forked from OSchip/llvm-project
982 lines
33 KiB
C++
982 lines
33 KiB
C++
//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Builder implementation for CGRecordLayout objects.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGRecordLayout.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "CodeGenTypes.h"
|
|
#include "CGCXXABI.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
|
|
class CGRecordLayoutBuilder {
|
|
public:
|
|
/// FieldTypes - Holds the LLVM types that the struct is created from.
|
|
std::vector<const llvm::Type *> FieldTypes;
|
|
|
|
/// NonVirtualBaseFieldTypes - Holds the LLVM types for the non-virtual part
|
|
/// of the struct. For example, consider:
|
|
///
|
|
/// struct A { int i; };
|
|
/// struct B { void *v; };
|
|
/// struct C : virtual A, B { };
|
|
///
|
|
/// The LLVM type of C will be
|
|
/// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
|
|
///
|
|
/// And the LLVM type of the non-virtual base struct will be
|
|
/// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
|
|
std::vector<const llvm::Type *> NonVirtualBaseFieldTypes;
|
|
|
|
/// NonVirtualBaseTypeIsSameAsCompleteType - Whether the non-virtual part of
|
|
/// the struct is equivalent to the complete struct.
|
|
bool NonVirtualBaseTypeIsSameAsCompleteType;
|
|
|
|
/// LLVMFieldInfo - Holds a field and its corresponding LLVM field number.
|
|
typedef std::pair<const FieldDecl *, unsigned> LLVMFieldInfo;
|
|
llvm::SmallVector<LLVMFieldInfo, 16> LLVMFields;
|
|
|
|
/// LLVMBitFieldInfo - Holds location and size information about a bit field.
|
|
typedef std::pair<const FieldDecl *, CGBitFieldInfo> LLVMBitFieldInfo;
|
|
llvm::SmallVector<LLVMBitFieldInfo, 16> LLVMBitFields;
|
|
|
|
typedef std::pair<const CXXRecordDecl *, unsigned> LLVMBaseInfo;
|
|
llvm::SmallVector<LLVMBaseInfo, 16> LLVMNonVirtualBases;
|
|
|
|
/// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
|
|
/// primary base classes for some other direct or indirect base class.
|
|
CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
|
|
|
|
/// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
|
|
/// avoid laying out virtual bases more than once.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
|
|
|
|
/// IsZeroInitializable - Whether this struct can be C++
|
|
/// zero-initialized with an LLVM zeroinitializer.
|
|
bool IsZeroInitializable;
|
|
|
|
/// Packed - Whether the resulting LLVM struct will be packed or not.
|
|
bool Packed;
|
|
|
|
private:
|
|
CodeGenTypes &Types;
|
|
|
|
/// Alignment - Contains the alignment of the RecordDecl.
|
|
//
|
|
// FIXME: This is not needed and should be removed.
|
|
unsigned Alignment;
|
|
|
|
/// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
|
|
/// this will have the number of bits still available in the field.
|
|
char BitsAvailableInLastField;
|
|
|
|
/// NextFieldOffsetInBytes - Holds the next field offset in bytes.
|
|
uint64_t NextFieldOffsetInBytes;
|
|
|
|
/// LayoutUnionField - Will layout a field in an union and return the type
|
|
/// that the field will have.
|
|
const llvm::Type *LayoutUnionField(const FieldDecl *Field,
|
|
const ASTRecordLayout &Layout);
|
|
|
|
/// LayoutUnion - Will layout a union RecordDecl.
|
|
void LayoutUnion(const RecordDecl *D);
|
|
|
|
/// LayoutField - try to layout all fields in the record decl.
|
|
/// Returns false if the operation failed because the struct is not packed.
|
|
bool LayoutFields(const RecordDecl *D);
|
|
|
|
/// Layout a single base, virtual or non-virtual
|
|
void LayoutBase(const CXXRecordDecl *BaseDecl, uint64_t BaseOffset);
|
|
|
|
/// LayoutVirtualBase - layout a single virtual base.
|
|
void LayoutVirtualBase(const CXXRecordDecl *BaseDecl, uint64_t BaseOffset);
|
|
|
|
/// LayoutVirtualBases - layout the virtual bases of a record decl.
|
|
void LayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout);
|
|
|
|
/// LayoutNonVirtualBase - layout a single non-virtual base.
|
|
void LayoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
|
|
uint64_t BaseOffset);
|
|
|
|
/// LayoutNonVirtualBases - layout the virtual bases of a record decl.
|
|
void LayoutNonVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout);
|
|
|
|
/// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
|
|
bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
|
|
|
|
/// LayoutField - layout a single field. Returns false if the operation failed
|
|
/// because the current struct is not packed.
