llvm-project/llvm/test/Transforms/InstCombine/xor.ll

1334 lines
36 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
@G1 = global i32 0
@G2 = global i32 0
declare void @use(i8)
define i1 @test0(i1 %A) {
; CHECK-LABEL: @test0(
; CHECK-NEXT: ret i1 [[A:%.*]]
;
%B = xor i1 %A, false
ret i1 %B
}
define i32 @test1(i32 %A) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: ret i32 [[A:%.*]]
;
%B = xor i32 %A, 0
ret i32 %B
}
define i1 @test2(i1 %A) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: ret i1 false
;
%B = xor i1 %A, %A
ret i1 %B
}
define i32 @test3(i32 %A) {
; CHECK-LABEL: @test3(
; CHECK-NEXT: ret i32 0
;
%B = xor i32 %A, %A
ret i32 %B
}
define i32 @test4(i32 %A) {
; CHECK-LABEL: @test4(
; CHECK-NEXT: ret i32 -1
;
%NotA = xor i32 -1, %A
%B = xor i32 %A, %NotA
ret i32 %B
}
define i32 @test5(i32 %A) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[A:%.*]], -124
; CHECK-NEXT: ret i32 [[TMP1]]
;
%t1 = or i32 %A, 123
%r = xor i32 %t1, 123
ret i32 %r
}
define i8 @test6(i8 %A) {
; CHECK-LABEL: @test6(
; CHECK-NEXT: ret i8 [[A:%.*]]
;
%B = xor i8 %A, 17
%C = xor i8 %B, 17
ret i8 %C
}
define i32 @test7(i32 %A, i32 %B) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[A1:%.*]] = and i32 [[A:%.*]], 7
; CHECK-NEXT: [[B1:%.*]] = and i32 [[B:%.*]], 128
; CHECK-NEXT: [[C11:%.*]] = or i32 [[A1]], [[B1]]
; CHECK-NEXT: ret i32 [[C11]]
;
%A1 = and i32 %A, 7
%B1 = and i32 %B, 128
%C1 = xor i32 %A1, %B1
ret i32 %C1
}
define i8 @test8(i1 %c) {
; CHECK-LABEL: @test8(
; CHECK-NEXT: br i1 [[C:%.*]], label [[FALSE:%.*]], label [[TRUE:%.*]]
; CHECK: True:
; CHECK-NEXT: ret i8 1
; CHECK: False:
; CHECK-NEXT: ret i8 3
;
%d = xor i1 %c, true
br i1 %d, label %True, label %False
True:
ret i8 1
False:
ret i8 3
}
define i1 @test9(i8 %A) {
; CHECK-LABEL: @test9(
; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[A:%.*]], 89
; CHECK-NEXT: ret i1 [[C]]
;
%B = xor i8 %A, 123
%C = icmp eq i8 %B, 34
ret i1 %C
}
define <2 x i1> @test9vec(<2 x i8> %a) {
; CHECK-LABEL: @test9vec(
; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i8> [[A:%.*]], <i8 89, i8 89>
; CHECK-NEXT: ret <2 x i1> [[C]]
;
%b = xor <2 x i8> %a, <i8 123, i8 123>
%c = icmp eq <2 x i8> %b, <i8 34, i8 34>
ret <2 x i1> %c
}
define i8 @test10(i8 %A) {
; CHECK-LABEL: @test10(
; CHECK-NEXT: [[B:%.*]] = and i8 [[A:%.*]], 3
; CHECK-NEXT: [[C1:%.*]] = or i8 [[B]], 4
; CHECK-NEXT: ret i8 [[C1]]
;
%B = and i8 %A, 3
%C = xor i8 %B, 4
ret i8 %C
}
define i8 @test11(i8 %A) {
; CHECK-LABEL: @test11(
; CHECK-NEXT: [[B:%.*]] = and i8 [[A:%.*]], -13
; CHECK-NEXT: [[TMP1:%.*]] = or i8 [[B]], 8
; CHECK-NEXT: ret i8 [[TMP1]]
;
%B = or i8 %A, 12
%C = xor i8 %B, 4
ret i8 %C
}
define i1 @test12(i8 %A) {
; CHECK-LABEL: @test12(
; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[A:%.*]], 4
; CHECK-NEXT: ret i1 [[C]]
;
%B = xor i8 %A, 4
%c = icmp ne i8 %B, 0
ret i1 %c
}
define <2 x i1> @test12vec(<2 x i8> %a) {
; CHECK-LABEL: @test12vec(
; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i8> [[A:%.*]], <i8 4, i8 4>
; CHECK-NEXT: ret <2 x i1> [[C]]
;
%b = xor <2 x i8> %a, <i8 4, i8 4>
%c = icmp ne <2 x i8> %b, zeroinitializer
ret <2 x i1> %c
}
define i32 @test18(i32 %A) {
; CHECK-LABEL: @test18(
; CHECK-NEXT: [[C:%.*]] = add i32 [[A:%.*]], 124
; CHECK-NEXT: ret i32 [[C]]
;
%B = xor i32 %A, -1
%C = sub i32 123, %B
ret i32 %C
}
define i32 @test19(i32 %A, i32 %B) {
; CHECK-LABEL: @test19(
; CHECK-NEXT: ret i32 [[B:%.*]]
;
%C = xor i32 %A, %B
%D = xor i32 %C, %A
ret i32 %D
}
define void @test20(i32 %A, i32 %B) {
; CHECK-LABEL: @test20(
; CHECK-NEXT: store i32 [[B:%.*]], i32* @G1, align 4
; CHECK-NEXT: store i32 [[A:%.*]], i32* @G2, align 4
; CHECK-NEXT: ret void
;
%t2 = xor i32 %B, %A
%t5 = xor i32 %t2, %B
%t8 = xor i32 %t5, %t2
store i32 %t8, i32* @G1
store i32 %t5, i32* @G2
ret void
}
define i32 @test22(i1 %X) {
; CHECK-LABEL: @test22(
; CHECK-NEXT: [[Z:%.*]] = zext i1 [[X:%.*]] to i32
; CHECK-NEXT: ret i32 [[Z]]
;
%Y = xor i1 %X, true
%Z = zext i1 %Y to i32
%Q = xor i32 %Z, 1
ret i32 %Q
}
; Look through a zext between xors.
