forked from OSchip/llvm-project
962 lines
34 KiB
C++
962 lines
34 KiB
C++
//===- PartialInlining.cpp - Inline parts of functions --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs partial inlining, typically by inlining an if statement
|
|
// that surrounds the body of the function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/PartialInlining.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/CodeExtractor.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "partial-inlining"
|
|
|
|
STATISTIC(NumPartialInlined,
|
|
"Number of callsites functions partially inlined into.");
|
|
|
|
// Command line option to disable partial-inlining. The default is false:
|
|
static cl::opt<bool>
|
|
DisablePartialInlining("disable-partial-inlining", cl::init(false),
|
|
cl::Hidden, cl::desc("Disable partial ininling"));
|
|
// This is an option used by testing:
|
|
static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
|
|
cl::init(false), cl::ZeroOrMore,
|
|
cl::ReallyHidden,
|
|
cl::desc("Skip Cost Analysis"));
|
|
|
|
static cl::opt<unsigned> MaxNumInlineBlocks(
|
|
"max-num-inline-blocks", cl::init(5), cl::Hidden,
|
|
cl::desc("Max Number of Blocks To be Partially Inlined"));
|
|
|
|
// Command line option to set the maximum number of partial inlining allowed
|
|
// for the module. The default value of -1 means no limit.
|
|
static cl::opt<int> MaxNumPartialInlining(
|
|
"max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("Max number of partial inlining. The default is unlimited"));
|
|
|
|
// Used only when PGO or user annotated branch data is absent. It is
|
|
// the least value that is used to weigh the outline region. If BFI
|
|
// produces larger value, the BFI value will be used.
|
|
static cl::opt<int>
|
|
OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
|
|
cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("Relative frequency of outline region to "
|
|
"the entry block"));
|
|
|
|
static cl::opt<unsigned> ExtraOutliningPenalty(
|
|
"partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
|
|
cl::desc("A debug option to add additional penalty to the computed one."));
|
|
|
|
namespace {
|
|
|
|
struct FunctionOutliningInfo {
|
|
FunctionOutliningInfo()
|
|
: Entries(), ReturnBlock(nullptr), NonReturnBlock(nullptr),
|
|
ReturnBlockPreds() {}
|
|
// Returns the number of blocks to be inlined including all blocks
|
|
// in Entries and one return block.
|
|
unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; }
|
|
|
|
// A set of blocks including the function entry that guard
|
|
// the region to be outlined.
|
|
SmallVector<BasicBlock *, 4> Entries;
|
|
// The return block that is not included in the outlined region.
|
|
BasicBlock *ReturnBlock;
|
|
// The dominating block of the region to be outlined.
|
|
BasicBlock *NonReturnBlock;
|
|
// The set of blocks in Entries that that are predecessors to ReturnBlock
|
|
SmallVector<BasicBlock *, 4> ReturnBlockPreds;
|
|
};
|
|
|
|
struct PartialInlinerImpl {
|
|
PartialInlinerImpl(
|
|
std::function<AssumptionCache &(Function &)> *GetAC,
|
|
std::function<TargetTransformInfo &(Function &)> *GTTI,
|
|
Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI,
|
|
ProfileSummaryInfo *ProfSI)
|
|
: GetAssumptionCache(GetAC), GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {}
|
|
bool run(Module &M);
|
|
Function *unswitchFunction(Function *F);
|
|
|
|
private:
|
|
int NumPartialInlining = 0;
|
|
std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
|
|
std::function<TargetTransformInfo &(Function &)> *GetTTI;
|
|
Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI;
|
|
ProfileSummaryInfo *PSI;
|
|
|
|
// Return the frequency of the OutlininingBB relative to F's entry point.
|
|
// The result is no larger than 1 and is represented using BP.
|
|
// (Note that the outlined region's 'head' block can only have incoming
|
|
// edges from the guarding entry blocks).
|
|
BranchProbability getOutliningCallBBRelativeFreq(Function *F,
|
|
FunctionOutliningInfo *OI,
|
|
Function *DuplicateFunction,
|
|
BlockFrequencyInfo *BFI,
|
|
BasicBlock *OutliningCallBB);
|
|
|
|
// Return true if the callee of CS should be partially inlined with
|
|
// profit.
|
|
bool shouldPartialInline(CallSite CS, Function *F, FunctionOutliningInfo *OI,
|
|
BlockFrequencyInfo *CalleeBFI,
|
|
BasicBlock *OutliningCallBB,
|
|
int OutliningCallOverhead,
|
|
OptimizationRemarkEmitter &ORE);
|
|
|
|
// Try to inline DuplicateFunction (cloned from F with call to
|
|
// the OutlinedFunction into its callers. Return true
|
|
// if there is any successful inlining.