|
|
bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
|
|
|
|
/// LayoutBitField - layout a single bit field.
|
|
void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
|
|
|
|
/// AppendField - Appends a field with the given offset and type.
|
|
void AppendField(uint64_t FieldOffsetInBytes, const llvm::Type *FieldTy);
|
|
|
|
/// AppendPadding - Appends enough padding bytes so that the total
|
|
/// struct size is a multiple of the field alignment.
|
|
void AppendPadding(uint64_t FieldOffsetInBytes,
|
|
unsigned FieldAlignmentInBytes);
|
|
|
|
/// getByteArrayType - Returns a byte array type with the given number of
|
|
/// elements.
|
|
const llvm::Type *getByteArrayType(uint64_t NumBytes);
|
|
|
|
/// AppendBytes - Append a given number of bytes to the record.
|
|
void AppendBytes(uint64_t NumBytes);
|
|
|
|
/// AppendTailPadding - Append enough tail padding so that the type will have
|
|
/// the passed size.
|
|
void AppendTailPadding(uint64_t RecordSize);
|
|
|
|
unsigned getTypeAlignment(const llvm::Type *Ty) const;
|
|
|
|
/// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
|
|
/// LLVM element types.
|
|
unsigned getAlignmentAsLLVMStruct() const;
|
|
|
|
/// CheckZeroInitializable - Check if the given type contains a pointer
|
|
/// to data member.
|
|
void CheckZeroInitializable(QualType T);
|
|
void CheckZeroInitializable(const CXXRecordDecl *RD);
|
|
|
|
public:
|
|
CGRecordLayoutBuilder(CodeGenTypes &Types)
|
|
: NonVirtualBaseTypeIsSameAsCompleteType(false), IsZeroInitializable(true),
|
|
Packed(false), Types(Types), Alignment(0), BitsAvailableInLastField(0),
|
|
NextFieldOffsetInBytes(0) { }
|
|
|
|
/// Layout - Will layout a RecordDecl.
|
|
void Layout(const RecordDecl *D);
|
|
};
|
|
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
|
|
Alignment = Types.getContext().getASTRecordLayout(D).getAlignment() / 8;
|
|
Packed = D->hasAttr<PackedAttr>();
|
|
|
|
if (D->isUnion()) {
|
|
LayoutUnion(D);
|
|
return;
|
|
}
|
|
|
|
if (LayoutFields(D))
|
|
return;
|
|
|
|
// We weren't able to layout the struct. Try again with a packed struct
|
|
Packed = true;
|
|
NextFieldOffsetInBytes = 0;
|
|
FieldTypes.clear();
|
|
LLVMFields.clear();
|
|
LLVMBitFields.clear();
|
|
LLVMNonVirtualBases.clear();
|
|
|
|
LayoutFields(D);
|
|
}
|
|
|
|
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
|
|
const FieldDecl *FD,
|
|
uint64_t FieldOffset,
|
|
uint64_t FieldSize,
|
|
uint64_t ContainingTypeSizeInBits,
|
|
unsigned ContainingTypeAlign) {
|
|
const llvm::Type *Ty = Types.ConvertTypeForMemRecursive(FD->getType());
|
|
uint64_t TypeSizeInBytes = Types.getTargetData().getTypeAllocSize(Ty);
|
|
uint64_t TypeSizeInBits = TypeSizeInBytes * 8;
|
|
|
|
bool IsSigned = FD->getType()->isSignedIntegerType();
|
|
|
|
if (FieldSize > TypeSizeInBits) {
|
|
// We have a wide bit-field. The extra bits are only used for padding, so
|
|
// if we have a bitfield of type T, with size N:
|
|
//
|
|
// T t : N;
|
|
//
|
|
// We can just assume that it's:
|
|
//
|
|
// T t : sizeof(T);
|
|
//
|
|
FieldSize = TypeSizeInBits;
|
|
}
|
|
|
|
// Compute the access components. The policy we use is to start by attempting
|
|
// to access using the width of the bit-field type itself and to always access
|
|
// at aligned indices of that type. If such an access would fail because it
|
|
// extends past the bound of the type, then we reduce size to the next smaller
|
|
// power of two and retry. The current algorithm assumes pow2 sized types,
|
|
// although this is easy to fix.
|
|
//
|
|
// FIXME: This algorithm is wrong on big-endian systems, I think.
|
|
assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
|
|
CGBitFieldInfo::AccessInfo Components[3];
|
|
unsigned NumComponents = 0;
|
|
unsigned AccessedTargetBits = 0; // The tumber of target bits accessed.
