hasOneUse())
break;
BC0 = BC0.getOperand(0);
}
auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
if (Scale == 1)
return SmallVector<int, 8>(Mask.begin(), Mask.end());
SmallVector<int, 8> NewMask;
for (int M : Mask)
for (int s = 0; s != Scale; ++s)
NewMask.push_back(M < 0 ? -1 : Scale * M + s);
return NewMask;
};
if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
EVT SVT = VT.getScalarType();
EVT InnerVT = BC0->getValueType(0);
EVT InnerSVT = InnerVT.getScalarType();
// Determine which shuffle works with the smaller scalar type.
EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
EVT ScaleSVT = ScaleVT.getScalarType();
if (TLI.isTypeLegal(ScaleVT) &&
0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
// Scale the shuffle masks to the smaller scalar type.
ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
SmallVector<int, 8> InnerMask =
ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
SmallVector<int, 8> OuterMask =
ScaleShuffleMask(SVN->getMask(), OuterScale);
// Merge the shuffle masks.
SmallVector<int, 8> NewMask;
for (int M : OuterMask)
NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
// Test for shuffle mask legality over both commutations.
SDValue SV0 = BC0->getOperand(0);
SDValue SV1 = BC0->getOperand(1);
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
if (!LegalMask) {
std::swap(SV0, SV1);
ShuffleVectorSDNode::commuteMask(NewMask);
LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
}
if (LegalMask) {
SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0);
SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1);
return DAG.getNode(
ISD::BITCAST, SDLoc(N), VT,
DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
}
}
}
}
// Canonicalize shuffles according to rules:
// shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
// shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
// shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
TLI.isTypeLegal(VT)) {
// The incoming shuffle must be of the same type as the result of the
// current shuffle.
assert(N1->getOperand(0).getValueType() == VT &&
"Shuffle types don't match");
SDValue SV0 = N1->getOperand(0);
SDValue SV1 = N1->getOperand(1);
bool HasSameOp0 = N0 == SV0;
bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF;
if (HasSameOp0 || IsSV1Undef || N0 == SV1)
// Commute the operands of this shuffle so that next rule
// will trigger.
return DAG.getCommutedVectorShuffle(*SVN);
}
// Try to fold according to rules:
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
// Don't try to fold shuffles with illegal type.
// Only fold if this shuffle is the only user of the other shuffle.
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
// The incoming shuffle must be of the same type as the result of the
// current shuffle.
assert(OtherSV->getOperand(0).getValueType() == VT &&
"Shuffle types don't match");
SDValue SV0, SV1;
SmallVector<int, 4> Mask;
// Compute the combined shuffle mask for a shuffle with SV0 as the first
// operand, and SV1 as the second operand.
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = SVN->getMaskElt(i);
if (Idx < 0) {
// Propagate Undef.
Mask.push_back(Idx);
continue;
}
SDValue CurrentVec;
if (Idx < (int)NumElts) {
// This shuffle index refers to the inner shuffle N0. Lookup the inner
// shuffle mask to identify which vector is actually referenced.
Idx = OtherSV->getMaskElt(Idx);
if (Idx < 0) {
// Propagate Undef.
Mask.push_back(Idx);
continue;
}
CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
: OtherSV->getOperand(1);
} else {
// This shuffle index references an element within N1.
CurrentVec = N1;
}
// Simple case where 'CurrentVec' is UNDEF.
if (CurrentVec.getOpcode() == ISD::UNDEF) {
Mask.push_back(-1);
continue;
}
// Canonicalize the shuffle index. We don't know yet if CurrentVec
// will be the first or second operand of the combined shuffle.
Idx = Idx % NumElts;
if (!SV0.getNode() || SV0 == CurrentVec) {
// Ok. CurrentVec is the left hand side.
// Update the mask accordingly.
SV0 = CurrentVec;
Mask.push_back(Idx);
continue;
}
// Bail out if we cannot convert the shuffle pair into a single shuffle.
if (SV1.getNode() && SV1 != CurrentVec)
return SDValue();
// Ok. CurrentVec is the right hand side.
// Update the mask accordingly.
