llvm-project/mlir/lib/IR/Verifier.cpp

324 lines
12 KiB
C++

//===- Verifier.cpp - MLIR Verifier Implementation ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the verify() methods on the various IR types, performing
// (potentially expensive) checks on the holistic structure of the code. This
// can be used for detecting bugs in compiler transformations and hand written
// .mlir files.
//
// The checks in this file are only for things that can occur as part of IR
// transformations: e.g. violation of dominance information, malformed operation
// attributes, etc. MLIR supports transformations moving IR through locally
// invalid states (e.g. unlinking an operation from a block before re-inserting
// it in a new place), but each transformation must complete with the IR in a
// valid form.
//
// This should not check for things that are always wrong by construction (e.g.
// attributes or other immutable structures that are incorrect), because those
// are not mutable and can be checked at time of construction.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Verifier.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/RegionKindInterface.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Regex.h"
using namespace mlir;
namespace {
/// This class encapsulates all the state used to verify an operation region.
class OperationVerifier {
public:
explicit OperationVerifier(MLIRContext *ctx) : ctx(ctx) {}
/// Verify the given operation.
LogicalResult verify(Operation &op);
private:
/// Verify the given potentially nested region or block.
LogicalResult verifyRegion(Region &region);
LogicalResult verifyBlock(Block &block);
LogicalResult verifyOperation(Operation &op);
/// Verify the dominance property of operations within the given Region.
LogicalResult verifyDominance(Region &region);
/// Verify the dominance property of regions contained within the given
/// Operation.
LogicalResult verifyDominanceOfContainedRegions(Operation &op);
/// Emit an error for the given block.
InFlightDiagnostic emitError(Block &bb, const Twine &message) {
// Take the location information for the first operation in the block.
if (!bb.empty())
return bb.front().emitError(message);
// Worst case, fall back to using the parent's location.
return mlir::emitError(bb.getParent()->getLoc(), message);
}
/// The current context for the verifier.
MLIRContext *ctx;
/// Dominance information for this operation, when checking dominance.
DominanceInfo *domInfo = nullptr;
};
} // end anonymous namespace
/// Verify the given operation.
LogicalResult OperationVerifier::verify(Operation &op) {
// Verify the operation first.
if (failed(verifyOperation(op)))
return failure();
// Since everything looks structurally ok to this point, we do a dominance
// check for any nested regions. We do this as a second pass since malformed
// CFG's can cause dominator analysis constructure to crash and we want the
// verifier to be resilient to malformed code.
DominanceInfo theDomInfo(&op);
domInfo = &theDomInfo;
if (failed(verifyDominanceOfContainedRegions(op)))
return failure();
domInfo = nullptr;
return success();
}
LogicalResult OperationVerifier::verifyRegion(Region &region) {
if (region.empty())
return success();
// Verify the first block has no predecessors.
auto *firstBB = &region.front();
if (!firstBB->hasNoPredecessors())
return mlir::emitError(region.getLoc(),
"entry block of region may not have predecessors");
// Verify each of the blocks within the region.
for (Block &block : region)
if (failed(verifyBlock(block)))
return failure();
return success();
}
LogicalResult OperationVerifier::verifyBlock(Block &block) {
for (auto arg : block.getArguments())
if (arg.getOwner() != &block)
return emitError(block, "block argument not owned by block");
// Verify that this block has a terminator.
if (block.empty())
return emitError(block, "block with no terminator");
// Verify the non-terminator operations separately so that we can verify
// they has no successors.
for (auto &op : llvm::make_range(block.begin(), std::prev(block.end()))) {
if (op.getNumSuccessors() != 0)
return op.emitError(
"operation with block successors must terminate its parent block");
if (failed(verifyOperation(op)))
return failure();
}
// Verify the terminator.
Operation &terminator = block.back();
if (failed(verifyOperation(terminator)))
return failure();
if (!terminator.mightHaveTrait<OpTrait::IsTerminator>())
return block.back().emitError("block with no terminator");
// Verify that this block is not branching to a block of a different
// region.
for (Block *successor : block.getSuccessors())
if (successor->getParent() != block.getParent())
return block.back().emitOpError(
"branching to block of a different region");
return success();
}
LogicalResult OperationVerifier::verifyOperation(Operation &op) {
// Check that operands are non-nil and structurally ok.
for (auto operand : op.getOperands())
if (!operand)
return op.emitError("null operand found");
/// Verify that all of the attributes are okay.
for (auto attr : op.getAttrs()) {
// Check for any optional dialect specific attributes.
if (auto *dialect = attr.first.getDialect())
if (failed(dialect->verifyOperationAttribute(&op, attr)))
return failure();
}
// If we can get operation info for this, check the custom hook.
