llvm-project/mlir/lib/IR/AsmPrinter.cpp

2728 lines
92 KiB
C++

//===- AsmPrinter.cpp - MLIR Assembly Printer Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the MLIR AsmPrinter class, which is used to implement
// the various print() methods on the core IR objects.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Operation.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace mlir;
using namespace mlir::detail;
void Identifier::print(raw_ostream &os) const { os << str(); }
void Identifier::dump() const { print(llvm::errs()); }
void OperationName::print(raw_ostream &os) const { os << getStringRef(); }
void OperationName::dump() const { print(llvm::errs()); }
DialectAsmPrinter::~DialectAsmPrinter() {}
//===--------------------------------------------------------------------===//
// OpAsmPrinter
//===--------------------------------------------------------------------===//
OpAsmPrinter::~OpAsmPrinter() {}
void OpAsmPrinter::printFunctionalType(Operation *op) {
auto &os = getStream();
os << '(';
llvm::interleaveComma(op->getOperands(), os, [&](Value operand) {
// Print the types of null values as <<NULL TYPE>>.
*this << (operand ? operand.getType() : Type());
});
os << ") -> ";
// Print the result list. We don't parenthesize single result types unless
// it is a function (avoiding a grammar ambiguity).
bool wrapped = op->getNumResults() != 1;
if (!wrapped && op->getResult(0).getType() &&
op->getResult(0).getType().isa<FunctionType>())
wrapped = true;
if (wrapped)
os << '(';
llvm::interleaveComma(op->getResults(), os, [&](const OpResult &result) {
// Print the types of null values as <<NULL TYPE>>.
*this << (result ? result.getType() : Type());
});
if (wrapped)
os << ')';
}
//===--------------------------------------------------------------------===//
// Operation OpAsm interface.
//===--------------------------------------------------------------------===//
/// The OpAsmOpInterface, see OpAsmInterface.td for more details.
#include "mlir/IR/OpAsmInterface.cpp.inc"
//===----------------------------------------------------------------------===//
// OpPrintingFlags
//===----------------------------------------------------------------------===//
namespace {
/// This struct contains command line options that can be used to initialize
/// various bits of the AsmPrinter. This uses a struct wrapper to avoid the need
/// for global command line options.
struct AsmPrinterOptions {
llvm::cl::opt<int64_t> printElementsAttrWithHexIfLarger{
"mlir-print-elementsattrs-with-hex-if-larger",
llvm::cl::desc(
"Print DenseElementsAttrs with a hex string that have "
"more elements than the given upper limit (use -1 to disable)")};
llvm::cl::opt<unsigned> elideElementsAttrIfLarger{
"mlir-elide-elementsattrs-if-larger",
llvm::cl::desc("Elide ElementsAttrs with \"...\" that have "
"more elements than the given upper limit")};
llvm::cl::opt<bool> printDebugInfoOpt{
"mlir-print-debuginfo", llvm::cl::init(false),
llvm::cl::desc("Print debug info in MLIR output")};
llvm::cl::opt<bool> printPrettyDebugInfoOpt{
"mlir-pretty-debuginfo", llvm::cl::init(false),
llvm::cl::desc("Print pretty debug info in MLIR output")};
// Use the generic op output form in the operation printer even if the custom
// form is defined.
llvm::cl::opt<bool> printGenericOpFormOpt{
"mlir-print-op-generic", llvm::cl::init(false),
llvm::cl::desc("Print the generic op form"), llvm::cl::Hidden};
llvm::cl::opt<bool> printLocalScopeOpt{
"mlir-print-local-scope", llvm::cl::init(false),
llvm::cl::desc("Print assuming in local scope by default"),
llvm::cl::Hidden};
};
} // end anonymous namespace
static llvm::ManagedStatic<AsmPrinterOptions> clOptions;
/// Register a set of useful command-line options that can be used to configure
/// various flags within the AsmPrinter.
void mlir::registerAsmPrinterCLOptions() {
// Make sure that the options struct has been initialized.
*clOptions;
}
/// Initialize the printing flags with default supplied by the cl::opts above.
OpPrintingFlags::OpPrintingFlags()
: printDebugInfoFlag(false), printDebugInfoPrettyFormFlag(false),
printGenericOpFormFlag(false), printLocalScope(false) {
// Initialize based upon command line options, if they are available.
if (!clOptions.isConstructed())
return;
if (clOptions->elideElementsAttrIfLarger.getNumOccurrences())
elementsAttrElementLimit = clOptions->elideElementsAttrIfLarger;
printDebugInfoFlag = clOptions->printDebugInfoOpt;
printDebugInfoPrettyFormFlag = clOptions->printPrettyDebugInfoOpt;
printGenericOpFormFlag = clOptions->printGenericOpFormOpt;
printLocalScope = clOptions->printLocalScopeOpt;
}
/// Enable the elision of large elements attributes, by printing a '...'
/// instead of the element data, when the number of elements is greater than
/// `largeElementLimit`. Note: The IR generated with this option is not
/// parsable.
OpPrintingFlags &
OpPrintingFlags::elideLargeElementsAttrs(int64_t largeElementLimit) {
elementsAttrElementLimit = largeElementLimit;
return *this;
}
/// Enable printing of debug information. If 'prettyForm' is set to true,
/// debug information is printed in a more readable 'pretty' form.
OpPrintingFlags &OpPrintingFlags::enableDebugInfo(bool prettyForm) {
printDebugInfoFlag = true;
printDebugInfoPrettyFormFlag = prettyForm;
return *this;
}
/// Always print operations in the generic form.
OpPrintingFlags &OpPrintingFlags::printGenericOpForm() {
printGenericOpFormFlag = true;
return *this;
}
/// Use local scope when printing the operation. This allows for using the
/// printer in a more localized and thread-safe setting, but may not necessarily
/// be identical of what the IR will look like when dumping the full module.
OpPrintingFlags &OpPrintingFlags::useLocalScope() {
printLocalScope = true;
return *this;
}
/// Return if the given ElementsAttr should be elided.
bool OpPrintingFlags::shouldElideElementsAttr(ElementsAttr attr) const {
return elementsAttrElementLimit.hasValue() &&
*elementsAttrElementLimit < int64_t(attr.getNumElements()) &&
!attr.isa<SplatElementsAttr>();
}
/// Return the size limit for printing large ElementsAttr.
Optional<int64_t> OpPrintingFlags::getLargeElementsAttrLimit() const {
return elementsAttrElementLimit;
}
/// Return if debug information should be printed.
bool OpPrintingFlags::shouldPrintDebugInfo() const {
return printDebugInfoFlag;
}
/// Return if debug information should be printed in the pretty form.
bool OpPrintingFlags::shouldPrintDebugInfoPrettyForm() const {
return printDebugInfoPrettyFormFlag;
}
/// Return if operations should be printed in the generic form.
bool OpPrintingFlags::shouldPrintGenericOpForm() const {
return printGenericOpFormFlag;
}
/// Return if the printer should use local scope when dumping the IR.
bool OpPrintingFlags::shouldUseLocalScope() const { return printLocalScope; }
/// Returns true if an ElementsAttr with the given number of elements should be
/// printed with hex.
static bool shouldPrintElementsAttrWithHex(int64_t numElements) {
// Check to see if a command line option was provided for the limit.
if (clOptions.isConstructed()) {
if (clOptions->printElementsAttrWithHexIfLarger.getNumOccurrences()) {
// -1 is used to disable hex printing.
if (clOptions->printElementsAttrWithHexIfLarger == -1)
return false;
return numElements > clOptions->printElementsAttrWithHexIfLarger;
}
}
// Otherwise, default to printing with hex if the number of elements is >100.
return numElements > 100;
}
//===----------------------------------------------------------------------===//
// NewLineCounter
//===----------------------------------------------------------------------===//
namespace {
/// This class is a simple formatter that emits a new line when inputted into a
/// stream, that enables counting the number of newlines emitted. This class
/// should be used whenever emitting newlines in the printer.
struct NewLineCounter {
unsigned curLine = 1;
};
} // end anonymous namespace
static raw_ostream &operator<<(raw_ostream &os, NewLineCounter &newLine) {
++newLine.curLine;
return os << '\n';
}
//===----------------------------------------------------------------------===//
// AliasInitializer
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a specific instance of a symbol Alias.
class SymbolAlias {
public:
SymbolAlias(StringRef name, bool isDeferrable)
: name(name), suffixIndex(0), hasSuffixIndex(false),
isDeferrable(isDeferrable) {}
SymbolAlias(StringRef name, uint32_t suffixIndex, bool isDeferrable)
: name(name), suffixIndex(suffixIndex), hasSuffixIndex(true),
isDeferrable(isDeferrable) {}
/// Print this alias to the given stream.
void print(raw_ostream &os) const {
os << name;
if (hasSuffixIndex)
os << suffixIndex;
}
/// Returns true if this alias supports deferred resolution when parsing.
bool canBeDeferred() const { return isDeferrable; }
private:
/// The main name of the alias.
StringRef name;
/// The optional suffix index of the alias, if multiple aliases had the same
/// name.
uint32_t suffixIndex : 30;
/// A flag indicating whether this alias has a suffix or not.
bool hasSuffixIndex : 1;
/// A flag indicating whether this alias may be deferred or not.
bool isDeferrable : 1;
};
/// This class represents a utility that initializes the set of attribute and
/// type aliases, without the need to store the extra information within the
/// main AliasState class or pass it around via function arguments.
class AliasInitializer {
public:
AliasInitializer(
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces,
llvm::BumpPtrAllocator &aliasAllocator)
: interfaces(interfaces), aliasAllocator(aliasAllocator),
aliasOS(aliasBuffer) {}
void initialize(Operation *op, const OpPrintingFlags &printerFlags,
llvm::MapVector<Attribute, SymbolAlias> &attrToAlias,
llvm::MapVector<Type, SymbolAlias> &typeToAlias);
/// Visit the given attribute to see if it has an alias. `canBeDeferred` is
/// set to true if the originator of this attribute can resolve the alias
/// after parsing has completed (e.g. in the case of operation locations).
void visit(Attribute attr, bool canBeDeferred = false);
/// Visit the given type to see if it has an alias.
void visit(Type type);
private:
/// Try to generate an alias for the provided symbol. If an alias is
/// generated, the provided alias mapping and reverse mapping are updated.
/// Returns success if an alias was generated, failure otherwise.
template <typename T>
LogicalResult
generateAlias(T symbol,
llvm::MapVector<StringRef, std::vector<T>> &aliasToSymbol);
/// The set of asm interfaces within the context.
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces;
/// Mapping between an alias and the set of symbols mapped to it.
llvm::MapVector<StringRef, std::vector<Attribute>> aliasToAttr;
llvm::MapVector<StringRef, std::vector<Type>> aliasToType;
/// An allocator used for alias names.
llvm::BumpPtrAllocator &aliasAllocator;
/// The set of visited attributes.