|
|
bool tryPartialInline(Function *DuplicateFunction,
|
|
Function *F, /*orignal function */
|
|
FunctionOutliningInfo *OI, Function *OutlinedFunction,
|
|
BlockFrequencyInfo *CalleeBFI);
|
|
|
|
// Compute the mapping from use site of DuplicationFunction to the enclosing
|
|
// BB's profile count.
|
|
void computeCallsiteToProfCountMap(Function *DuplicateFunction,
|
|
DenseMap<User *, uint64_t> &SiteCountMap);
|
|
|
|
bool IsLimitReached() {
|
|
return (MaxNumPartialInlining != -1 &&
|
|
NumPartialInlining >= MaxNumPartialInlining);
|
|
}
|
|
|
|
CallSite getCallSite(User *U) {
|
|
CallSite CS;
|
|
if (CallInst *CI = dyn_cast<CallInst>(U))
|
|
CS = CallSite(CI);
|
|
else if (InvokeInst *II = dyn_cast<InvokeInst>(U))
|
|
CS = CallSite(II);
|
|
else
|
|
llvm_unreachable("All uses must be calls");
|
|
return CS;
|
|
}
|
|
|
|
CallSite getOneCallSiteTo(Function *F) {
|
|
User *User = *F->user_begin();
|
|
return getCallSite(User);
|
|
}
|
|
|
|
std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
|
|
CallSite CS = getOneCallSiteTo(F);
|
|
DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
|
|
BasicBlock *Block = CS.getParent();
|
|
return std::make_tuple(DLoc, Block);
|
|
}
|
|
|
|
// Returns the costs associated with function outlining:
|
|
// - The first value is the non-weighted runtime cost for making the call
|
|
// to the outlined function 'OutlinedFunction', including the addtional
|
|
// setup cost in the outlined function itself;
|
|
// - The second value is the estimated size of the new call sequence in
|
|
// basic block 'OutliningCallBB';
|
|
// - The third value is the estimated size of the original code from
|
|
// function 'F' that is extracted into the outlined function.
|
|
std::tuple<int, int, int>
|
|
computeOutliningCosts(Function *F, const FunctionOutliningInfo *OutliningInfo,
|
|
Function *OutlinedFunction,
|
|
BasicBlock *OutliningCallBB);
|
|
// Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
|
|
// approximate both the size and runtime cost (Note that in the current
|
|
// inline cost analysis, there is no clear distinction there either).
|
|
int computeBBInlineCost(BasicBlock *BB);
|
|
|
|
std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
|
|
|
|
};
|
|
|
|
struct PartialInlinerLegacyPass : public ModulePass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
PartialInlinerLegacyPass() : ModulePass(ID) {
|
|
initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
}
|
|
bool runOnModule(Module &M) override {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
|
|
TargetTransformInfoWrapperPass *TTIWP =
|
|
&getAnalysis<TargetTransformInfoWrapperPass>();
|
|
ProfileSummaryInfo *PSI =
|
|
getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
|
|
std::function<AssumptionCache &(Function &)> GetAssumptionCache =
|
|
[&ACT](Function &F) -> AssumptionCache & {
|
|
return ACT->getAssumptionCache(F);
|
|
};
|
|
|
|
std::function<TargetTransformInfo &(Function &)> GetTTI =
|
|
[&TTIWP](Function &F) -> TargetTransformInfo & {
|
|
return TTIWP->getTTI(F);
|
|
};
|
|
|
|
return PartialInlinerImpl(&GetAssumptionCache, &GetTTI, None, PSI).run(M);
|
|
}
|
|
};
|
|
}
|
|
|
|
std::unique_ptr<FunctionOutliningInfo>
|
|
PartialInlinerImpl::computeOutliningInfo(Function *F) {
|
|
BasicBlock *EntryBlock = &F->front();
|
|
BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
|
|
if (!BR || BR->isUnconditional())
|
|
return std::unique_ptr<FunctionOutliningInfo>();
|
|
|
|
// Returns true if Succ is BB's successor
|
|
auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
|
|
return is_contained(successors(BB), Succ);
|
|
};
|
|
|
|
auto SuccSize = [](BasicBlock *BB) {
|
|
return std::distance(succ_begin(BB), succ_end(BB));
|
|
};
|
|
|
|
auto IsReturnBlock = [](BasicBlock *BB) {
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
return isa<ReturnInst>(TI);
|
|
};
|
|
|
|
auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
|
|
if (IsReturnBlock(Succ1))
|
|
return std::make_tuple(Succ1, Succ2);
|
|
if (IsReturnBlock(Succ2))
|
|
return std::make_tuple(Succ2, Succ1);
|
|
|
|
return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
|
|
};
|
|
|
|
// Detect a triangular shape:
|
|
auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
|
|
if (IsSuccessor(Succ1, Succ2))
|
|
return std::make_tuple(Succ1, Succ2);
|
|
if (IsSuccessor(Succ2, Succ1))
|
|
return std::make_tuple(Succ2, Succ1);
|
|
|
|
return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
|
|
};
|
|
|
|
std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
|
|
llvm::make_unique<FunctionOutliningInfo>();
|
|
|
|
BasicBlock *CurrEntry = EntryBlock;
|
|
bool CandidateFound = false;
|
|
do {
|
|
// The number of blocks to be inlined has already reached
|
|
// the limit. When MaxNumInlineBlocks is set to 0 or 1, this
|
|
// disables partial inlining for the function.