SV1 = CurrentVec;
Mask.push_back(Idx + NumElts);
}
// Check if all indices in Mask are Undef. In case, propagate Undef.
bool isUndefMask = true;
for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
isUndefMask &= Mask[i] < 0;
if (isUndefMask)
return DAG.getUNDEF(VT);
if (!SV0.getNode())
SV0 = DAG.getUNDEF(VT);
if (!SV1.getNode())
SV1 = DAG.getUNDEF(VT);
// Avoid introducing shuffles with illegal mask.
if (!TLI.isShuffleMaskLegal(Mask, VT)) {
ShuffleVectorSDNode::commuteMask(Mask);
if (!TLI.isShuffleMaskLegal(Mask, VT))
return SDValue();
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
std::swap(SV0, SV1);
}
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]);
}
return SDValue();
}
SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
SDValue InVal = N->getOperand(0);
EVT VT = N->getValueType(0);
// Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
// with a VECTOR_SHUFFLE.
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue InVec = InVal->getOperand(0);
SDValue EltNo = InVal->getOperand(1);
// FIXME: We could support implicit truncation if the shuffle can be
// scaled to a smaller vector scalar type.
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo);
if (C0 && VT == InVec.getValueType() &&
VT.getScalarType() == InVal.getValueType()) {
SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1);
int Elt = C0->getZExtValue();
NewMask[0] = Elt;
if (TLI.isShuffleMaskLegal(NewMask, VT))
return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT),
NewMask);
}
}
return SDValue();
}
SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N2 = N->getOperand(2);
// If the input vector is a concatenation, and the insert replaces
// one of the halves, we can optimize into a single concat_vectors.
if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) {
APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue();
EVT VT = N->getValueType(0);
// Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
// (concat_vectors Z, Y)
if (InsIdx == 0)
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
N->getOperand(1), N0.getOperand(1));
// Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
// (concat_vectors X, Z)
if (InsIdx == VT.getVectorNumElements()/2)
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
N0.getOperand(0), N->getOperand(1));
}
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
SDValue N0 = N->getOperand(0);
// fold (fp_to_fp16 (fp16_to_fp op)) -> op
if (N0->getOpcode() == ISD::FP16_TO_FP)
return N0->getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
// fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
if (N0->getOpcode() == ISD::AND) {
ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
if (AndConst && AndConst->getAPIntValue() == 0xffff) {
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
N0.getOperand(0));
}
}
return SDValue();
}
/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
/// with the destination vector and a zero vector.
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
/// vector_shuffle V, Zero, <0, 4, 2, 4>
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDLoc dl(N);
// Make sure we're not running after operation legalization where it
// may have custom lowered the vector shuffles.
if (LegalOperations)
return SDValue();
if (N->getOpcode() != ISD::AND)
return SDValue();
if (RHS.getOpcode() == ISD::BITCAST)
RHS = RHS.getOperand(0);
if (RHS.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
EVT RVT = RHS.getValueType();
unsigned NumElts = RHS.getNumOperands();
// Attempt to create a valid clear mask, splitting the mask into
// sub elements and checking to see if each is
// all zeros or all ones - suitable for shuffle masking.
auto BuildClearMask = [&](int Split) {
int NumSubElts = NumElts * Split;
int NumSubBits = RVT.getScalarSizeInBits() / Split;
SmallVector<int, 8> Indices;
for (int i = 0; i != NumSubElts; ++i) {
int EltIdx = i / Split;
int SubIdx = i % Split;
SDValue Elt = RHS.getOperand(EltIdx);
if (Elt.getOpcode() == ISD::UNDEF) {
Indices.push_back(-1);
continue;
}
APInt Bits;
if (isa<ConstantSDNode>(Elt))
Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
else if (isa<ConstantFPSDNode>(Elt))
Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
else
return SDValue();
// Extract the sub element from the constant bit mask.
if (DAG.getDataLayout().isBigEndian()) {
Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits);
} else {
Bits = Bits.lshr(SubIdx * NumSubBits);
}
if (Split > 1)
Bits = Bits.trunc(NumSubBits);
if (Bits.isAllOnesValue())
Indices.push_back(i);
else if (Bits == 0)
Indices.push_back(i + NumSubElts);
else
return SDValue();
}
// Let's see if the target supports this vector_shuffle.
EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
return SDValue();
SDValue Zero = DAG.getConstant(0, dl, ClearVT);
return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl,
DAG.getBitcast(ClearVT, LHS),
Zero, &Indices[0]));
};
// Determine maximum split level (byte level masking).
int MaxSplit = 1;
if (RVT.getScalarSizeInBits() % 8 == 0)
MaxSplit = RVT.getScalarSizeInBits() / 8;
for (int Split = 1; Split <= MaxSplit; ++Split)
if (RVT.getScalarSizeInBits() % Split == 0)
if (SDValue S = BuildClearMask(Split))
return S;
return SDValue();
}
/// Visit a binary vector operation, like ADD.