|
|
unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
|
|
|
|
// Round down from the field offset to find the first access position that is
|
|
// at an aligned offset of the initial access type.
|
|
uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
|
|
|
|
// Adjust initial access size to fit within record.
|
|
while (AccessWidth > 8 &&
|
|
AccessStart + AccessWidth > ContainingTypeSizeInBits) {
|
|
AccessWidth >>= 1;
|
|
AccessStart = FieldOffset - (FieldOffset % AccessWidth);
|
|
}
|
|
|
|
while (AccessedTargetBits < FieldSize) {
|
|
// Check that we can access using a type of this size, without reading off
|
|
// the end of the structure. This can occur with packed structures and
|
|
// -fno-bitfield-type-align, for example.
|
|
if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
|
|
// If so, reduce access size to the next smaller power-of-two and retry.
|
|
AccessWidth >>= 1;
|
|
assert(AccessWidth >= 8 && "Cannot access under byte size!");
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, add an access component.
|
|
|
|
// First, compute the bits inside this access which are part of the
|
|
// target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
|
|
// intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
|
|
// in the target that we are reading.
|
|
assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
|
|
assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
|
|
uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
|
|
uint64_t AccessBitsInFieldSize =
|
|
std::min(AccessWidth + AccessStart,
|
|
FieldOffset + FieldSize) - AccessBitsInFieldStart;
|
|
|
|
assert(NumComponents < 3 && "Unexpected number of components!");
|
|
CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
|
|
AI.FieldIndex = 0;
|
|
// FIXME: We still follow the old access pattern of only using the field
|
|
// byte offset. We should switch this once we fix the struct layout to be
|
|
// pretty.
|
|
AI.FieldByteOffset = AccessStart / 8;
|
|
AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
|
|
AI.AccessWidth = AccessWidth;
|
|
AI.AccessAlignment = llvm::MinAlign(ContainingTypeAlign, AccessStart) / 8;
|
|
AI.TargetBitOffset = AccessedTargetBits;
|
|
AI.TargetBitWidth = AccessBitsInFieldSize;
|
|
|
|
AccessStart += AccessWidth;
|
|
AccessedTargetBits += AI.TargetBitWidth;
|
|
}
|
|
|
|
assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
|
|
return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
|
|
}
|
|
|
|
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
|
|
const FieldDecl *FD,
|
|
uint64_t FieldOffset,
|
|
uint64_t FieldSize) {
|
|
const RecordDecl *RD = FD->getParent();
|
|
const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
|
|
uint64_t ContainingTypeSizeInBits =
|
|
RL.getSize().getQuantity() * Types.getContext().getCharWidth();
|
|
unsigned ContainingTypeAlign = RL.getAlignment();
|
|
|
|
return MakeInfo(Types, FD, FieldOffset, FieldSize, ContainingTypeSizeInBits,
|
|
ContainingTypeAlign);
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
|
|
uint64_t FieldOffset) {
|
|
uint64_t FieldSize =
|
|
D->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();
|
|
|
|
if (FieldSize == 0)
|
|
return;
|
|
|
|
uint64_t NextFieldOffset = NextFieldOffsetInBytes * 8;
|
|
unsigned NumBytesToAppend;
|
|
|
|
if (FieldOffset < NextFieldOffset) {
|
|
assert(BitsAvailableInLastField && "Bitfield size mismatch!");
|
|
assert(NextFieldOffsetInBytes && "Must have laid out at least one byte!");
|
|
|
|
// The bitfield begins in the previous bit-field.
|
|
NumBytesToAppend =
|
|
llvm::RoundUpToAlignment(FieldSize - BitsAvailableInLastField, 8) / 8;
|
|
} else {
|
|
assert(FieldOffset % 8 == 0 && "Field offset not aligned correctly");
|
|
|
|
// Append padding if necessary.
|
|
AppendPadding(FieldOffset / 8, 1);
|
|
|
|
NumBytesToAppend =
|
|
llvm::RoundUpToAlignment(FieldSize, 8) / 8;
|
|
|
|
assert(NumBytesToAppend && "No bytes to append!");
|
|
}
|
|
|
|
// Add the bit field info.
|
|
LLVMBitFields.push_back(
|
|
LLVMBitFieldInfo(D, CGBitFieldInfo::MakeInfo(Types, D, FieldOffset,
|
|
FieldSize)));
|
|
|
|
AppendBytes(NumBytesToAppend);
|
|
|
|
BitsAvailableInLastField =
|
|
NextFieldOffsetInBytes * 8 - (FieldOffset + FieldSize);
|
|
}
|
|
|
|
bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
|
|
uint64_t FieldOffset) {
|
|
// If the field is packed, then we need a packed struct.
