forked from OSchip/llvm-project
240 lines
8.5 KiB
C++
240 lines
8.5 KiB
C++
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BasicBlock class for the VMCore library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Support/LeakDetector.h"
|
|
#include "SymbolTableListTraitsImpl.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// DummyInst - An instance of this class is used to mark the end of the
|
|
/// instruction list. This is not a real instruction.
|
|
struct DummyInst : public Instruction {
|
|
DummyInst() : Instruction(Type::VoidTy, OtherOpsEnd) {
|
|
// This should not be garbage monitored.
|
|
LeakDetector::removeGarbageObject(this);
|
|
}
|
|
|
|
virtual Instruction *clone() const {
|
|
assert(0 && "Cannot clone EOL");abort();
|
|
return 0;
|
|
}
|
|
virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast...
|
|
static inline bool classof(const DummyInst *) { return true; }
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == OtherOpsEnd;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
}
|
|
|
|
Instruction *ilist_traits<Instruction>::createNode() {
|
|
return new DummyInst();
|
|
}
|
|
iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
|
|
return BB->getInstList();
|
|
}
|
|
|
|
// Explicit instantiation of SymbolTableListTraits since some of the methods
|
|
// are not in the public header file...
|
|
template class SymbolTableListTraits<Instruction, BasicBlock, Function>;
|
|
|
|
|
|
BasicBlock::BasicBlock(const std::string &Name, Function *Parent,
|
|
BasicBlock *InsertBefore)
|
|
: Value(Type::LabelTy, Value::BasicBlockVal, Name) {
|
|
// Initialize the instlist...
|
|
InstList.setItemParent(this);
|
|
|
|
// Make sure that we get added to a function
|
|
LeakDetector::addGarbageObject(this);
|
|
|
|
if (InsertBefore) {
|
|
assert(Parent &&
|
|
"Cannot insert block before another block with no function!");
|
|
Parent->getBasicBlockList().insert(InsertBefore, this);
|
|
} else if (Parent) {
|
|
Parent->getBasicBlockList().push_back(this);
|
|
}
|
|
}
|
|
|
|
|
|
BasicBlock::~BasicBlock() {
|
|
assert(getParent() == 0 && "BasicBlock still linked into the program!");
|
|
dropAllReferences();
|
|
InstList.clear();
|
|
}
|
|
|
|
void BasicBlock::setParent(Function *parent) {
|
|
if (getParent())
|
|
LeakDetector::addGarbageObject(this);
|
|
|
|
InstList.setParent(parent);
|
|
|
|
if (getParent())
|
|
LeakDetector::removeGarbageObject(this);
|
|
}
|
|
|
|
// Specialize setName to take care of symbol table majik
|
|
void BasicBlock::setName(const std::string &name, SymbolTable *ST) {
|
|
Function *P;
|
|
assert((ST == 0 || (!getParent() || ST == &getParent()->getSymbolTable())) &&
|
|
"Invalid symtab argument!");
|
|
if ((P = getParent()) && hasName()) P->getSymbolTable().remove(this);
|
|
Value::setName(name);
|
|
if (P && hasName()) P->getSymbolTable().insert(this);
|
|
}
|
|
|
|
void BasicBlock::removeFromParent() {
|
|
getParent()->getBasicBlockList().remove(this);
|
|
}
|
|
|
|
void BasicBlock::eraseFromParent() {
|
|
getParent()->getBasicBlockList().erase(this);
|
|
}
|
|
|
|
|
|
TerminatorInst *BasicBlock::getTerminator() {
|
|
if (InstList.empty()) return 0;
|
|
return dyn_cast<TerminatorInst>(&InstList.back());
|
|
}
|
|
|
|
const TerminatorInst *const BasicBlock::getTerminator() const {
|
|
if (InstList.empty()) return 0;
|
|
return dyn_cast<TerminatorInst>(&InstList.back());
|
|
}
|
|
|
|
void BasicBlock::dropAllReferences() {
|
|
for(iterator I = begin(), E = end(); I != E; ++I)
|
|
I->dropAllReferences();
|
|
}
|
|
|
|
// removePredecessor - This method is used to notify a BasicBlock that the
|
|
// specified Predecessor of the block is no longer able to reach it. This is
|
|
// actually not used to update the Predecessor list, but is actually used to
|
|
// update the PHI nodes that reside in the block. Note that this should be
|
|
// called while the predecessor still refers to this block.