DenseSet<Attribute> visitedAttributes;
/// The set of attributes that have aliases *and* can be deferred.
DenseSet<Attribute> deferrableAttributes;
/// The set of visited types.
DenseSet<Type> visitedTypes;
/// Storage and stream used when generating an alias.
SmallString<32> aliasBuffer;
llvm::raw_svector_ostream aliasOS;
};
/// This class implements a dummy OpAsmPrinter that doesn't print any output,
/// and merely collects the attributes and types that *would* be printed in a
/// normal print invocation so that we can generate proper aliases. This allows
/// for us to generate aliases only for the attributes and types that would be
/// in the output, and trims down unnecessary output.
class DummyAliasOperationPrinter : private OpAsmPrinter {
public:
explicit DummyAliasOperationPrinter(const OpPrintingFlags &flags,
AliasInitializer &initializer)
: printerFlags(flags), initializer(initializer) {}
/// Print the given operation.
void print(Operation *op) {
// Visit the operation location.
if (printerFlags.shouldPrintDebugInfo())
initializer.visit(op->getLoc(), /*canBeDeferred=*/true);
// If requested, always print the generic form.
if (!printerFlags.shouldPrintGenericOpForm()) {
// Check to see if this is a known operation. If so, use the registered
// custom printer hook.
if (auto *opInfo = op->getAbstractOperation()) {
opInfo->printAssembly(op, *this);
return;
}
}
// Otherwise print with the generic assembly form.
printGenericOp(op);
}
private:
/// Print the given operation in the generic form.
void printGenericOp(Operation *op) override {
// Consider nested operations for aliases.
if (op->getNumRegions() != 0) {
for (Region &region : op->getRegions())
printRegion(region, /*printEntryBlockArgs=*/true,
/*printBlockTerminators=*/true);
}
// Visit all the types used in the operation.
for (Type type : op->getOperandTypes())
printType(type);
for (Type type : op->getResultTypes())
printType(type);
// Consider the attributes of the operation for aliases.
for (const NamedAttribute &attr : op->getAttrs())
printAttribute(attr.second);
}
/// Print the given block. If 'printBlockArgs' is false, the arguments of the
/// block are not printed. If 'printBlockTerminator' is false, the terminator
/// operation of the block is not printed.
void print(Block *block, bool printBlockArgs = true,
bool printBlockTerminator = true) {
// Consider the types of the block arguments for aliases if 'printBlockArgs'
// is set to true.
if (printBlockArgs) {
for (Type type : block->getArgumentTypes())
printType(type);
}
// Consider the operations within this block, ignoring the terminator if
// requested.
auto range = llvm::make_range(
block->begin(), std::prev(block->end(), printBlockTerminator ? 0 : 1));
for (Operation &op : range)
print(&op);
}
/// Print the given region.
void printRegion(Region &region, bool printEntryBlockArgs,
bool printBlockTerminators) override {
if (region.empty())
return;
auto *entryBlock = &region.front();
print(entryBlock, printEntryBlockArgs, printBlockTerminators);
for (Block &b : llvm::drop_begin(region, 1))
print(&b);
}
/// Consider the given type to be printed for an alias.
void printType(Type type) override { initializer.visit(type); }
/// Consider the given attribute to be printed for an alias.
void printAttribute(Attribute attr) override { initializer.visit(attr); }
void printAttributeWithoutType(Attribute attr) override {
printAttribute(attr);
}
/// Print the given set of attributes with names not included within
/// 'elidedAttrs'.
void printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {}) override {
if (attrs.empty())
return;
if (elidedAttrs.empty()) {
for (const NamedAttribute &attr : attrs)
printAttribute(attr.second);
return;
}
llvm::SmallDenseSet<StringRef> elidedAttrsSet(elidedAttrs.begin(),
elidedAttrs.end());
for (const NamedAttribute &attr : attrs)
if (!elidedAttrsSet.contains(attr.first.strref()))
printAttribute(attr.second);
}
void printOptionalAttrDictWithKeyword(
ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {}) override {
printOptionalAttrDict(attrs, elidedAttrs);
}
/// Return 'nulls' as the output stream, this will ignore any data fed to it.
raw_ostream &getStream() const override { return llvm::nulls(); }
/// The following are hooks of `OpAsmPrinter` that are not necessary for
/// determining potential aliases.
void printAffineMapOfSSAIds(AffineMapAttr, ValueRange) override {}
void printNewline() override {}
void printOperand(Value) override {}
void printOperand(Value, raw_ostream &os) override {
// Users expect the output string to have at least the prefixed % to signal
// a value name. To maintain this invariant, emit a name even if it is
// guaranteed to go unused.
os << "%";
}
void printSymbolName(StringRef) override {}
void printSuccessor(Block *) override {}
void printSuccessorAndUseList(Block *, ValueRange) override {}
void shadowRegionArgs(Region &, ValueRange) override {}
/// The printer flags to use when determining potential aliases.
const OpPrintingFlags &printerFlags;
/// The initializer to use when identifying aliases.
AliasInitializer &initializer;
};
} // end anonymous namespace
/// Sanitize the given name such that it can be used as a valid identifier. If
/// the string needs to be modified in any way, the provided buffer is used to
/// store the new copy,
static StringRef sanitizeIdentifier(StringRef name, SmallString<16> &buffer,
StringRef allowedPunctChars = "$._-",
bool allowTrailingDigit = true) {
assert(!name.empty() && "Shouldn't have an empty name here");
auto copyNameToBuffer = [&] {
for (char ch : name) {
if (llvm::isAlnum(ch) || allowedPunctChars.contains(ch))
buffer.push_back(ch);
else if (ch == ' ')
buffer.push_back('_');
else
buffer.append(llvm::utohexstr((unsigned char)ch));
}
};
// Check to see if this name is valid. If it starts with a digit, then it
// could conflict with the autogenerated numeric ID's, so add an underscore
// prefix to avoid problems.
if (isdigit(name[0])) {
buffer.push_back('_');
copyNameToBuffer();
return buffer;
}
// If the name ends with a trailing digit, add a '_' to avoid potential
// conflicts with autogenerated ID's.
if (!allowTrailingDigit && isdigit(name.back())) {
copyNameToBuffer();
buffer.push_back('_');
return buffer;
}
// Check to see that the name consists of only valid identifier characters.
for (char ch : name) {
if (!llvm::isAlnum(ch) && !allowedPunctChars.contains(ch)) {
copyNameToBuffer();
return buffer;
}
}
// If there are no invalid characters, return the original name.
return name;
}
/// Given a collection of aliases and symbols, initialize a mapping from a
/// symbol to a given alias.
template <typename T>
static void
initializeAliases(llvm::MapVector<StringRef, std::vector<T>> &aliasToSymbol,
llvm::MapVector<T, SymbolAlias> &symbolToAlias,
DenseSet<T> *deferrableAliases = nullptr) {
std::vector<std::pair<StringRef, std::vector<T>>> aliases =
aliasToSymbol.takeVector();
llvm::array_pod_sort(aliases.begin(), aliases.end(),
[](const auto *lhs, const auto *rhs) {
return lhs->first.compare(rhs->first);
});
for (auto &it : aliases) {
// If there is only one instance for this alias, use the name directly.
if (it.second.size() == 1) {
T symbol = it.second.front();
bool isDeferrable = deferrableAliases && deferrableAliases->count(symbol);
symbolToAlias.insert({symbol, SymbolAlias(it.first, isDeferrable)});
continue;
}
// Otherwise, add the index to the name.
for (int i = 0, e = it.second.size(); i < e; ++i) {
T symbol = it.second[i];
bool isDeferrable = deferrableAliases && deferrableAliases->count(symbol);
symbolToAlias.insert({symbol, SymbolAlias(it.first, i, isDeferrable)});
}
}
}
void AliasInitializer::initialize(
Operation *op, const OpPrintingFlags &printerFlags,
llvm::MapVector<Attribute, SymbolAlias> &attrToAlias,
llvm::MapVector<Type, SymbolAlias> &typeToAlias) {
// Use a dummy printer when walking the IR so that we can collect the
// attributes/types that will actually be used during printing when
// considering aliases.
DummyAliasOperationPrinter aliasPrinter(printerFlags, *this);
aliasPrinter.print(op);
// Initialize the aliases sorted by name.
initializeAliases(aliasToAttr, attrToAlias, &deferrableAttributes);
initializeAliases(aliasToType, typeToAlias);
}
void AliasInitializer::visit(Attribute attr, bool canBeDeferred) {
if (!visitedAttributes.insert(attr).second) {
// If this attribute already has an alias and this instance can't be
// deferred, make sure that the alias isn't deferred.
if (!canBeDeferred)
deferrableAttributes.erase(attr);
return;
}
// Try to generate an alias for this attribute.
if (succeeded(generateAlias(attr, aliasToAttr))) {
if (canBeDeferred)
deferrableAttributes.insert(attr);
return;
}
if (auto arrayAttr = attr.dyn_cast<ArrayAttr>()) {
for (Attribute element : arrayAttr.getValue())
visit(element);
} else if (auto dictAttr = attr.dyn_cast<DictionaryAttr>()) {
for (const NamedAttribute &attr : dictAttr)
visit(attr.second);
} else if (auto typeAttr = attr.dyn_cast<TypeAttr>()) {
visit(typeAttr.getValue());
}
}
void AliasInitializer::visit(Type type) {
if (!visitedTypes.insert(type).second)
return;
// Try to generate an alias for this type.
if (succeeded(generateAlias(type, aliasToType)))
return;
// Visit several subtypes that contain types or attributes.
if (auto funcType = type.dyn_cast<FunctionType>()) {
// Visit input and result types for functions.
for (auto input : funcType.getInputs())
visit(input);
for (auto result : funcType.getResults())
visit(result);
} else if (auto shapedType = type.dyn_cast<ShapedType>()) {
visit(shapedType.getElementType());
// Visit affine maps in memref type.
if (auto memref = type.dyn_cast<MemRefType>())
for (auto map : memref.getAffineMaps())
visit(AffineMapAttr::get(map));
}
}
template <typename T>
LogicalResult AliasInitializer::generateAlias(
T symbol, llvm::MapVector<StringRef, std::vector<T>> &aliasToSymbol) {
SmallString<16> tempBuffer;
for (const auto &interface : interfaces) {
if (failed(interface.getAlias(symbol, aliasOS)))
continue;
StringRef name = aliasOS.str();
assert(!name.empty() && "expected valid alias name");
name = sanitizeIdentifier(name, tempBuffer, /*allowedPunctChars=*/"$_-",
/*allowTrailingDigit=*/false);
name = name.copy(aliasAllocator);
aliasToSymbol[name].push_back(symbol);
aliasBuffer.clear();
return success();
}
return failure();
}
//===----------------------------------------------------------------------===//
// AliasState
//===----------------------------------------------------------------------===//
namespace {
/// This class manages the state for type and attribute aliases.
class AliasState {
public:
// Initialize the internal aliases.
void
initialize(Operation *op, const OpPrintingFlags &printerFlags,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces);
/// Get an alias for the given attribute if it has one and print it in `os`.