|
|
if (!Packed && D->hasAttr<PackedAttr>())
|
|
return false;
|
|
|
|
if (D->isBitField()) {
|
|
// We must use packed structs for unnamed bit fields since they
|
|
// don't affect the struct alignment.
|
|
if (!Packed && !D->getDeclName())
|
|
return false;
|
|
|
|
LayoutBitField(D, FieldOffset);
|
|
return true;
|
|
}
|
|
|
|
CheckZeroInitializable(D->getType());
|
|
|
|
assert(FieldOffset % 8 == 0 && "FieldOffset is not on a byte boundary!");
|
|
uint64_t FieldOffsetInBytes = FieldOffset / 8;
|
|
|
|
const llvm::Type *Ty = Types.ConvertTypeForMemRecursive(D->getType());
|
|
unsigned TypeAlignment = getTypeAlignment(Ty);
|
|
|
|
// If the type alignment is larger then the struct alignment, we must use
|
|
// a packed struct.
|
|
if (TypeAlignment > Alignment) {
|
|
assert(!Packed && "Alignment is wrong even with packed struct!");
|
|
return false;
|
|
}
|
|
|
|
if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
|
|
const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
|
|
if (const MaxFieldAlignmentAttr *MFAA =
|
|
RD->getAttr<MaxFieldAlignmentAttr>()) {
|
|
if (MFAA->getAlignment() != TypeAlignment * 8 && !Packed)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Round up the field offset to the alignment of the field type.
|
|
uint64_t AlignedNextFieldOffsetInBytes =
|
|
llvm::RoundUpToAlignment(NextFieldOffsetInBytes, TypeAlignment);
|
|
|
|
if (FieldOffsetInBytes < AlignedNextFieldOffsetInBytes) {
|
|
assert(!Packed && "Could not place field even with packed struct!");
|
|
return false;
|
|
}
|
|
|
|
AppendPadding(FieldOffsetInBytes, TypeAlignment);
|
|
|
|
// Now append the field.
|
|
LLVMFields.push_back(LLVMFieldInfo(D, FieldTypes.size()));
|
|
AppendField(FieldOffsetInBytes, Ty);
|
|
|
|
return true;
|
|
}
|
|
|
|
const llvm::Type *
|
|
CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
|
|
const ASTRecordLayout &Layout) {
|
|
if (Field->isBitField()) {
|
|
uint64_t FieldSize =
|
|
Field->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();
|
|
|
|
// Ignore zero sized bit fields.
|
|
if (FieldSize == 0)
|
|
return 0;
|
|
|
|
const llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
|
|
unsigned NumBytesToAppend =
|
|
llvm::RoundUpToAlignment(FieldSize, 8) / 8;
|
|
|
|
if (NumBytesToAppend > 1)
|
|
FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend);
|
|
|
|
// Add the bit field info.
|
|
LLVMBitFields.push_back(
|
|
LLVMBitFieldInfo(Field, CGBitFieldInfo::MakeInfo(Types, Field,
|
|
0, FieldSize)));
|
|
return FieldTy;
|
|
}
|
|
|
|
// This is a regular union field.
|
|
LLVMFields.push_back(LLVMFieldInfo(Field, 0));
|
|
return Types.ConvertTypeForMemRecursive(Field->getType());
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
|
|
assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
|
|
|
|
const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
|
|
|
|
const llvm::Type *Ty = 0;
|
|
uint64_t Size = 0;
|
|
unsigned Align = 0;
|
|
|
|
bool HasOnlyZeroSizedBitFields = true;
|
|
|
|
unsigned FieldNo = 0;
|
|
for (RecordDecl::field_iterator Field = D->field_begin(),
|
|
FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
|
|
assert(Layout.getFieldOffset(FieldNo) == 0 &&
|
|
"Union field offset did not start at the beginning of record!");
|
|
const llvm::Type *FieldTy = LayoutUnionField(*Field, Layout);
|
|
|
|
if (!FieldTy)
|
|
continue;
|
|
|
|
HasOnlyZeroSizedBitFields = false;
|
|
|
|
unsigned FieldAlign = Types.getTargetData().getABITypeAlignment(FieldTy);
|
|
uint64_t FieldSize = Types.getTargetData().getTypeAllocSize(FieldTy);
|
|
|
|
if (FieldAlign < Align)
|
|
continue;
|
|
|
|
if (FieldAlign > Align || FieldSize > Size) {
|
|
Ty = FieldTy;
|
|
Align = FieldAlign;
|
|
Size = FieldSize;
|
|
}
|
|
}
|
|
|
|
// Now add our field.