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
assert(N->getValueType(0).isVector() &&
"SimplifyVBinOp only works on vectors!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Ops[] = {LHS, RHS};
// See if we can constant fold the vector operation.
if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
return Fold;
// Try to convert a constant mask AND into a shuffle clear mask.
if (SDValue Shuffle = XformToShuffleWithZero(N))
return Shuffle;
// Type legalization might introduce new shuffles in the DAG.
// Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
// -> (shuffle (VBinOp (A, B)), Undef, Mask).
if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
LHS.getOperand(1).getOpcode() == ISD::UNDEF &&
RHS.getOperand(1).getOpcode() == ISD::UNDEF) {
ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
if (SVN0->getMask().equals(SVN1->getMask())) {
EVT VT = N->getValueType(0);
SDValue UndefVector = LHS.getOperand(1);
SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
LHS.getOperand(0), RHS.getOperand(0),
N->getFlags());
AddUsersToWorklist(N);
return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
&SVN0->getMask()[0]);
}
}
return SDValue();
}
SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
SDValue N1, SDValue N2){
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If we got a simplified select_cc node back from SimplifySelectCC, then
// break it down into a new SETCC node, and a new SELECT node, and then return
// the SELECT node, since we were called with a SELECT node.
if (SCC.getNode()) {
// Check to see if we got a select_cc back (to turn into setcc/select).
// Otherwise, just return whatever node we got back, like fabs.
if (SCC.getOpcode() == ISD::SELECT_CC) {
SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
N0.getValueType(),
SCC.getOperand(0), SCC.getOperand(1),
SCC.getOperand(4));
AddToWorklist(SETCC.getNode());
return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
SCC.getOperand(2), SCC.getOperand(3));
}
return SCC;
}
return SDValue();
}
/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
/// being selected between, see if we can simplify the select. Callers of this
/// should assume that TheSelect is deleted if this returns true. As such, they
/// should return the appropriate thing (e.g. the node) back to the top-level of
/// the DAG combiner loop to avoid it being looked at.
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
SDValue RHS) {
// fold (select (setcc x, -0.0, *lt), NaN, (fsqrt x))
// The select + setcc is redundant, because fsqrt returns NaN for X < -0.
if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
// We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
SDValue Sqrt = RHS;
ISD::CondCode CC;
SDValue CmpLHS;
const ConstantFPSDNode *NegZero = nullptr;
if (TheSelect->getOpcode() == ISD::SELECT_CC) {
CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
CmpLHS = TheSelect->getOperand(0);
NegZero = isConstOrConstSplatFP(TheSelect->getOperand(1));
} else {
// SELECT or VSELECT
SDValue Cmp = TheSelect->getOperand(0);
if (Cmp.getOpcode() == ISD::SETCC) {
CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
CmpLHS = Cmp.getOperand(0);
NegZero = isConstOrConstSplatFP(Cmp.getOperand(1));
}
}
if (NegZero && NegZero->isNegative() && NegZero->isZero() &&
Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
CC == ISD::SETULT || CC == ISD::SETLT)) {
// We have: (select (setcc x, -0.0, *lt), NaN, (fsqrt x))
CombineTo(TheSelect, Sqrt);
return true;
}
}
}
// Cannot simplify select with vector condition
if (TheSelect->getOperand(0).getValueType().isVector()) return false;
// If this is a select from two identical things, try to pull the operation
// through the select.
if (LHS.getOpcode() != RHS.getOpcode() ||
!LHS.hasOneUse() || !RHS.hasOneUse())
return false;
// If this is a load and the token chain is identical, replace the select
// of two loads with a load through a select of the address to load from.
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
// constants have been dropped into the constant pool.
if (LHS.getOpcode() == ISD::LOAD) {
LoadSDNode *LLD = cast<LoadSDNode>(LHS);
LoadSDNode *RLD = cast<LoadSDNode>(RHS);
// Token chains must be identical.
if (LHS.getOperand(0) != RHS.getOperand(0) ||
// Do not let this transformation reduce the number of volatile loads.
LLD->isVolatile() || RLD->isVolatile() ||
// FIXME: If either is a pre/post inc/dec load,
// we'd need to split out the address adjustment.
LLD->isIndexed() || RLD->isIndexed() ||
// If this is an EXTLOAD, the VT's must match.
LLD->getMemoryVT() != RLD->getMemoryVT() ||
// If this is an EXTLOAD, the kind of extension must match.
(LLD->getExtensionType() != RLD->getExtensionType() &&
// The only exception is if one of the extensions is anyext.