/// Returns success if an alias was printed, failure otherwise.
LogicalResult getAlias(Attribute attr, raw_ostream &os) const;
/// Get an alias for the given type if it has one and print it in `os`.
/// Returns success if an alias was printed, failure otherwise.
LogicalResult getAlias(Type ty, raw_ostream &os) const;
/// Print all of the referenced aliases that can not be resolved in a deferred
/// manner.
void printNonDeferredAliases(raw_ostream &os, NewLineCounter &newLine) const {
printAliases(os, newLine, /*isDeferred=*/false);
}
/// Print all of the referenced aliases that support deferred resolution.
void printDeferredAliases(raw_ostream &os, NewLineCounter &newLine) const {
printAliases(os, newLine, /*isDeferred=*/true);
}
private:
/// Print all of the referenced aliases that support the provided resolution
/// behavior.
void printAliases(raw_ostream &os, NewLineCounter &newLine,
bool isDeferred) const;
/// Mapping between attribute and alias.
llvm::MapVector<Attribute, SymbolAlias> attrToAlias;
/// Mapping between type and alias.
llvm::MapVector<Type, SymbolAlias> typeToAlias;
/// An allocator used for alias names.
llvm::BumpPtrAllocator aliasAllocator;
};
} // end anonymous namespace
void AliasState::initialize(
Operation *op, const OpPrintingFlags &printerFlags,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces) {
AliasInitializer initializer(interfaces, aliasAllocator);
initializer.initialize(op, printerFlags, attrToAlias, typeToAlias);
}
LogicalResult AliasState::getAlias(Attribute attr, raw_ostream &os) const {
auto it = attrToAlias.find(attr);
if (it == attrToAlias.end())
return failure();
it->second.print(os << '#');
return success();
}
LogicalResult AliasState::getAlias(Type ty, raw_ostream &os) const {
auto it = typeToAlias.find(ty);
if (it == typeToAlias.end())
return failure();
it->second.print(os << '!');
return success();
}
void AliasState::printAliases(raw_ostream &os, NewLineCounter &newLine,
bool isDeferred) const {
auto filterFn = [=](const auto &aliasIt) {
return aliasIt.second.canBeDeferred() == isDeferred;
};
for (const auto &it : llvm::make_filter_range(attrToAlias, filterFn)) {
it.second.print(os << '#');
os << " = " << it.first << newLine;
}
for (const auto &it : llvm::make_filter_range(typeToAlias, filterFn)) {
it.second.print(os << '!');
os << " = type " << it.first << newLine;
}
}
//===----------------------------------------------------------------------===//
// SSANameState
//===----------------------------------------------------------------------===//
namespace {
/// This class manages the state of SSA value names.
class SSANameState {
public:
/// A sentinel value used for values with names set.
enum : unsigned { NameSentinel = ~0U };
SSANameState(Operation *op,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces);
/// Print the SSA identifier for the given value to 'stream'. If
/// 'printResultNo' is true, it also presents the result number ('#' number)
/// of this value.
void printValueID(Value value, bool printResultNo, raw_ostream &stream) const;
/// Return the result indices for each of the result groups registered by this
/// operation, or empty if none exist.
ArrayRef<int> getOpResultGroups(Operation *op);
/// Get the ID for the given block.
unsigned getBlockID(Block *block);
/// Renumber the arguments for the specified region to the same names as the
/// SSA values in namesToUse. See OperationPrinter::shadowRegionArgs for
/// details.
void shadowRegionArgs(Region &region, ValueRange namesToUse);
private:
/// Number the SSA values within the given IR unit.
void numberValuesInRegion(
Region &region,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces);
void numberValuesInBlock(
Block &block,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces);
void numberValuesInOp(
Operation &op,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces);
/// Given a result of an operation 'result', find the result group head
/// 'lookupValue' and the result of 'result' within that group in
/// 'lookupResultNo'. 'lookupResultNo' is only filled in if the result group
/// has more than 1 result.
void getResultIDAndNumber(OpResult result, Value &lookupValue,
Optional<int> &lookupResultNo) const;
/// Set a special value name for the given value.
void setValueName(Value value, StringRef name);
/// Uniques the given value name within the printer. If the given name
/// conflicts, it is automatically renamed.
StringRef uniqueValueName(StringRef name);
/// This is the value ID for each SSA value. If this returns NameSentinel,
/// then the valueID has an entry in valueNames.
DenseMap<Value, unsigned> valueIDs;
DenseMap<Value, StringRef> valueNames;
/// This is a map of operations that contain multiple named result groups,
/// i.e. there may be multiple names for the results of the operation. The
/// value of this map are the result numbers that start a result group.
DenseMap<Operation *, SmallVector<int, 1>> opResultGroups;
/// This is the block ID for each block in the current.
DenseMap<Block *, unsigned> blockIDs;
/// This keeps track of all of the non-numeric names that are in flight,
/// allowing us to check for duplicates.
/// Note: the value of the map is unused.
llvm::ScopedHashTable<StringRef, char> usedNames;
llvm::BumpPtrAllocator usedNameAllocator;
/// This is the next value ID to assign in numbering.
unsigned nextValueID = 0;
/// This is the next ID to assign to a region entry block argument.
unsigned nextArgumentID = 0;
/// This is the next ID to assign when a name conflict is detected.
unsigned nextConflictID = 0;
};
} // end anonymous namespace
SSANameState::SSANameState(
Operation *op,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces) {
llvm::ScopedHashTable<StringRef, char>::ScopeTy usedNamesScope(usedNames);
numberValuesInOp(*op, interfaces);
for (auto &region : op->getRegions())
numberValuesInRegion(region, interfaces);
}
void SSANameState::printValueID(Value value, bool printResultNo,
raw_ostream &stream) const {
if (!value) {
stream << "<<NULL>>";
return;
}
Optional<int> resultNo;
auto lookupValue = value;
// If this is an operation result, collect the head lookup value of the result
// group and the result number of 'result' within that group.
if (OpResult result = value.dyn_cast<OpResult>())
getResultIDAndNumber(result, lookupValue, resultNo);
auto it = valueIDs.find(lookupValue);
if (it == valueIDs.end()) {
stream << "<<UNKNOWN SSA VALUE>>";
return;
}
stream << '%';
if (it->second != NameSentinel) {
stream << it->second;
} else {
auto nameIt = valueNames.find(lookupValue);
assert(nameIt != valueNames.end() && "Didn't have a name entry?");
stream << nameIt->second;
}
if (resultNo.hasValue() && printResultNo)
stream << '#' << resultNo;
}
ArrayRef<int> SSANameState::getOpResultGroups(Operation *op) {
auto it = opResultGroups.find(op);
return it == opResultGroups.end() ? ArrayRef<int>() : it->second;
}
unsigned SSANameState::getBlockID(Block *block) {
auto it = blockIDs.find(block);
return it != blockIDs.end() ? it->second : NameSentinel;
}
void SSANameState::shadowRegionArgs(Region &region, ValueRange namesToUse) {
assert(!region.empty() && "cannot shadow arguments of an empty region");
assert(region.getNumArguments() == namesToUse.size() &&
"incorrect number of names passed in");
assert(region.getParentOp()->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
"only KnownIsolatedFromAbove ops can shadow names");
SmallVector<char, 16> nameStr;
for (unsigned i = 0, e = namesToUse.size(); i != e; ++i) {
auto nameToUse = namesToUse[i];
if (nameToUse == nullptr)
continue;
auto nameToReplace = region.getArgument(i);
nameStr.clear();
llvm::raw_svector_ostream nameStream(nameStr);
printValueID(nameToUse, /*printResultNo=*/true, nameStream);
// Entry block arguments should already have a pretty "arg" name.
assert(valueIDs[nameToReplace] == NameSentinel);
// Use the name without the leading %.
auto name = StringRef(nameStream.str()).drop_front();
// Overwrite the name.
valueNames[nameToReplace] = name.copy(usedNameAllocator);
}
}
void SSANameState::numberValuesInRegion(
Region &region,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces) {
// Save the current value ids to allow for numbering values in sibling regions
// the same.
llvm::SaveAndRestore<unsigned> valueIDSaver(nextValueID);
llvm::SaveAndRestore<unsigned> argumentIDSaver(nextArgumentID);
llvm::SaveAndRestore<unsigned> conflictIDSaver(nextConflictID);
// Push a new used names scope.
llvm::ScopedHashTable<StringRef, char>::ScopeTy usedNamesScope(usedNames);
// Number the values within this region in a breadth-first order.
unsigned nextBlockID = 0;
for (auto &block : region) {
// Each block gets a unique ID, and all of the operations within it get
// numbered as well.
blockIDs[&block] = nextBlockID++;
numberValuesInBlock(block, interfaces);
}
// After that we traverse the nested regions.
// TODO: Rework this loop to not use recursion.
for (auto &block : region) {
for (auto &op : block)
for (auto &nestedRegion : op.getRegions())
numberValuesInRegion(nestedRegion, interfaces);
}
}
void SSANameState::numberValuesInBlock(
Block &block,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces) {
auto setArgNameFn = [&](Value arg, StringRef name) {
assert(!valueIDs.count(arg) && "arg numbered multiple times");
assert(arg.cast<BlockArgument>().getOwner() == &block &&
"arg not defined in 'block'");
setValueName(arg, name);
};
bool isEntryBlock = block.isEntryBlock();
if (isEntryBlock) {
if (auto *op = block.getParentOp()) {
if (auto asmInterface = interfaces.getInterfaceFor(op->getDialect()))
asmInterface->getAsmBlockArgumentNames(&block, setArgNameFn);
}
}
// Number the block arguments. We give entry block arguments a special name
// 'arg'.
SmallString<32> specialNameBuffer(isEntryBlock ? "arg" : "");
llvm::raw_svector_ostream specialName(specialNameBuffer);
for (auto arg : block.getArguments()) {
if (valueIDs.count(arg))
continue;
if (isEntryBlock) {
specialNameBuffer.resize(strlen("arg"));
specialName << nextArgumentID++;
}
setValueName(arg, specialName.str());
}
// Number the operations in this block.
for (auto &op : block)
numberValuesInOp(op, interfaces);
}
void SSANameState::numberValuesInOp(
Operation &op,
DialectInterfaceCollection<OpAsmDialectInterface> &interfaces) {
unsigned numResults = op.getNumResults();
if (numResults == 0)
return;
Value resultBegin = op.getResult(0);
// Function used to set the special result names for the operation.