define i32 @fold_zext_xor_sandwich(i1 %X) {
; CHECK-LABEL: @fold_zext_xor_sandwich(
; CHECK-NEXT: [[Z:%.*]] = zext i1 [[X:%.*]] to i32
; CHECK-NEXT: [[Q:%.*]] = xor i32 [[Z]], 3
; CHECK-NEXT: ret i32 [[Q]]
;
%Y = xor i1 %X, true
%Z = zext i1 %Y to i32
%Q = xor i32 %Z, 2
ret i32 %Q
}
define <2 x i32> @fold_zext_xor_sandwich_vec(<2 x i1> %X) {
; CHECK-LABEL: @fold_zext_xor_sandwich_vec(
; CHECK-NEXT: [[Z:%.*]] = zext <2 x i1> [[X:%.*]] to <2 x i32>
; CHECK-NEXT: [[Q:%.*]] = xor <2 x i32> [[Z]], <i32 3, i32 3>
; CHECK-NEXT: ret <2 x i32> [[Q]]
;
%Y = xor <2 x i1> %X, <i1 true, i1 true>
%Z = zext <2 x i1> %Y to <2 x i32>
%Q = xor <2 x i32> %Z, <i32 2, i32 2>
ret <2 x i32> %Q
}
define i1 @test23(i32 %a, i32 %b) {
; CHECK-LABEL: @test23(
; CHECK-NEXT: [[T4:%.*]] = icmp eq i32 [[B:%.*]], 0
; CHECK-NEXT: ret i1 [[T4]]
;
%t2 = xor i32 %b, %a
%t4 = icmp eq i32 %t2, %a
ret i1 %t4
}
define i1 @test24(i32 %c, i32 %d) {
; CHECK-LABEL: @test24(
; CHECK-NEXT: [[T4:%.*]] = icmp ne i32 [[D:%.*]], 0
; CHECK-NEXT: ret i1 [[T4]]
;
%t2 = xor i32 %d, %c
%t4 = icmp ne i32 %t2, %c
ret i1 %t4
}
define i32 @test25(i32 %g, i32 %h) {
; CHECK-LABEL: @test25(
; CHECK-NEXT: [[T4:%.*]] = and i32 [[H:%.*]], [[G:%.*]]
; CHECK-NEXT: ret i32 [[T4]]
;
%h2 = xor i32 %h, -1
%t2 = and i32 %h2, %g
%t4 = xor i32 %t2, %g
ret i32 %t4
}
define i32 @test27(i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @test27(
; CHECK-NEXT: [[T6:%.*]] = icmp eq i32 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[T7:%.*]] = zext i1 [[T6]] to i32
; CHECK-NEXT: ret i32 [[T7]]
;
%t2 = xor i32 %d, %b
%t5 = xor i32 %d, %c
%t6 = icmp eq i32 %t2, %t5
%t7 = zext i1 %t6 to i32
ret i32 %t7
}
define i32 @test28(i32 %indvar) {
; CHECK-LABEL: @test28(
; CHECK-NEXT: [[T214:%.*]] = add i32 [[INDVAR:%.*]], 1
; CHECK-NEXT: ret i32 [[T214]]
;
%t7 = add i32 %indvar, -2147483647
%t214 = xor i32 %t7, -2147483648
ret i32 %t214
}
define <2 x i32> @test28vec(<2 x i32> %indvar) {
; CHECK-LABEL: @test28vec(
; CHECK-NEXT: [[T214:%.*]] = add <2 x i32> [[INDVAR:%.*]], <i32 1, i32 1>
; CHECK-NEXT: ret <2 x i32> [[T214]]
;
%t7 = add <2 x i32> %indvar, <i32 -2147483647, i32 -2147483647>
%t214 = xor <2 x i32> %t7, <i32 -2147483648, i32 -2147483648>
ret <2 x i32> %t214
}
define i32 @test28_sub(i32 %indvar) {
; CHECK-LABEL: @test28_sub(
; CHECK-NEXT: [[T214:%.*]] = sub i32 1, [[INDVAR:%.*]]
; CHECK-NEXT: ret i32 [[T214]]
;
%t7 = sub i32 -2147483647, %indvar
%t214 = xor i32 %t7, -2147483648
ret i32 %t214
}
define <2 x i32> @test28_subvec(<2 x i32> %indvar) {
; CHECK-LABEL: @test28_subvec(
; CHECK-NEXT: [[T214:%.*]] = sub <2 x i32> <i32 1, i32 1>, [[INDVAR:%.*]]
; CHECK-NEXT: ret <2 x i32> [[T214]]
;
%t7 = sub <2 x i32> <i32 -2147483647, i32 -2147483647>, %indvar
%t214 = xor <2 x i32> %t7, <i32 -2147483648, i32 -2147483648>
ret <2 x i32> %t214
}
define i32 @test29(i1 %C) {
; CHECK-LABEL: @test29(
; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], i32 915, i32 113
; CHECK-NEXT: ret i32 [[V]]
;
%A = select i1 %C, i32 1000, i32 10
%V = xor i32 %A, 123
ret i32 %V
}
define <2 x i32> @test29vec(i1 %C) {
; CHECK-LABEL: @test29vec(
; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> <i32 915, i32 915>, <2 x i32> <i32 113, i32 113>
; CHECK-NEXT: ret <2 x i32> [[V]]
;
%A = select i1 %C, <2 x i32> <i32 1000, i32 1000>, <2 x i32> <i32 10, i32 10>
%V = xor <2 x i32> %A, <i32 123, i32 123>
ret <2 x i32> %V
}
define <2 x i32> @test29vec2(i1 %C) {
; CHECK-LABEL: @test29vec2(
; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> <i32 915, i32 2185>, <2 x i32> <i32 113, i32 339>
; CHECK-NEXT: ret <2 x i32> [[V]]
;
%A = select i1 %C, <2 x i32> <i32 1000, i32 2500>, <2 x i32> <i32 10, i32 30>
%V = xor <2 x i32> %A, <i32 123, i32 333>
ret <2 x i32> %V
}
define i32 @test30(i1 %which) {
; CHECK-LABEL: @test30(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK: delay:
; CHECK-NEXT: br label [[FINAL]]
; CHECK: final:
; CHECK-NEXT: [[A:%.*]] = phi i32 [ 915, [[ENTRY:%.*]] ], [ 113, [[DELAY]] ]
; CHECK-NEXT: ret i32 [[A]]
;
entry:
br i1 %which, label %final, label %delay
delay:
br label %final
final:
%A = phi i32 [ 1000, %entry ], [ 10, %delay ]
%value = xor i32 %A, 123
ret i32 %value
}
define <2 x i32> @test30vec(i1 %which) {
; CHECK-LABEL: @test30vec(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK: delay:
; CHECK-NEXT: br label [[FINAL]]
; CHECK: final:
; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ <i32 915, i32 915>, [[ENTRY:%.*]] ], [ <i32 113, i32 113>, [[DELAY]] ]
; CHECK-NEXT: ret <2 x i32> [[A]]
;
entry:
br i1 %which, label %final, label %delay
delay:
br label %final
final:
%A = phi <2 x i32> [ <i32 1000, i32 1000>, %entry ], [ <i32 10, i32 10>, %delay ]
%value = xor <2 x i32> %A, <i32 123, i32 123>
ret <2 x i32> %value
}
define <2 x i32> @test30vec2(i1 %which) {
; CHECK-LABEL: @test30vec2(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK: delay:
; CHECK-NEXT: br label [[FINAL]]
; CHECK: final:
; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ <i32 915, i32 2185>, [[ENTRY:%.*]] ], [ <i32 113, i32 339>, [[DELAY]] ]
; CHECK-NEXT: ret <2 x i32> [[A]]
;
entry:
br i1 %which, label %final, label %delay
delay:
br label %final
final:
%A = phi <2 x i32> [ <i32 1000, i32 2500>, %entry ], [ <i32 10, i32 30>, %delay ]
%value = xor <2 x i32> %A, <i32 123, i32 333>
ret <2 x i32> %value
}
; B ^ (B | A) --> A & ~B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @or_xor_commute1(i32 %p1, i32 %p2) {
; CHECK-LABEL: @or_xor_commute1(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = or i32 %b, %a
%r = xor i32 %b, %o
ret i32 %r
}
; B ^ (B | A) --> A & ~B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @or_xor_commute2(i32 %p1, i32 %p2) {
; CHECK-LABEL: @or_xor_commute2(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = or i32 %a, %b
%r = xor i32 %o, %b
ret i32 %r
}
; B ^ (B | A) --> A & ~B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @or_xor_commute3(i32 %p1, i32 %p2) {
; CHECK-LABEL: @or_xor_commute3(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = or i32 %b, %a
%r = xor i32 %o, %b
ret i32 %r
}
; B ^ (B | A) --> A & ~B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @or_xor_commute4(i32 %p1, i32 %p2) {
; CHECK-LABEL: @or_xor_commute4(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = or i32 %a, %b
%r = xor i32 %b, %o
ret i32 %r
}
define i32 @or_xor_extra_use(i32 %a, i32 %b, i32* %p) {
; CHECK-LABEL: @or_xor_extra_use(
; CHECK-NEXT: [[O:%.*]] = or i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: store i32 [[O]], i32* [[P:%.*]], align 4
; CHECK-NEXT: [[R:%.*]] = xor i32 [[O]], [[B]]
; CHECK-NEXT: ret i32 [[R]]
;
%o = or i32 %a, %b
store i32 %o, i32* %p
%r = xor i32 %b, %o
ret i32 %r
}
; B ^ (B & A) --> ~A & B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @and_xor_commute1(i32 %p1, i32 %p2) {
; CHECK-LABEL: @and_xor_commute1(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = and i32 %b, %a
%r = xor i32 %b, %o
ret i32 %r
}
; B ^ (B & A) --> ~A & B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @and_xor_commute2(i32 %p1, i32 %p2) {
; CHECK-LABEL: @and_xor_commute2(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = and i32 %a, %b
%r = xor i32 %o, %b
ret i32 %r
}
; B ^ (B & A) --> ~A & B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @and_xor_commute3(i32 %p1, i32 %p2) {
; CHECK-LABEL: @and_xor_commute3(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = and i32 %b, %a
%r = xor i32 %o, %b
ret i32 %r
}
; B ^ (B & A) --> ~A & B
; The division ops are here to thwart complexity-based canonicalization: all ops are binops.
define i32 @and_xor_commute4(i32 %p1, i32 %p2) {
; CHECK-LABEL: @and_xor_commute4(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1
; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]]
; CHECK-NEXT: ret i32 [[R]]
;
%a = udiv i32 42, %p1
%b = udiv i32 42, %p2
%o = and i32 %a, %b
%r = xor i32 %b, %o
ret i32 %r
}
define i32 @and_xor_extra_use(i32 %a, i32 %b, i32* %p) {
; CHECK-LABEL: @and_xor_extra_use(
; CHECK-NEXT: [[O:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: store i32 [[O]], i32* [[P:%.*]], align 4
; CHECK-NEXT: [[R:%.*]] = xor i32 [[O]], [[B]]
; CHECK-NEXT: ret i32 [[R]]
;
%o = and i32 %a, %b
store i32 %o, i32* %p
%r = xor i32 %b, %o
ret i32 %r
}
; (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
; The extra use (store) is here because the simpler case
; may be transformed using demanded bits.
define i8 @xor_or_not(i8 %x, i8* %p) {
; CHECK-LABEL: @xor_or_not(
; CHECK-NEXT: [[NX:%.*]] = xor i8 [[X:%.*]], -1
; CHECK-NEXT: store i8 [[NX]], i8* [[P:%.*]], align 1
; CHECK-NEXT: [[TMP1:%.*]] = and i8 [[X]], -8
; CHECK-NEXT: [[R:%.*]] = xor i8 [[TMP1]], -13
; CHECK-NEXT: ret i8 [[R]]
;
%nx = xor i8 %x, -1
store i8 %nx, i8* %p
%or = or i8 %nx, 7
%r = xor i8 %or, 12
ret i8 %r
}
; Don't do this if the 'or' has extra uses.