|
|
//
|
|
void BasicBlock::removePredecessor(BasicBlock *Pred) {
|
|
assert(find(pred_begin(this), pred_end(this), Pred) != pred_end(this) &&
|
|
"removePredecessor: BB is not a predecessor!");
|
|
if (InstList.empty()) return;
|
|
PHINode *APN = dyn_cast<PHINode>(&front());
|
|
if (!APN) return; // Quick exit.
|
|
|
|
// If there are exactly two predecessors, then we want to nuke the PHI nodes
|
|
// altogether. However, we cannot do this, if this in this case:
|
|
//
|
|
// Loop:
|
|
// %x = phi [X, Loop]
|
|
// %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
|
|
// br Loop ;; %x2 does not dominate all uses
|
|
//
|
|
// This is because the PHI node input is actually taken from the predecessor
|
|
// basic block. The only case this can happen is with a self loop, so we
|
|
// check for this case explicitly now.
|
|
//
|
|
unsigned max_idx = APN->getNumIncomingValues();
|
|
assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
|
|
if (max_idx == 2) {
|
|
BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
|
|
|
|
// Disable PHI elimination!
|
|
if (this == Other) max_idx = 3;
|
|
}
|
|
|
|
if (max_idx <= 2) { // <= Two predecessors BEFORE I remove one?
|
|
// Yup, loop through and nuke the PHI nodes
|
|
while (PHINode *PN = dyn_cast<PHINode>(&front())) {
|
|
PN->removeIncomingValue(Pred); // Remove the predecessor first...
|
|
|
|
// If the PHI _HAD_ two uses, replace PHI node with its now *single* value
|
|
if (max_idx == 2) {
|
|
if (PN->getOperand(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getOperand(0));
|
|
else
|
|
// We are left with an infinite loop with no entries: kill the PHI.
|
|
PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
|
|
getInstList().pop_front(); // Remove the PHI node
|
|
}
|
|
|
|
// If the PHI node already only had one entry, it got deleted by
|
|
// removeIncomingValue.
|
|
}
|
|
} else {
|
|
// Okay, now we know that we need to remove predecessor #pred_idx from all
|
|
// PHI nodes. Iterate over each PHI node fixing them up
|
|
PHINode *PN;
|
|
for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ++II)
|
|
PN->removeIncomingValue(Pred);
|
|
}
|
|
}
|
|
|
|
|
|
// splitBasicBlock - This splits a basic block into two at the specified
|
|
// instruction. Note that all instructions BEFORE the specified iterator stay
|
|
// as part of the original basic block, an unconditional branch is added to
|
|
// the new BB, and the rest of the instructions in the BB are moved to the new
|
|
// BB, including the old terminator. This invalidates the iterator.
|
|
//
|
|
// Note that this only works on well formed basic blocks (must have a
|
|
// terminator), and 'I' must not be the end of instruction list (which would
|
|
// cause a degenerate basic block to be formed, having a terminator inside of
|
|
// the basic block).
|
|
//
|
|
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
|
|
assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
|
|
assert(I != InstList.end() &&
|
|
"Trying to get me to create degenerate basic block!");
|
|
|
|
BasicBlock *New = new BasicBlock(BBName, getParent(), getNext());
|
|
|
|
// Move all of the specified instructions from the original basic block into
|
|
// the new basic block.
|
|
New->getInstList().splice(New->end(), this->getInstList(), I, end());
|
|
|
|
// Add a branch instruction to the newly formed basic block.
|
|
new BranchInst(New, this);
|
|
|
|
// Now we must loop through all of the successors of the New block (which
|
|
// _were_ the successors of the 'this' block), and update any PHI nodes in
|
|
// successors. If there were PHI nodes in the successors, then they need to
|
|
// know that incoming branches will be from New, not from Old.
|
|
//
|
|
for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
|
|
// Loop over any phi nodes in the basic block, updating the BB field of
|
|
// incoming values...
|
|
BasicBlock *Successor = *I;
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator II = Successor->begin();
|
|
(PN = dyn_cast<PHINode>(II)); ++II) {
|
|
int IDX = PN->getBasicBlockIndex(this);
|
|
while (IDX != -1) {
|
|
PN->setIncomingBlock((unsigned)IDX, New);
|
|
IDX = PN->getBasicBlockIndex(this);
|
|
}
|
|
}
|
|
}
|
|
return New;
|
|
}
|