|
|
if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks)
|
|
break;
|
|
|
|
if (SuccSize(CurrEntry) != 2)
|
|
break;
|
|
|
|
BasicBlock *Succ1 = *succ_begin(CurrEntry);
|
|
BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
|
|
|
|
BasicBlock *ReturnBlock, *NonReturnBlock;
|
|
std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
|
|
|
|
if (ReturnBlock) {
|
|
OutliningInfo->Entries.push_back(CurrEntry);
|
|
OutliningInfo->ReturnBlock = ReturnBlock;
|
|
OutliningInfo->NonReturnBlock = NonReturnBlock;
|
|
CandidateFound = true;
|
|
break;
|
|
}
|
|
|
|
BasicBlock *CommSucc;
|
|
BasicBlock *OtherSucc;
|
|
std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
|
|
|
|
if (!CommSucc)
|
|
break;
|
|
|
|
OutliningInfo->Entries.push_back(CurrEntry);
|
|
CurrEntry = OtherSucc;
|
|
|
|
} while (true);
|
|
|
|
if (!CandidateFound)
|
|
return std::unique_ptr<FunctionOutliningInfo>();
|
|
|
|
// Do sanity check of the entries: threre should not
|
|
// be any successors (not in the entry set) other than
|
|
// {ReturnBlock, NonReturnBlock}
|
|
assert(OutliningInfo->Entries[0] == &F->front() &&
|
|
"Function Entry must be the first in Entries vector");
|
|
DenseSet<BasicBlock *> Entries;
|
|
for (BasicBlock *E : OutliningInfo->Entries)
|
|
Entries.insert(E);
|
|
|
|
// Returns true of BB has Predecessor which is not
|
|
// in Entries set.
|
|
auto HasNonEntryPred = [Entries](BasicBlock *BB) {
|
|
for (auto Pred : predecessors(BB)) {
|
|
if (!Entries.count(Pred))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
auto CheckAndNormalizeCandidate =
|
|
[Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
|
|
for (BasicBlock *E : OutliningInfo->Entries) {
|
|
for (auto Succ : successors(E)) {
|
|
if (Entries.count(Succ))
|
|
continue;
|
|
if (Succ == OutliningInfo->ReturnBlock)
|
|
OutliningInfo->ReturnBlockPreds.push_back(E);
|
|
else if (Succ != OutliningInfo->NonReturnBlock)
|
|
return false;
|
|
}
|
|
// There should not be any outside incoming edges either:
|
|
if (HasNonEntryPred(E))
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
|
|
return std::unique_ptr<FunctionOutliningInfo>();
|
|
|
|
// Now further growing the candidate's inlining region by
|
|
// peeling off dominating blocks from the outlining region:
|
|
while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) {
|
|
BasicBlock *Cand = OutliningInfo->NonReturnBlock;
|
|
if (SuccSize(Cand) != 2)
|
|
break;
|
|
|
|
if (HasNonEntryPred(Cand))
|
|
break;
|
|
|
|
BasicBlock *Succ1 = *succ_begin(Cand);
|
|
BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
|
|
|
|
BasicBlock *ReturnBlock, *NonReturnBlock;
|
|
std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
|
|
if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
|
|
break;
|
|
|
|
if (NonReturnBlock->getSinglePredecessor() != Cand)
|
|
break;
|
|
|
|
// Now grow and update OutlininigInfo:
|
|
OutliningInfo->Entries.push_back(Cand);
|
|
OutliningInfo->NonReturnBlock = NonReturnBlock;
|
|
OutliningInfo->ReturnBlockPreds.push_back(Cand);
|
|
Entries.insert(Cand);
|
|
}
|
|
|
|
return OutliningInfo;
|
|
}
|
|
|
|
// Check if there is PGO data or user annoated branch data:
|
|
static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
|
|
if (F->getEntryCount())
|
|
return true;
|
|
// Now check if any of the entry block has MD_prof data:
|
|
for (auto *E : OI->Entries) {
|
|
BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
|
|
if (!BR || BR->isUnconditional())
|
|
continue;
|
|
uint64_t T, F;
|
|
if (BR->extractProfMetadata(T, F))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq(
|
|
Function *F, FunctionOutliningInfo *OI, Function *DuplicateFunction,
|
|
BlockFrequencyInfo *BFI, BasicBlock *OutliningCallBB) {
|
|
|
|
auto EntryFreq =
|
|
BFI->getBlockFreq(&DuplicateFunction->getEntryBlock());
|
|
auto OutliningCallFreq = BFI->getBlockFreq(OutliningCallBB);
|
|
|
|
auto OutlineRegionRelFreq =
|
|
BranchProbability::getBranchProbability(OutliningCallFreq.getFrequency(),