LLD->getExtensionType() != ISD::EXTLOAD &&
RLD->getExtensionType() != ISD::EXTLOAD) ||
// FIXME: this discards src value information. This is
// over-conservative. It would be beneficial to be able to remember
// both potential memory locations. Since we are discarding
// src value info, don't do the transformation if the memory
// locations are not in the default address space.
LLD->getPointerInfo().getAddrSpace() != 0 ||
RLD->getPointerInfo().getAddrSpace() != 0 ||
!TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
LLD->getBasePtr().getValueType()))
return false;
// Check that the select condition doesn't reach either load. If so,
// folding this will induce a cycle into the DAG. If not, this is safe to
// xform, so create a select of the addresses.
SDValue Addr;
if (TheSelect->getOpcode() == ISD::SELECT) {
SDNode *CondNode = TheSelect->getOperand(0).getNode();
if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
(RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
return false;
// The loads must not depend on one another.
if (LLD->isPredecessorOf(RLD) ||
RLD->isPredecessorOf(LLD))
return false;
Addr = DAG.getSelect(SDLoc(TheSelect),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0), LLD->getBasePtr(),
RLD->getBasePtr());
} else { // Otherwise SELECT_CC
SDNode *CondLHS = TheSelect->getOperand(0).getNode();
SDNode *CondRHS = TheSelect->getOperand(1).getNode();
if ((LLD->hasAnyUseOfValue(1) &&
(LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
(RLD->hasAnyUseOfValue(1) &&
(RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
return false;
Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0),
TheSelect->getOperand(1),
LLD->getBasePtr(), RLD->getBasePtr(),
TheSelect->getOperand(4));
}
SDValue Load;
// It is safe to replace the two loads if they have different alignments,
// but the new load must be the minimum (most restrictive) alignment of the
// inputs.
bool isInvariant = LLD->isInvariant() & RLD->isInvariant();
unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
Load = DAG.getLoad(TheSelect->getValueType(0),
SDLoc(TheSelect),
// FIXME: Discards pointer and AA info.
LLD->getChain(), Addr, MachinePointerInfo(),
LLD->isVolatile(), LLD->isNonTemporal(),
isInvariant, Alignment);
} else {
Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
RLD->getExtensionType() : LLD->getExtensionType(),
SDLoc(TheSelect),
TheSelect->getValueType(0),
// FIXME: Discards pointer and AA info.
LLD->getChain(), Addr, MachinePointerInfo(),
LLD->getMemoryVT(), LLD->isVolatile(),
LLD->isNonTemporal(), isInvariant, Alignment);
}
// Users of the select now use the result of the load.
CombineTo(TheSelect, Load);
// Users of the old loads now use the new load's chain. We know the
// old-load value is dead now.
CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
return true;
}
return false;
}
/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
/// where 'cond' is the comparison specified by CC.
SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3,
ISD::CondCode CC, bool NotExtCompare) {
// (x ? y : y) -> y.
if (N2 == N3) return N2;
EVT VT = N2.getValueType();
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
// Determine if the condition we're dealing with is constant
SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
N0, N1, CC, DL, false);
if (SCC.getNode()) AddToWorklist(SCC.getNode());
if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
// fold select_cc true, x, y -> x
// fold select_cc false, x, y -> y
return !SCCC->isNullValue() ? N2 : N3;
}
// Check to see if we can simplify the select into an fabs node
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
// Allow either -0.0 or 0.0
if (CFP->isZero()) {
// select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
N0 == N2 && N3.getOpcode() == ISD::FNEG &&
N2 == N3.getOperand(0))
return DAG.getNode(ISD::FABS, DL, VT, N0);
// select (setl[te] X, +/-0.0), fneg(X), X -> fabs
if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
N0 == N3 && N2.getOpcode() == ISD::FNEG &&
N2.getOperand(0) == N3)
return DAG.getNode(ISD::FABS, DL, VT, N3);
}
}
// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
// in it. This is a win when the constant is not otherwise available because
// it replaces two constant pool loads with one. We only do this if the FP
// type is known to be legal, because if it isn't, then we are before legalize
// types an we want the other legalization to happen first (e.g. to avoid
// messing with soft float) and if the ConstantFP is not legal, because if
// it is legal, we may not need to store the FP constant in a constant pool.
if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
if (TLI.isTypeLegal(N2.getValueType()) &&
(TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
TargetLowering::Legal &&
!TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) &&
!TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) &&
// If both constants have multiple uses, then we won't need to do an
// extra load, they are likely around in registers for other users.
