llvm-project/mlir/lib/Transforms/PipelineDataTransfer.cpp

377 lines
14 KiB
C++

//===- PipelineDataTransfer.cpp --- Pass for pipelining data movement ---*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to pipeline data transfers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Passes.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass.h"
#include "mlir/StandardOps/StandardOps.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "pipeline-data-transfer"
using namespace mlir;
namespace {
struct PipelineDataTransfer : public FunctionPass {
PipelineDataTransfer() : FunctionPass(&PipelineDataTransfer::passID) {}
PassResult runOnFunction(Function *f) override;
PassResult runOnAffineForOp(OpPointer<AffineForOp> forOp);
std::vector<OpPointer<AffineForOp>> forOps;
static char passID;
};
} // end anonymous namespace
char PipelineDataTransfer::passID = 0;
/// Creates a pass to pipeline explicit movement of data across levels of the
/// memory hierarchy.
FunctionPass *mlir::createPipelineDataTransferPass() {
return new PipelineDataTransfer();
}
// Returns the position of the tag memref operand given a DMA instruction.
// Temporary utility: will be replaced when DmaStart/DmaFinish abstract op's are
// added. TODO(b/117228571)
static unsigned getTagMemRefPos(const Instruction &dmaInst) {
assert(dmaInst.isa<DmaStartOp>() || dmaInst.isa<DmaWaitOp>());
if (dmaInst.isa<DmaStartOp>()) {
// Second to last operand.
return dmaInst.getNumOperands() - 2;
}
// First operand for a dma finish instruction.
return 0;
}
/// Doubles the buffer of the supplied memref on the specified 'for' instruction
/// by adding a leading dimension of size two to the memref. Replaces all uses
/// of the old memref by the new one while indexing the newly added dimension by
/// the loop IV of the specified 'for' instruction modulo 2. Returns false if
/// such a replacement cannot be performed.
static bool doubleBuffer(Value *oldMemRef, OpPointer<AffineForOp> forOp) {
auto *forBody = forOp->getBody();
FuncBuilder bInner(forBody, forBody->begin());
bInner.setInsertionPoint(forBody, forBody->begin());
// Doubles the shape with a leading dimension extent of 2.
auto doubleShape = [&](MemRefType oldMemRefType) -> MemRefType {
// Add the leading dimension in the shape for the double buffer.
ArrayRef<int64_t> oldShape = oldMemRefType.getShape();
SmallVector<int64_t, 4> newShape(1 + oldMemRefType.getRank());
newShape[0] = 2;
std::copy(oldShape.begin(), oldShape.end(), newShape.begin() + 1);
auto newMemRefType =
bInner.getMemRefType(newShape, oldMemRefType.getElementType(), {},
oldMemRefType.getMemorySpace());
return newMemRefType;
};
auto oldMemRefType = oldMemRef->getType().cast<MemRefType>();
auto newMemRefType = doubleShape(oldMemRefType);
// Put together alloc operands for the dynamic dimensions of the memref.
auto *forInst = forOp->getInstruction();
FuncBuilder bOuter(forInst);
SmallVector<Value *, 4> allocOperands;
unsigned dynamicDimCount = 0;
for (auto dimSize : oldMemRefType.getShape()) {
if (dimSize == -1)
allocOperands.push_back(bOuter.create<DimOp>(forInst->getLoc(), oldMemRef,
dynamicDimCount++));
}
// Create and place the alloc right before the 'for' instruction.
// TODO(mlir-team): we are assuming scoped allocation here, and aren't
// inserting a dealloc -- this isn't the right thing.
Value *newMemRef =
bOuter.create<AllocOp>(forInst->getLoc(), newMemRefType, allocOperands);
// Create 'iv mod 2' value to index the leading dimension.
auto d0 = bInner.getAffineDimExpr(0);
int64_t step = forOp->getStep();
auto modTwoMap = bInner.getAffineMap(/*dimCount=*/1, /*symbolCount=*/0,
{d0.floorDiv(step) % 2}, {});
auto ivModTwoOp = bInner.create<AffineApplyOp>(forOp->getLoc(), modTwoMap,
forOp->getInductionVar());
// replaceAllMemRefUsesWith will always succeed unless the forOp body has
// non-deferencing uses of the memref.
if (!replaceAllMemRefUsesWith(oldMemRef, newMemRef, {ivModTwoOp}, AffineMap(),
{}, &*forOp->getBody()->begin())) {
LLVM_DEBUG(llvm::dbgs()
<< "memref replacement for double buffering failed\n";);
ivModTwoOp->getInstruction()->erase();
return false;
}
return true;
}
/// Returns success if the IR is in a valid state.