|
|
EntryFreq.getFrequency());
|
|
|
|
if (hasProfileData(F, OI))
|
|
return OutlineRegionRelFreq;
|
|
|
|
// When profile data is not available, we need to be conservative in
|
|
// estimating the overall savings. Static branch prediction can usually
|
|
// guess the branch direction right (taken/non-taken), but the guessed
|
|
// branch probability is usually not biased enough. In case when the
|
|
// outlined region is predicted to be likely, its probability needs
|
|
// to be made higher (more biased) to not under-estimate the cost of
|
|
// function outlining. On the other hand, if the outlined region
|
|
// is predicted to be less likely, the predicted probablity is usually
|
|
// higher than the actual. For instance, the actual probability of the
|
|
// less likely target is only 5%, but the guessed probablity can be
|
|
// 40%. In the latter case, there is no need for further adjustement.
|
|
// FIXME: add an option for this.
|
|
if (OutlineRegionRelFreq < BranchProbability(45, 100))
|
|
return OutlineRegionRelFreq;
|
|
|
|
OutlineRegionRelFreq = std::max(
|
|
OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
|
|
|
|
return OutlineRegionRelFreq;
|
|
}
|
|
|
|
bool PartialInlinerImpl::shouldPartialInline(
|
|
CallSite CS, Function *F /* Original Callee */, FunctionOutliningInfo *OI,
|
|
BlockFrequencyInfo *CalleeBFI, BasicBlock *OutliningCallBB,
|
|
int NonWeightedOutliningRcost, OptimizationRemarkEmitter &ORE) {
|
|
using namespace ore;
|
|
if (SkipCostAnalysis)
|
|
return true;
|
|
|
|
Instruction *Call = CS.getInstruction();
|
|
Function *Callee = CS.getCalledFunction();
|
|
Function *Caller = CS.getCaller();
|
|
auto &CalleeTTI = (*GetTTI)(*Callee);
|
|
InlineCost IC = getInlineCost(CS, getInlineParams(), CalleeTTI,
|
|
*GetAssumptionCache, GetBFI, PSI);
|
|
|
|
if (IC.isAlways()) {
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
|
|
<< NV("Callee", F)
|
|
<< " should always be fully inlined, not partially");
|
|
return false;
|
|
}
|
|
|
|
if (IC.isNever()) {
|
|
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
|
|
<< NV("Callee", F) << " not partially inlined into "
|
|
<< NV("Caller", Caller)
|
|
<< " because it should never be inlined (cost=never)");
|
|
return false;
|
|
}
|
|
|
|
if (!IC) {
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
|
|
<< NV("Callee", F) << " not partially inlined into "
|
|
<< NV("Caller", Caller) << " because too costly to inline (cost="
|
|
<< NV("Cost", IC.getCost()) << ", threshold="
|
|
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
|
|
return false;
|
|
}
|
|
const DataLayout &DL = Caller->getParent()->getDataLayout();
|
|
// The savings of eliminating the call:
|
|
int NonWeightedSavings = getCallsiteCost(CS, DL);
|
|
BlockFrequency NormWeightedSavings(NonWeightedSavings);
|
|
|
|
auto RelativeFreq =
|
|
getOutliningCallBBRelativeFreq(F, OI, Callee, CalleeBFI, OutliningCallBB);
|
|
auto NormWeightedRcost =
|
|
BlockFrequency(NonWeightedOutliningRcost) * RelativeFreq;
|
|
|
|
// Weighted saving is smaller than weighted cost, return false
|
|
if (NormWeightedSavings < NormWeightedRcost) {
|
|
ORE.emit(
|
|
OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", Call)
|
|
<< NV("Callee", F) << " not partially inlined into "
|
|
<< NV("Caller", Caller) << " runtime overhead (overhead="
|
|
<< NV("Overhead", (unsigned)NormWeightedRcost.getFrequency())
|
|
<< ", savings="
|
|
<< NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) << ")"
|
|
<< " of making the outlined call is too high");
|
|
|
|
return false;
|
|
}
|
|
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
|
|
<< NV("Callee", F) << " can be partially inlined into "
|
|
<< NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
|
|
<< " (threshold="
|
|
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
|
|
return true;
|
|
}
|
|
|
|
// TODO: Ideally we should share Inliner's InlineCost Analysis code.