define i8 @xor_or_not_uses(i8 %x, i8* %p) {
; CHECK-LABEL: @xor_or_not_uses(
; CHECK-NEXT: [[NX:%.*]] = xor i8 [[X:%.*]], -1
; CHECK-NEXT: [[OR:%.*]] = or i8 [[NX]], 7
; CHECK-NEXT: store i8 [[OR]], i8* [[P:%.*]], align 1
; CHECK-NEXT: [[R:%.*]] = xor i8 [[OR]], 12
; CHECK-NEXT: ret i8 [[R]]
;
%nx = xor i8 %x, -1
%or = or i8 %nx, 7
store i8 %or, i8* %p
%r = xor i8 %or, 12
ret i8 %r
}
; (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
; The extra use (store) is here because the simpler case
; may be transformed using demanded bits.
define i8 @xor_and_not(i8 %x, i8* %p) {
; CHECK-LABEL: @xor_and_not(
; CHECK-NEXT: [[NX:%.*]] = xor i8 [[X:%.*]], -1
; CHECK-NEXT: store i8 [[NX]], i8* [[P:%.*]], align 1
; CHECK-NEXT: [[TMP1:%.*]] = or i8 [[X]], -43
; CHECK-NEXT: [[R:%.*]] = xor i8 [[TMP1]], -32
; CHECK-NEXT: ret i8 [[R]]
;
%nx = xor i8 %x, -1
store i8 %nx, i8* %p
%and = and i8 %nx, 42
%r = xor i8 %and, 31
ret i8 %r
}
; Don't do this if the 'and' has extra uses.
define i8 @xor_and_not_uses(i8 %x, i8* %p) {
; CHECK-LABEL: @xor_and_not_uses(
; CHECK-NEXT: [[NX:%.*]] = and i8 [[X:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = xor i8 [[NX]], 42
; CHECK-NEXT: store i8 [[AND]], i8* [[P:%.*]], align 1
; CHECK-NEXT: [[R:%.*]] = xor i8 [[NX]], 53
; CHECK-NEXT: ret i8 [[R]]
;
%nx = xor i8 %x, -1
%and = and i8 %nx, 42
store i8 %and, i8* %p
%r = xor i8 %and, 31
ret i8 %r
}
; The tests 39-47 are related to the canonicalization:
; %notx = xor i32 %x, -1
; %cmp = icmp sgt i32 %notx, %y
; %smax = select i1 %cmp, i32 %notx, i32 %y
; %res = xor i32 %smax, -1
; =>
; %noty = xor i32 %y, -1
; %cmp2 = icmp slt %x, %noty
; %res = select i1 %cmp2, i32 %x, i32 %noty
;
; Same transformations is valid for smin/umax/umin.
define i32 @test39(i32 %x) {
; CHECK-LABEL: @test39(
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @llvm.smin.i32(i32 [[X:%.*]], i32 255)
; CHECK-NEXT: ret i32 [[TMP1]]
;
%1 = xor i32 %x, -1
%2 = icmp sgt i32 %1, -256
%3 = select i1 %2, i32 %1, i32 -256
%res = xor i32 %3, -1
ret i32 %res
}
define i32 @test40(i32 %x, i32 %y) {
; CHECK-LABEL: @test40(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.smin.i32(i32 [[X:%.*]], i32 [[TMP1]])
; CHECK-NEXT: ret i32 [[TMP2]]
;
%notx = xor i32 %x, -1
%cmp1 = icmp sgt i32 %notx, %y
%smax = select i1 %cmp1, i32 %notx, i32 %y
%res = xor i32 %smax, -1
ret i32 %res
}
define i32 @test41(i32 %x, i32 %y) {
; CHECK-LABEL: @test41(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.smax.i32(i32 [[X:%.*]], i32 [[TMP1]])
; CHECK-NEXT: ret i32 [[TMP2]]
;
%notx = xor i32 %x, -1
%cmp1 = icmp slt i32 %notx, %y
%smin = select i1 %cmp1, i32 %notx, i32 %y
%res = xor i32 %smin, -1
ret i32 %res
}
define i32 @test42(i32 %x, i32 %y) {
; CHECK-LABEL: @test42(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.umin.i32(i32 [[X:%.*]], i32 [[TMP1]])
; CHECK-NEXT: ret i32 [[TMP2]]
;
%notx = xor i32 %x, -1
%cmp1 = icmp ugt i32 %notx, %y
%umax = select i1 %cmp1, i32 %notx, i32 %y
%res = xor i32 %umax, -1
ret i32 %res
}
define i32 @test43(i32 %x, i32 %y) {
; CHECK-LABEL: @test43(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.umax.i32(i32 [[X:%.*]], i32 [[TMP1]])
; CHECK-NEXT: ret i32 [[TMP2]]
;
%notx = xor i32 %x, -1
%cmp1 = icmp ult i32 %notx, %y
%umin = select i1 %cmp1, i32 %notx, i32 %y
%res = xor i32 %umin, -1
ret i32 %res
}
define i32 @test44(i32 %x, i32 %y) {
; CHECK-LABEL: @test44(
; CHECK-NEXT: [[TMP1:%.*]] = sub i32 -4, [[Y:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.umax.i32(i32 [[X:%.*]], i32 [[TMP1]])
; CHECK-NEXT: ret i32 [[TMP2]]
;
%z = add i32 %y, 3 ; thwart complexity-based canonicalization
%notx = xor i32 %x, -1
%cmp1 = icmp ult i32 %z, %notx
%umin = select i1 %cmp1, i32 %z, i32 %notx
%res = xor i32 %umin, -1
ret i32 %res
}
define i32 @test45(i32 %x, i32 %y) {
; CHECK-LABEL: @test45(
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @llvm.umax.i32(i32 [[Y:%.*]], i32 [[X:%.*]])
; CHECK-NEXT: ret i32 [[TMP1]]
;
%z = xor i32 %y, -1
%notx = xor i32 %x, -1
%cmp1 = icmp ult i32 %z, %notx
%umin = select i1 %cmp1, i32 %z, i32 %notx
%res = xor i32 %umin, -1
ret i32 %res
}
; Check that we work with splat vectors also.