SmallVector<int, 2> resultGroups(/*Size=*/1, /*Value=*/0);
auto setResultNameFn = [&](Value result, StringRef name) {
assert(!valueIDs.count(result) && "result numbered multiple times");
assert(result.getDefiningOp() == &op && "result not defined by 'op'");
setValueName(result, name);
// Record the result number for groups not anchored at 0.
if (int resultNo = result.cast<OpResult>().getResultNumber())
resultGroups.push_back(resultNo);
};
if (OpAsmOpInterface asmInterface = dyn_cast<OpAsmOpInterface>(&op))
asmInterface.getAsmResultNames(setResultNameFn);
else if (auto *asmInterface = interfaces.getInterfaceFor(op.getDialect()))
asmInterface->getAsmResultNames(&op, setResultNameFn);
// If the first result wasn't numbered, give it a default number.
if (valueIDs.try_emplace(resultBegin, nextValueID).second)
++nextValueID;
// If this operation has multiple result groups, mark it.
if (resultGroups.size() != 1) {
llvm::array_pod_sort(resultGroups.begin(), resultGroups.end());
opResultGroups.try_emplace(&op, std::move(resultGroups));
}
}
void SSANameState::getResultIDAndNumber(OpResult result, Value &lookupValue,
Optional<int> &lookupResultNo) const {
Operation *owner = result.getOwner();
if (owner->getNumResults() == 1)
return;
int resultNo = result.getResultNumber();
// If this operation has multiple result groups, we will need to find the
// one corresponding to this result.
auto resultGroupIt = opResultGroups.find(owner);
if (resultGroupIt == opResultGroups.end()) {
// If not, just use the first result.
lookupResultNo = resultNo;
lookupValue = owner->getResult(0);
return;
}
// Find the correct index using a binary search, as the groups are ordered.
ArrayRef<int> resultGroups = resultGroupIt->second;
auto it = llvm::upper_bound(resultGroups, resultNo);
int groupResultNo = 0, groupSize = 0;
// If there are no smaller elements, the last result group is the lookup.
if (it == resultGroups.end()) {
groupResultNo = resultGroups.back();
groupSize = static_cast<int>(owner->getNumResults()) - resultGroups.back();
} else {
// Otherwise, the previous element is the lookup.
groupResultNo = *std::prev(it);
groupSize = *it - groupResultNo;
}
// We only record the result number for a group of size greater than 1.
if (groupSize != 1)
lookupResultNo = resultNo - groupResultNo;
lookupValue = owner->getResult(groupResultNo);
}
void SSANameState::setValueName(Value value, StringRef name) {
// If the name is empty, the value uses the default numbering.
if (name.empty()) {
valueIDs[value] = nextValueID++;
return;
}
valueIDs[value] = NameSentinel;
valueNames[value] = uniqueValueName(name);
}
StringRef SSANameState::uniqueValueName(StringRef name) {
SmallString<16> tmpBuffer;
name = sanitizeIdentifier(name, tmpBuffer);
// Check to see if this name is already unique.
if (!usedNames.count(name)) {
name = name.copy(usedNameAllocator);
} else {
// Otherwise, we had a conflict - probe until we find a unique name. This
// is guaranteed to terminate (and usually in a single iteration) because it
// generates new names by incrementing nextConflictID.
SmallString<64> probeName(name);
probeName.push_back('_');
while (true) {
probeName += llvm::utostr(nextConflictID++);
if (!usedNames.count(probeName)) {
name = StringRef(probeName).copy(usedNameAllocator);
break;
}
probeName.resize(name.size() + 1);
}
}
usedNames.insert(name, char());
return name;
}
//===----------------------------------------------------------------------===//
// AsmState
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
class AsmStateImpl {
public:
explicit AsmStateImpl(Operation *op, AsmState::LocationMap *locationMap)
: interfaces(op->getContext()), nameState(op, interfaces),
locationMap(locationMap) {}
/// Initialize the alias state to enable the printing of aliases.
void initializeAliases(Operation *op, const OpPrintingFlags &printerFlags) {
aliasState.initialize(op, printerFlags, interfaces);
}
/// Get an instance of the OpAsmDialectInterface for the given dialect, or
/// null if one wasn't registered.
const OpAsmDialectInterface *getOpAsmInterface(Dialect *dialect) {
return interfaces.getInterfaceFor(dialect);
}
/// Get the state used for aliases.
AliasState &getAliasState() { return aliasState; }
/// Get the state used for SSA names.
SSANameState &getSSANameState() { return nameState; }
/// Register the location, line and column, within the buffer that the given
/// operation was printed at.
void registerOperationLocation(Operation *op, unsigned line, unsigned col) {
if (locationMap)
(*locationMap)[op] = std::make_pair(line, col);
}
private:
/// Collection of OpAsm interfaces implemented in the context.
DialectInterfaceCollection<OpAsmDialectInterface> interfaces;
/// The state used for attribute and type aliases.
AliasState aliasState;
/// The state used for SSA value names.
SSANameState nameState;
/// An optional location map to be populated.
AsmState::LocationMap *locationMap;
};
} // end namespace detail
} // end namespace mlir
AsmState::AsmState(Operation *op, LocationMap *locationMap)
: impl(std::make_unique<AsmStateImpl>(op, locationMap)) {}
AsmState::~AsmState() {}
//===----------------------------------------------------------------------===//
// ModulePrinter
//===----------------------------------------------------------------------===//
namespace {
class ModulePrinter {
public:
ModulePrinter(raw_ostream &os, OpPrintingFlags flags = llvm::None,
AsmStateImpl *state = nullptr)
: os(os), printerFlags(flags), state(state) {}
explicit ModulePrinter(ModulePrinter &printer)
: os(printer.os), printerFlags(printer.printerFlags),
state(printer.state) {}
/// Returns the output stream of the printer.
raw_ostream &getStream() { return os; }
template <typename Container, typename UnaryFunctor>
inline void interleaveComma(const Container &c, UnaryFunctor each_fn) const {
llvm::interleaveComma(c, os, each_fn);
}
/// This enum describes the different kinds of elision for the type of an
/// attribute when printing it.
enum class AttrTypeElision {
/// The type must not be elided,
Never,
/// The type may be elided when it matches the default used in the parser
/// (for example i64 is the default for integer attributes).
May,
/// The type must be elided.
Must
};
/// Print the given attribute.
void printAttribute(Attribute attr,
AttrTypeElision typeElision = AttrTypeElision::Never);
void printType(Type type);
/// Print the given location to the stream. If `allowAlias` is true, this
/// allows for the internal location to use an attribute alias.
void printLocation(LocationAttr loc, bool allowAlias = false);
void printAffineMap(AffineMap map);
void
printAffineExpr(AffineExpr expr,
function_ref<void(unsigned, bool)> printValueName = nullptr);
void printAffineConstraint(AffineExpr expr, bool isEq);
void printIntegerSet(IntegerSet set);
protected:
void printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {},
bool withKeyword = false);
void printNamedAttribute(NamedAttribute attr);
void printTrailingLocation(Location loc);
void printLocationInternal(LocationAttr loc, bool pretty = false);
/// Print a dense elements attribute. If 'allowHex' is true, a hex string is
/// used instead of individual elements when the elements attr is large.
void printDenseElementsAttr(DenseElementsAttr attr, bool allowHex);
/// Print a dense string elements attribute.
void printDenseStringElementsAttr(DenseStringElementsAttr attr);
/// Print a dense elements attribute. If 'allowHex' is true, a hex string is
/// used instead of individual elements when the elements attr is large.
void printDenseIntOrFPElementsAttr(DenseIntOrFPElementsAttr attr,
bool allowHex);
void printDialectAttribute(Attribute attr);
void printDialectType(Type type);
/// This enum is used to represent the binding strength of the enclosing
/// context that an AffineExprStorage is being printed in, so we can
/// intelligently produce parens.
enum class BindingStrength {
Weak, // + and -
Strong, // All other binary operators.
};
void printAffineExprInternal(
AffineExpr expr, BindingStrength enclosingTightness,
function_ref<void(unsigned, bool)> printValueName = nullptr);
/// The output stream for the printer.
raw_ostream &os;
/// A set of flags to control the printer's behavior.
OpPrintingFlags printerFlags;
/// An optional printer state for the module.
AsmStateImpl *state;
/// A tracker for the number of new lines emitted during printing.
NewLineCounter newLine;
};
} // end anonymous namespace
void ModulePrinter::printTrailingLocation(Location loc) {
// Check to see if we are printing debug information.
if (!printerFlags.shouldPrintDebugInfo())
return;
os << " ";
printLocation(loc, /*allowAlias=*/true);
}
void ModulePrinter::printLocationInternal(LocationAttr loc, bool pretty) {
TypeSwitch<LocationAttr>(loc)
.Case<OpaqueLoc>([&](OpaqueLoc loc) {
printLocationInternal(loc.getFallbackLocation(), pretty);
})
.Case<UnknownLoc>([&](UnknownLoc loc) {
if (pretty)
os << "[unknown]";
else
os << "unknown";
})
.Case<FileLineColLoc>([&](FileLineColLoc loc) {
if (pretty) {
os << loc.getFilename();
} else {
os << "\"";
printEscapedString(loc.getFilename(), os);
os << "\"";
}
os << ':' << loc.getLine() << ':' << loc.getColumn();
})
.Case<NameLoc>([&](NameLoc loc) {
os << '\"';
printEscapedString(loc.getName(), os);
os << '\"';
// Print the child if it isn't unknown.
auto childLoc = loc.getChildLoc();
if (!childLoc.isa<UnknownLoc>()) {
os << '(';
printLocationInternal(childLoc, pretty);
os << ')';
}
})
.Case<CallSiteLoc>([&](CallSiteLoc loc) {
Location caller = loc.getCaller();
Location callee = loc.getCallee();
if (!pretty)
os << "callsite(";
printLocationInternal(callee, pretty);
if (pretty) {
if (callee.isa<NameLoc>()) {
if (caller.isa<FileLineColLoc>()) {
os << " at ";
} else {
os << newLine << " at ";
}
} else {
os << newLine << " at ";
}
} else {
os << " at ";
}
printLocationInternal(caller, pretty);
if (!pretty)
os << ")";
})
.Case<FusedLoc>([&](FusedLoc loc) {
if (!pretty)
os << "fused";
if (Attribute metadata = loc.getMetadata())
os << '<' << metadata << '>';
os << '[';
interleave(
loc.getLocations(),
[&](Location loc) { printLocationInternal(loc, pretty); },
[&]() { os << ", "; });
os << ']';
});
}
/// Print a floating point value in a way that the parser will be able to
/// round-trip losslessly.
static void printFloatValue(const APFloat &apValue, raw_ostream &os) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
bool isInf = apValue.isInfinity();
bool isNaN = apValue.isNaN();
if (!isInf && !isNaN) {
SmallString<128> strValue;
apValue.toString(strValue, /*FormatPrecision=*/6, /*FormatMaxPadding=*/0,
/*TruncateZero=*/false);
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
assert(((strValue[0] >= '0' && strValue[0] <= '9') ||
((strValue[0] == '-' || strValue[0] == '+') &&
(strValue[1] >= '0' && strValue[1] <= '9'))) &&
"[-+]?[0-9] regex does not match!");
// Parse back the stringized version and check that the value is equal
// (i.e., there is no precision loss).
if (APFloat(apValue.getSemantics(), strValue).bitwiseIsEqual(apValue)) {
os << strValue;
return;
}
// If it is not, use the default format of APFloat instead of the
// exponential notation.
strValue.clear();
apValue.toString(strValue);
// Make sure that we can parse the default form as a float.
if (StringRef(strValue).contains('.')) {
os << strValue;
return;
}
}
// Print special values in hexadecimal format. The sign bit should be included
// in the literal.