|
|
// For now use a simplified version. The returned 'InlineCost' will be used
|
|
// to esimate the size cost as well as runtime cost of the BB.
|
|
int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) {
|
|
int InlineCost = 0;
|
|
const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::BitCast:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::Alloca:
|
|
continue;
|
|
case Instruction::GetElementPtr:
|
|
if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
|
|
continue;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(I);
|
|
if (IntrInst) {
|
|
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
|
|
continue;
|
|
}
|
|
|
|
if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
InlineCost += getCallsiteCost(CallSite(CI), DL);
|
|
continue;
|
|
}
|
|
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
|
|
InlineCost += getCallsiteCost(CallSite(II), DL);
|
|
continue;
|
|
}
|
|
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
|
|
InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
|
|
continue;
|
|
}
|
|
InlineCost += InlineConstants::InstrCost;
|
|
}
|
|
return InlineCost;
|
|
}
|
|
|
|
std::tuple<int, int, int> PartialInlinerImpl::computeOutliningCosts(
|
|
Function *F, const FunctionOutliningInfo *OI, Function *OutlinedFunction,
|
|
BasicBlock *OutliningCallBB) {
|
|
// First compute the cost of the outlined region 'OI' in the original
|
|
// function 'F'.
|
|
// FIXME: The code extractor (outliner) can now do code sinking/hoisting
|
|
// to reduce outlining cost. The hoisted/sunk code currently do not
|
|
// incur any runtime cost so it is still OK to compare the outlined
|
|
// function cost with the outlined region in the original function.
|
|
// If this ever changes, we will need to introduce new extractor api
|
|
// to pass the information.
|
|
int OutlinedRegionCost = 0;
|
|
for (BasicBlock &BB : *F) {
|
|
if (&BB != OI->ReturnBlock &&
|
|
// Assuming Entry set is small -- do a linear search here:
|
|
std::find(OI->Entries.begin(), OI->Entries.end(), &BB) ==
|
|
OI->Entries.end()) {
|
|
OutlinedRegionCost += computeBBInlineCost(&BB);
|
|
}
|
|
}
|
|
|
|
// Now compute the cost of the call sequence to the outlined function
|
|
// 'OutlinedFunction' in BB 'OutliningCallBB':
|
|
int OutliningFuncCallCost = computeBBInlineCost(OutliningCallBB);
|
|
|
|
// Now compute the cost of the extracted/outlined function itself:
|
|
int OutlinedFunctionCost = 0;
|
|
for (BasicBlock &BB : *OutlinedFunction) {
|
|
OutlinedFunctionCost += computeBBInlineCost(&BB);
|
|
}
|
|
|
|
assert(OutlinedFunctionCost >= OutlinedRegionCost &&
|
|
"Outlined function cost should be no less than the outlined region");
|
|
// The code extractor introduces a new root and exit stub blocks with
|
|
// additional unconditional branches. Those branches will be eliminated
|
|
// later with bb layout. The cost should be adjusted accordingly:
|
|
OutlinedFunctionCost -= 2 * InlineConstants::InstrCost;
|
|
|
|
int OutliningRuntimeOverhead = OutliningFuncCallCost +
|
|
(OutlinedFunctionCost - OutlinedRegionCost) +
|
|
ExtraOutliningPenalty;
|
|
|
|
return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead,
|
|
OutlinedRegionCost);
|
|
}
|
|
|
|
// Create the callsite to profile count map which is
|
|
// used to update the original function's entry count,
|
|
// after the function is partially inlined into the callsite.