PassResult PipelineDataTransfer::runOnFunction(Function *f) {
// Do a post order walk so that inner loop DMAs are processed first. This is
// necessary since 'for' instructions nested within would otherwise become
// invalid (erased) when the outer loop is pipelined (the pipelined one gets
// deleted and replaced by a prologue, a new steady-state loop and an
// epilogue).
forOps.clear();
f->walkPostOrder<AffineForOp>(
[&](OpPointer<AffineForOp> forOp) { forOps.push_back(forOp); });
bool ret = false;
for (auto forOp : forOps) {
ret = ret | runOnAffineForOp(forOp);
}
return ret ? failure() : success();
}
// Check if tags of the dma start op and dma wait op match.
static bool checkTagMatch(OpPointer<DmaStartOp> startOp,
OpPointer<DmaWaitOp> waitOp) {
if (startOp->getTagMemRef() != waitOp->getTagMemRef())
return false;
auto startIndices = startOp->getTagIndices();
auto waitIndices = waitOp->getTagIndices();
// Both of these have the same number of indices since they correspond to the
// same tag memref.
for (auto it = startIndices.begin(), wIt = waitIndices.begin(),
e = startIndices.end();
it != e; ++it, ++wIt) {
// Keep it simple for now, just checking if indices match.
// TODO(mlir-team): this would in general need to check if there is no
// intervening write writing to the same tag location, i.e., memory last
// write/data flow analysis. This is however sufficient/powerful enough for
// now since the DMA generation pass or the input for it will always have
// start/wait with matching tags (same SSA operand indices).
if (*it != *wIt)
return false;
}
return true;
}
// Identify matching DMA start/finish instructions to overlap computation with.
static void findMatchingStartFinishInsts(
OpPointer<AffineForOp> forOp,
SmallVectorImpl<std::pair<Instruction *, Instruction *>> &startWaitPairs) {
// Collect outgoing DMA instructions - needed to check for dependences below.
SmallVector<OpPointer<DmaStartOp>, 4> outgoingDmaOps;
for (auto &inst : *forOp->getBody()) {
OpPointer<DmaStartOp> dmaStartOp;
if ((dmaStartOp = inst.dyn_cast<DmaStartOp>()) &&
dmaStartOp->isSrcMemorySpaceFaster())
outgoingDmaOps.push_back(dmaStartOp);
}
SmallVector<Instruction *, 4> dmaStartInsts, dmaFinishInsts;
for (auto &inst : *forOp->getBody()) {
// Collect DMA finish instructions.
if (inst.isa<DmaWaitOp>()) {
dmaFinishInsts.push_back(&inst);
continue;
}
OpPointer<DmaStartOp> dmaStartOp;
if (!(dmaStartOp = inst.dyn_cast<DmaStartOp>()))
continue;
// Only DMAs incoming into higher memory spaces are pipelined for now.
// TODO(bondhugula): handle outgoing DMA pipelining.
if (!dmaStartOp->isDestMemorySpaceFaster())
continue;
// Check for dependence with outgoing DMAs. Doing this conservatively.
// TODO(andydavis,bondhugula): use the dependence analysis to check for
// dependences between an incoming and outgoing DMA in the same iteration.
auto it = outgoingDmaOps.begin();
for (; it != outgoingDmaOps.end(); ++it) {
if ((*it)->getDstMemRef() == dmaStartOp->getSrcMemRef())
break;
}
if (it != outgoingDmaOps.end())
continue;
// We only double buffer if the buffer is not live out of loop.
auto *memref = dmaStartOp->getOperand(dmaStartOp->getFasterMemPos());
bool escapingUses = false;
for (const auto &use : memref->getUses()) {
if (!forOp->getBody()->findAncestorInstInBlock(*use.getOwner())) {
LLVM_DEBUG(llvm::dbgs()
<< "can't pipeline: buffer is live out of loop\n";);
escapingUses = true;
break;
}
}
if (!escapingUses)
dmaStartInsts.push_back(&inst);
}
// For each start instruction, we look for a matching finish instruction.
for (auto *dmaStartInst : dmaStartInsts) {
for (auto *dmaFinishInst : dmaFinishInsts) {
if (checkTagMatch(dmaStartInst->cast<DmaStartOp>(),
dmaFinishInst->cast<DmaWaitOp>())) {
startWaitPairs.push_back({dmaStartInst, dmaFinishInst});
break;
}
}
}
}
/// Overlap DMA transfers with computation in this loop. If successful,
/// 'forOp' is deleted, and a prologue, a new pipelined loop, and epilogue are
/// inserted right before where it was.
PassResult
PipelineDataTransfer::runOnAffineForOp(OpPointer<AffineForOp> forOp) {
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "unknown trip count loop\n");
return success();
}
SmallVector<std::pair<Instruction *, Instruction *>, 4> startWaitPairs;
findMatchingStartFinishInsts(forOp, startWaitPairs);
if (startWaitPairs.empty()) {
LLVM_DEBUG(llvm::dbgs() << "No dma start/finish pairs\n";);
return success();
}
// Double the buffers for the higher memory space memref's.