SmallVector<char, 16> str;
APInt apInt = apValue.bitcastToAPInt();
apInt.toString(str, /*Radix=*/16, /*Signed=*/false,
/*formatAsCLiteral=*/true);
os << str;
}
void ModulePrinter::printLocation(LocationAttr loc, bool allowAlias) {
if (printerFlags.shouldPrintDebugInfoPrettyForm())
return printLocationInternal(loc, /*pretty=*/true);
os << "loc(";
if (!allowAlias || !state || failed(state->getAliasState().getAlias(loc, os)))
printLocationInternal(loc);
os << ')';
}
/// Returns true if the given dialect symbol data is simple enough to print in
/// the pretty form, i.e. without the enclosing "".
static bool isDialectSymbolSimpleEnoughForPrettyForm(StringRef symName) {
// The name must start with an identifier.
if (symName.empty() || !isalpha(symName.front()))
return false;
// Ignore all the characters that are valid in an identifier in the symbol
// name.
symName = symName.drop_while(
[](char c) { return llvm::isAlnum(c) || c == '.' || c == '_'; });
if (symName.empty())
return true;
// If we got to an unexpected character, then it must be a <>. Check those
// recursively.
if (symName.front() != '<' || symName.back() != '>')
return false;
SmallVector<char, 8> nestedPunctuation;
do {
// If we ran out of characters, then we had a punctuation mismatch.
if (symName.empty())
return false;
auto c = symName.front();
symName = symName.drop_front();
switch (c) {
// We never allow null characters. This is an EOF indicator for the lexer
// which we could handle, but isn't important for any known dialect.
case '\0':
return false;
case '<':
case '[':
case '(':
case '{':
nestedPunctuation.push_back(c);
continue;
case '-':
// Treat `->` as a special token.
if (!symName.empty() && symName.front() == '>') {
symName = symName.drop_front();
continue;
}
break;
// Reject types with mismatched brackets.
case '>':
if (nestedPunctuation.pop_back_val() != '<')
return false;
break;
case ']':
if (nestedPunctuation.pop_back_val() != '[')
return false;
break;
case ')':
if (nestedPunctuation.pop_back_val() != '(')
return false;
break;
case '}':
if (nestedPunctuation.pop_back_val() != '{')
return false;
break;
default:
continue;
}
// We're done when the punctuation is fully matched.
} while (!nestedPunctuation.empty());
// If there were extra characters, then we failed.
return symName.empty();
}
/// Print the given dialect symbol to the stream.
static void printDialectSymbol(raw_ostream &os, StringRef symPrefix,
StringRef dialectName, StringRef symString) {
os << symPrefix << dialectName;
// If this symbol name is simple enough, print it directly in pretty form,
// otherwise, we print it as an escaped string.
if (isDialectSymbolSimpleEnoughForPrettyForm(symString)) {
os << '.' << symString;
return;
}
// TODO: escape the symbol name, it could contain " characters.
os << "<\"" << symString << "\">";
}
/// Returns true if the given string can be represented as a bare identifier.
static bool isBareIdentifier(StringRef name) {
assert(!name.empty() && "invalid name");
// By making this unsigned, the value passed in to isalnum will always be
// in the range 0-255. This is important when building with MSVC because
// its implementation will assert. This situation can arise when dealing
// with UTF-8 multibyte characters.
unsigned char firstChar = static_cast<unsigned char>(name[0]);
if (!isalpha(firstChar) && firstChar != '_')
return false;
return llvm::all_of(name.drop_front(), [](unsigned char c) {
return isalnum(c) || c == '_' || c == '$' || c == '.';
});
}
/// Print the given string as a symbol reference. A symbol reference is
/// represented as a string prefixed with '@'. The reference is surrounded with
/// ""'s and escaped if it has any special or non-printable characters in it.
static void printSymbolReference(StringRef symbolRef, raw_ostream &os) {
assert(!symbolRef.empty() && "expected valid symbol reference");
// If the symbol can be represented as a bare identifier, write it directly.
if (isBareIdentifier(symbolRef)) {
os << '@' << symbolRef;
return;
}
// Otherwise, output the reference wrapped in quotes with proper escaping.
os << "@\"";
printEscapedString(symbolRef, os);
os << '"';
}
// Print out a valid ElementsAttr that is succinct and can represent any
// potential shape/type, for use when eliding a large ElementsAttr.
//
// We choose to use an opaque ElementsAttr literal with conspicuous content to
// hopefully alert readers to the fact that this has been elided.
//
// Unfortunately, neither of the strings of an opaque ElementsAttr literal will
// accept the string "elided". The first string must be a registered dialect
// name and the latter must be a hex constant.
static void printElidedElementsAttr(raw_ostream &os) {
os << R"(opaque<"_", "0xDEADBEEF">)";
}
void ModulePrinter::printAttribute(Attribute attr,
AttrTypeElision typeElision) {
if (!attr) {
os << "<<NULL ATTRIBUTE>>";
return;
}
// Try to print an alias for this attribute.
if (state && succeeded(state->getAliasState().getAlias(attr, os)))
return;
auto attrType = attr.getType();
if (auto opaqueAttr = attr.dyn_cast<OpaqueAttr>()) {
printDialectSymbol(os, "#", opaqueAttr.getDialectNamespace(),
opaqueAttr.getAttrData());
} else if (attr.isa<UnitAttr>()) {
os << "unit";
return;
} else if (auto dictAttr = attr.dyn_cast<DictionaryAttr>()) {
os << '{';
interleaveComma(dictAttr.getValue(),
[&](NamedAttribute attr) { printNamedAttribute(attr); });
os << '}';
} else if (auto intAttr = attr.dyn_cast<IntegerAttr>()) {
if (attrType.isSignlessInteger(1)) {
os << (intAttr.getValue().getBoolValue() ? "true" : "false");
// Boolean integer attributes always elides the type.
return;
}
// Only print attributes as unsigned if they are explicitly unsigned or are
// signless 1-bit values. Indexes, signed values, and multi-bit signless
// values print as signed.
bool isUnsigned =
attrType.isUnsignedInteger() || attrType.isSignlessInteger(1);
intAttr.getValue().print(os, !isUnsigned);
// IntegerAttr elides the type if I64.
if (typeElision == AttrTypeElision::May && attrType.isSignlessInteger(64))
return;
} else if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
printFloatValue(floatAttr.getValue(), os);
// FloatAttr elides the type if F64.
if (typeElision == AttrTypeElision::May && attrType.isF64())
return;
} else if (auto strAttr = attr.dyn_cast<StringAttr>()) {
os << '"';
printEscapedString(strAttr.getValue(), os);
os << '"';
} else if (auto arrayAttr = attr.dyn_cast<ArrayAttr>()) {
os << '[';
interleaveComma(arrayAttr.getValue(), [&](Attribute attr) {
printAttribute(attr, AttrTypeElision::May);
});
os << ']';
} else if (auto affineMapAttr = attr.dyn_cast<AffineMapAttr>()) {
os << "affine_map<";
affineMapAttr.getValue().print(os);
os << '>';
// AffineMap always elides the type.
return;
} else if (auto integerSetAttr = attr.dyn_cast<IntegerSetAttr>()) {
os << "affine_set<";
integerSetAttr.getValue().print(os);
os << '>';
// IntegerSet always elides the type.
return;
} else if (auto typeAttr = attr.dyn_cast<TypeAttr>()) {
printType(typeAttr.getValue());
} else if (auto refAttr = attr.dyn_cast<SymbolRefAttr>()) {
printSymbolReference(refAttr.getRootReference(), os);
for (FlatSymbolRefAttr nestedRef : refAttr.getNestedReferences()) {
os << "::";
printSymbolReference(nestedRef.getValue(), os);
}
} else if (auto opaqueAttr = attr.dyn_cast<OpaqueElementsAttr>()) {
if (printerFlags.shouldElideElementsAttr(opaqueAttr)) {
printElidedElementsAttr(os);
} else {
os << "opaque<\"" << opaqueAttr.getDialect() << "\", \"0x"
<< llvm::toHex(opaqueAttr.getValue()) << "\">";
}
} else if (auto intOrFpEltAttr = attr.dyn_cast<DenseIntOrFPElementsAttr>()) {
if (printerFlags.shouldElideElementsAttr(intOrFpEltAttr)) {
printElidedElementsAttr(os);
} else {
os << "dense<";
printDenseIntOrFPElementsAttr(intOrFpEltAttr, /*allowHex=*/true);
os << '>';
}
} else if (auto strEltAttr = attr.dyn_cast<DenseStringElementsAttr>()) {
if (printerFlags.shouldElideElementsAttr(strEltAttr)) {
printElidedElementsAttr(os);
} else {
os << "dense<";
printDenseStringElementsAttr(strEltAttr);
os << '>';
}
} else if (auto sparseEltAttr = attr.dyn_cast<SparseElementsAttr>()) {
if (printerFlags.shouldElideElementsAttr(sparseEltAttr.getIndices()) ||
printerFlags.shouldElideElementsAttr(sparseEltAttr.getValues())) {
printElidedElementsAttr(os);
} else {
os << "sparse<";
DenseIntElementsAttr indices = sparseEltAttr.getIndices();
if (indices.getNumElements() != 0) {
printDenseIntOrFPElementsAttr(indices, /*allowHex=*/false);
os << ", ";
printDenseElementsAttr(sparseEltAttr.getValues(), /*allowHex=*/true);
}
os << '>';
}
} else if (auto locAttr = attr.dyn_cast<LocationAttr>()) {
printLocation(locAttr);
} else {
return printDialectAttribute(attr);
}
// Don't print the type if we must elide it, or if it is a None type.
if (typeElision != AttrTypeElision::Must && !attrType.isa<NoneType>()) {
os << " : ";
printType(attrType);
}
}
/// Print the integer element of a DenseElementsAttr.
static void printDenseIntElement(const APInt &value, raw_ostream &os,
bool isSigned) {
if (value.getBitWidth() == 1)
os << (value.getBoolValue() ? "true" : "false");
else
value.print(os, isSigned);
}
static void
printDenseElementsAttrImpl(bool isSplat, ShapedType type, raw_ostream &os,
function_ref<void(unsigned)> printEltFn) {
// Special case for 0-d and splat tensors.
if (isSplat)
return printEltFn(0);
// Special case for degenerate tensors.
auto numElements = type.getNumElements();
if (numElements == 0)
return;
// We use a mixed-radix counter to iterate through the shape. When we bump a
// non-least-significant digit, we emit a close bracket. When we next emit an
// element we re-open all closed brackets.