define <4 x i32> @test46(<4 x i32> %x) {
; CHECK-LABEL: @test46(
; CHECK-NEXT: [[TMP1:%.*]] = call <4 x i32> @llvm.smin.v4i32(<4 x i32> [[X:%.*]], <4 x i32> <i32 255, i32 255, i32 255, i32 255>)
; CHECK-NEXT: ret <4 x i32> [[TMP1]]
;
%1 = xor <4 x i32> %x, <i32 -1, i32 -1, i32 -1, i32 -1>
%2 = icmp sgt <4 x i32> %1, <i32 -256, i32 -256, i32 -256, i32 -256>
%3 = select <4 x i1> %2, <4 x i32> %1, <4 x i32> <i32 -256, i32 -256, i32 -256, i32 -256>
%4 = xor <4 x i32> %3, <i32 -1, i32 -1, i32 -1, i32 -1>
ret <4 x i32> %4
}
; Test case when select pattern has more than one use.
define i32 @test47(i32 %x, i32 %y, i32 %z) {
; CHECK-LABEL: @test47(
; CHECK-NEXT: [[NOTX:%.*]] = xor i32 [[X:%.*]], -1
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @llvm.umax.i32(i32 [[NOTX]], i32 [[Y:%.*]])
; CHECK-NEXT: [[UMIN:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[TMP1]], [[Z:%.*]]
; CHECK-NEXT: [[RES:%.*]] = mul i32 [[ADD]], [[UMIN]]
; CHECK-NEXT: ret i32 [[RES]]
;
%notx = xor i32 %x, -1
%cmp1 = icmp ugt i32 %notx, %y
%umax = select i1 %cmp1, i32 %notx, i32 %y
%umin = xor i32 %umax, -1
%add = add i32 %umax, %z
%res = mul i32 %umin, %add
ret i32 %res
}
define i32 @test48(i32 %x) {
; CHECK-LABEL: @test48(
; CHECK-NEXT: [[TMP1:%.*]] = add i32 [[X:%.*]], 1
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.smin.i32(i32 [[TMP1]], i32 -1)
; CHECK-NEXT: ret i32 [[TMP2]]
;
%a = sub i32 -2, %x
%b = icmp sgt i32 %a, 0
%c = select i1 %b, i32 %a, i32 0
%d = xor i32 %c, -1
ret i32 %d
}
define <2 x i32> @test48vec(<2 x i32> %x) {
; CHECK-LABEL: @test48vec(
; CHECK-NEXT: [[TMP1:%.*]] = add <2 x i32> [[X:%.*]], <i32 1, i32 1>
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @llvm.smin.v2i32(<2 x i32> [[TMP1]], <2 x i32> <i32 -1, i32 -1>)
; CHECK-NEXT: ret <2 x i32> [[TMP2]]
;
%a = sub <2 x i32> <i32 -2, i32 -2>, %x
%b = icmp sgt <2 x i32> %a, zeroinitializer
%c = select <2 x i1> %b, <2 x i32> %a, <2 x i32> zeroinitializer
%d = xor <2 x i32> %c, <i32 -1, i32 -1>
ret <2 x i32> %d
}
define i32 @test49(i32 %x) {
; CHECK-LABEL: @test49(
; CHECK-NEXT: [[TMP1:%.*]] = sub i32 1, [[X:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.smax.i32(i32 [[TMP1]], i32 0)
; CHECK-NEXT: ret i32 [[TMP2]]
;
%a = add i32 %x, -2
%b = icmp slt i32 %a, -1
%c = select i1 %b, i32 %a, i32 -1
%d = xor i32 %c, -1
ret i32 %d
}
define <2 x i32> @test49vec(<2 x i32> %x) {
; CHECK-LABEL: @test49vec(
; CHECK-NEXT: [[TMP1:%.*]] = sub <2 x i32> <i32 1, i32 1>, [[X:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @llvm.smax.v2i32(<2 x i32> [[TMP1]], <2 x i32> zeroinitializer)
; CHECK-NEXT: ret <2 x i32> [[TMP2]]
;
%a = add <2 x i32> %x, <i32 -2, i32 -2>
%b = icmp slt <2 x i32> %a, <i32 -1, i32 -1>
%c = select <2 x i1> %b, <2 x i32> %a, <2 x i32> <i32 -1, i32 -1>
%d = xor <2 x i32> %c, <i32 -1, i32 -1>
ret <2 x i32> %d
}
define i32 @test50(i32 %x, i32 %y) {
; CHECK-LABEL: @test50(
; CHECK-NEXT: [[TMP1:%.*]] = sub i32 1, [[X:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = add i32 [[Y:%.*]], 1
; CHECK-NEXT: [[TMP3:%.*]] = call i32 @llvm.smax.i32(i32 [[TMP1]], i32 [[TMP2]])
; CHECK-NEXT: ret i32 [[TMP3]]
;
%a = add i32 %x, -2
%b = sub i32 -2, %y
%c = icmp slt i32 %a, %b
%d = select i1 %c, i32 %a, i32 %b
%e = xor i32 %d, -1
ret i32 %e
}
define <2 x i32> @test50vec(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: @test50vec(
; CHECK-NEXT: [[TMP1:%.*]] = sub <2 x i32> <i32 1, i32 1>, [[X:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = add <2 x i32> [[Y:%.*]], <i32 1, i32 1>
; CHECK-NEXT: [[TMP3:%.*]] = call <2 x i32> @llvm.smax.v2i32(<2 x i32> [[TMP1]], <2 x i32> [[TMP2]])
; CHECK-NEXT: ret <2 x i32> [[TMP3]]
;
%a = add <2 x i32> %x, <i32 -2, i32 -2>
%b = sub <2 x i32> <i32 -2, i32 -2>, %y
%c = icmp slt <2 x i32> %a, %b
