forked from OSchip/llvm-project
334 lines
8.6 KiB
LLVM
334 lines
8.6 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt -S -passes=instcombine < %s | FileCheck %s
|
|
|
|
; If we have an smin feeding a signed or equality icmp that shares an
|
|
; operand with the smin, the compare should always be folded.
|
|
; Test all 6 foldable predicates (eq,ne,sge,sgt,sle,slt) * 4 commutation
|
|
; possibilities for each predicate. Note that folds to true/false or
|
|
; folds to an existing instruction may be handled by InstSimplify.
|
|
|
|
; smin(X, Y) == X --> X <= Y
|
|
|
|
define i1 @eq_smin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @eq_smin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp eq i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @eq_smin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @eq_smin2(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp eq i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @eq_smin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @eq_smin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp eq i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @eq_smin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @eq_smin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp eq i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; smin(X, Y) >= X --> X <= Y
|
|
|
|
define i1 @sge_smin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @sge_smin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp sge i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @sge_smin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @sge_smin2(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp sge i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @sge_smin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @sge_smin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp sle i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @sge_smin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @sge_smin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp sle i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; smin(X, Y) != X --> X > Y
|
|
|
|
define i1 @ne_smin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @ne_smin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp ne i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @ne_smin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @ne_smin2(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp ne i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @ne_smin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @ne_smin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp ne i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @ne_smin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @ne_smin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp ne i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; smin(X, Y) < X --> X > Y
|
|
|
|
define i1 @slt_smin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @slt_smin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp slt i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @slt_smin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @slt_smin2(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp slt i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @slt_smin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @slt_smin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp sgt i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @slt_smin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @slt_smin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]]
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp sgt i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; smin(X, Y) <= X --> true
|
|
|
|
define i1 @sle_smin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @sle_smin1(
|
|
; CHECK-NEXT: ret i1 true
|
|
;
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp sle i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @sle_smin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @sle_smin2(
|
|
; CHECK-NEXT: ret i1 true
|
|
;
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp sle i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @sle_smin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @sle_smin3(
|
|
; CHECK-NEXT: ret i1 true
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp sge i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @sle_smin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @sle_smin4(
|
|
; CHECK-NEXT: ret i1 true
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp sge i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; smin(X, Y) > X --> false
|
|
|
|
define i1 @sgt_smin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @sgt_smin1(
|
|
; CHECK-NEXT: ret i1 false
|
|
;
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp sgt i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @sgt_smin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @sgt_smin2(
|
|
; CHECK-NEXT: ret i1 false
|
|
;
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp sgt i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @sgt_smin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @sgt_smin3(
|
|
; CHECK-NEXT: ret i1 false
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp slt i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @sgt_smin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @sgt_smin4(
|
|
; CHECK-NEXT: ret i1 false
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp slt i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp slt i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|