// The mixed-radix counter, with radices in 'shape'.
int64_t rank = type.getRank();
SmallVector<unsigned, 4> counter(rank, 0);
// The number of brackets that have been opened and not closed.
unsigned openBrackets = 0;
auto shape = type.getShape();
auto bumpCounter = [&] {
// Bump the least significant digit.
++counter[rank - 1];
// Iterate backwards bubbling back the increment.
for (unsigned i = rank - 1; i > 0; --i)
if (counter[i] >= shape[i]) {
// Index 'i' is rolled over. Bump (i-1) and close a bracket.
counter[i] = 0;
++counter[i - 1];
--openBrackets;
os << ']';
}
};
for (unsigned idx = 0, e = numElements; idx != e; ++idx) {
if (idx != 0)
os << ", ";
while (openBrackets++ < rank)
os << '[';
openBrackets = rank;
printEltFn(idx);
bumpCounter();
}
while (openBrackets-- > 0)
os << ']';
}
void ModulePrinter::printDenseElementsAttr(DenseElementsAttr attr,
bool allowHex) {
if (auto stringAttr = attr.dyn_cast<DenseStringElementsAttr>())
return printDenseStringElementsAttr(stringAttr);
printDenseIntOrFPElementsAttr(attr.cast<DenseIntOrFPElementsAttr>(),
allowHex);
}
void ModulePrinter::printDenseIntOrFPElementsAttr(DenseIntOrFPElementsAttr attr,
bool allowHex) {
auto type = attr.getType();
auto elementType = type.getElementType();
// Check to see if we should format this attribute as a hex string.
auto numElements = type.getNumElements();
if (!attr.isSplat() && allowHex &&
shouldPrintElementsAttrWithHex(numElements)) {
ArrayRef<char> rawData = attr.getRawData();
if (llvm::support::endian::system_endianness() ==
llvm::support::endianness::big) {
// Convert endianess in big-endian(BE) machines. `rawData` is BE in BE
// machines. It is converted here to print in LE format.
SmallVector<char, 64> outDataVec(rawData.size());
MutableArrayRef<char> convRawData(outDataVec);
DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
rawData, convRawData, type);
os << '"' << "0x"
<< llvm::toHex(StringRef(convRawData.data(), convRawData.size()))
<< "\"";
} else {
os << '"' << "0x"
<< llvm::toHex(StringRef(rawData.data(), rawData.size())) << "\"";
}
return;
}
if (ComplexType complexTy = elementType.dyn_cast<ComplexType>()) {
Type complexElementType = complexTy.getElementType();
// Note: The if and else below had a common lambda function which invoked
// printDenseElementsAttrImpl. This lambda was hitting a bug in gcc 9.1,9.2
// and hence was replaced.
if (complexElementType.isa<IntegerType>()) {
bool isSigned = !complexElementType.isUnsignedInteger();
printDenseElementsAttrImpl(attr.isSplat(), type, os, [&](unsigned index) {
auto complexValue = *(attr.getComplexIntValues().begin() + index);
os << "(";
printDenseIntElement(complexValue.real(), os, isSigned);
os << ",";
printDenseIntElement(complexValue.imag(), os, isSigned);
os << ")";
});
} else {
printDenseElementsAttrImpl(attr.isSplat(), type, os, [&](unsigned index) {
auto complexValue = *(attr.getComplexFloatValues().begin() + index);
os << "(";
printFloatValue(complexValue.real(), os);
os << ",";
printFloatValue(complexValue.imag(), os);
os << ")";
});
}
} else if (elementType.isIntOrIndex()) {
bool isSigned = !elementType.isUnsignedInteger();
auto intValues = attr.getIntValues();
printDenseElementsAttrImpl(attr.isSplat(), type, os, [&](unsigned index) {
printDenseIntElement(*(intValues.begin() + index), os, isSigned);
});
} else {
assert(elementType.isa<FloatType>() && "unexpected element type");
auto floatValues = attr.getFloatValues();
printDenseElementsAttrImpl(attr.isSplat(), type, os, [&](unsigned index) {
printFloatValue(*(floatValues.begin() + index), os);
});
}
}
void ModulePrinter::printDenseStringElementsAttr(DenseStringElementsAttr attr) {
ArrayRef<StringRef> data = attr.getRawStringData();
auto printFn = [&](unsigned index) {
os << "\"";
printEscapedString(data[index], os);
os << "\"";
};
printDenseElementsAttrImpl(attr.isSplat(), attr.getType(), os, printFn);
}
void ModulePrinter::printType(Type type) {
if (!type) {
os << "<<NULL TYPE>>";
return;
}
// Try to print an alias for this type.
if (state && succeeded(state->getAliasState().getAlias(type, os)))
return;
TypeSwitch<Type>(type)
.Case<OpaqueType>([&](OpaqueType opaqueTy) {
printDialectSymbol(os, "!", opaqueTy.getDialectNamespace(),
opaqueTy.getTypeData());
})
.Case<IndexType>([&](Type) { os << "index"; })
.Case<BFloat16Type>([&](Type) { os << "bf16"; })
.Case<Float16Type>([&](Type) { os << "f16"; })
.Case<Float32Type>([&](Type) { os << "f32"; })
.Case<Float64Type>([&](Type) { os << "f64"; })
.Case<Float80Type>([&](Type) { os << "f80"; })
.Case<Float128Type>([&](Type) { os << "f128"; })
.Case<IntegerType>([&](IntegerType integerTy) {
if (integerTy.isSigned())
os << 's';
else if (integerTy.isUnsigned())
os << 'u';
os << 'i' << integerTy.getWidth();
})
.Case<FunctionType>([&](FunctionType funcTy) {
os << '(';
interleaveComma(funcTy.getInputs(), [&](Type ty) { printType(ty); });
os << ") -> ";
ArrayRef<Type> results = funcTy.getResults();
if (results.size() == 1 && !results[0].isa<FunctionType>()) {
os << results[0];
} else {
os << '(';
interleaveComma(results, [&](Type ty) { printType(ty); });
os << ')';
}
})
.Case<VectorType>([&](VectorType vectorTy) {
os << "vector<";
for (int64_t dim : vectorTy.getShape())
os << dim << 'x';
os << vectorTy.getElementType() << '>';
})
.Case<RankedTensorType>([&](RankedTensorType tensorTy) {
os << "tensor<";
for (int64_t dim : tensorTy.getShape()) {
if (ShapedType::isDynamic(dim))
os << '?';
else
os << dim;
os << 'x';
}
os << tensorTy.getElementType() << '>';
})
.Case<UnrankedTensorType>([&](UnrankedTensorType tensorTy) {
os << "tensor<*x";
printType(tensorTy.getElementType());
os << '>';
})
.Case<MemRefType>([&](MemRefType memrefTy) {
os << "memref<";
for (int64_t dim : memrefTy.getShape()) {
if (ShapedType::isDynamic(dim))
os << '?';
else
os << dim;
os << 'x';
}
printType(memrefTy.getElementType());
for (auto map : memrefTy.getAffineMaps()) {
os << ", ";
printAttribute(AffineMapAttr::get(map));
}
// Only print the memory space if it is the non-default one.
if (memrefTy.getMemorySpace()) {
os << ", ";
printAttribute(memrefTy.getMemorySpace(), AttrTypeElision::May);
}
os << '>';
})
.Case<UnrankedMemRefType>([&](UnrankedMemRefType memrefTy) {
os << "memref<*x";
printType(memrefTy.getElementType());
// Only print the memory space if it is the non-default one.
if (memrefTy.getMemorySpace()) {
os << ", ";
printAttribute(memrefTy.getMemorySpace(), AttrTypeElision::May);
}
os << '>';
})
.Case<ComplexType>([&](ComplexType complexTy) {
os << "complex<";
printType(complexTy.getElementType());
os << '>';
})
.Case<TupleType>([&](TupleType tupleTy) {
os << "tuple<";
interleaveComma(tupleTy.getTypes(),
[&](Type type) { printType(type); });
os << '>';
})
.Case<NoneType>([&](Type) { os << "none"; })
.Default([&](Type type) { return printDialectType(type); });
}
void ModulePrinter::printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs,
bool withKeyword) {
// If there are no attributes, then there is nothing to be done.
if (attrs.empty())
return;
// Functor used to print a filtered attribute list.
auto printFilteredAttributesFn = [&](auto filteredAttrs) {
// Print the 'attributes' keyword if necessary.
if (withKeyword)
os << " attributes";
// Otherwise, print them all out in braces.
os << " {";
interleaveComma(filteredAttrs,
[&](NamedAttribute attr) { printNamedAttribute(attr); });
os << '}';
};
// If no attributes are elided, we can directly print with no filtering.
if (elidedAttrs.empty())
return printFilteredAttributesFn(attrs);
// Otherwise, filter out any attributes that shouldn't be included.
llvm::SmallDenseSet<StringRef> elidedAttrsSet(elidedAttrs.begin(),
elidedAttrs.end());
auto filteredAttrs = llvm::make_filter_range(attrs, [&](NamedAttribute attr) {
return !elidedAttrsSet.contains(attr.first.strref());
});
if (!filteredAttrs.empty())
printFilteredAttributesFn(filteredAttrs);
}
void ModulePrinter::printNamedAttribute(NamedAttribute attr) {
if (isBareIdentifier(attr.first)) {
os << attr.first;
} else {
os << '"';
printEscapedString(attr.first.strref(), os);
os << '"';
}
// Pretty printing elides the attribute value for unit attributes.
if (attr.second.isa<UnitAttr>())
return;
os << " = ";
printAttribute(attr.second);
}
//===----------------------------------------------------------------------===//
// CustomDialectAsmPrinter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides the main specialization of the DialectAsmPrinter that is
/// used to provide support for print attributes and types. This hooks allows
/// for dialects to hook into the main ModulePrinter.
struct CustomDialectAsmPrinter : public DialectAsmPrinter {
public:
CustomDialectAsmPrinter(ModulePrinter &printer) : printer(printer) {}
~CustomDialectAsmPrinter() override {}
raw_ostream &getStream() const override { return printer.getStream(); }
/// Print the given attribute to the stream.
void printAttribute(Attribute attr) override { printer.printAttribute(attr); }
/// Print the given floating point value in a stablized form.
void printFloat(const APFloat &value) override {
printFloatValue(value, getStream());
}
/// Print the given type to the stream.
void printType(Type type) override { printer.printType(type); }
/// The main module printer.