|
|
if (Ty) {
|
|
AppendField(0, Ty);
|
|
|
|
if (getTypeAlignment(Ty) > Layout.getAlignment() / 8) {
|
|
// We need a packed struct.
|
|
Packed = true;
|
|
Align = 1;
|
|
}
|
|
}
|
|
if (!Align) {
|
|
assert(HasOnlyZeroSizedBitFields &&
|
|
"0-align record did not have all zero-sized bit-fields!");
|
|
Align = 1;
|
|
}
|
|
|
|
// Append tail padding.
|
|
uint64_t RecordSize = Layout.getSize().getQuantity();
|
|
if (RecordSize > Size)
|
|
AppendPadding(RecordSize, Align);
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *BaseDecl,
|
|
uint64_t BaseOffset) {
|
|
CheckZeroInitializable(BaseDecl);
|
|
|
|
const ASTRecordLayout &Layout =
|
|
Types.getContext().getASTRecordLayout(BaseDecl);
|
|
|
|
CharUnits NonVirtualSize = Layout.getNonVirtualSize();
|
|
|
|
AppendPadding(BaseOffset / 8, 1);
|
|
|
|
// FIXME: Actually use a better type than [sizeof(BaseDecl) x i8] when we can.
|
|
AppendBytes(NonVirtualSize.getQuantity());
|
|
}
|
|
|
|
void
|
|
CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *BaseDecl,
|
|
uint64_t BaseOffset) {
|
|
// Ignore empty bases.
|
|
if (BaseDecl->isEmpty())
|
|
return;
|
|
|
|
CheckZeroInitializable(BaseDecl);
|
|
|
|
const ASTRecordLayout &Layout =
|
|
Types.getContext().getASTRecordLayout(BaseDecl);
|
|
|
|
CharUnits NonVirtualSize = Layout.getNonVirtualSize();
|
|
|
|
AppendPadding(BaseOffset / 8, 1);
|
|
|
|
// FIXME: Actually use a better type than [sizeof(BaseDecl) x i8] when we can.
|
|
AppendBytes(NonVirtualSize.getQuantity());
|
|
|
|
// FIXME: Add the vbase field info.
|
|
}
|
|
|
|
/// LayoutVirtualBases - layout the non-virtual bases of a record decl.
|
|
void
|
|
CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout) {
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl =
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// We only want to lay out virtual bases that aren't indirect primary bases
|
|
// of some other base.
|
|
if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
|
|
// Only lay out the base once.
|
|
if (!LaidOutVirtualBases.insert(BaseDecl))
|
|
continue;
|
|
|
|
uint64_t VBaseOffset = Layout.getVBaseClassOffsetInBits(BaseDecl);
|
|
LayoutVirtualBase(BaseDecl, VBaseOffset);
|
|
}
|
|
|
|
if (!BaseDecl->getNumVBases()) {
|
|
// This base isn't interesting since it doesn't have any virtual bases.
|
|
continue;
|
|
}
|
|
|
|
LayoutVirtualBases(BaseDecl, Layout);
|
|
}
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
|
|
uint64_t BaseOffset) {
|
|
// Ignore empty bases.
|
|
if (BaseDecl->isEmpty())
|
|
return;
|
|
|
|
LayoutBase(BaseDecl, BaseOffset);
|
|
|
|
// Append the base field.
|
|
LLVMNonVirtualBases.push_back(LLVMBaseInfo(BaseDecl, FieldTypes.size() - 1));
|
|
}
|
|
|
|
void
|
|
CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout) {
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
// Check if we need to add a vtable pointer.
|
|
if (RD->isDynamicClass()) {
|
|
if (!PrimaryBase) {
|
|
const llvm::Type *FunctionType =
|
|
llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
|
|
/*isVarArg=*/true);
|
|
const llvm::Type *VTableTy = FunctionType->getPointerTo();
|
|
|
|
assert(NextFieldOffsetInBytes == 0 &&
|
|
"VTable pointer must come first!");
|
|
AppendField(NextFieldOffsetInBytes, VTableTy->getPointerTo());
|
|
} else {
|
|
if (!Layout.isPrimaryBaseVirtual())
|
|
LayoutNonVirtualBase(PrimaryBase, 0);
|
|
else
|
|
LayoutVirtualBase(PrimaryBase, 0);
|
|
}
|
|
}
|
|
|
|
// Layout the non-virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
if (I->isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// We've already laid out the primary base.