(TV->hasOneUse() || FV->hasOneUse())) {
Constant *Elts[] = {
const_cast<ConstantFP*>(FV->getConstantFPValue()),
const_cast<ConstantFP*>(TV->getConstantFPValue())
};
Type *FPTy = Elts[0]->getType();
const DataLayout &TD = DAG.getDataLayout();
// Create a ConstantArray of the two constants.
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
SDValue CPIdx =
DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
TD.getPrefTypeAlignment(FPTy));
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
// Get the offsets to the 0 and 1 element of the array so that we can
// select between them.
SDValue Zero = DAG.getIntPtrConstant(0, DL);
unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
SDValue Cond = DAG.getSetCC(DL,
getSetCCResultType(N0.getValueType()),
N0, N1, CC);
AddToWorklist(Cond.getNode());
SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
Cond, One, Zero);
AddToWorklist(CstOffset.getNode());
CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
CstOffset);
AddToWorklist(CPIdx.getNode());
return DAG.getLoad(
TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
false, false, false, Alignment);
}
}
// Check to see if we can perform the "gzip trick", transforming
// (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
if (isNullConstant(N3) && CC == ISD::SETLT &&
(isNullConstant(N1) || // (a < 0) ? b : 0
(isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0
EVT XType = N0.getValueType();
EVT AType = N2.getValueType();
if (XType.bitsGE(AType)) {
// and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
// single-bit constant.
if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
unsigned ShCtV = N2C->getAPIntValue().logBase2();
ShCtV = XType.getSizeInBits() - ShCtV - 1;
SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0),
getShiftAmountTy(N0.getValueType()));
SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
XType, N0, ShCt);
AddToWorklist(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorklist(Shift.getNode());
}
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
XType, N0,
DAG.getConstant(XType.getSizeInBits() - 1,
SDLoc(N0),
getShiftAmountTy(N0.getValueType())));
AddToWorklist(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorklist(Shift.getNode());
}
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
}
// fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
// where y is has a single bit set.
// A plaintext description would be, we can turn the SELECT_CC into an AND
// when the condition can be materialized as an all-ones register. Any
// single bit-test can be materialized as an all-ones register with
// shift-left and shift-right-arith.
if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
SDValue AndLHS = N0->getOperand(0);
ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
// Shift the tested bit over the sign bit.
APInt AndMask = ConstAndRHS->getAPIntValue();
SDValue ShlAmt =
DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
getShiftAmountTy(AndLHS.getValueType()));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
// Now arithmetic right shift it all the way over, so the result is either
// all-ones, or zero.
SDValue ShrAmt =
DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
getShiftAmountTy(Shl.getValueType()));
SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
}
}
// fold select C, 16, 0 -> shl C, 4
if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() &&
TLI.getBooleanContents(N0.getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent) {
// If the caller doesn't want us to simplify this into a zext of a compare,
// don't do it.
if (NotExtCompare && N2C->isOne())
return SDValue();
// Get a SetCC of the condition
// NOTE: Don't create a SETCC if it's not legal on this target.
if (!LegalOperations ||
TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) {
SDValue Temp, SCC;
// cast from setcc result type to select result type
if (LegalTypes) {
SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
N0, N1, CC);
if (N2.getValueType().bitsLT(SCC.getValueType()))
Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
N2.getValueType());
else
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
N2.getValueType(), SCC);
} else {
SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
N2.getValueType(), SCC);
}
AddToWorklist(SCC.getNode());
AddToWorklist(Temp.getNode());
if (N2C->isOne())
return Temp;
// shl setcc result by log2 n2c
return DAG.getNode(
ISD::SHL, DL, N2.getValueType(), Temp,
DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp),
getShiftAmountTy(Temp.getValueType())));
}
}
// Check to see if this is an integer abs.
// select_cc setg[te] X, 0, X, -X ->
// select_cc setgt X, -1, X, -X ->
// select_cc setl[te] X, 0, -X, X ->
// select_cc setlt X, 1, -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N1C) {
ConstantSDNode *SubC = nullptr;
if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
(N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
(N1C->isOne() && CC == ISD::SETLT)) &&
N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
EVT XType = N0.getValueType();
if (SubC && SubC->isNullValue() && XType.isInteger()) {
SDLoc DL(N0);
SDValue Shift = DAG.getNode(ISD::SRA, DL, XType,
N0,
DAG.getConstant(XType.getSizeInBits() - 1, DL,
getShiftAmountTy(N0.getValueType())));
SDValue Add = DAG.getNode(ISD::ADD, DL,
XType, N0, Shift);
AddToWorklist(Shift.getNode());
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
}
}
return SDValue();
}
/// This is a stub for TargetLowering::SimplifySetCC.