%d = select <2 x i1> %c, <2 x i32> %a, <2 x i32> %b
%e = xor <2 x i32> %d, <i32 -1, i32 -1>
ret <2 x i32> %e
}
define i32 @test51(i32 %x, i32 %y) {
; CHECK-LABEL: @test51(
; CHECK-NEXT: [[TMP1:%.*]] = sub i32 -3, [[X:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = add i32 [[Y:%.*]], -3
; CHECK-NEXT: [[TMP3:%.*]] = call i32 @llvm.smin.i32(i32 [[TMP1]], i32 [[TMP2]])
; CHECK-NEXT: ret i32 [[TMP3]]
;
%a = add i32 %x, 2
%b = sub i32 2, %y
%c = icmp sgt i32 %a, %b
%d = select i1 %c, i32 %a, i32 %b
%e = xor i32 %d, -1
ret i32 %e
}
define <2 x i32> @test51vec(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: @test51vec(
; CHECK-NEXT: [[TMP1:%.*]] = sub <2 x i32> <i32 -3, i32 -3>, [[X:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = add <2 x i32> [[Y:%.*]], <i32 -3, i32 -3>
; CHECK-NEXT: [[TMP3:%.*]] = call <2 x i32> @llvm.smin.v2i32(<2 x i32> [[TMP1]], <2 x i32> [[TMP2]])
; CHECK-NEXT: ret <2 x i32> [[TMP3]]
;
%a = add <2 x i32> %x, <i32 2, i32 2>
%b = sub <2 x i32> <i32 2, i32 2>, %y
%c = icmp sgt <2 x i32> %a, %b
%d = select <2 x i1> %c, <2 x i32> %a, <2 x i32> %b
%e = xor <2 x i32> %d, <i32 -1, i32 -1>
ret <2 x i32> %e
}
define i4 @or_or_xor(i4 %x, i4 %y, i4 %z) {
; CHECK-LABEL: @or_or_xor(
; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Z:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = xor i4 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = and i4 [[TMP2]], [[TMP1]]
; CHECK-NEXT: ret i4 [[R]]
;
%o1 = or i4 %z, %x
%o2 = or i4 %z, %y
%r = xor i4 %o1, %o2
ret i4 %r
}
define i4 @or_or_xor_commute1(i4 %x, i4 %y, i4 %z) {
; CHECK-LABEL: @or_or_xor_commute1(
; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Z:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = xor i4 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = and i4 [[TMP2]], [[TMP1]]
; CHECK-NEXT: ret i4 [[R]]
;
%o1 = or i4 %x, %z
%o2 = or i4 %z, %y
%r = xor i4 %o1, %o2
ret i4 %r
}
define i4 @or_or_xor_commute2(i4 %x, i4 %y, i4 %z) {
; CHECK-LABEL: @or_or_xor_commute2(
; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Z:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = xor i4 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = and i4 [[TMP2]], [[TMP1]]
; CHECK-NEXT: ret i4 [[R]]
;
%o1 = or i4 %z, %x
%o2 = or i4 %y, %z
%r = xor i4 %o1, %o2
ret i4 %r
}
define <2 x i4> @or_or_xor_commute3(<2 x i4> %x, <2 x i4> %y, <2 x i4> %z) {
; CHECK-LABEL: @or_or_xor_commute3(
; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i4> [[Z:%.*]], <i4 -1, i4 -1>
; CHECK-NEXT: [[TMP2:%.*]] = xor <2 x i4> [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = and <2 x i4> [[TMP2]], [[TMP1]]
; CHECK-NEXT: ret <2 x i4> [[R]]
;
%o1 = or <2 x i4> %x, %z
%o2 = or <2 x i4> %y, %z
%r = xor <2 x i4> %o1, %o2
ret <2 x i4> %r
}
define i4 @or_or_xor_use1(i4 %x, i4 %y, i4 %z, i4* %p) {
; CHECK-LABEL: @or_or_xor_use1(
; CHECK-NEXT: [[O1:%.*]] = or i4 [[Z:%.*]], [[X:%.*]]
; CHECK-NEXT: store i4 [[O1]], i4* [[P:%.*]], align 1
; CHECK-NEXT: [[O2:%.*]] = or i4 [[Z]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = xor i4 [[O1]], [[O2]]
; CHECK-NEXT: ret i4 [[R]]
;
%o1 = or i4 %z, %x
store i4 %o1, i4* %p
%o2 = or i4 %z, %y
%r = xor i4 %o1, %o2
ret i4 %r
}
define i4 @or_or_xor_use2(i4 %x, i4 %y, i4 %z, i4* %p) {
; CHECK-LABEL: @or_or_xor_use2(
; CHECK-NEXT: [[O1:%.*]] = or i4 [[Z:%.*]], [[X:%.*]]
; CHECK-NEXT: [[O2:%.*]] = or i4 [[Z]], [[Y:%.*]]
; CHECK-NEXT: store i4 [[O2]], i4* [[P:%.*]], align 1
; CHECK-NEXT: [[R:%.*]] = xor i4 [[O1]], [[O2]]
; CHECK-NEXT: ret i4 [[R]]
;
%o1 = or i4 %z, %x
%o2 = or i4 %z, %y
store i4 %o2, i4* %p
%r = xor i4 %o1, %o2
ret i4 %r
}
; PR32706 - https://bugs.llvm.org/show_bug.cgi?id=32706
; Pin an xor constant operand to -1 if possible because 'not' is better for SCEV and codegen.