|
|
void PartialInlinerImpl::computeCallsiteToProfCountMap(
|
|
Function *DuplicateFunction,
|
|
DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
|
|
std::vector<User *> Users(DuplicateFunction->user_begin(),
|
|
DuplicateFunction->user_end());
|
|
Function *CurrentCaller = nullptr;
|
|
std::unique_ptr<BlockFrequencyInfo> TempBFI;
|
|
BlockFrequencyInfo *CurrentCallerBFI = nullptr;
|
|
|
|
auto ComputeCurrBFI = [&,this](Function *Caller) {
|
|
// For the old pass manager:
|
|
if (!GetBFI) {
|
|
DominatorTree DT(*Caller);
|
|
LoopInfo LI(DT);
|
|
BranchProbabilityInfo BPI(*Caller, LI);
|
|
TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
|
|
CurrentCallerBFI = TempBFI.get();
|
|
} else {
|
|
// New pass manager:
|
|
CurrentCallerBFI = &(*GetBFI)(*Caller);
|
|
}
|
|
};
|
|
|
|
for (User *User : Users) {
|
|
CallSite CS = getCallSite(User);
|
|
Function *Caller = CS.getCaller();
|
|
if (CurrentCaller != Caller) {
|
|
CurrentCaller = Caller;
|
|
ComputeCurrBFI(Caller);
|
|
} else {
|
|
assert(CurrentCallerBFI && "CallerBFI is not set");
|
|
}
|
|
BasicBlock *CallBB = CS.getInstruction()->getParent();
|
|
auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
|
|
if (Count)
|
|
CallSiteToProfCountMap[User] = *Count;
|
|
else
|
|
CallSiteToProfCountMap[User] = 0;
|
|
}
|
|
}
|
|
|
|
Function *PartialInlinerImpl::unswitchFunction(Function *F) {
|
|
|
|
if (F->hasAddressTaken())
|
|
return nullptr;
|
|
|
|
// Let inliner handle it
|
|
if (F->hasFnAttribute(Attribute::AlwaysInline))
|
|
return nullptr;
|
|
|
|
if (F->hasFnAttribute(Attribute::NoInline))
|
|
return nullptr;
|
|
|
|
if (PSI->isFunctionEntryCold(F))
|
|
return nullptr;
|
|
|
|
if (F->user_begin() == F->user_end())
|
|
return nullptr;
|
|
|
|
std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
|
|
|
|
if (!OI)
|
|
return nullptr;
|
|
|
|
// Clone the function, so that we can hack away on it.
|
|
ValueToValueMapTy VMap;
|
|
Function *DuplicateFunction = CloneFunction(F, VMap);
|
|
BasicBlock *NewReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
|
|
BasicBlock *NewNonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
|
|
DenseSet<BasicBlock *> NewEntries;
|
|
for (BasicBlock *BB : OI->Entries) {
|
|
NewEntries.insert(cast<BasicBlock>(VMap[BB]));
|
|
}
|
|
|
|
// Go ahead and update all uses to the duplicate, so that we can just
|
|
// use the inliner functionality when we're done hacking.
|
|
F->replaceAllUsesWith(DuplicateFunction);
|
|
|
|
auto getFirstPHI = [](BasicBlock *BB) {
|
|
BasicBlock::iterator I = BB->begin();
|
|
PHINode *FirstPhi = nullptr;
|
|
while (I != BB->end()) {
|
|
PHINode *Phi = dyn_cast<PHINode>(I);
|
|
if (!Phi)
|
|
break;
|
|
if (!FirstPhi) {
|
|
FirstPhi = Phi;
|
|
break;
|
|
}
|
|
}
|
|
return FirstPhi;
|
|
};
|
|
// Special hackery is needed with PHI nodes that have inputs from more than
|
|
// one extracted block. For simplicity, just split the PHIs into a two-level
|
|
// sequence of PHIs, some of which will go in the extracted region, and some
|
|
// of which will go outside.
|
|
BasicBlock *PreReturn = NewReturnBlock;
|
|
// only split block when necessary:
|
|
PHINode *FirstPhi = getFirstPHI(PreReturn);
|
|
unsigned NumPredsFromEntries = OI->ReturnBlockPreds.size();
|
|
auto IsTrivialPhi = [](PHINode *PN) -> Value * {
|
|
Value *CommonValue = PN->getIncomingValue(0);
|
|
if (all_of(PN->incoming_values(),
|
|
[&](Value *V) { return V == CommonValue; }))
|
|
return CommonValue;
|
|
return nullptr;
|
|
};
|
|
|
|
if (FirstPhi && FirstPhi->getNumIncomingValues() > NumPredsFromEntries + 1) {
|
|
|
|
NewReturnBlock = NewReturnBlock->splitBasicBlock(
|
|
NewReturnBlock->getFirstNonPHI()->getIterator());
|
|
BasicBlock::iterator I = PreReturn->begin();
|
|
Instruction *Ins = &NewReturnBlock->front();
|
|
SmallVector<Instruction *, 4> DeadPhis;
|
|
while (I != PreReturn->end()) {
|
|
PHINode *OldPhi = dyn_cast<PHINode>(I);
|
|
if (!OldPhi)
|
|
break;
|
|
|
|
PHINode *RetPhi =
|
|
PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
|
|
OldPhi->replaceAllUsesWith(RetPhi);
|
|
Ins = NewReturnBlock->getFirstNonPHI();
|
|
|
|
RetPhi->addIncoming(&*I, PreReturn);
|
|
for (BasicBlock *E : OI->ReturnBlockPreds) {
|
|
BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
|
|
RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(NewE), NewE);
|
|
OldPhi->removeIncomingValue(NewE);
|
|
}
|
|
|
|
// After incoming values splitting, the old phi may become trivial.