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
SDValue N1, ISD::CondCode Cond,
SDLoc DL, bool foldBooleans) {
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level, false, this);
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
}
/// Given an ISD::SDIV node expressing a divide by constant, return
/// a DAG expression to select that will generate the same value by multiplying
/// by a magic number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
if (!C)
return SDValue();
// Avoid division by zero.
if (C->isNullValue())
return SDValue();
std::vector<SDNode*> Built;
SDValue S =
TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
/// DAG expression that will generate the same value by right shifting.
SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
if (!C)
return SDValue();
// Avoid division by zero.
if (C->isNullValue())
return SDValue();
std::vector<SDNode *> Built;
SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built);
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
/// expression that will generate the same value by multiplying by a magic
/// number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
if (!C)
return SDValue();
// Avoid division by zero.
if (C->isNullValue())
return SDValue();
std::vector<SDNode*> Built;
SDValue S =
TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
for (SDNode *N : Built)
AddToWorklist(N);
return S;
}
SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) {
if (Level >= AfterLegalizeDAG)
return SDValue();
// Expose the DAG combiner to the target combiner implementations.
TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
unsigned Iterations = 0;
if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) {
if (Iterations) {
// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
// For the reciprocal, we need to find the zero of the function:
// F(X) = A X - 1 [which has a zero at X = 1/A]
// =>
// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
// does not require additional intermediate precision]
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
AddToWorklist(Est.getNode());
// Newton iterations: Est = Est + Est (1 - Arg * Est)
for (unsigned i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
AddToWorklist(NewEst.getNode());
Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
AddToWorklist(Est.getNode());
}
}
return Est;
}
return SDValue();
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
/// =>
/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
/// As a result, we precompute A/2 prior to the iteration loop.
SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est,
unsigned Iterations,
SDNodeFlags *Flags) {
EVT VT = Arg.getValueType();
SDLoc DL(Arg);
SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
// We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
// this entire sequence requires only one FP constant.
SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
AddToWorklist(HalfArg.getNode());
HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
AddToWorklist(HalfArg.getNode());
// Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
for (unsigned i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
AddToWorklist(NewEst.getNode());
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
AddToWorklist(Est.getNode());
}
return Est;
}
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
/// =>
/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est,
unsigned Iterations,
SDNodeFlags *Flags) {
EVT VT = Arg.getValueType();
SDLoc DL(Arg);
SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
// Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est)
for (unsigned i = 0; i < Iterations; ++i) {
SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
AddToWorklist(HalfEst.getNode());
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
AddToWorklist(Est.getNode());
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
AddToWorklist(Est.getNode());
Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags);
AddToWorklist(Est.getNode());
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags);
AddToWorklist(Est.getNode());
}
return Est;
}
SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) {
if (Level >= AfterLegalizeDAG)
return SDValue();
// Expose the DAG combiner to the target combiner implementations.
TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
unsigned Iterations = 0;
bool UseOneConstNR = false;
if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) {
AddToWorklist(Est.getNode());
if (Iterations) {
Est = UseOneConstNR ?
BuildRsqrtNROneConst(Op, Est, Iterations, Flags) :
BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags);
}
return Est;
}
return SDValue();
}
/// Return true if base is a frame index, which is known not to alias with
/// anything but itself. Provides base object and offset as results.
static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
const GlobalValue *&GV, const void *&CV) {
// Assume it is a primitive operation.
Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr;
// If it's an adding a simple constant then integrate the offset.
if (Base.getOpcode() == ISD::ADD) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
Base = Base.getOperand(0);
Offset += C->getZExtValue();
}
}
// Return the underlying GlobalValue, and update the Offset. Return false
// for GlobalAddressSDNode since the same GlobalAddress may be represented
// by multiple nodes with different offsets.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
GV = G->getGlobal();
Offset += G->getOffset();
return false;
}
// Return the underlying Constant value, and update the Offset. Return false
// for ConstantSDNodes since the same constant pool entry may be represented
// by multiple nodes with different offsets.
if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
: (const void *)C->getConstVal();
Offset += C->getOffset();
return false;
}
// If it's any of the following then it can't alias with anything but itself.
return isa<FrameIndexSDNode>(Base);
}
/// Return true if there is any possibility that the two addresses overlap.
bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
// If they are the same then they must be aliases.
if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
// If they are both volatile then they cannot be reordered.
if (Op0->isVolatile() && Op1->isVolatile()) return true;
// If one operation reads from invariant memory, and the other may store, they
// cannot alias. These should really be checking the equivalent of mayWrite,
// but it only matters for memory nodes other than load /store.
if (Op0->isInvariant() && Op1->writeMem())
return false;
if (Op1->isInvariant() && Op0->writeMem())
return false;
// Gather base node and offset information.