define i32 @not_is_canonical(i32 %x, i32 %y) {
; CHECK-LABEL: @not_is_canonical(
; CHECK-NEXT: [[SUB:%.*]] = xor i32 [[X:%.*]], -1
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[SUB]], [[Y:%.*]]
; CHECK-NEXT: [[MUL:%.*]] = shl i32 [[ADD]], 2
; CHECK-NEXT: ret i32 [[MUL]]
;
%sub = xor i32 %x, 1073741823
%add = add i32 %sub, %y
%mul = shl i32 %add, 2
ret i32 %mul
}
define i8 @not_shl(i8 %x) {
; CHECK-LABEL: @not_shl(
; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X:%.*]], -1
; CHECK-NEXT: [[R:%.*]] = shl i8 [[TMP1]], 7
; CHECK-NEXT: ret i8 [[R]]
;
%a = shl i8 %x, 7
%r = xor i8 %a, 128
ret i8 %r
}
define <2 x i8> @not_shl_vec(<2 x i8> %x) {
; CHECK-LABEL: @not_shl_vec(
; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X:%.*]], <i8 -1, i8 -1>
; CHECK-NEXT: [[R:%.*]] = shl <2 x i8> [[TMP1]], <i8 5, i8 5>
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%a = shl <2 x i8> %x, <i8 5, i8 5>
%r = xor <2 x i8> %a, <i8 224, i8 224>
ret <2 x i8> %r
}
; negative test
define i8 @not_shl_extra_use(i8 %x) {
; CHECK-LABEL: @not_shl_extra_use(
; CHECK-NEXT: [[A:%.*]] = shl i8 [[X:%.*]], 7
; CHECK-NEXT: call void @use(i8 [[A]])
; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -128
; CHECK-NEXT: ret i8 [[R]]
;
%a = shl i8 %x, 7
call void @use(i8 %a)
%r = xor i8 %a, 128
ret i8 %r
}
; negative test
define i8 @not_shl_wrong_const(i8 %x) {
; CHECK-LABEL: @not_shl_wrong_const(
; CHECK-NEXT: [[A:%.*]] = shl i8 [[X:%.*]], 6
; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -128
; CHECK-NEXT: ret i8 [[R]]
;
%a = shl i8 %x, 6
%r = xor i8 %a, 128
ret i8 %r
}
define i8 @not_lshr(i8 %x) {
; CHECK-LABEL: @not_lshr(
; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X:%.*]], -1
; CHECK-NEXT: [[R:%.*]] = lshr i8 [[TMP1]], 5
; CHECK-NEXT: ret i8 [[R]]
;
%a = lshr i8 %x, 5
%r = xor i8 %a, 7
ret i8 %r
}
define <2 x i8> @not_lshr_vec(<2 x i8> %x) {
; CHECK-LABEL: @not_lshr_vec(
; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X:%.*]], <i8 -1, i8 -1>
; CHECK-NEXT: [[R:%.*]] = lshr <2 x i8> [[TMP1]], <i8 7, i8 7>
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%a = lshr <2 x i8> %x, <i8 7, i8 7>
%r = xor <2 x i8> %a, <i8 1, i8 1>
ret <2 x i8> %r
}
; negative test
define i8 @not_lshr_extra_use(i8 %x) {
; CHECK-LABEL: @not_lshr_extra_use(
; CHECK-NEXT: [[A:%.*]] = lshr i8 [[X:%.*]], 5
; CHECK-NEXT: call void @use(i8 [[A]])
; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], 7
; CHECK-NEXT: ret i8 [[R]]
;
%a = lshr i8 %x, 5
call void @use(i8 %a)
%r = xor i8 %a, 7
ret i8 %r
}
; negative test
define i8 @not_lshr_wrong_const(i8 %x) {
; CHECK-LABEL: @not_lshr_wrong_const(
; CHECK-NEXT: [[A:%.*]] = lshr i8 [[X:%.*]], 5
; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], 3
; CHECK-NEXT: ret i8 [[R]]
;
%a = lshr i8 %x, 5
%r = xor i8 %a, 3
ret i8 %r
}
define i8 @ashr_not(i8 %x) {
; CHECK-LABEL: @ashr_not(
; CHECK-NEXT: [[N:%.*]] = ashr i8 [[X:%.*]], 5
; CHECK-NEXT: [[R:%.*]] = xor i8 [[N]], -1
; CHECK-NEXT: ret i8 [[R]]
;
%n = xor i8 %x, -1
%r = ashr i8 %n, 5
ret i8 %r
}
; Unlike the logicial shifts, 'not' is canonicalized after ashr.
define i8 @not_ashr(i8 %x) {
; CHECK-LABEL: @not_ashr(
; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 5
; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -1
; CHECK-NEXT: ret i8 [[R]]
;
%a = ashr i8 %x, 5
%r = xor i8 %a, -1
ret i8 %r
}
define <2 x i8> @not_ashr_vec(<2 x i8> %x) {
; CHECK-LABEL: @not_ashr_vec(
; CHECK-NEXT: [[A:%.*]] = ashr <2 x i8> [[X:%.*]], <i8 7, i8 7>
; CHECK-NEXT: [[R:%.*]] = xor <2 x i8> [[A]], <i8 -1, i8 -1>
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%a = ashr <2 x i8> %x, <i8 7, i8 7>
%r = xor <2 x i8> %a, <i8 -1, i8 -1>
ret <2 x i8> %r
}
define i8 @not_ashr_extra_use(i8 %x) {
; CHECK-LABEL: @not_ashr_extra_use(
; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 5
; CHECK-NEXT: call void @use(i8 [[A]])
; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -1
; CHECK-NEXT: ret i8 [[R]]
;
%a = ashr i8 %x, 5
call void @use(i8 %a)
%r = xor i8 %a, -1
ret i8 %r
}
define i8 @not_ashr_wrong_const(i8 %x) {
; CHECK-LABEL: @not_ashr_wrong_const(
; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 5
; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -2
; CHECK-NEXT: ret i8 [[R]]
;
%a = ashr i8 %x, 5
%r = xor i8 %a, -2
ret i8 %r
}
; (~A & B) ^ A --> A | B
define <2 x i32> @xor_andn_commute1(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @xor_andn_commute1(
; CHECK-NEXT: [[Z:%.*]] = or <2 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret <2 x i32> [[Z]]
;
%nota = xor <2 x i32> %a, <i32 -1, i32 -1>
%r = and <2 x i32> %nota, %b
%z = xor <2 x i32> %r, %a
ret <2 x i32> %z
}
; (B & ~A) ^ A --> A | B