|
|
// Keeping the trivial phi can introduce definition inside the outline
|
|
// region which is live-out, causing necessary overhead (load, store
|
|
// arg passing etc).
|
|
if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
|
|
OldPhi->replaceAllUsesWith(OldPhiVal);
|
|
DeadPhis.push_back(OldPhi);
|
|
}
|
|
|
|
++I;
|
|
}
|
|
|
|
for (auto *DP : DeadPhis)
|
|
DP->eraseFromParent();
|
|
|
|
for (auto E : OI->ReturnBlockPreds) {
|
|
BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
|
|
NewE->getTerminator()->replaceUsesOfWith(PreReturn, NewReturnBlock);
|
|
}
|
|
}
|
|
|
|
// Returns true if the block is to be partial inlined into the caller
|
|
// (i.e. not to be extracted to the out of line function)
|
|
auto ToBeInlined = [&](BasicBlock *BB) {
|
|
return BB == NewReturnBlock || NewEntries.count(BB);
|
|
};
|
|
// Gather up the blocks that we're going to extract.
|
|
std::vector<BasicBlock *> ToExtract;
|
|
ToExtract.push_back(NewNonReturnBlock);
|
|
for (BasicBlock &BB : *DuplicateFunction)
|
|
if (!ToBeInlined(&BB) && &BB != NewNonReturnBlock)
|
|
ToExtract.push_back(&BB);
|
|
|
|
// The CodeExtractor needs a dominator tree.
|
|
DominatorTree DT;
|
|
DT.recalculate(*DuplicateFunction);
|
|
|
|
// Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
|
|
LoopInfo LI(DT);
|
|
BranchProbabilityInfo BPI(*DuplicateFunction, LI);
|
|
BlockFrequencyInfo BFI(*DuplicateFunction, BPI, LI);
|
|
|
|
// Extract the body of the if.
|
|
Function *OutlinedFunction =
|
|
CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, &BFI, &BPI)
|
|
.extractCodeRegion();
|
|
|
|
bool AnyInline =
|
|
tryPartialInline(DuplicateFunction, F, OI.get(), OutlinedFunction, &BFI);
|
|
|
|
// Ditch the duplicate, since we're done with it, and rewrite all remaining
|
|
// users (function pointers, etc.) back to the original function.
|
|
DuplicateFunction->replaceAllUsesWith(F);
|
|
DuplicateFunction->eraseFromParent();
|
|
|
|
if (AnyInline)
|
|
return OutlinedFunction;
|
|
|
|
// Remove the function that is speculatively created:
|
|
if (OutlinedFunction)
|
|
OutlinedFunction->eraseFromParent();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool PartialInlinerImpl::tryPartialInline(Function *DuplicateFunction,
|
|
Function *F,
|
|
FunctionOutliningInfo *OI,
|
|
Function *OutlinedFunction,
|
|
BlockFrequencyInfo *CalleeBFI) {
|
|
if (OutlinedFunction == nullptr)
|
|
return false;
|
|
|
|
int NonWeightedRcost;
|
|
int SizeCost;
|
|
int OutlinedRegionSizeCost;
|
|
|
|
auto OutliningCallBB =
|
|
getOneCallSiteTo(OutlinedFunction).getInstruction()->getParent();
|
|
|
|
std::tie(SizeCost, NonWeightedRcost, OutlinedRegionSizeCost) =
|
|
computeOutliningCosts(F, OI, OutlinedFunction, OutliningCallBB);
|
|
|
|
// The call sequence to the outlined function is larger than the original
|
|
// outlined region size, it does not increase the chances of inlining
|
|
// 'F' with outlining (The inliner usies the size increase to model the
|
|
// the cost of inlining a callee).