SDValue Base1, Base2;
int64_t Offset1, Offset2;
const GlobalValue *GV1, *GV2;
const void *CV1, *CV2;
bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(),
Base1, Offset1, GV1, CV1);
bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(),
Base2, Offset2, GV2, CV2);
// If they have a same base address then check to see if they overlap.
if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
(Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
// It is possible for different frame indices to alias each other, mostly
// when tail call optimization reuses return address slots for arguments.
// To catch this case, look up the actual index of frame indices to compute
// the real alias relationship.
if (isFrameIndex1 && isFrameIndex2) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
(Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
}
// Otherwise, if we know what the bases are, and they aren't identical, then
// we know they cannot alias.
if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
return false;
// If we know required SrcValue1 and SrcValue2 have relatively large alignment
// compared to the size and offset of the access, we may be able to prove they
// do not alias. This check is conservative for now to catch cases created by
// splitting vector types.
if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) &&
(Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) &&
(Op0->getMemoryVT().getSizeInBits() >> 3 ==
Op1->getMemoryVT().getSizeInBits() >> 3) &&
(Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) {
int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment();
int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment();
// There is no overlap between these relatively aligned accesses of similar
// size, return no alias.
if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 ||
(OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1)
return false;
}
bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
? CombinerGlobalAA
: DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
UseAA = false;
#endif
if (UseAA &&
Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
// Use alias analysis information.
int64_t MinOffset = std::min(Op0->getSrcValueOffset(),
Op1->getSrcValueOffset());
int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) +
Op0->getSrcValueOffset() - MinOffset;
int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) +
Op1->getSrcValueOffset() - MinOffset;
AliasResult AAResult =
AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1,
UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2,
UseTBAA ? Op1->getAAInfo() : AAMDNodes()));
if (AAResult == NoAlias)
return false;
}
// Otherwise we have to assume they alias.
return true;
}
/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases) {
SmallVector<SDValue, 8> Chains; // List of chains to visit.
SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
// Get alias information for node.
bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
// Starting off.
Chains.push_back(OriginalChain);
unsigned Depth = 0;
// Look at each chain and determine if it is an alias. If so, add it to the
// aliases list. If not, then continue up the chain looking for the next
// candidate.
while (!Chains.empty()) {
SDValue Chain = Chains.pop_back_val();
// For TokenFactor nodes, look at each operand and only continue up the
// chain until we reach the depth limit.
//
// FIXME: The depth check could be made to return the last non-aliasing
// chain we found before we hit a tokenfactor rather than the original
// chain.
if (Depth > 6) {
Aliases.clear();
Aliases.push_back(OriginalChain);
return;
}
// Don't bother if we've been before.
if (!Visited.insert(Chain.getNode()).second)
continue;
switch (Chain.getOpcode()) {
case ISD::EntryToken:
// Entry token is ideal chain operand, but handled in FindBetterChain.
break;
case ISD::LOAD:
case ISD::STORE: {
// Get alias information for Chain.
bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
!cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
// If chain is alias then stop here.
if (!(IsLoad && IsOpLoad) &&
isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
Aliases.push_back(Chain);
} else {
// Look further up the chain.
Chains.push_back(Chain.getOperand(0));
++Depth;
}
break;
}
case ISD::TokenFactor:
// We have to check each of the operands of the token factor for "small"
// token factors, so we queue them up. Adding the operands to the queue
// (stack) in reverse order maintains the original order and increases the
// likelihood that getNode will find a matching token factor (CSE.)
if (Chain.getNumOperands() > 16) {
Aliases.push_back(Chain);
break;
}
for (unsigned n = Chain.getNumOperands(); n;)
Chains.push_back(Chain.getOperand(--n));
++Depth;
break;
default:
// For all other instructions we will just have to take what we can get.
Aliases.push_back(Chain);
break;
}
}
// We need to be careful here to also search for aliases through the
// value operand of a store, etc. Consider the following situation:
// Token1 = ...