|
|
if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
|
|
continue;
|
|
|
|
LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffsetInBits(BaseDecl));
|
|
}
|
|
}
|
|
|
|
bool
|
|
CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
|
|
const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);
|
|
|
|
|
|
CharUnits NonVirtualSize = Layout.getNonVirtualSize();
|
|
CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
|
|
uint64_t AlignedNonVirtualTypeSize =
|
|
NonVirtualSize.RoundUpToAlignment(NonVirtualAlign).getQuantity();
|
|
|
|
|
|
// First check if we can use the same fields as for the complete class.
|
|
uint64_t RecordSize = Layout.getSize().getQuantity();
|
|
if (AlignedNonVirtualTypeSize == RecordSize) {
|
|
NonVirtualBaseTypeIsSameAsCompleteType = true;
|
|
return true;
|
|
}
|
|
|
|
// Check if we need padding.
|
|
uint64_t AlignedNextFieldOffset =
|
|
llvm::RoundUpToAlignment(NextFieldOffsetInBytes,
|
|
getAlignmentAsLLVMStruct());
|
|
|
|
if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize)
|
|
return false; // Needs packing.
|
|
|
|
NonVirtualBaseFieldTypes = FieldTypes;
|
|
|
|
if (AlignedNonVirtualTypeSize == AlignedNextFieldOffset) {
|
|
// We don't need any padding.
|
|
return true;
|
|
}
|
|
|
|
uint64_t NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
|
|
NonVirtualBaseFieldTypes.push_back(getByteArrayType(NumBytes));
|
|
return true;
|
|
}
|
|
|
|
bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
|
|
assert(!D->isUnion() && "Can't call LayoutFields on a union!");
|
|
assert(Alignment && "Did not set alignment!");
|
|
|
|
const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
|
|
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
|
|
if (RD)
|
|
LayoutNonVirtualBases(RD, Layout);
|
|
|
|
unsigned FieldNo = 0;
|
|
|
|
for (RecordDecl::field_iterator Field = D->field_begin(),
|
|
FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
|
|
if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
|
|
assert(!Packed &&
|
|
"Could not layout fields even with a packed LLVM struct!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (RD) {
|
|
// We've laid out the non-virtual bases and the fields, now compute the
|
|
// non-virtual base field types.
|
|
if (!ComputeNonVirtualBaseType(RD)) {
|
|
assert(!Packed && "Could not layout even with a packed LLVM struct!");
|
|
return false;
|
|
}
|
|
|
|
// And lay out the virtual bases.
|
|
RD->getIndirectPrimaryBases(IndirectPrimaryBases);
|
|
if (Layout.isPrimaryBaseVirtual())
|
|
IndirectPrimaryBases.insert(Layout.getPrimaryBase());
|
|
LayoutVirtualBases(RD, Layout);
|
|
}
|
|
|
|
// Append tail padding if necessary.
|
|
AppendTailPadding(
|
|
Layout.getSize().getQuantity() * Types.getContext().getCharWidth());
|
|
|
|
return true;
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendTailPadding(uint64_t RecordSize) {
|
|
assert(RecordSize % 8 == 0 && "Invalid record size!");
|
|
|
|
uint64_t RecordSizeInBytes = RecordSize / 8;
|
|
assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!");
|
|
|
|
uint64_t AlignedNextFieldOffset =
|
|
llvm::RoundUpToAlignment(NextFieldOffsetInBytes,
|
|
getAlignmentAsLLVMStruct());
|
|
|
|
if (AlignedNextFieldOffset == RecordSizeInBytes) {
|
|
// We don't need any padding.
|
|
return;
|
|
}
|
|
|
|
unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes;
|
|
AppendBytes(NumPadBytes);
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendField(uint64_t FieldOffsetInBytes,
|
|
const llvm::Type *FieldTy) {
|
|
uint64_t FieldSizeInBytes = Types.getTargetData().getTypeAllocSize(FieldTy);
|
|
|
|
FieldTypes.push_back(FieldTy);
|
|
|
|
NextFieldOffsetInBytes = FieldOffsetInBytes + FieldSizeInBytes;
|
|
BitsAvailableInLastField = 0;
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendPadding(uint64_t FieldOffsetInBytes,
|
|
unsigned FieldAlignmentInBytes) {
|
|
assert(NextFieldOffsetInBytes <= FieldOffsetInBytes &&
|
|
"Incorrect field layout!");
|
|
|
|
// Round up the field offset to the alignment of the field type.
|
|
uint64_t AlignedNextFieldOffsetInBytes =
|
|
llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignmentInBytes);
|
|
|
|
if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) {
|
|
// Even with alignment, the field offset is not at the right place,
|
|
// insert padding.