|
|
if (!SkipCostAnalysis && OutlinedRegionSizeCost < SizeCost) {
|
|
OptimizationRemarkEmitter ORE(F);
|
|
DebugLoc DLoc;
|
|
BasicBlock *Block;
|
|
std::tie(DLoc, Block) = getOneDebugLoc(DuplicateFunction);
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
|
|
DLoc, Block)
|
|
<< ore::NV("Function", F)
|
|
<< " not partially inlined into callers (Original Size = "
|
|
<< ore::NV("OutlinedRegionOriginalSize", OutlinedRegionSizeCost)
|
|
<< ", Size of call sequence to outlined function = "
|
|
<< ore::NV("NewSize", SizeCost) << ")");
|
|
return false;
|
|
}
|
|
|
|
assert(F->user_begin() == F->user_end() &&
|
|
"F's users should all be replaced!");
|
|
std::vector<User *> Users(DuplicateFunction->user_begin(),
|
|
DuplicateFunction->user_end());
|
|
|
|
DenseMap<User *, uint64_t> CallSiteToProfCountMap;
|
|
if (F->getEntryCount())
|
|
computeCallsiteToProfCountMap(DuplicateFunction, CallSiteToProfCountMap);
|
|
|
|
auto CalleeEntryCount = F->getEntryCount();
|
|
uint64_t CalleeEntryCountV = (CalleeEntryCount ? *CalleeEntryCount : 0);
|
|
bool AnyInline = false;
|
|
for (User *User : Users) {
|
|
CallSite CS = getCallSite(User);
|
|
|
|
if (IsLimitReached())
|
|
continue;
|
|
|
|
OptimizationRemarkEmitter ORE(CS.getCaller());
|
|
|
|
if (!shouldPartialInline(CS, F, OI, CalleeBFI, OutliningCallBB,
|
|
NonWeightedRcost, ORE))
|
|
continue;
|
|
|
|
ORE.emit(
|
|
OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction())
|
|
<< ore::NV("Callee", F) << " partially inlined into "
|
|
<< ore::NV("Caller", CS.getCaller()));
|
|
|
|
InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
|
|
InlineFunction(CS, IFI);
|
|
|
|
// Now update the entry count:
|
|
if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
|
|
uint64_t CallSiteCount = CallSiteToProfCountMap[User];
|
|
CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
|
|
}
|
|
|
|
AnyInline = true;
|
|
NumPartialInlining++;
|
|
// Update the stats
|
|
NumPartialInlined++;
|
|
}
|
|
|
|
if (AnyInline && CalleeEntryCount)
|
|
F->setEntryCount(CalleeEntryCountV);
|
|
|
|
return AnyInline;
|
|
}
|
|
|
|
bool PartialInlinerImpl::run(Module &M) {
|
|
if (DisablePartialInlining)
|
|
return false;
|
|
|
|
std::vector<Function *> Worklist;
|
|
Worklist.reserve(M.size());
|
|
for (Function &F : M)
|
|
if (!F.use_empty() && !F.isDeclaration())
|
|
Worklist.push_back(&F);
|
|
|
|
bool Changed = false;
|
|
while (!Worklist.empty()) {
|
|
Function *CurrFunc = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
if (CurrFunc->use_empty())
|
|
continue;
|
|
|
|
bool Recursive = false;
|
|
for (User *U : CurrFunc->users())
|
|
if (Instruction *I = dyn_cast<Instruction>(U))
|
|
if (I->getParent()->getParent() == CurrFunc) {
|
|
Recursive = true;
|
|
break;
|
|
}
|
|
if (Recursive)
|
|
continue;
|
|
|
|
if (Function *NewFunc = unswitchFunction(CurrFunc)) {
|
|
Worklist.push_back(NewFunc);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
char PartialInlinerLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
|
|
"Partial Inliner", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
|
|
"Partial Inliner", false, false)
|
|
|
|
ModulePass *llvm::createPartialInliningPass() {
|
|
return new PartialInlinerLegacyPass();
|
|
}
|
|
|
|
PreservedAnalyses PartialInlinerPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
std::function<AssumptionCache &(Function &)> GetAssumptionCache =
|
|
[&FAM](Function &F) -> AssumptionCache & {
|
|
return FAM.getResult<AssumptionAnalysis>(F);
|
|
};
|
|
|
|
std::function<BlockFrequencyInfo &(Function &)> GetBFI =
|
|
[&FAM](Function &F) -> BlockFrequencyInfo & {
|
|
return FAM.getResult<BlockFrequencyAnalysis>(F);
|
|
};
|
|
|
|
std::function<TargetTransformInfo &(Function &)> GetTTI =
|
|
[&FAM](Function &F) -> TargetTransformInfo & {
|
|
return FAM.getResult<TargetIRAnalysis>(F);
|
|
};
|
|
|
|
ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
|
|
|
|
if (PartialInlinerImpl(&GetAssumptionCache, &GetTTI, {GetBFI}, PSI).run(M))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|