// L1 = load Token1, %52
// S1 = store Token1, L1, %51
// L2 = load Token1, %52+8
// S2 = store Token1, L2, %51+8
// Token2 = Token(S1, S2)
// L3 = load Token2, %53
// S3 = store Token2, L3, %52
// L4 = load Token2, %53+8
// S4 = store Token2, L4, %52+8
// If we search for aliases of S3 (which loads address %52), and we look
// only through the chain, then we'll miss the trivial dependence on L1
// (which also loads from %52). We then might change all loads and
// stores to use Token1 as their chain operand, which could result in
// copying %53 into %52 before copying %52 into %51 (which should
// happen first).
//
// The problem is, however, that searching for such data dependencies
// can become expensive, and the cost is not directly related to the
// chain depth. Instead, we'll rule out such configurations here by
// insisting that we've visited all chain users (except for users
// of the original chain, which is not necessary). When doing this,
// we need to look through nodes we don't care about (otherwise, things
// like register copies will interfere with trivial cases).
SmallVector<const SDNode *, 16> Worklist;
for (const SDNode *N : Visited)
if (N != OriginalChain.getNode())
Worklist.push_back(N);
while (!Worklist.empty()) {
const SDNode *M = Worklist.pop_back_val();
// We have already visited M, and want to make sure we've visited any uses
// of M that we care about. For uses that we've not visisted, and don't
// care about, queue them to the worklist.
for (SDNode::use_iterator UI = M->use_begin(),
UIE = M->use_end(); UI != UIE; ++UI)
if (UI.getUse().getValueType() == MVT::Other &&
Visited.insert(*UI).second) {
if (isa<MemSDNode>(*UI)) {
// We've not visited this use, and we care about it (it could have an
// ordering dependency with the original node).
Aliases.clear();
Aliases.push_back(OriginalChain);
return;
}
// We've not visited this use, but we don't care about it. Mark it as
// visited and enqueue it to the worklist.
Worklist.push_back(*UI);
}
}
}
/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
/// (aliasing node.)
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
// Accumulate all the aliases to this node.
GatherAllAliases(N, OldChain, Aliases);
// If no operands then chain to entry token.
if (Aliases.size() == 0)
return DAG.getEntryNode();
// If a single operand then chain to it. We don't need to revisit it.
if (Aliases.size() == 1)
return Aliases[0];
// Construct a custom tailored token factor.
return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
}
bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) {
// This holds the base pointer, index, and the offset in bytes from the base
// pointer.
BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
// We must have a base and an offset.
if (!BasePtr.Base.getNode())
return false;
// Do not handle stores to undef base pointers.
if (BasePtr.Base.getOpcode() == ISD::UNDEF)
return false;
SmallVector<StoreSDNode *, 8> ChainedStores;
ChainedStores.push_back(St);
// Walk up the chain and look for nodes with offsets from the same
// base pointer. Stop when reaching an instruction with a different kind
// or instruction which has a different base pointer.
StoreSDNode *Index = St;
while (Index) {
// If the chain has more than one use, then we can't reorder the mem ops.
if (Index != St && !SDValue(Index, 0)->hasOneUse())
break;
if (Index->isVolatile() || Index->isIndexed())
break;
// Find the base pointer and offset for this memory node.
BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
// Check that the base pointer is the same as the original one.
if (!Ptr.equalBaseIndex(BasePtr))
break;
// Find the next memory operand in the chain. If the next operand in the
// chain is a store then move up and continue the scan with the next
// memory operand. If the next operand is a load save it and use alias
// information to check if it interferes with anything.
SDNode *NextInChain = Index->getChain().getNode();
while (true) {
if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
// We found a store node. Use it for the next iteration.
ChainedStores.push_back(STn);
Index = STn;
break;
} else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
NextInChain = Ldn->getChain().getNode();
continue;
} else {
Index = nullptr;
break;
}
}
}
bool MadeChange = false;
SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains;
for (StoreSDNode *ChainedStore : ChainedStores) {
SDValue Chain = ChainedStore->getChain();
SDValue BetterChain = FindBetterChain(ChainedStore, Chain);
if (Chain != BetterChain) {
MadeChange = true;
BetterChains.push_back(std::make_pair(ChainedStore, BetterChain));
}
}
// Do all replacements after finding the replacements to make to avoid making
// the chains more complicated by introducing new TokenFactors.
for (auto Replacement : BetterChains)
replaceStoreChain(Replacement.first, Replacement.second);
return MadeChange;
}
/// This is the entry point for the file.
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
CodeGenOpt::Level OptLevel) {
/// This is the main entry point to this class.
DAGCombiner(*this, AA, OptLevel).Run(Level);
}