define i33 @xor_andn_commute2(i33 %a, i33 %pb) {
; CHECK-LABEL: @xor_andn_commute2(
; CHECK-NEXT: [[B:%.*]] = udiv i33 42, [[PB:%.*]]
; CHECK-NEXT: [[Z:%.*]] = or i33 [[B]], [[A:%.*]]
; CHECK-NEXT: ret i33 [[Z]]
;
%b = udiv i33 42, %pb ; thwart complexity-based canonicalization
%nota = xor i33 %a, -1
%r = and i33 %b, %nota
%z = xor i33 %r, %a
ret i33 %z
}
; A ^ (~A & B) --> A | B
define i32 @xor_andn_commute3(i32 %pa, i32 %b) {
; CHECK-LABEL: @xor_andn_commute3(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[PA:%.*]]
; CHECK-NEXT: [[Z:%.*]] = or i32 [[A]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[Z]]
;
%a = udiv i32 42, %pa ; thwart complexity-based canonicalization
%nota = xor i32 %a, -1
%r = and i32 %nota, %b
%z = xor i32 %a, %r
ret i32 %z
}
; A ^ (B & ~A) --> A | B
define i32 @xor_andn_commute4(i32 %pa, i32 %pb) {
; CHECK-LABEL: @xor_andn_commute4(
; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[PA:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[PB:%.*]]
; CHECK-NEXT: [[Z:%.*]] = or i32 [[A]], [[B]]
; CHECK-NEXT: ret i32 [[Z]]
;
%a = udiv i32 42, %pa ; thwart complexity-based canonicalization
%b = udiv i32 42, %pb ; thwart complexity-based canonicalization
%nota = xor i32 %a, -1
%r = and i32 %b, %nota
%z = xor i32 %a, %r
ret i32 %z
}
; (~A | B) ^ A --> ~(A & B)
define <2 x i64> @xor_orn(<2 x i64> %a, <2 x i64> %b) {
; CHECK-LABEL: @xor_orn(
; CHECK-NEXT: [[TMP1:%.*]] = and <2 x i64> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Z:%.*]] = xor <2 x i64> [[TMP1]], <i64 -1, i64 -1>
; CHECK-NEXT: ret <2 x i64> [[Z]]
;
%nota = xor <2 x i64> %a, <i64 -1, i64 -1>
%l = or <2 x i64> %nota, %b
%z = xor <2 x i64> %l, %a
ret <2 x i64> %z
}
; A ^ (~A | B) --> ~(A & B)
define i8 @xor_orn_commute1(i8 %pa, i8 %b) {
; CHECK-LABEL: @xor_orn_commute1(
; CHECK-NEXT: [[A:%.*]] = udiv i8 42, [[PA:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = and i8 [[A]], [[B:%.*]]
; CHECK-NEXT: [[Z:%.*]] = xor i8 [[TMP1]], -1
; CHECK-NEXT: ret i8 [[Z]]
;
%a = udiv i8 42, %pa
%nota = xor i8 %a, -1
%l = or i8 %nota, %b
%z = xor i8 %a, %l
ret i8 %z
}
; (B | ~A) ^ A --> ~(A & B)
define i32 @xor_orn_commute2(i32 %a, i32 %pb,i32* %s) {
; CHECK-LABEL: @xor_orn_commute2(
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[PB:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[B]], [[A:%.*]]
; CHECK-NEXT: [[Z:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[Z]]
;
%b = udiv i32 42, %pb
%nota = xor i32 %a, -1
%l = or i32 %b, %nota
%z = xor i32 %l, %a
ret i32 %z
}
define i32 @xor_orn_commute2_1use(i32 %a, i32 %pb,i32* %s) {
; CHECK-LABEL: @xor_orn_commute2_1use(
; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[PB:%.*]]
; CHECK-NEXT: [[NOTA:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: store i32 [[NOTA]], i32* [[S:%.*]], align 4
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[B]], [[A]]
; CHECK-NEXT: [[Z:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[Z]]
;
%b = udiv i32 42, %pb
%nota = xor i32 %a, -1
%l = or i32 %b, %nota
store i32 %nota, i32* %s
%z = xor i32 %l, %a
ret i32 %z
}
; A ^ (B | ~A) --> ~(A & B)
define i67 @xor_orn_commute3(i67 %pa, i67 %pb, i67* %s) {
; CHECK-LABEL: @xor_orn_commute3(
; CHECK-NEXT: [[A:%.*]] = udiv i67 42, [[PA:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i67 42, [[PB:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = and i67 [[A]], [[B]]
; CHECK-NEXT: [[Z:%.*]] = xor i67 [[TMP1]], -1
; CHECK-NEXT: ret i67 [[Z]]
;
%a = udiv i67 42, %pa
%b = udiv i67 42, %pb
%nota = xor i67 %a, -1
%l = or i67 %b, %nota
%z = xor i67 %a, %l
ret i67 %z
}
define i67 @xor_orn_commute3_1use(i67 %pa, i67 %pb, i67* %s) {
; CHECK-LABEL: @xor_orn_commute3_1use(
; CHECK-NEXT: [[A:%.*]] = udiv i67 42, [[PA:%.*]]
; CHECK-NEXT: [[B:%.*]] = udiv i67 42, [[PB:%.*]]
; CHECK-NEXT: [[NOTA:%.*]] = xor i67 [[A]], -1
; CHECK-NEXT: [[L:%.*]] = or i67 [[B]], [[NOTA]]
; CHECK-NEXT: store i67 [[L]], i67* [[S:%.*]], align 4
; CHECK-NEXT: [[Z:%.*]] = xor i67 [[A]], [[L]]
; CHECK-NEXT: ret i67 [[Z]]
;
%a = udiv i67 42, %pa
%b = udiv i67 42, %pb
%nota = xor i67 %a, -1
%l = or i67 %b, %nota
store i67 %l, i67* %s
%z = xor i67 %a, %l
ret i67 %z
}
define i32 @xor_orn_2use(i32 %a, i32 %b, i32* %s1, i32* %s2) {
; CHECK-LABEL: @xor_orn_2use(
; CHECK-NEXT: [[NOTA:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: store i32 [[NOTA]], i32* [[S1:%.*]], align 4
; CHECK-NEXT: [[L:%.*]] = or i32 [[NOTA]], [[B:%.*]]
; CHECK-NEXT: store i32 [[L]], i32* [[S2:%.*]], align 4
; CHECK-NEXT: [[Z:%.*]] = xor i32 [[L]], [[A]]
; CHECK-NEXT: ret i32 [[Z]]
;
%nota = xor i32 %a, -1
store i32 %nota, i32* %s1
%l = or i32 %nota, %b
store i32 %l, i32* %s2
%z = xor i32 %l, %a
ret i32 %z
}