|
|
uint64_t PaddingInBytes = FieldOffsetInBytes - NextFieldOffsetInBytes;
|
|
|
|
AppendBytes(PaddingInBytes);
|
|
}
|
|
}
|
|
|
|
const llvm::Type *CGRecordLayoutBuilder::getByteArrayType(uint64_t NumBytes) {
|
|
assert(NumBytes != 0 && "Empty byte array's aren't allowed.");
|
|
|
|
const llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
|
|
if (NumBytes > 1)
|
|
Ty = llvm::ArrayType::get(Ty, NumBytes);
|
|
|
|
return Ty;
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendBytes(uint64_t NumBytes) {
|
|
if (NumBytes == 0)
|
|
return;
|
|
|
|
// Append the padding field
|
|
AppendField(NextFieldOffsetInBytes, getByteArrayType(NumBytes));
|
|
}
|
|
|
|
unsigned CGRecordLayoutBuilder::getTypeAlignment(const llvm::Type *Ty) const {
|
|
if (Packed)
|
|
return 1;
|
|
|
|
return Types.getTargetData().getABITypeAlignment(Ty);
|
|
}
|
|
|
|
unsigned CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
|
|
if (Packed)
|
|
return 1;
|
|
|
|
unsigned MaxAlignment = 1;
|
|
for (size_t i = 0; i != FieldTypes.size(); ++i)
|
|
MaxAlignment = std::max(MaxAlignment, getTypeAlignment(FieldTypes[i]));
|
|
|
|
return MaxAlignment;
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
|
|
// This record already contains a member pointer.
|
|
if (!IsZeroInitializable)
|
|
return;
|
|
|
|
// Can only have member pointers if we're compiling C++.
|
|
if (!Types.getContext().getLangOptions().CPlusPlus)
|
|
return;
|
|
|
|
T = Types.getContext().getBaseElementType(T);
|
|
|
|
if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
|
|
if (!Types.getCXXABI().isZeroInitializable(MPT))
|
|
IsZeroInitializable = false;
|
|
} else if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
CheckZeroInitializable(RD);
|
|
}
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::CheckZeroInitializable(const CXXRecordDecl *RD) {
|
|
// This record already contains a member pointer.
|
|
if (!IsZeroInitializable)
|
|
return;
|
|
|
|
const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
|
|
if (!Layout.isZeroInitializable())
|
|
IsZeroInitializable = false;
|
|
}
|
|
|
|
CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D) {
|
|
CGRecordLayoutBuilder Builder(*this);
|
|
|
|
Builder.Layout(D);
|
|
|
|
const llvm::StructType *Ty = llvm::StructType::get(getLLVMContext(),
|
|
Builder.FieldTypes,
|
|
Builder.Packed);
|
|
|
|
const llvm::StructType *BaseTy = 0;
|
|
if (isa<CXXRecordDecl>(D)) {
|
|
if (Builder.NonVirtualBaseTypeIsSameAsCompleteType)
|
|
BaseTy = Ty;
|
|
else if (!Builder.NonVirtualBaseFieldTypes.empty())
|
|
BaseTy = llvm::StructType::get(getLLVMContext(),
|
|
Builder.NonVirtualBaseFieldTypes,
|
|
Builder.Packed);
|
|
}
|
|
|
|
CGRecordLayout *RL =
|
|
new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable);
|
|
|
|
// Add all the non-virtual base field numbers.
|
|
RL->NonVirtualBaseFields.insert(Builder.LLVMNonVirtualBases.begin(),
|
|
Builder.LLVMNonVirtualBases.end());
|
|
|
|
// Add all the field numbers.
|
|
RL->FieldInfo.insert(Builder.LLVMFields.begin(),
|
|
Builder.LLVMFields.end());
|
|
|
|
// Add bitfield info.
|
|
RL->BitFields.insert(Builder.LLVMBitFields.begin(),
|
|
Builder.LLVMBitFields.end());
|
|
|
|
// Dump the layout, if requested.
|
|
if (getContext().getLangOptions().DumpRecordLayouts) {
|
|
llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
|
|
llvm::errs() << "Record: ";
|
|
D->dump();
|
|
llvm::errs() << "\nLayout: ";
|
|
RL->dump();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that the computed LLVM struct size matches the AST layout size.