ModulePrinter &printer;
};
} // end anonymous namespace
void ModulePrinter::printDialectAttribute(Attribute attr) {
auto &dialect = attr.getDialect();
// Ask the dialect to serialize the attribute to a string.
std::string attrName;
{
llvm::raw_string_ostream attrNameStr(attrName);
ModulePrinter subPrinter(attrNameStr, printerFlags, state);
CustomDialectAsmPrinter printer(subPrinter);
dialect.printAttribute(attr, printer);
}
printDialectSymbol(os, "#", dialect.getNamespace(), attrName);
}
void ModulePrinter::printDialectType(Type type) {
auto &dialect = type.getDialect();
// Ask the dialect to serialize the type to a string.
std::string typeName;
{
llvm::raw_string_ostream typeNameStr(typeName);
ModulePrinter subPrinter(typeNameStr, printerFlags, state);
CustomDialectAsmPrinter printer(subPrinter);
dialect.printType(type, printer);
}
printDialectSymbol(os, "!", dialect.getNamespace(), typeName);
}
//===----------------------------------------------------------------------===//
// Affine expressions and maps
//===----------------------------------------------------------------------===//
void ModulePrinter::printAffineExpr(
AffineExpr expr, function_ref<void(unsigned, bool)> printValueName) {
printAffineExprInternal(expr, BindingStrength::Weak, printValueName);
}
void ModulePrinter::printAffineExprInternal(
AffineExpr expr, BindingStrength enclosingTightness,
function_ref<void(unsigned, bool)> printValueName) {
const char *binopSpelling = nullptr;
switch (expr.getKind()) {
case AffineExprKind::SymbolId: {
unsigned pos = expr.cast<AffineSymbolExpr>().getPosition();
if (printValueName)
printValueName(pos, /*isSymbol=*/true);
else
os << 's' << pos;
return;
}
case AffineExprKind::DimId: {
unsigned pos = expr.cast<AffineDimExpr>().getPosition();
if (printValueName)
printValueName(pos, /*isSymbol=*/false);
else
os << 'd' << pos;
return;
}
case AffineExprKind::Constant:
os << expr.cast<AffineConstantExpr>().getValue();
return;
case AffineExprKind::Add:
binopSpelling = " + ";
break;
case AffineExprKind::Mul:
binopSpelling = " * ";
break;
case AffineExprKind::FloorDiv:
binopSpelling = " floordiv ";
break;
case AffineExprKind::CeilDiv:
binopSpelling = " ceildiv ";
break;
case AffineExprKind::Mod:
binopSpelling = " mod ";
break;
}
auto binOp = expr.cast<AffineBinaryOpExpr>();
AffineExpr lhsExpr = binOp.getLHS();
AffineExpr rhsExpr = binOp.getRHS();
// Handle tightly binding binary operators.
if (binOp.getKind() != AffineExprKind::Add) {
if (enclosingTightness == BindingStrength::Strong)
os << '(';
// Pretty print multiplication with -1.
auto rhsConst = rhsExpr.dyn_cast<AffineConstantExpr>();
if (rhsConst && binOp.getKind() == AffineExprKind::Mul &&
rhsConst.getValue() == -1) {
os << "-";
printAffineExprInternal(lhsExpr, BindingStrength::Strong, printValueName);
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
printAffineExprInternal(lhsExpr, BindingStrength::Strong, printValueName);
os << binopSpelling;
printAffineExprInternal(rhsExpr, BindingStrength::Strong, printValueName);
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
// Print out special "pretty" forms for add.
if (enclosingTightness == BindingStrength::Strong)
os << '(';
// Pretty print addition to a product that has a negative operand as a
// subtraction.
if (auto rhs = rhsExpr.dyn_cast<AffineBinaryOpExpr>()) {
if (rhs.getKind() == AffineExprKind::Mul) {
AffineExpr rrhsExpr = rhs.getRHS();
if (auto rrhs = rrhsExpr.dyn_cast<AffineConstantExpr>()) {
if (rrhs.getValue() == -1) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak,
printValueName);
os << " - ";
if (rhs.getLHS().getKind() == AffineExprKind::Add) {
printAffineExprInternal(rhs.getLHS(), BindingStrength::Strong,
printValueName);
} else {
printAffineExprInternal(rhs.getLHS(), BindingStrength::Weak,
printValueName);
}
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
if (rrhs.getValue() < -1) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak,
printValueName);
os << " - ";
printAffineExprInternal(rhs.getLHS(), BindingStrength::Strong,
printValueName);
os << " * " << -rrhs.getValue();
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
}
}
}
// Pretty print addition to a negative number as a subtraction.
if (auto rhsConst = rhsExpr.dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() < 0) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak, printValueName);
os << " - " << -rhsConst.getValue();
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
}
printAffineExprInternal(lhsExpr, BindingStrength::Weak, printValueName);
os << " + ";
printAffineExprInternal(rhsExpr, BindingStrength::Weak, printValueName);
if (enclosingTightness == BindingStrength::Strong)
os << ')';
}
void ModulePrinter::printAffineConstraint(AffineExpr expr, bool isEq) {
printAffineExprInternal(expr, BindingStrength::Weak);
isEq ? os << " == 0" : os << " >= 0";
}
void ModulePrinter::printAffineMap(AffineMap map) {
// Dimension identifiers.
os << '(';
for (int i = 0; i < (int)map.getNumDims() - 1; ++i)
os << 'd' << i << ", ";
if (map.getNumDims() >= 1)
os << 'd' << map.getNumDims() - 1;
os << ')';
// Symbolic identifiers.
if (map.getNumSymbols() != 0) {
os << '[';
for (unsigned i = 0; i < map.getNumSymbols() - 1; ++i)
os << 's' << i << ", ";
if (map.getNumSymbols() >= 1)
os << 's' << map.getNumSymbols() - 1;
os << ']';
}
// Result affine expressions.
os << " -> (";
interleaveComma(map.getResults(),
[&](AffineExpr expr) { printAffineExpr(expr); });
os << ')';
}
void ModulePrinter::printIntegerSet(IntegerSet set) {
// Dimension identifiers.
os << '(';
for (unsigned i = 1; i < set.getNumDims(); ++i)
os << 'd' << i - 1 << ", ";
if (set.getNumDims() >= 1)
os << 'd' << set.getNumDims() - 1;
os << ')';
// Symbolic identifiers.
if (set.getNumSymbols() != 0) {
os << '[';
for (unsigned i = 0; i < set.getNumSymbols() - 1; ++i)
os << 's' << i << ", ";
if (set.getNumSymbols() >= 1)
os << 's' << set.getNumSymbols() - 1;
os << ']';
}
// Print constraints.
os << " : (";
int numConstraints = set.getNumConstraints();
for (int i = 1; i < numConstraints; ++i) {
printAffineConstraint(set.getConstraint(i - 1), set.isEq(i - 1));
os << ", ";
}
if (numConstraints >= 1)
printAffineConstraint(set.getConstraint(numConstraints - 1),
set.isEq(numConstraints - 1));
os << ')';
}
//===----------------------------------------------------------------------===//
// OperationPrinter
//===----------------------------------------------------------------------===//
namespace {
/// This class contains the logic for printing operations, regions, and blocks.
class OperationPrinter : public ModulePrinter, private OpAsmPrinter {
public:
explicit OperationPrinter(raw_ostream &os, OpPrintingFlags flags,
AsmStateImpl &state)
: ModulePrinter(os, flags, &state) {}
/// Print the given top-level operation.
void printTopLevelOperation(Operation *op);
/// Print the given operation with its indent and location.
void print(Operation *op);
/// Print the bare location, not including indentation/location/etc.
void printOperation(Operation *op);
/// Print the given operation in the generic form.
void printGenericOp(Operation *op) override;
/// Print the name of the given block.
void printBlockName(Block *block);
/// Print the given block. If 'printBlockArgs' is false, the arguments of the
/// block are not printed. If 'printBlockTerminator' is false, the terminator
/// operation of the block is not printed.
void print(Block *block, bool printBlockArgs = true,
bool printBlockTerminator = true);
/// Print the ID of the given value, optionally with its result number.
void printValueID(Value value, bool printResultNo = true,
raw_ostream *streamOverride = nullptr) const;
//===--------------------------------------------------------------------===//
// OpAsmPrinter methods
//===--------------------------------------------------------------------===//
/// Return the current stream of the printer.
raw_ostream &getStream() const override { return os; }
/// Print a newline and indent the printer to the start of the current
/// operation.
void printNewline() override {
os << newLine;
os.indent(currentIndent);
}
/// Print the given type.
void printType(Type type) override { ModulePrinter::printType(type); }
/// Print the given attribute.
void printAttribute(Attribute attr) override {
ModulePrinter::printAttribute(attr);
}
/// Print the given attribute without its type. The corresponding parser must
/// provide a valid type for the attribute.
void printAttributeWithoutType(Attribute attr) override {
ModulePrinter::printAttribute(attr, AttrTypeElision::Must);
}
/// Print the ID for the given value.
void printOperand(Value value) override { printValueID(value); }
void printOperand(Value value, raw_ostream &os) override {
printValueID(value, /*printResultNo=*/true, &os);
}
/// Print an optional attribute dictionary with a given set of elided values.
void printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {}) override {
ModulePrinter::printOptionalAttrDict(attrs, elidedAttrs);
}
void printOptionalAttrDictWithKeyword(
ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {}) override {
ModulePrinter::printOptionalAttrDict(attrs, elidedAttrs,
/*withKeyword=*/true);
}
/// Print the given successor.
void printSuccessor(Block *successor) override;
/// Print an operation successor with the operands used for the block
/// arguments.
void printSuccessorAndUseList(Block *successor,
ValueRange succOperands) override;
/// Print the given region.
void printRegion(Region &region, bool printEntryBlockArgs,
bool printBlockTerminators) override;
/// Renumber the arguments for the specified region to the same names as the
/// SSA values in namesToUse. This may only be used for IsolatedFromAbove
/// operations. If any entry in namesToUse is null, the corresponding
/// argument name is left alone.
void shadowRegionArgs(Region &region, ValueRange namesToUse) override {
state->getSSANameState().shadowRegionArgs(region, namesToUse);
}
/// Print the given affine map with the symbol and dimension operands printed
/// inline with the map.
void printAffineMapOfSSAIds(AffineMapAttr mapAttr,
ValueRange operands) override;
/// Print the given string as a symbol reference.
void printSymbolName(StringRef symbolRef) override {
::printSymbolReference(symbolRef, os);
}
private:
/// The number of spaces used for indenting nested operations.
const static unsigned indentWidth = 2;
// This is the current indentation level for nested structures.
unsigned currentIndent = 0;
};
} // end anonymous namespace
void OperationPrinter::printTopLevelOperation(Operation *op) {
// Output the aliases at the top level that can't be deferred.
state->getAliasState().printNonDeferredAliases(os, newLine);
// Print the module.
print(op);
os << newLine;
// Output the aliases at the top level that can be deferred.
state->getAliasState().printDeferredAliases(os, newLine);
}
void OperationPrinter::print(Operation *op) {
// Track the location of this operation.
state->registerOperationLocation(op, newLine.curLine, currentIndent);
os.indent(currentIndent);
printOperation(op);
printTrailingLocation(op->getLoc());
}
void OperationPrinter::printOperation(Operation *op) {
if (size_t numResults = op->getNumResults()) {
auto printResultGroup = [&](size_t resultNo, size_t resultCount) {
printValueID(op->getResult(resultNo), /*printResultNo=*/false);
if (resultCount > 1)
os << ':' << resultCount;
};
// Check to see if this operation has multiple result groups.