// Identify memref's to replace by scanning through all DMA start
// instructions. A DMA start instruction has two memref's - the one from the
// higher level of memory hierarchy is the one to double buffer.
// TODO(bondhugula): check whether double-buffering is even necessary.
// TODO(bondhugula): make this work with different layouts: assuming here that
// the dimension we are adding here for the double buffering is the outermost
// dimension.
for (auto &pair : startWaitPairs) {
auto *dmaStartInst = pair.first;
Value *oldMemRef = dmaStartInst->getOperand(
dmaStartInst->cast<DmaStartOp>()->getFasterMemPos());
if (!doubleBuffer(oldMemRef, forOp)) {
// Normally, double buffering should not fail because we already checked
// that there are no uses outside.
LLVM_DEBUG(llvm::dbgs() << "double buffering failed for: \n";);
LLVM_DEBUG(dmaStartInst->dump());
// IR still in a valid state.
return success();
}
// If the old memref has no more uses, remove its 'dead' alloc if it was
// alloc'ed. (note: DMA buffers are rarely function live-in; but a 'dim'
// operation could have been used on it if it was dynamically shaped in
// order to create the double buffer above)
if (oldMemRef->use_empty())
if (auto *allocInst = oldMemRef->getDefiningInst())
allocInst->erase();
}
// Double the buffers for tag memrefs.
for (auto &pair : startWaitPairs) {
auto *dmaFinishInst = pair.second;
Value *oldTagMemRef =
dmaFinishInst->getOperand(getTagMemRefPos(*dmaFinishInst));
if (!doubleBuffer(oldTagMemRef, forOp)) {
LLVM_DEBUG(llvm::dbgs() << "tag double buffering failed\n";);
return success();
}
// If the old tag has no more uses, remove its 'dead' alloc if it was
// alloc'ed.
if (oldTagMemRef->use_empty())
if (auto *allocInst = oldTagMemRef->getDefiningInst())
allocInst->erase();
}
// Double buffering would have invalidated all the old DMA start/wait insts.
startWaitPairs.clear();
findMatchingStartFinishInsts(forOp, startWaitPairs);
// Store shift for instruction for later lookup for AffineApplyOp's.
DenseMap<const Instruction *, unsigned> instShiftMap;
for (auto &pair : startWaitPairs) {
auto *dmaStartInst = pair.first;
assert(dmaStartInst->isa<DmaStartOp>());
instShiftMap[dmaStartInst] = 0;
// Set shifts for DMA start inst's affine operand computation slices to 0.
SmallVector<OpPointer<AffineApplyOp>, 4> sliceOps;
mlir::createAffineComputationSlice(dmaStartInst, &sliceOps);
if (!sliceOps.empty()) {
for (auto sliceOp : sliceOps) {
instShiftMap[sliceOp->getInstruction()] = 0;
}
} else {
// If a slice wasn't created, the reachable affine.apply op's from its
// operands are the ones that go with it.
SmallVector<Instruction *, 4> affineApplyInsts;
SmallVector<Value *, 4> operands(dmaStartInst->getOperands());
getReachableAffineApplyOps(operands, affineApplyInsts);
for (const auto *inst : affineApplyInsts) {
instShiftMap[inst] = 0;
}
}
}
// Everything else (including compute ops and dma finish) are shifted by one.
for (const auto &inst : *forOp->getBody()) {
if (instShiftMap.find(&inst) == instShiftMap.end()) {
instShiftMap[&inst] = 1;
}
}
// Get shifts stored in map.
std::vector<uint64_t> shifts(forOp->getBody()->getInstructions().size());
unsigned s = 0;
for (auto &inst : *forOp->getBody()) {
assert(instShiftMap.find(&inst) != instShiftMap.end());
shifts[s++] = instShiftMap[&inst];
// Tagging instructions with shifts for debugging purposes.
LLVM_DEBUG({
FuncBuilder b(&inst);
inst.setAttr(b.getIdentifier("shift"),
b.getI64IntegerAttr(shifts[s - 1]));
});
}
if (!isInstwiseShiftValid(forOp, shifts)) {
// Violates dependences.
LLVM_DEBUG(llvm::dbgs() << "Shifts invalid - unexpected\n";);
return success();
}
if (instBodySkew(forOp, shifts)) {
LLVM_DEBUG(llvm::dbgs() << "inst body skewing failed - unexpected\n";);
return success();
}
return success();
}
static PassRegistration<PipelineDataTransfer> pass(
"pipeline-data-transfer",
"Pipeline non-blocking data transfers between explicitly managed levels of "
"the memory hierarchy");