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
|
|
|
|
uint64_t TypeSizeInBits =
|
|
Layout.getSize().getQuantity() * getContext().getCharWidth();
|
|
assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
|
|
"Type size mismatch!");
|
|
|
|
if (BaseTy) {
|
|
CharUnits NonVirtualSize = Layout.getNonVirtualSize();
|
|
CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
|
|
CharUnits AlignedNonVirtualTypeSize =
|
|
NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
|
|
|
|
uint64_t AlignedNonVirtualTypeSizeInBits =
|
|
AlignedNonVirtualTypeSize.getQuantity() * getContext().getCharWidth();
|
|
|
|
assert(AlignedNonVirtualTypeSizeInBits ==
|
|
getTargetData().getTypeAllocSizeInBits(BaseTy) &&
|
|
"Type size mismatch!");
|
|
}
|
|
|
|
// Verify that the LLVM and AST field offsets agree.
|
|
const llvm::StructType *ST =
|
|
dyn_cast<llvm::StructType>(RL->getLLVMType());
|
|
const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);
|
|
|
|
const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
|
|
RecordDecl::field_iterator it = D->field_begin();
|
|
for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
|
|
const FieldDecl *FD = *it;
|
|
|
|
// For non-bit-fields, just check that the LLVM struct offset matches the
|
|
// AST offset.
|
|
if (!FD->isBitField()) {
|
|
unsigned FieldNo = RL->getLLVMFieldNo(FD);
|
|
assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
|
|
"Invalid field offset!");
|
|
continue;
|
|
}
|
|
|
|
// Ignore unnamed bit-fields.
|
|
if (!FD->getDeclName())
|
|
continue;
|
|
|
|
const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
|
|
for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
|
|
const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
|
|
|
|
// Verify that every component access is within the structure.
|
|
uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
|
|
uint64_t AccessBitOffset = FieldOffset + AI.FieldByteOffset * 8;
|
|
assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
|
|
"Invalid bit-field access (out of range)!");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return RL;
|
|
}
|
|
|
|
void CGRecordLayout::print(llvm::raw_ostream &OS) const {
|
|
OS << "<CGRecordLayout\n";
|
|
OS << " LLVMType:" << *LLVMType << "\n";
|
|
if (NonVirtualBaseLLVMType)
|
|
OS << " NonVirtualBaseLLVMType:" << *NonVirtualBaseLLVMType << "\n";
|
|
OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
|
|
OS << " BitFields:[\n";
|
|
|
|
// Print bit-field infos in declaration order.
|
|
std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
|
|
for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
|
|
it = BitFields.begin(), ie = BitFields.end();
|
|
it != ie; ++it) {
|
|
const RecordDecl *RD = it->first->getParent();
|
|
unsigned Index = 0;
|
|
for (RecordDecl::field_iterator
|
|
it2 = RD->field_begin(); *it2 != it->first; ++it2)
|
|
++Index;
|
|
BFIs.push_back(std::make_pair(Index, &it->second));
|
|
}
|
|
llvm::array_pod_sort(BFIs.begin(), BFIs.end());
|
|
for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
|
|
OS.indent(4);
|
|
BFIs[i].second->print(OS);
|
|
OS << "\n";
|
|
}
|
|
|
|
OS << "]>\n";
|
|
}
|
|
|
|
void CGRecordLayout::dump() const {
|
|
print(llvm::errs());
|
|
}
|
|
|
|
void CGBitFieldInfo::print(llvm::raw_ostream &OS) const {
|
|
OS << "<CGBitFieldInfo";
|
|
OS << " Size:" << Size;
|
|
OS << " IsSigned:" << IsSigned << "\n";
|
|
|
|
OS.indent(4 + strlen("<CGBitFieldInfo"));
|
|
OS << " NumComponents:" << getNumComponents();
|
|
OS << " Components: [";
|
|
if (getNumComponents()) {
|
|
OS << "\n";
|
|
for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
|
|
const AccessInfo &AI = getComponent(i);
|
|
OS.indent(8);
|
|
OS << "<AccessInfo"
|
|
<< " FieldIndex:" << AI.FieldIndex
|
|
<< " FieldByteOffset:" << AI.FieldByteOffset
|
|
<< " FieldBitStart:" << AI.FieldBitStart
|
|
<< " AccessWidth:" << AI.AccessWidth << "\n";
|
|
OS.indent(8 + strlen("<AccessInfo"));
|
|
OS << " AccessAlignment:" << AI.AccessAlignment
|
|
<< " TargetBitOffset:" << AI.TargetBitOffset
|
|
<< " TargetBitWidth:" << AI.TargetBitWidth
|
|
<< ">\n";
|
|
}
|
|
OS.indent(4);
|
|
}
|
|
OS << "]>";
|
|
}
|
|
|
|
void CGBitFieldInfo::dump() const {
|
|
print(llvm::errs());
|
|
}
|