ArrayRef<int> resultGroups = state->getSSANameState().getOpResultGroups(op);
if (!resultGroups.empty()) {
// Interleave the groups excluding the last one, this one will be handled
// separately.
interleaveComma(llvm::seq<int>(0, resultGroups.size() - 1), [&](int i) {
printResultGroup(resultGroups[i],
resultGroups[i + 1] - resultGroups[i]);
});
os << ", ";
printResultGroup(resultGroups.back(), numResults - resultGroups.back());
} else {
printResultGroup(/*resultNo=*/0, /*resultCount=*/numResults);
}
os << " = ";
}
// If requested, always print the generic form.
if (!printerFlags.shouldPrintGenericOpForm()) {
// Check to see if this is a known operation. If so, use the registered
// custom printer hook.
if (auto *opInfo = op->getAbstractOperation()) {
opInfo->printAssembly(op, *this);
return;
}
}
// Otherwise print with the generic assembly form.
printGenericOp(op);
}
void OperationPrinter::printGenericOp(Operation *op) {
os << '"';
printEscapedString(op->getName().getStringRef(), os);
os << "\"(";
interleaveComma(op->getOperands(), [&](Value value) { printValueID(value); });
os << ')';
// For terminators, print the list of successors and their operands.
if (op->getNumSuccessors() != 0) {
os << '[';
interleaveComma(op->getSuccessors(),
[&](Block *successor) { printBlockName(successor); });
os << ']';
}
// Print regions.
if (op->getNumRegions() != 0) {
os << " (";
interleaveComma(op->getRegions(), [&](Region &region) {
printRegion(region, /*printEntryBlockArgs=*/true,
/*printBlockTerminators=*/true);
});
os << ')';
}
auto attrs = op->getAttrs();
printOptionalAttrDict(attrs);
// Print the type signature of the operation.
os << " : ";
printFunctionalType(op);
}
void OperationPrinter::printBlockName(Block *block) {
auto id = state->getSSANameState().getBlockID(block);
if (id != SSANameState::NameSentinel)
os << "^bb" << id;
else
os << "^INVALIDBLOCK";
}
void OperationPrinter::print(Block *block, bool printBlockArgs,
bool printBlockTerminator) {
// Print the block label and argument list if requested.
if (printBlockArgs) {
os.indent(currentIndent);
printBlockName(block);
// Print the argument list if non-empty.
if (!block->args_empty()) {
os << '(';
interleaveComma(block->getArguments(), [&](BlockArgument arg) {
printValueID(arg);
os << ": ";
printType(arg.getType());
});
os << ')';
}
os << ':';
// Print out some context information about the predecessors of this block.
if (!block->getParent()) {
os << " // block is not in a region!";
} else if (block->hasNoPredecessors()) {
os << " // no predecessors";
} else if (auto *pred = block->getSinglePredecessor()) {
os << " // pred: ";
printBlockName(pred);
} else {
// We want to print the predecessors in increasing numeric order, not in
// whatever order the use-list is in, so gather and sort them.
SmallVector<std::pair<unsigned, Block *>, 4> predIDs;
for (auto *pred : block->getPredecessors())
predIDs.push_back({state->getSSANameState().getBlockID(pred), pred});
llvm::array_pod_sort(predIDs.begin(), predIDs.end());
os << " // " << predIDs.size() << " preds: ";
interleaveComma(predIDs, [&](std::pair<unsigned, Block *> pred) {
printBlockName(pred.second);
});
}
os << newLine;
}
currentIndent += indentWidth;
auto range = llvm::make_range(
block->begin(), std::prev(block->end(), printBlockTerminator ? 0 : 1));
for (auto &op : range) {
print(&op);
os << newLine;
}
currentIndent -= indentWidth;
}
void OperationPrinter::printValueID(Value value, bool printResultNo,
raw_ostream *streamOverride) const {
state->getSSANameState().printValueID(value, printResultNo,
streamOverride ? *streamOverride : os);
}
void OperationPrinter::printSuccessor(Block *successor) {
printBlockName(successor);
}
void OperationPrinter::printSuccessorAndUseList(Block *successor,
ValueRange succOperands) {
printBlockName(successor);
if (succOperands.empty())
return;
os << '(';
interleaveComma(succOperands,
[this](Value operand) { printValueID(operand); });
os << " : ";
interleaveComma(succOperands,
[this](Value operand) { printType(operand.getType()); });
os << ')';
}
void OperationPrinter::printRegion(Region &region, bool printEntryBlockArgs,
bool printBlockTerminators) {
os << " {" << newLine;
if (!region.empty()) {
auto *entryBlock = &region.front();
print(entryBlock, printEntryBlockArgs && entryBlock->getNumArguments() != 0,
printBlockTerminators);
for (auto &b : llvm::drop_begin(region.getBlocks(), 1))
print(&b);
}
os.indent(currentIndent) << "}";
}
void OperationPrinter::printAffineMapOfSSAIds(AffineMapAttr mapAttr,
ValueRange operands) {
AffineMap map = mapAttr.getValue();
unsigned numDims = map.getNumDims();
auto printValueName = [&](unsigned pos, bool isSymbol) {
unsigned index = isSymbol ? numDims + pos : pos;
assert(index < operands.size());
if (isSymbol)
os << "symbol(";
printValueID(operands[index]);
if (isSymbol)
os << ')';
};
interleaveComma(map.getResults(), [&](AffineExpr expr) {
printAffineExpr(expr, printValueName);
});
}
//===----------------------------------------------------------------------===//
// print and dump methods
//===----------------------------------------------------------------------===//
void Attribute::print(raw_ostream &os) const {
ModulePrinter(os).printAttribute(*this);
}
void Attribute::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void Type::print(raw_ostream &os) { ModulePrinter(os).printType(*this); }
void Type::dump() { print(llvm::errs()); }
void AffineMap::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void IntegerSet::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void AffineExpr::print(raw_ostream &os) const {
if (!expr) {
os << "<<NULL AFFINE EXPR>>";
return;
}
ModulePrinter(os).printAffineExpr(*this);
}
void AffineExpr::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void AffineMap::print(raw_ostream &os) const {
if (!map) {
os << "<<NULL AFFINE MAP>>";
return;
}
ModulePrinter(os).printAffineMap(*this);
}
void IntegerSet::print(raw_ostream &os) const {
ModulePrinter(os).printIntegerSet(*this);
}
void Value::print(raw_ostream &os) {
if (auto *op = getDefiningOp())
return op->print(os);
// TODO: Improve this.
BlockArgument arg = this->cast<BlockArgument>();
os << "<block argument> of type '" << arg.getType()
<< "' at index: " << arg.getArgNumber() << '\n';
}
void Value::print(raw_ostream &os, AsmState &state) {
if (auto *op = getDefiningOp())
return op->print(os, state);
// TODO: Improve this.
BlockArgument arg = this->cast<BlockArgument>();
os << "<block argument> of type '" << arg.getType()
<< "' at index: " << arg.getArgNumber() << '\n';
}
void Value::dump() {
print(llvm::errs());
llvm::errs() << "\n";
}
void Value::printAsOperand(raw_ostream &os, AsmState &state) {
// TODO: This doesn't necessarily capture all potential cases.
// Currently, region arguments can be shadowed when printing the main
// operation. If the IR hasn't been printed, this will produce the old SSA
// name and not the shadowed name.
state.getImpl().getSSANameState().printValueID(*this, /*printResultNo=*/true,
os);
}
void Operation::print(raw_ostream &os, OpPrintingFlags flags) {
// If this is a top level operation, we also print aliases.
if (!getParent() && !flags.shouldUseLocalScope()) {
AsmState state(this);
state.getImpl().initializeAliases(this, flags);
print(os, state, flags);
return;
}
// Find the operation to number from based upon the provided flags.
Operation *op = this;
bool shouldUseLocalScope = flags.shouldUseLocalScope();
do {
// If we are printing local scope, stop at the first operation that is
// isolated from above.
if (shouldUseLocalScope && op->hasTrait<OpTrait::IsIsolatedFromAbove>())
break;
// Otherwise, traverse up to the next parent.
Operation *parentOp = op->getParentOp();
if (!parentOp)
break;
op = parentOp;
} while (true);
AsmState state(op);
print(os, state, flags);
}
void Operation::print(raw_ostream &os, AsmState &state, OpPrintingFlags flags) {
OperationPrinter printer(os, flags, state.getImpl());
if (!getParent() && !flags.shouldUseLocalScope())
printer.printTopLevelOperation(this);
else
printer.print(this);
}
void Operation::dump() {
print(llvm::errs(), OpPrintingFlags().useLocalScope());
llvm::errs() << "\n";
}
void Block::print(raw_ostream &os) {
Operation *parentOp = getParentOp();
if (!parentOp) {
os << "<<UNLINKED BLOCK>>\n";
return;
}
// Get the top-level op.
while (auto *nextOp = parentOp->getParentOp())
parentOp = nextOp;
AsmState state(parentOp);
print(os, state);
}
void Block::print(raw_ostream &os, AsmState &state) {
OperationPrinter(os, /*flags=*/llvm::None, state.getImpl()).print(this);
}
void Block::dump() { print(llvm::errs()); }
/// Print out the name of the block without printing its body.
void Block::printAsOperand(raw_ostream &os, bool printType) {
Operation *parentOp = getParentOp();
if (!parentOp) {
os << "<<UNLINKED BLOCK>>\n";
return;
}
AsmState state(parentOp);
printAsOperand(os, state);
}
void Block::printAsOperand(raw_ostream &os, AsmState &state) {
OperationPrinter printer(os, /*flags=*/llvm::None, state.getImpl());
printer.printBlockName(this);
}