OperationName opName = op.getName();
auto *opInfo = opName.getAbstractOperation();
if (opInfo && failed(opInfo->verifyInvariants(&op)))
return failure();
auto kindInterface = dyn_cast<mlir::RegionKindInterface>(op);
// Verify that all child regions are ok.
unsigned numRegions = op.getNumRegions();
for (unsigned i = 0; i < numRegions; i++) {
Region &region = op.getRegion(i);
// Check that Graph Regions only have a single basic block. This is
// similar to the code in SingleBlockImplicitTerminator, but doesn't
// require the trait to be specified. This arbitrary limitation is
// designed to limit the number of cases that have to be handled by
// transforms and conversions until the concept stabilizes.
if (op.isRegistered() && kindInterface &&
kindInterface.getRegionKind(i) == RegionKind::Graph) {
// Empty regions are fine.
if (region.empty())
continue;
// Non-empty regions must contain a single basic block.
if (std::next(region.begin()) != region.end())
return op.emitOpError("expects graph region #")
<< i << " to have 0 or 1 blocks";
}
if (failed(verifyRegion(region)))
return failure();
}
// If this is a registered operation, there is nothing left to do.
if (opInfo)
return success();
// Otherwise, verify that the parent dialect allows un-registered operations.
Dialect *dialect = opName.getDialect();
if (!dialect) {
if (!ctx->allowsUnregisteredDialects()) {
return op.emitOpError()
<< "created with unregistered dialect. If this is "
"intended, please call allowUnregisteredDialects() on the "
"MLIRContext, or use -allow-unregistered-dialect with "
"mlir-opt";
}
return success();
}
if (!dialect->allowsUnknownOperations()) {
return op.emitError("unregistered operation '")
<< op.getName() << "' found in dialect ('" << dialect->getNamespace()
<< "') that does not allow unknown operations";
}
return success();
}
/// Attach a note to an in-flight diagnostic that provide more information about
/// where an op operand is defined.
static void attachNoteForOperandDefinition(InFlightDiagnostic &diag,
Operation &op, Value operand) {
if (auto *useOp = operand.getDefiningOp()) {
Diagnostic &note = diag.attachNote(useOp->getLoc());
note << "operand defined here";
Block *block1 = op.getBlock();
Block *block2 = useOp->getBlock();
Region *region1 = block1->getParent();
Region *region2 = block2->getParent();
if (block1 == block2)
note << " (op in the same block)";
else if (region1 == region2)
note << " (op in the same region)";
else if (region2->isProperAncestor(region1))
note << " (op in a parent region)";
else if (region1->isProperAncestor(region2))
note << " (op in a child region)";
else
note << " (op is neither in a parent nor in a child region)";
return;
}
// Block argument case.
Block *block1 = op.getBlock();
Block *block2 = operand.cast<BlockArgument>().getOwner();
Region *region1 = block1->getParent();
Region *region2 = block2->getParent();
Location loc = UnknownLoc::get(op.getContext());
if (block2->getParentOp())
loc = block2->getParentOp()->getLoc();
Diagnostic &note = diag.attachNote(loc);
if (!region2) {
note << " (block without parent)";
return;
}
if (block1 == block2)
llvm::report_fatal_error("Internal error in dominance verification");
int index = std::distance(region2->begin(), block2->getIterator());
note << "operand defined as a block argument (block #" << index;
if (region1 == region2)
note << " in the same region)";
else if (region2->isProperAncestor(region1))
note << " in a parent region)";
else if (region1->isProperAncestor(region2))
note << " in a child region)";
else
note << " neither in a parent nor in a child region)";
}
LogicalResult OperationVerifier::verifyDominance(Region &region) {
// Verify the dominance of each of the held operations.
for (Block &block : region) {
// Dominance is only meaningful inside reachable blocks.
if (domInfo->isReachableFromEntry(&block))
for (Operation &op : block)
// Check that operands properly dominate this use.
for (unsigned operandNo = 0, e = op.getNumOperands(); operandNo != e;
++operandNo) {
Value operand = op.getOperand(operandNo);
if (domInfo->properlyDominates(operand, &op))
continue;
InFlightDiagnostic diag = op.emitError("operand #")
<< operandNo
<< " does not dominate this use";
attachNoteForOperandDefinition(diag, op, operand);
return failure();
}
// Recursively verify dominance within each operation in the
// block, even if the block itself is not reachable, or we are in
// a region which doesn't respect dominance.
for (Operation &op : block)
if (failed(verifyDominanceOfContainedRegions(op)))
return failure();
}
return success();
}
/// Verify the dominance of each of the nested blocks within the given operation
LogicalResult
OperationVerifier::verifyDominanceOfContainedRegions(Operation &op) {
for (Region &region : op.getRegions()) {
if (failed(verifyDominance(region)))
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// Entrypoint
//===----------------------------------------------------------------------===//
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this reports the error through the MLIRContext and
/// returns failure.
LogicalResult mlir::verify(Operation *op) {
return OperationVerifier(op->getContext()).verify(*op);
}